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ARTICLE INFO ABSTRACT

Keywords: Background: Assessing brain activity during rest has become a widely used approach in developmental neuro-
Magnetoencephalography science. Extant literature has measured resting brain activity both during eyes-open and eyes-closed conditions,
MEG but the difference between these conditions has not yet been well characterized. Studies, limited to fMRI and EEG,
g:zg;a;;ie have suggested that eyes-open versus -closed conditions may differentially impact neural activity, especially in
Beta visual cortices.

Alpha Methods: Spontaneous cortical activity was recorded using MEG from 108 typically developing youth (9-15 years-
old; 55 female) during separate sessions of eyes-open and eyes-closed rest. MEG source images were computed,
and the strength of spontaneous neural activity was estimated in the canonical delta, theta, alpha, beta, and
gamma bands, respectively. Power spectral density maps for eyes-open were subtracted from eyes-closed rest,
and then submitted to vertex-wise regression models to identify spatially specific differences between conditions
and as a function of age and sex.

Results: Relative alpha power was weaker in the eyes-open compared to -closed condition, but otherwise eyes-
open was stronger in all frequency bands, with differences concentrated in the occipital cortex. Relative theta
power became stronger in the eyes-open compared to the eyes-closed condition with increasing age in frontal
cortex. No differences were observed between males and females.

Conclusions: The differences in relative power from eyes-closed to -open conditions are consistent with changes
observed in task-based visual sensory responses. Age differences occurred in relatively late developing frontal
regions, consistent with canonical attention regions, suggesting that these differences could be reflective of devel-
opmental changes in attention processes during puberty. Taken together, resting-state paradigms using eyes-open
versus -closed produce distinct results and, in fact, can help pinpoint sensory related brain activity.

Adolescence

1. Introduction

Brain activity during periods of rest — in which participants are
relaxed and not engaged in an explicit cognitive task (Azeez and
Biswal, 2017; Biswal et al., 1995; Fox and Raichle, 2007) — has received
considerable attention in human neuroimaging research. The absence
of task demands makes this method useful to generalize across samples.
Further, it is particularly applicable to developmental populations and

those with severe psychiatric and neurological conditions, where cogni-
tive/linguistic abilities may affect performance on cognitive tasks dur-
ing imaging and thereby complicate interpretation. In this regard, rest-
ing state studies have made progress toward identifying brain networks
that undergo considerable changes during development (Marusak et al.,
2017; Uddin et al., 2011), which have shed light on how develop-
mental differences may underlie the emergence of psychiatric disorders
(Drysdale et al., 2017; van Dijk et al., 2010).
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While the majority of resting state studies in developing youth
have focused on functional connectivity as recorded in the blood-
oxygenation-level dependent (BOLD) signal, there is growing interest
in the use of magnetoencephalography (MEG) to measure spontaneous
brain activity. Distinct advantages of MEG in this context are that the
neuromagnetic field strength estimates are reference free (e.g., in con-
trast to electrical referencing in electroencephalography; EEG), and do
not require a contrast condition of any type (e.g., in fMRI). Further, MEG
possesses exquisite spatial (~3-5 mm; Baillet, 2017; Wilson et al., 2016)
and temporal (1 ms) precision, which enables a multispectral approach
whereby neural activity at different frequencies can be quantified and
characterized discretely. Importantly, MEG is noninvasive and silent,
making it ideal for the assessment of resting brain activity in develop-
ing youth (Hoshi and Shigihara, 2020; Ott et al., 2021), who may be
particularly sensitive to the noise and restricted environment of MRI
data collection.

To date, age-related differences in spontaneous cortical activity, as
measured by M/EEG, are somewhat limited though generally consis-
tent. Multiple studies have documented that, across the entire lifes-
pan, younger compared to older subjects tend to show stronger os-
cillatory power in lower frequency bands and weaker power in the
higher frequency bands, as measured by both EEG (Michels et al., 2013;
Segalowitz et al., 2010) and MEG (Goémez et al., 2013; Hoshi and
Shigihara, 2020; Hunt et al., 2019; Uhlhaas et al., 2010). A recent
study using MEG observed this age-related effect specifically within a
peri-adolescent age range (Ott et al., 2021). Consistent with previous
work, this study also demonstrated that these changes occur predom-
inantly in association cortices which show robust structural changes
during the pubertal transition period in particular (Gogtay et al., 2004;
Wierenga et al., 2014) relative to low-level sensory regions. Albeit lim-
ited, this work suggests that developmental differences in resting oscil-
latory power may reflect important markers of brain development.

A key parameter that has not been examined in developmental stud-
ies of resting spontaneous cortical activity is the effect of using eyes-
open (EO) versus eyes-closed (EC) recording paradigms. This consid-
eration is particularly important given that at least some frequency
bands are sensitive to EO relative to EC conditions vis-a-vis their re-
lationship to sensory processes. Most notably, posterior alpha power
shows a well-documented decrease in power following the opening of
the eyes (Berger, 1929; Cohen, 1968), an effect which reflects visual cor-
tical processing of external sensory information (Pfurtscheller, 1992).
Similar changes, when the eyes are open, are found during states of
heightened arousal (Barry et al., 2005) and with directed visual atten-
tion (Adrian, 1944; Ergenoglu et al., 2004), demonstrating that occipital
alpha power is intimately tied to visual processing encompassing both
low-level visual sensory processes and higher-level processes such as at-
tention (Klimesch et al., 2007). Indeed, a few studies that have directly
compared resting cortical activity between these conditions have found
a decrease in alpha power for EO relative to EC (Allen et al., 2018;
Barry et al., 2007, 2009; ). Along these lines, other studies have demon-
strated that functional connectivity within the visual cortex changes be-
tween EO and EC conditions (Agcaoglu et al., 2020; Patriat et al., 2013).
Thus, the existing evidence indicates that there may be important differ-
ences between resting-state activity in EO and EC conditions, and that
these may be related to both low-level sensory processing and higher-
order attention function.

In the current cross-sectional study, spontaneous cortical activity was
measured using MEG in a peri-adolescent sample (9-15 years) during
periods of EC and EO rest. We expected that conditional differences
between EC and EO would be observed primarily in brain areas in-
volved in visual sensory processing. In addition, we tested whether dif-
ferences in cortical activity between EC and EO were related to age.
Here, we hypothesized that conditional differences would be observed
in areas involved in higher order sensory processing, such as those
within the canonical frontoparietal attention network, given that the
structure and function of these regions take shape during pubertal de-
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velopment (Segalowitz et al., 2010). Lastly, we examined if differences
in EC versus EO varied between males and females, given the well-
documented sexual divergence that emerges specifically during adoles-
cence (Goddings et al., 2019; Mills and Tamnes, 2014).

2. Methods
2.1. Participants

A total of 127 heathy youth (61 Male, 119 right-handed) were en-
rolled to participate in the study (M, = 11.78 years, SD = 1.60,
range = 9.03-15.20 years). A parent or legal guardian provided in-
formed consent and reported all demographic information. The child
participants provided assent before participating in the study. The study
was fully approved by our Institutional Review Board, and all protocols
were conducted in accordance with the Declaration of Helsinki.

Exclusionary criteria included the inability to complete either of
the full resting state scans, any medical illness or medication affecting
the CNS function, neurological or psychiatric disorders, history of head
trauma, current substance abuse, and the standard exclusion criteria re-
lated to MEG and MRI acquisition (e.g., dental braces, metallic implants,
battery operated implants, and/or any type of ferromagnetic implanted
material).

2.2. MEG acquisition

The MEG signals were recorded from a 306-sensor Elekta/MEGIN
MEG system (Helsinki, Finland), equipped with 204 planar gradiometers
and 102 magnetometers, which sampled the neuromagnetic responses
continuously at 1 kHz with an acquisition bandwidth of 0.1-330 Hz.
Recordings took place inside a one-layer magnetically-shielded room
with active shielding engaged for environmental noise compensation.
Participants were seated in a custom-made nonmagnetic chair, with
their heads positioned within the sensor array.

Participants were instructed to either rest with their eyes closed or
open while fixating on a centrally presented cross during two sepa-
rate six-minute blocks; the order of the blocks (i.e., EO and EC condi-
tions) was counter-balanced across participants. Participants were mon-
itored throughout MEG data acquisition via live audio-video feeds in-
side the shielded room. Structural T1 weighted images were acquired
on a Siemens 3T Skyra scanner with a 32-channel head coil and using
a MPRAGE sequence (TR = 2400 ms; TE = 1.94 ms; flip angle = 8°;
FOV = 256 mm; slice thickness = 1 mm (no gap); base resolution = 256;
192 slices; voxel size =1 x 1 x 1 mm).

2.3. Structural MRI processing and MEG-MRI co-registration

Participants’ high-resolution T1-weighted structural MRI data
were segmented using a standard voxel-based morphometry pipeline
in the computational anatomy toolbox (CAT12 v12.7; Gaser and
Dahnke, 2016) within SPM12. Segmented T1 images underwent noise
reduction using a spatially-adaptive non-local means denoising filter
(Manjon et al., 2010) and a classical Markov Random Field approach
(Rajapakse et al., 1997). An affine registration and a local intensity
transformation were then applied to the bias corrected images. These
preprocessed images were segmented based on an adaptive maximum a
posteriori technique (Ashburner and Friston, 2005) and a partial volume
estimation with a simplified mixed model of a maximum of two tissue
types. Lastly, the segmented images were normalized to MNI template
space and imported into Brainstorm for co-registration.

Prior to MEG acquisition, four coils were attached to the participants’
heads and localized with the three fiducial points and scalp surface using
a 3-D digitizer (Fastrak 3SF0002, Polhemus Navigator Sciences, Colch-
ester, VT, USA). After the participant was positioned for MEG recording,
an electrical current with a unique frequency label (e.g., 322 Hz) was
fed into each of the coils, which induced a measurable magnetic field
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and allowed each coil to be uniquely localized relative to the sensors
throughout the recording session. Here, because the coil locations were
also known in head coordinates, all MEG measurements could be trans-
formed into a common coordinate system. This coordinate system was
then used to co-register each participant’s MEG data to their structural
MR, prior to source space analyses using Brainstorm (see Section 2.5)

2.4. MEG data pre-processing

Only the gradiometer sensors were used in each stage of MEG pre-
processing and analysis. Each MEG dataset was individually corrected
for head motion and subjected to noise reduction using the signal space
separation method with temporal extension (tSSS; MaxFilter v 2.2;
correlation limit: 0.950; correlation window duration: 6 s; Taulu and
Simola, 2006). The preprocessing of MEG data was conducted in Brain-
storm (Tadel et al., 2019) and was modeled after that of previous stud-
ies (Niso et al., 2019; Ott et al., 2021). A high pass filter of 0.3 Hz
and notch filters at 60 Hz and its harmonics were applied. Cardiac arti-
facts were identified in the raw MEG data and removed using an adap-
tive signal-space projection (SSP) approach, which was subsequently ac-
counted for during source reconstruction (Ille et al., 2002; Uusitalo and
Ilmoniemi, 1997). For data collected during the EO session, eye-blink
artifacts were additionally removed using the SSP approach. Following
artifact removal, data were divided into four-second epochs, which were
examined for artifacts on a per-person basis. We opted to use this method
to reject other types of artifactual data, as opposed to additional SSP arti-
fact correction procedure, to reduce the risk of removing genuine neural
information from the signal prior to source reconstruction. Along these
lines, we avoided the use of independent components analysis (ICA) to
remove artifactual signals, as this would further reduce the rank of the
data and thus diminish the precision of source reconstruction. Epochs
with amplitudes and/or gradients exceeding + 3 standard deviations
of that individual’s distribution of values were excluded from further
analysis. Here, individual thresholds, based on the signal distribution
for both amplitude and gradient were used to reject artifacts, given that
the MEG signal amplitude is strongly affected by the distance between
the brain and MEG sensor array. Following this artifact rejection step,
the mean number of accepted epochs was 56.55 (SD = 7.69, min = 40,
max = 75) for the EO and 65.41 (SD = 6.90, min = 46, max = 89) for the
EC conditions. Since the number of epochs can affect the signal-to-noise
ratio, we equated the two conditions in each participant by randomly
discarding epochs. Thus, participants contributed an average of 55.82
epochs (SD = 6.89, min = 40, max = 71) per condition for analysis. Note
that the minimum length of MEG data submitted to the analysis was
160 s (i.e., 40 epochs), which exceeds the minimum recording length
recommended to achieve reliable resting state measures (Wiesman et al.,
2022). Across participants, the number of epochs were not statistically
different by age or sex.

2.5. MEG source imaging and frequency power maps

Source modeling followed the analysis pipeline outlined in
Wiesman et al. (2021). Briefly, the forward model was computed using
an overlapping spheres head model (Huang et al., 1999), unconstrained
to the cortical surface. A linearly constrained minimum variance (LCMV)
beamformer, implemented in Brainstorm, was then used to spatially fil-
ter the data epochs based on the data covariance, computed from the
resting-state recording. Here, we estimated a model with 15,002 vertices
across the cortical surface and did not regularize the data covariance
matrix.

Using these source estimates, we then computed the power of cor-
tical activity in five canonical frequency bands: delta (2-4 Hz), theta
(5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), and gamma (30-59 Hz).
Power spectrum densities (PSD) were estimated using Welch’s method
(Welch, 1967) on each four-second epoch, with one second sliding Ham-
ming windows overlapping at 50%. The PSDs were then normalized
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within each frequency band to the total power across the total frequency
spectrum per condition, consistent with previous reports on resting state
MEG data (Candelaria-Cook et al., 2022; Lew et al., 2021; Niso et al.,
2019; Ott et al., 2021; Wiesman et al., 2021, 2022). The PSD maps
were then averaged within each participant, separated by the two con-
ditions, and for each of the five frequency bands separately, resulting in
10 PSD maps for each participant. Each of these maps were then pro-
jected onto the MNI ICBM152 brain template (Fonov et al., 2009) and a
3 mm FWHM smoothing kernel was applied, before undergoing statisti-
cal analysis.

2.6. Statistical analyses

SPM12 was used to assess conditional differences between EC and
EO per spectral range in the spontaneous neural dynamics, and to de-
termine if these differences were related to age or sex. To this end, at
each vertex and separately for each frequency band, the spontaneous
power during EO was subtracted from the EC condition. The difference
maps were then submitted to a multiple regression, separately for each
frequency band, with the following predictors: (1) a constant term, (2)
age, and (3) sex, which represented, respectively, (1) the difference be-
tween rest conditions while controlling for age and sex, (2) the relation-
ship between the resting condition difference and age while controlling
for sex, and (3) the relationship between the resting condition differ-
ence and sex while controlling for age. The coefficient corresponding to
each of these three predictors were then submitted to separate F-tests
across participants, producing a cortical map possessing vertex-wise F-
values. To correct for the multiple comparisons conducted across the
vertices, threshold free cluster enhancement (TFCE; E = 1, H = 2; 5000
permutations; Smith and Nichols, 2009) was applied to each of the re-
sulting statistical maps. Following permutations, these TFCE maps were
assessed with a cluster-wise threshold of pgyy < .05 and a cluster form-
ing threshold of k > 100 vertices. Data from the peak voxels were used
to display and interpret the corresponding effects, which were labeled
with the Harvard-Oxford cortical atlas.

3. Results
3.1. Descriptive statistics

Of the 127 enrolled participants, 9 failed to complete the MRI and
10 failed to complete at least some portion of the MEG resting-state
tasks. Thus, the current study included the analysis of data from 108
participants (Mg, = 11.91, SD = 1.61, range = 9.03-15.20 years). De-
mographic characteristics are detailed in Table 1.

3.2. Eyes-open versus - closed resting oscillatory activity

The EC compared to EO difference in relative power was assessed
using a regression model, which controlled for age and sex. Across all
participants, differences in spontaneous neural dynamics between EC
and EO resting conditions were found in delta, theta, alpha, beta, and
gamma frequency bands. The alpha-band was the only band to show
stronger power for EC relative to EO (Fig. 1). This difference was ob-
served in two bilateral clusters, which spanned the occipital, parietal,
and temporal cortices, extending into the medial prefrontal cortices; the
peak difference was located in the right (F; ;95 = 94.63, p < 0.001) oc-
cipital pole.

Stronger power for EO relative to EC was observed in the delta, theta,
beta, and gamma frequency bands. In the delta-band (Fig. 2), this differ-
ence was observed in two relatively circumscribed occipital clusters, as
well as two bilateral clusters spanning frontal and anterior temporal cor-
tices, with a peak difference located in the right occipital fusiform gyrus
(FI, 105 = 57.77, p < .001). In the theta-band (Fig. 2), this difference
was observed in two bilateral clusters spanning the occipital, parietal,
temporal, and frontal lobes, with the peak difference located in the right
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Fig. 1. Resting-state spontaneous alpha differences in EC relative to EO. Cortical surface maps (right) display the vertex-wise F-values representing the comparison
of EC to EO relative alpha power passing a TFCE threshold, with the blue box indicating the vertex containing the largest difference. The boxplots are for illustration
purposes only and depict the vertex showing the strongest condition effect following multiple comparison correction. From this peak-vertex, each participant’s
relative power is plotted (left) separately for the EC (magenta) and EO (green) conditions and connected with gray lines. The box plots illustrate the mean, first
and third quartiles, and the whiskers indicate the minima and maxima. The violin plots illustrate the probability density. Each peak-vertex was labeled with the
Harvard-Oxford cortical atlas. Relative alpha power was stronger in EC compared to EO condition, with differences mostly confined to posterior cortices and peaking
in the occipital.
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Fig. 2. Differences in resting state spontaneous activity in EC relative to EO. Cortical surface maps display the vertex-wise F-values representing the comparison of
EC to EO relative power passing a TFCE threshold, with the blue box indicating the vertex containing the largest difference. The boxplots illustrate the individual
data points from the vertex showing the strongest condition effect following multiple comparison correction. From this peak-vertex, each participant’s relative power
is plotted to the left of the corresponding cortical surface map separately for the EC (magenta) and EO (green) conditions and connected with gray lines. The box
plots illustrate the mean, first and third quartiles, and the whiskers indicate the minima and maxima. The violin plots illustrate the probability density. For each
canonical frequency band, the EC compared to EO differences were largely concentrated in the occipital cortices. (A) Relative delta differences included occipital and
frontal cortices and were stronger in the EO condition. (B) Theta differences extended over much of the brain, excluding the sensorimotor strip, and were stronger
in the EO condition. Relative power was stronger in the EO compared to EC condition and extended across most of the brain in the beta (C) and gamma (D) spectral
ranges. Scale bars are shown beneath each set of maps.
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Table 1
Demographic characteristics of the final sample.
Male Female p-Value

Age range (years) 9.03-14.85  9.34-15.20
Mean age (years) 12.01 11.79 0.48
Race (White/Black or African American/Other/Unknown) 47/1/2/3 42/3/7/3 0.26
Ethnicity (Not Hispanic or Latino/Hispanic or Latino/Unknown)  48/5/0 50/4/1 0.57
Handedness (R/L/both) 49/3/1 53/2/0 0.52

Note: Differences in mean age between males and females were assessed using an independent sam-
ples t-test; differences in race, ethnicity, and handedness were assessed using chi-square tests.

Theta Power by Age

Right Superior Frontal Gyrus
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-10
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Fig. 3. Developmental differences in the relationship between EC — EO conditions. Cortical surface maps (right) display the vertex-wise F-values representing the
relationship between EC and EO relative power as a function of age. The blue box denotes the vertex containing the strongest relationship. The scatter plot is for
illustration only and shows data from the vertex with the strongest effect of age following multiple comparison correction. From this vertex, the EC — EO relative
power is plotted (left; y-axis) against age (x-axis) across all participants. The least squares line is plotted in black, and the shaded region illustrates the 95% confidence
interval. Older adolescents exhibited stronger theta power in the EO compared to EC condition in bilateral frontal cortical clusters, although the effect was much

more widespread in the left hemisphere.

frontal pole (FI, 105 = 18.64, p < .001). In the beta-band (Fig. 2), this
difference was observed across the entire brain, with a peak difference
located in the right occipital pole (F; ;95 = 51.10, p < .001). Lastly, dif-
ferences in the gamma-band (Fig. 2) were observed in two bilateral clus-
ters spanning the occipital, parietal, temporal, and frontal lobes, with a
peak difference in the right occipital fusiform gyrus (F; ;o5 = 49.00,
p < .001).

To determine if these differences in the distribution of power
amongst the canonical bands (i.e., relative power) also translated to
greater total absolute power, we probed the total power in each con-
dition and found that it was stronger in the EC relative to EO condi-
tion (see supplemental section S2). Thus, in interpreting these results,
it should be emphasized that our key findings reflect that the distribu-
tion of overall power differs between conditions, with the EC condition
having a much higher percent of its total power in the alpha band and
the EO condition having a much higher percent of its total power in the
other bands.

3.3. Developmental differences in eyes-open versus - closed resting activity

Conditional power differences (EC-EQ) with age, controlling for sex,
were detected in the theta frequency band (Fig. 3). The youngest par-
ticipants exhibited stronger theta in EC relative EO, which decreased in
older participants and eventually reversed (i.e., EO > EC) in two separate
clusters, including a smaller right frontal cluster and a large left frontal

cluster, with a peak difference located in the right superior frontal gyrus
(Fy, 105 = 10.92, p < 0.01).

3.3. Sex differences in eyes-open versus - closed resting state activity

Next, we tested for conditional power differences (EC-EO) by sex,
controlling for age, but no differences survived multiple comparisons
correction in any of the frequency bands.

4. Discussion

In the current study, we examined differences in spontaneous cor-
tical activity between EO versus EC resting-state paradigms in a large
sample of children and adolescents (9-15 years). We found that relative
alpha power was stronger in EC compared to EO, especially in the occip-
ital cortices. Conversely, the relative power in the other frequency bands
(i.e., delta, theta, beta, and gamma) was stronger during the EO relative
to EC condition, with these differences also prominently concentrated
in the occipital cortex for delta, while being much more widespread for
the other frequency bands. In addition, we assessed developmental dif-
ferences in these conditional effects, which revealed that the increased
theta power in the EO relative to EC condition tends to strengthen (i.e.,
becomes stronger in the EO condition) as individuals approach young
adulthood, especially in the superior frontal gyri.

Consistent with our hypothesis and previous work, the relative
power differences between EC and EO conditions included visual re-
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gions in the occipital cortices in all cases. The stronger relative alpha
power in EC compared to EO rest, peaking in the occipital pole but ex-
tending across the entire occipital lobe, is consistent with the classical
alpha effect whereby stronger alpha power is indicative of an idling vi-
sual cortex (Pfurtscheller, 1992) and/or reduced processing of external
visual sensory information (Klimesch et al., 2007). Along these lines,
increased occipital beta and gamma power, indicative of increased cor-
tical processing (Hoogenboom et al., 2006; Ray and Cole, 1985), was
observed in EO compared to EC conditions. These results suggest that
EO compared to EC rest involves a general increase in visual cortical
activity, presumably due to the presence of visual information.

Interestingly, delta and theta also showed increased relative power
during EO compared to EC rest. The difference in theta activity covered
a large portion of the brain, including a peak difference in the parietal
cortex and local peaks in the occipital and frontal cortices. This effect
is consistent with previous work linking theta activity to a variety of
cognitive (Nigbur et al., 2011; Cavanagh and Frank, 2014) and atten-
tional (Kawasaki and Yamaguchi, 2012; Torrence et al., 2021) processes,
involving both frontal and posterior cortical regions (Knyazev, 2007),
including the periodic sampling of unattended visual information
(Spyropoulos et al., 2018; Fiebelkorn and Kastner, 2019) and, more
generally, navigation of the sensory environment (Clarke, et al., 2018;
Begus et al., 2015; Orekhova et al., 2006). Similarly, increased delta ac-
tivity in posterior regions has been related to the detection of salient in-
formation (Knyazev, 2012; Harmony, 2013; Olde Dubbelink et al., 2008)
and in promoting motivated behavior (Knyazev, 2007). In the context of
the current results, the increased relative delta power during EO is likely
related to the presence of visual information. Taken together, increases
in theta and delta relative power, as with the findings in the faster fre-
quencies, suggest that the EO resting state more strongly engages brain
processes related to the processing of visual sensory information.

The developmental differences we observed were limited to the theta
frequency band. While the conditional difference between EC and EO for
theta was most prominent in the frontal pole, the effects also extended
across many other areas including temporal and occipital cortices and
the developmental differences were concentrated in the medial frontal
cortex. Importantly, the difference in total absolute power between EC
and EO conditions was not related to age, suggesting that this relation-
ship between age and relative theta power can likely be more broadly
interpreted. The location of this age-related difference is consistent with
earlier findings showing that higher tier, association regions undergo
structural development that extends relatively later than the early de-
veloping low-level sensory regions (Gogtay et al., 2004; Wierenga et al.,
2014). These age-related theta differences likely reflect the maturation
of frontal regions involved in attention processes (Kastner et al., 1999;
Scolari et al., 2015), which have been linked to frontal theta activity
(Kam et al., 2018). Indeed, frontal theta has been implicated as a marker
of cognitive control processes (Cavanagh and Frank, 2014) during in-
creased attention demands (Magosso et al., 2021, Sauseng et al., 2007).
To summarize, the developmental changes observed here in theta spon-
taneous cortical activity may reflect underlying functional development
of brain regions involved in higher-order attention processes as these
children enter adolescence and progress toward early adulthood.

More broadly, the current results are drawn from a large sample
of typically developing youth and thus contribute to establishing a
baseline for the development of spontaneous cortical activity that may
hold relevance in understanding neurodevelopmental disorders such
as attention-deficit hyperactive disorder (ADHD; Barry et al., 2003;
Clarke et al., 2020), a disorder characterized by inattentiveness and im-
pulsivity (American Psychiatric Association, 2000). The limited number
of studies using fMRI and EEG that have directly compared EC to EO
conditions have found that individuals with ADHD show a smaller dif-
ference between EC and EO alpha power (Loo et al., 2010; Fonseca et al.,
2013; but see Bellato et al. 2020) as well as theta power (Buyk and
Wiersema, 2014; Woltering et al., 2012). Given that our developmental
differences in EC compared to EO spontaneous cortical activity appear
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to implicate visual attention processes, including frequency bands out-
side the alpha range, future research should explore the extent to which
EC compared to EO differences may be used to identify early markers
of ADHD.

Finally, care should be taken to interpret the data in the context
of the specific analysis that we performed. Notably, the current re-
sults represent the difference between EC and EO conditions in nor-
malized spectral units, where each frequency band is quantified as a
percentage of the total spectral power, consistent with several previ-
ous reports (Candelaria-Cook et al., 2022; Lew et al., 2021; Niso et al.,
2019; Ott et al., 2021; Wiesman et al., 2021, but see Muthuraman et al.
2015 who compared absolute power). Given that the total absolute
power was greater in the EC compared to EO condition, it is possible
that the stronger relative delta, theta, beta, and gamma power in the
EO condition could instead show that the distribution of absolute power
among the canonical bands differed between the conditions, with alpha
having a much larger share of the overall absolute power in the EC rel-
ative to the EO condition. While outside the scope of the current report,
future work should explore whether differences in EC and EO condi-
tions are affected by the use of absolute versus relative power. Along
these lines, differences in total power may be driven by the 1/frequency
slope of the spectrum (i.e., the aperiodic activity; Gerster et al., 2022;
Miller et al., 2009). In this regard, resting condition differences in ape-
riodic activity have not been widely explored and to date have yielded
mixed results (Demru and Fraschini, 2020; Hill et al., 2022) and thus
should be subject to future investigation.

Before closing, it is important to note several limitations which may
be addressed in future studies. First, this study implemented a cross-
sectional design; the developmental changes observed in the current
study should be tested in the future using a longitudinal design to draw
stronger conclusions. Similarly, future work should determine whether
the developmental differences observed here are related to specific pu-
bertal stages. This could be done by implementing the Sexual Mat-
uration Scale (Morris and Udry, 1980), Pubertal Development Scale
(Petersen et al., 1988), and/or measuring hormones directly to assess
pubertal status and how it relates to differences in EO versus EC rest.
Further, the current sample contains somewhat restricted demograph-
ics, particularly with respect to race and ethnicity, which may limit the
generalizability of the findings. Importantly, while the resting design
possesses many strengths, as discussed in the introduction, it also limits
the interpretation of some of the functional differences observed in this
and other studies. Therefore, future work should directly test whether
the developmental differences in spontaneous cortical activity may ex-
plain differences in task-based neural responses. Lastly, no measure was
taken to assess drowsiness/sleep states during the periods of rest. Given
that early stages of sleep are associated with a smaller alpha/theta ratio
across the cortex (Rechtschaffen and Kales, 1968), future work should
determine if any resting condition differences between EC and EO are
related to differences in sleep states.

To summarize, the current study found increases in delta, theta,
beta, and gamma relative power during EO relative to EC, along with
a decrease in relative alpha power; these differences were generally
strongest in posterior regions including the occipital cortex, but also
extended anteriorly to include broad regions of the brain. These results
are consistent with previous studies whereby differences between EC
and EO involved visual sensory regions. The developmental changes
observed in alpha and beta were centered on later developing brain
regions, including those involved in higher cognitive processes such
as attention. Overall, these results suggest that collapsing resting state
findings across studies that used different paradigms (e.g., EO versus
EC) should be done with caution and in many cases there are benefits
to treating these conditions as separate “tasks.” In fact, future studies
should strategically choose EO or EC depending on the study goals (e.g.,
accentuate brain activity in visual sensory regions). Future work may
also benefit from exploring these resting state differences in the context
of understanding developmental brain disorders such as ADHD.
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