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Abstract

In this work, we focus on explicitly nonlinear relationships in functional networks. We
introduce a technique using normalized mutual information (NMI) that calculates the non-
linear relationship between different brain regions. We demonstrate our proposed
approach using simulated data and then apply it to a dataset previously studied by Damar-
aju et al. This resting-state fMRI data included 151 schizophrenia patients and 163 age-
and gender-matched healthy controls. We first decomposed these data using group
independent component analysis (ICA) and yielded 47 functionally relevant intrinsic con-
nectivity networks. Our analysis showed a modularized nonlinear relationship among brain
functional networks that was particularly noticeable in the sensory and visual cortex.
Interestingly, the modularity appears both meaningful and distinct from that revealed by
the linear approach. Group analysis identified significant differences in explicitly nonlinear
functional network connectivity (FNC) between schizophrenia patients and healthy con-
trols, particularly in the visual cortex, with controls showing more nonlinearity (i.e., higher
normalized mutual information between time courses with linear relationships removed)
in most cases. Certain domains, including subcortical and auditory, showed relatively less
nonlinear FNC (i.e., lower normalized mutual information), whereas links between the
visual and other domains showed evidence of substantial nonlinear and modular proper-
ties. Overall, these results suggest that quantifying nonlinear dependencies of functional
connectivity may provide a complementary and potentially important tool for studying
brain function by exposing relevant variation that is typically ignored. Beyond this, we pro-
pose a method that captures both linear and nonlinear effects in a “boosted” approach.
This method increases the sensitivity to group differences compared to the standard linear

approach, at the cost of being unable to separate linear and nonlinear effects.
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1 | INTRODUCTION

During the past few decades, functional magnetic resonance imaging
(fMRI) has become one of the most widely approaches for under-
standing brain function. In this area, functional network connectivity
(FNC) has been widely used to analyze the relationship among distinct
brain's regions (Allen et al, 2011; Bastos & Schoffelen, 2016;
Friston, 2011; Sala-Llonch et al., 2015; van den Heuvel & Hulshoff
Pol, 2010). Most functional connectivity studies, concentrate on linear
relationships between time courses. Studies on network models for
fMRI data suggest linear correlation as a successful statistical tool to
identify the relation between fMRI time courses (Smith et al., 2011),
which is also easy to calculate and interpret for positive and negative
correlations in the field (e.g., the default mode network tends to be
anticorrelated to other networks).

However, some research has suggested that some of the brain
activity exhibits nonlinear dynamic behavior (Lahaye et al., 2003;
Stam, 2005; Su et al., 2013; Wismdiller et al., 2014). Other studies dis-
cuss the nonlinear effects of hemodynamic responses in fMRI data
(Deneux & Faugeras, 2006; Miller et al., 2001; Obata et al., 2004),
which, importantly, can also vary with time (and location) and changes
from subject to subject (de Zwart et al., 2009). Considering even just
these few examples of nonlinear effects, it is likely, even expected,
that distinct brain areas might be nonlinearly related in a way that
would be missed by conventional linear analysis.

In the current study, we were interested in evaluating the degree
to which explicitly nonlinear relationships (i.e., after removing the lin-
ear relationships) exist among brain regions in a functional connectiv-
ity context and identifying significant dependencies. To our
knowledge, there has been little work studying explicitly nonlinear
relationships in functional connectivity.

Despite being widely used in the field, the linear correlation coef-
ficient measures only linear relationships and ignores nonlinear contri-
butions. Other higher-order statistical tools that can assess
nonlinearity are not quite sensitive to the fMRI time course relation-
ship (Smith et al., 2011). As a result, we proposed a new statistical tool
to measure explicitly nonlinear dependencies. We focused on a nor-
malized version of mutual information (MI), which is an information
theoretic approach that has the advantage of being capable of mea-
suring both linear and nonlinear dependencies. Early work evaluated
MI to capture more general relationships (V. Calhoun et al., 2003).
More recently, alternative metrics for functional connectivity, includ-
ing MI, have been explored (Mohanty et al., 2020; Sundaram
et al.,, 2020; Tedeschi et al., 2005; Tsai et al., 1999; Wang et al., 2015;
Zhang et al., 2018). However, to our knowledge, we are the first group
to assess the explicitly nonlinear relationships among brain networks
to evaluate their unique aspects relative to the linear relationships.

In summary, the contributions of this article are as follows. We
developed an approach that explores the nonlinear dependencies
among functional brain networks. Our method calculates the non-
linear dependency by employing the mutual information among the
residual dependence after removing the linear relationship using a
regression scheme. To assess whether the nonlinear relationships
were potentially meaningful, we first focus on whether the resulting

FNC matrices exhibit modular relationships consistent with functional
integration. Second, we evaluated whether the nonlinear FNC shows
meaningful group differences in a dataset consisting of resting fMRI
data collected from schizophrenia patients and healthy controls.
Finally, we proposed a statistical method that provides an option to
preserve the linear interpretation while also accounting for additional

nonlinear dependency.

2 | MATERIALS AND METHODS

2.1 | Participants and preprocessing

In this work, we use the fBIRN dataset, which has been analyzed pre-
viously (Damaraju et al., 2014). The final curated dataset consisted of
163 healthy participants (mean age 36.9, 117 males; 46 females) and
151 age- and gender-matched patients with schizophrenia (mean age
37.8; 114 males, 37 females). Eyes-closed resting-state fMRI data
were collected at seven sites across the United States (Keator
et al., 2016). Informed consent was obtained from all subjects before
scanning in accordance with the internal review boards of corre-
sponding institutions. Imaging data of one site were captured on the
General Electric Discovery MR750 scanner, and the rest of the six
sites were collected on Siemens Tim Trio System. Resting-state fMRI
scans were acquired using a standard gradient-echo echo-planar imag-
ing paradigm: FOV of 220 x 220 mm (64 x 64 matrices), TR = 2 s,
TE = 30 ms, FA = 770, 162 volumes, 32 sequential ascending axial
slices of 4 mm thickness and 1 mm skip.

Data were preprocessed by using several toolboxes such as AFNI,
SPM, and GIFT. Rigid body motion correction using the INRIAlign
(Friston, 2011) toolbox in SPM was applied to correct for head
motion. To remove the outliers, the AFNI3s 3dDespike algorithm was
performed. Then fMRI data were resampled to 3 mm? isotropic vox-
els. Then data were smoothed to 6 mm full width at half maximum
(FWHM) using AFNI3s BlurToFWHM algorithm and each voxel time
course was variance normalized. Subjects with larger movement were
excluded from the analysis to mitigate motion effects during the cura-
tion process. For more details, refer to the study by Damaraju
et al. (2014)).

2.2 | Postprocessing

The GIFT (http://trendscenter.org/software/gift) implementation of
group-level spatial ICA was used to estimate 100 functional networks
as ICA components. A subject-specific data reduction step was first
used to reduce 162 time point data into 100 directions of maximal
variability using principal component analysis. Next, the infomax
approach (Bell & Sejnowski, 1995) was used to estimate 100 maximally
independent components from the group PCA reduced matrix. The
ICA algorithm was repeated multiple times for stability of estimation,
and the most central run was selected as representative (Du
et al., 2014). Finally, aggregated spatial maps were estimated as the
modes of component clusters. Subject specific spatial maps (SMs) and
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time courses (TCs) were obtained using the spatiotemporal regression
back reconstruction approach (Calhoun et al, 2001; Erhardt
et al., 2011) implemented in the GIFT software.

To label the components, regions of peak activation clusters for
each specific spatial map were obtained. After ICA processing, to
acquire areas of peak activation clusters, one sample t-test maps are
taken for each SM across all subjects and then thresholded; also,
mean power spectra of the corresponding TCs were computed. The
set of components as intrinsic connectivity networks (ICNs) was iden-
tified if their peak activation clusters fell within gray matter and
showed less overlap with known vascular, susceptibility, ventricular,
and edge regions corresponding to head motion. This resulted in
47 ICNs out of the 100 independent components. Running over
20 times ICASSO, the cluster stability/quality index for all except one
ICNs was very high. After TCs were detrended and orthogonalized by
considering estimated subject motion parameters, spikes were
detected by AFNI3s 3dDespike algorithm and replaced by third-order
spline fit values. For more detail see Allen et al. (2012) and Damaraju
et al. (2014). After processing, the fBIRN dataset resulted in a matrix
of 159 time points x 47 components x 314 subjects, including
163 Control and 151 SZ subjects.

2.3 | Mutual information approach
While linear correlation is the most widely used measure to describe
dependence, it can completely miss nonlinear dependencies. An exam-
ple to illustrate this shortfall is Anscombe's Quartet (Anscombe, 1973),
which shows that four plots of various nonrandom data points have the
same correlation coefficient despite their wildly different dependence
structure. To measure the explicitly nonlinear relation between a pair of
TCs, the approach applied in this research was to remove the linear cor-
relation and calculate the residual dependence.

The Pearson product moment correlation coefficient, p, of time

courses x and y is

_Cov(xy)
TSS,

where S, and S, are, respectively, the sample standard deviations, and
Cov (x,y ) is the sample covariance between x and y.

The correlation coefficient mainly measures the linear depen-
dence between two distributions. However, nonlinear dependence is
not captured in the value of the correlation coefficient. Recent statis-
tical approaches have been proposed to measure the correlation with-
out underestimating the nonlinear dependency. One of these
methods, mutual information (M), measures both linear and nonlinear

dependencies. The formula determines the value of Ml is

MI(x,y) =H(x) +H(y) —H(xy).

where H(x) and H(y) are marginal entropies and H(x,y) is the joint

entropy. However, MI units are not standardized, making it hard to

compare across subjects and datasets. Some of normalizing factors for
NMI have been discussed by Kvalseth (2017) and included multiple
options such as (1) min(H(x), H(y)), (2) H(x) +H(y ), and (3) max(H(x),
H(y)). In this work, we used the latter as (Horibe, 1985) proved that it
is a (normalized) similarity metric. The normalized MI (NMI) formula is

H(x) +H(y) —H(xy)
max[H(x),H(y)]

NMI(x,y) =

In this work, our goal was to calculate only the nonlinear compo-
nent of dependence. To do so, we measure the data's mutual informa-
tion dependencies after removing the linear dependency. For a given
time courses x and vy, fitting a linear model ¥ = ax+  gives the linear
correlation between x and y. Here, y is the best linear estimation of y
when x is given, the slope is denoted by «, and g is the y-intercept.
Next, we cancel the linear effect by calculating z=y —y. The nonlinear
dependency of x and z is the same as x and y. Next, we can use
NMI(x,z) to evaluate the nonlinear dependency of x and y. To assure
symmetricity, that is, NMI(x,y) = NMIl(y,x), we took the average of
the results when switching x and y.

2.4 | Simulated experiment

We applied the proposed method to simulated data to illustrate their
use. In this experiment, we started with a vector say x of size
1000 x 1 where its components are from a random uniform distribu-
tion on [0 1]. Next, we formed three vectors y4,y,,andys, such that
each one has a particular relationship with x. Three different types of
relationships are as follows: Case |, vector y; has a purely linear rela-
tionship with x. Case Il, we defined y, to have a quadratic relationship
and no linear correlation with x. That is x and y, are only nonlinearly
related. Case Ill, vector y3 has a combination of linear and nonlinear
dependencies with x. We also added zero-mean Gaussian noise to
¥1,Y2,andy; (Figure 1).

We measured the relationship of (x,y1), (x,y2), and (x,y3) using
both Pearson correlation and normalized mutual information
approaches. Pearson correlation takes value from —1 to 1. Briefly, —1
refers to a perfectly linear negative correlation, and 1 shows a perfectly
linear positive correlation. The normalized mutual information we use in
this work is in the range of [0,1]. The NMI = 0 indicates no dependency,
and as two distributions increase their dependence, the NMI value rises
to a maximum of 1. Before computing correlation and NMI, we imple-
mented the procedure explained earlier to remove the linear correlation
from yq,y5,andys. Next, we calculated the Pearson correlation and

normalized mutual information for each pair, as shown in Table 1.

2.5 | Quantifying nonlinear connectivity in
fMRI data

For each subject, there are 47 ICA time courses of length 159. For

each pair of time courses x and y, we compute the traditional FNC
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FIGURE 1

Three simulation cases for linear and nonlinear relationships between two vectors. Vector x has its components randomly derived

from a uniform distribution on [0 1]. From left to right, we have Case I, Case Il, and Case Il such that in Case |, y; = 2x+ ¢ (linear relationship
between x and y,). In Case I, we have y, =5(x — 0.5)2 + ¢ (nonlinear relationship between x and y,) and for Case lll, y3 =5(x — 0.5)2 +2x+¢
(combination of linear and nonlinear relationships between x and y3). Noise ¢ is a Gaussian distribution with a mean of zero

TABLE 1
relationship between two vectors

Corrq (x,...)
Case l:yy =2x+e¢ 0.9847
Case Il:y, =5(x—0.5)% +¢ -0.0271
Case lll:y3 =5(x—0.5)% +2x+¢ 0.8276

Simulation of three cases, including Case I: Linear correlation, Case Il: Nonlinear relation and, Case IlI: Linear and nonlinear

Corr; (x,...) NMI; (x,...) NMI; (x,...)
1.64 x 107 ** (i.e, 0) 0.3809 0.0161

—3.91 x 107 (i.e, 0) 0.2585 0.2582

-1.61 x 107 (i.e., 0) 0.3139 0.2630

Note: The contribution of two vectors in each case was measured by Pearson correlation (Corr) and normalized mutual information (NMI). In this table,
Corry and NMlI4 show the correlation between the original data, and Corr, and NMI, show the correlation after removing the linear relationship. As
expected, the correlation is effectively zero after the removal of linear effects. Results show that correlation completely misses the residual nonlinear
dependencies, and that the NMI approach is able to effectively capture the nonlinear relationships when they exist.

(i.e., the linear correlation between all pairs x and y). Next, the mean
FNC matrix is calculated overall 314 subjects (Figure 2a).

We then fit a linear model to estimate the linear correlation
between x and y. After this, we remove the linear effect to study the
remaining dependencies by updating y as y =y — Y. Next, we calculate
the residual dependencies among functional network components in
fMRI data via NMI. This produces a matrix of 47 by 47 for each sub-
ject in which the value in (x,y) entry shows the nonlinear dependen-
cies calculated by the NMI method for x and y. After that, we
computed the average overall subjects (Figure 2b). Then, to evaluate
whether the NMI showed significant variation across the brain, we
performed a t-test comparing the mean of each cell to that of the min-
imum to identify cells where the average in given cell is significantly

greater than the minimum average cell. In addition, we used the

random matrix analysis method (Vergara et al., 2018) to examine the
modularity of the resulting explicitly nonlinear dependency matrix.

Based on the result of linear FNC and explicitly nonlinear FNC in
Figure 2, we select two extreme cells, pair (component #23 and com-
ponent #38), which shows low linear correlation and high explicitly
nonlinear dependence and pair (component #2 and component #3),
which shows high linear correlation and low explicitly nonlinear
dependency. For each pair, the TCs and their frequency spectrum are
plotted in Figure 3.

We also compare the nonlinear dependencies between schizo-
phrenia patients and controls. The linear effect is canceled within each
group, and the average NMlI is calculated over all subjects. Then, we
implemented a t-test to identify significant group differences. For

false discovery rate (FDR) correction, all p values were adjusted by the
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Linear and explicitly nonlinear relationship of two pairs of ICN components. The plots on the left are related to pair (23, 38) for

one subject, and the plots on the right belong to the same subject for pair (2, 3). In panel (a), the nonlinear pair moves from a low to high coupling,
where the high coupling links a higher frequency to a lower frequency pattern (right side of the figure on the left). Panel (b) displays the frequency
spectrum. It shows when the two-time courses exhibit dependencies but have different frequency profiles; linear correlations are not well

capturing the relationships. This highlights one interesting aspect but note it may not be generally the case as these patterns vary across pairs and

subjects.

Benjamini-Hochberg correction method and thresholded at a cor-
rected p < .05.

2.6 | Boosted approach

While we emphasize the unique information contained in the nonline-
arities, future studies may wish to leverage both linear and nonlinear

information. Pearson correlation is widely used in functional

connectivity studies because of the simple calculation and being more
sensitive to capture the dominant linear dependencies among the
fMRI time courses. In addition, the sign of linear correlation reveals
meaningful information about brain function. We propose a method
that provides an option to preserve the linear interpretation while also
accounting for additional nonlinear dependency. This boosted
approach is a combination of Pearson correlation and modified mutual
information for quantifying nonlinear dependencies as described in

Section 2.3. We define the boosted method as
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Pearson correlation + sign(Pearson correlation)
x Normalized Mutual information.

With this technique, we use the nonlinear information to boost
the linear effects in the direction of the Pearson correlation, reflecting
a stronger dependency. Thus, both linear and nonlinear relationships
are considered, and the direction (which is not well defined in the
nonlinear case) of the linear effect is preserved. The nonlinear and
boosted methods that we propose allow for multiple uses. One can
focus on the nonlinear effects only, which may be interesting in and
of themselves, as we show in this article. Second, one can focus on
capturing both linear and nonlinear effects in a “boosted” approach.
This appears to increase sensitivity to group differences beyond the
standard linear analysis, though it does not allow for linear and non-
linear effects separately. Note that NMI captures both linear and non-
linear effects; still, NMI shows somewhat reduced sensitivity to the
linear effects. Also, NMI does not capture the directional relationships
as NMlI is always positive. The boosted approach retains the sensitiv-
ity and directionality of the linear relationships, which also provides
some sensitivity to the nonlinear relationships.

We assessed the linear correlation (Pearson correlation), non-
linear dependencies (modified mutual information introduced in
Section 2.3), and both linear and nonlinear dependencies (boosted) in
schizophrenia patients and healthy controls components. Then sepa-
rately for each method, a t-test was applied, and p values were
adjusted by the Benjamini-Hochberg correction method and thresh-

old at a corrected p < .05.

2.7 | Jointdistributions

To visualize the identified nonlinear relationships further, we selected
the five component pairs with the most significant p values in the t-
test for group differences in the nonlinear dependence for HC-SZ.
Then we constructed the difference in the joint distributions for each
pair of time courses, comparing patients and controls.

3 | RESULTS

3.1 | Simulated experiment

Three types of dependencies: linear, nonlinear, and a combination of
linear and nonlinear, are examined. The Pearson correlation and
mutual information before and after removing the linear dependency
for each case are measured and reported in Table 1.

The range of Pearson correlation is —1 to +1, and the range of
normalized mutual information for independent distributions is 0, and
the perfect dependency is 1. In Case |, where the two distributions
have only a linear correlation, the Pearson correlation is close to one
before removing the linear effect. After removing, both Pearson and
normalized mutual information are close to zero. In Case Il, where the

two distributions have a quadratic relationship, the Pearson

correlation shows a low but non-zero correlation. In comparison, the
normalized mutual information calculation shows a considerable cor-
relation between the two distributions. After removing the linear
effects, the Person correlation is effectively zero while the mutual
information is approximately the same before and after removing the
linear effect. In Case Ill, where there is both linear and nonlinear rela-
tionships between two distributions, the Pearson correlation is signifi-
cant before removing the linear effect. It vanishes after canceling the
linear correlation, while the normalized mutual information only
slightly decreases after removing the linear correlation. This briefly
demonstrates that Pearson correlation does not capture purely non-
linear dependencies, while mutual information considers both linear
and nonlinear dependencies. Similarly, if we remove the liner effect,
the correlation will go to zero, whereas the mutual information will
capture the true residual nonlinear dependencies between two

distributions.

3.2 | OnfMRIldata

We measured the linear correlation among 47 ICN's time courses esti-
mated from the resting fMRI data—the result in Figure 2. Figure 2a is
the average FNC across 314 subjects.

The average of nonlinear dependencies across all subjects is cal-
culated using our proposed NMI method for the same components
(Figure 2b). The assessment of randomness confirms that explicitly
nonlinear FNC indicates highly significant modularity relative to a ran-
dom matrix. Then, a t-test for one sample is applied to identify pairs
with a significant difference in average value from the minimum aver-
age. After FDR thresholding (p < .05), most pairs are detected to be
significantly larger than the minimum mean. This shows us the degree
to which NMI differences are significantly different across the FNC
matrix and demonstrates modular nonlinear dependencies between
visual (VIS) and somatomotor (SM) components with other compo-
nents. Interestingly, a low nonlinear dependency rate is observed
despite a high linear correlation between subcortical (SC) and audi-
tory (AUD).

For one subject, the time courses of pair (23,38) and (2,3) are
plotted (Figure 3a), and their spectrum using the amplitude of the fast
Fourier transform (FFT) are calculated (Figure 3b). Across all subjects,
pair (23,38) shows relatively high explicitly nonlinear dependencies
(0.0236) and low linear correlation (—0.0127). Pair (2,3) shows a rela-
tively high linear correlation (0.2194) on average overall subjects but
low explicitly nonlinear dependency (0.0208).

Next, the variation in nonlinear dependencies between healthy
controls and schizophrenia patients is evaluated using our NMI
method and compared using a two-sample T-test. In Figure 4a, the
lower triangle shows —log10(p) x sign(T) before threshold multiply
by the initial p value before FDR. The upper triangle is the same as
the lower one after thresholding. Entries shown in a different color
identify pairs with significant differences in nonlinear dependency
between groups. This result shows significant differences in nonlinear

dependencies between visual (VIS) components to other components
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(a) Upper triangle: The group difference (HC-SZ) in NMI after removing the linear correlation. The p values are adjusted by FDR

and threshold (p < .05). Values are plotted as —log10(p value) x sign(t-statistics). Lower triangle: Identical to the upper tringle except that p values
are not threshold, also the values are multiplied by the initial p value before FDR. (b) Connectogram that shows components with significantly
different nonlinear relationships in HC-SZ are connected. In all but one case, results show significantly more nonlinearity in the controls, mostly

linked to the visual domain.

such as auditory (AUD), visual (VIS), somatomotor (SM), cognitive con-
trol (CC), and default-mode (DM) in schizophrenia (SZ) patients rela-
tive to healthy controls (HC). Panel b, the connectogram, is another
representation of the t-test result. The spatial ICNs connected with a
line if the difference in their nonlinear dependencies between HC and
SZ is significant (with yellow for HC > SZ and blue for SZ > HC).

3.3 | Boosted approach

Dependencies among components in healthy controls and schizophre-
nia patients are assessed with three methods: (1) Pearson correlation,
in which the emphasis is on only linear correlation, (2) modified mutual
information, as described in Section 2.3, quantifies only nonlinear
dependencies, and (3) the boosted approach is explained in
Section 2.6, is boosting the linear correlation by capturing nonlinear
dependencies.

Next, in each method, the t-test is applied to compare the differ-
ences between two groups. Adjusted p value by FDR is thresholded
(p < .05). The number of pairs with significant differences for the
Pearson correlation method is 530, the modified mutual information
method is 17, and the boosted method is 537. There are five pairs for
which their linear correlation is not significantly different, but their
nonlinear dependencies are significant. Note that linear and explicitly

nonlinear analyses are complementary to one another. The explicitly

nonlinear NMI approach gives 17 significant pairs regardless of
whether their linear dependency is significant or not. That is, this
information and differences in nonlinear changes are completely
ignored by the linear correlation approach and importantly, the brain
wide pattern of nonlinear group differences is highly modular and
structured. The boosted method provides an option to capture both
the linear and nonlinear components of dependencies. Results also
show the boosted approach identifies relationship that is not captured
by either the linear or full NMI approaches.

34 | Jointdistributions

We were also interested in visualizing the relationship among time
course pairs, which exhibited nonlinear differences between patients
and controls, Figure 5 demonstrates the differences in joint distribu-
tion between healthy controls and schizophrenia patients for the five
pairs showing the largest group differences. Values increases from left
to right and down to up. Panel a shows the difference in the joint dis-
tribution of the 26th and 6th components. The 26th component
belongs to cognitive control (CC) 6th component is in the auditory
(AUD) domain. Panel b is the joint distribution difference of the 44th
and 13th components. The 44th component is in default mode (DM),
and the 13th component is in the visual (VIS) domain. Panel c repre-
sents the joint distribution difference of the 7th and 16th
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Difference between the HC and SZ joint distributions for the five pairs showing the largest group differences in the nonlinear

dependencies of pairs (26, 6), (44, 13), (7, 16), (14, 7), (14, 17). Values in each distribution increases from left to right and down to up. The 26th
component belongs to cognitive control (CC). The sixth and seventh components are in auditory (AUD). The 44th component is in default mode
(DM). All 13th, 14th, 16th and 17th components are in the visual (VIS) domain. We observe some interesting differences in the joint distributions,
with patients generally showing differentially higher activity in one network and lower activity in the paired network.

components. The 7th component is auditory (AUD), and the 16th
component is visual (VIS). Panel d illustrates the difference in the joint
distribution of the 14th and 7th components, and Panel e exhibits the
joint distribution of the 14th and 17th components. Both 14th and
17th components belong to the visual (VIS) domain. Panels b, d, and e
share some similarities, including a negative relationship between the
two components.

In Figure 5a, we can observe controls spend more time in the low
level of auditory component #6 relative to SZ regardless of the values
of the 26th component. From Figure 5b, healthy controls are consid-
erably more active in both the default mode network (#44) and a
visual component (#13) than in SZ. In Panel c, we notice healthy con-
trols show less activity in both auditory (#7) and visual (#16) compo-
nents compared to SZ. From Figure 5d,e, it can be interpreted those
healthy controls show a higher level of activation in visual (#14) com-
ponents relative to a more posterior visual (#17) and an auditory (#7)

component than do the patients.

For these five pairs, nonlinear FNC shows hyper-connectivity
compared to SZ, that is the nonlinear part of two distributions has
more dependency in HC. However, the plot of group differences in
the joint distribution can illustrate how two pairs that show high
dependence in HC can be differently distributed in SZ. Panels b,d and
e shows healthy controls are mostly in the higher levels of activation
(red color is dragged to the upper corner and blue to the down left). In
contrast, Panel ¢ shows healthy controls tend to show lower activa-
tion levels (red is dragged to the lower left and blue to the upper
right).

4 | DISCUSSION
In this preliminary work, we highlight the benefit of studying nonline-
arities in functional connectivity. Previous functional connectivity

studies are based on correlation coefficients that assess the linear
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correlation only, and as a result, they miss the nonlinear contributions.
We establish an approach to evaluate the explicitly nonlinear depen-
dencies between distinct brain regions by first removing the linear
dependencies. We first demonstrated our approach works as
expected on simulated data (Figure 1). Following the nonlinear depen-
dencies among 47 time courses on 314 subjects are assessed
(Figure 2). A similar approach was applied to estimate how differently
in average distinct regions of a schizophrenia patient's brain contrib-
utes nonlinearly to the context of functional connectivity (Figure 4).
Also, the joint distribution of five pairs with the largest group differ-
ences in the nonlinear dependencies in HC-SZ is studied (Figure 5).

There are a number of possible causes of nonlinear dependencies,
including (1) nonlinear hemodynamic effects. Studies on the relation-
ship between neuronal activity, oxygen metabolism, and hemody-
namic responses have shown the link between neuronal activity and
hemodynamic response magnitude exhibits both linear and nonlinear
effects in task data (Friston et al., 2000; Sheth et al., 2004; Wan
et al., 2006). Nonlinearity can be induced via hemodynamic response
changes with time. The hemodynamics can also vary between sub-
jects and groups. Other results suggest a strongly nonlinear relation-
ship between electrophysiological measures of neuronal activity and
the hemodynamic response (Devor et al., 2003; Sheth et al., 2004).
(2) Differences in blood flow, blood oxygenation, and blood volume
both within subjects and between groups. Experiments indicate that
acquired vascular space occupancy (VASQ), arterial spin labeling (ASL)
perfusion, and BOLD signals respond nonlinearly to stimulus duration
(de Zwart et al., 2009; Gu et al., 2005). (3) Subject motion. Even minor
head posture changes may result in considerable spatially complex
field changes in the brain (Liu et al, 2018). While we cannot
completely exclude motion, we carefully curated the data to focus on
low motion subjects and in addition, there were no significant motion
differences between the groups (Damaraju et al., 2014).

The different modularized patterns evident in linear and nonli-
nearly modularity suggest a complementarity of the nonlinear and lin-
ear relationships. It may be important to capitalize on these
differences in future studies. Our results suggest an interesting varia-
tion among networks. For example, as shown in Figure 5b, significant
nonlinear dependencies are observed between visual (VIS), somato-
motor (SM) domains and within cognitive control (CC) and default-
mode (DM) domains. The auditory (AUD) network shows strong dif-
ferences in linear dependencies (a), but not much nonlinear, whereas
both visual and sensorimotor show strong within domain nonlinear
dependencies (b). Also, a relatively low rate of nonlinear dependencies
is observed between subcortical (SC) and auditory (AUD) with other
components.

We also found significant differences in the nonlinear relation-
ships among the patients and controls. Nonlinear FNC pairwise com-
parisons between SZ and HC are shown in Figure 5a. In most cases,
the controls are showing higher nonlinear dependencies relative to
patients, mostly linked to the visual domain. There are a significant
differences in nonlinear relation within visual (VIS) components as

well as between VIS components and to other components such as

auditory (AUD), somatomotor (SM), cognitive control (CC), and
default-mode (DM) in SZ patient and HC. We observe that most of
the patient/control differences involve visual and auditory compo-
nents. This is intriguing given existing evidence suggesting some
schizophrenia symptoms may be linked to the visual system (Gong
et al,, 2020; Johnston et al., 2005; Onitsuka et al., 2007). Having said
that, visual symptoms such as visual hallucinations are rather uncom-
mon in SZ and rarer than auditory and tactile abnormalities (van de
Ven et al,, 2017). In addition, some studies suggest inborn blindness
may be shielded against the development of schizophrenia, character-
ized by inevitably noisy perceptual input that causes false inferences.
These findings argue that when individuals cannot see from birth, they
depend more on the other senses. Thus, the resulting model of the
world is more resistant to false interpretations (Landgraf &
Osterheider, 2013; Leivada & Boeckx, 2014; Morgan et al., 2018;
Pollak & Corlett, 2019; Riscalla, 1980).

While the results presented show the potential utility of focus-
ing on explicitly nonlinear dependencies in fMRI data, there is still
much work to be done. Future work should focus on carefully evalu-
ating the possible sources of the nonlinear relationships. Quantita-
tive fMRI studies could be used to isolate nonlinearities in blood
oxygenation, volume, and flow. In addition, high field layer-specific
fMRI studies could be used to evaluate nonlinearities in input
vs. output layers. The contribution of various physiological variables
(e.g., respiration, CO,, heart rate, and motion) could also be evalu-
ated in future work.

In addition, our results provide evidence suggesting there are
meaningful and significant nonlinear dependencies among fMRI time
courses. We have shown evidence suggesting meaningful (modular-
ized and group different) super-linear effects in FNC, which primarily
implicates the visual cortex as disrupted in schizophrenia. We present
two approaches, focusing on the explicitly linear effects or a boosted
method that captures both linear and nonlinear effects within one
metric. Future work should study the information contained in the
nonlinear relationships. It could be studied with faster acquisitions,
linked to multimodal imaging such as concurrent EEG data, and repli-

cate the results we show in this work.
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