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Abstract
This paper introduces a new framework for surface analysis derived from the general setting of elastic Riemannian metrics
on shape spaces. Traditionally, those metrics are defined over the infinite dimensional manifold of immersed surfaces and
satisfy specific invariance properties enabling the comparison of surfaces modulo shape preserving transformations such as
reparametrizations. The specificity of our approach is to restrict the space of allowable transformations to predefined finite
dimensional bases of deformation fields. These are estimated in a data-driven way so as to emulate specific types of surface
transformations. This allows us to simplify the representation of the corresponding shape space to a finite dimensional latent
space. However, in sharp contrast with methods involving e.g. mesh autoencoders, the latent space is equipped with a non-
Euclidean Riemannian metric inherited from the family of elastic metrics. We demonstrate how this model can be effectively
implemented to perform a variety of tasks on surface meshes which, importantly, does not assume these to be pre-registered
or to even have a consistent mesh structure. We specifically validate our approach on human body shape and pose data as
well as human face and hand scans for problems such as shape registration, interpolation, motion transfer or random pose
generation.
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1 Introduction

Overview and Main Contributions: In this article, we
introduce a novel pipeline designed to quantify the geomet-
ric difference between the shapes of surfaces. Furthermore,
we are not only interested in quantifying shape differences
between two individual data points, but we aim to estimate
in addition plausible deformation processes between differ-
ent shapes and allow for statistical shape analysis tasks such
as extrapolation of deformations, transposition to new data,
and the generation of random shapes. Finally, the proposed
model does not assume a consistent mesh structure across
the data, making it applicable to a variety of tasks on surface
meshes with real data.
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Our approach is grounded in the field of Elastic Shape
Analysis (ESA) (Srivastava & Klassen, 2016) and further
leverages the varifold representation of surfaces (Charon &
Trouve, 2013), thereby bypassing the common requirement
of having consistent mesh structures and available point cor-
respondences across the dataset. In contrast to standard ESA,
ourmethod relies on enforcing specific structure on the defor-
mation model via the introduction of a data driven basis
for the space of admissible shape changes. In the terminol-
ogy of machine learning, this can be interpreted as a latent
space representation but, unlike typical approaches involving
autoencoders, in our framework, this latent space is equipped
with a non-Euclidean Riemannian metric inherited from the
class of second-order invariant Sobolev metrics on the space
of surfaces. In comparison to existing geometric deep learn-
ing frameworks, our approach’s training process is notably
straightforward and does not demand a substantial amount
of training data. Moreover, as our results suggest, it leads
to strong out-of-sample generalization properties when deal-
ing with unseen data. We demonstrate the usability of our
framework in a variety of different experiments (registra-
tion, interpolation, extrapolation, random shape generation
and motion transfer) on two distinct types of data – human
body meshes from the FAUST, DFAUST and SHREC repos-
itories as well as face scans from the COMA dataset.

This work is based on the authors’ previous conference
publication (Hartman et al., 2023a), but introduces sev-
eral new important additions to that initial approach. This
includes in particular:

• a more general and in-depth presentation of the math-
ematical framework of basis restricted elastic shape
analysis. Indeed, Hartman et al. (2023a) is entirely
focusedon the setting of humanbody shapes and assumed
a specific splitting of the latent space into two subspaces
associated to changes in body identity and pose changes
respectively; here, we lift such restrictions and intro-
duce our frameworkwith any generic space of admissible
deformations of a reference template, see Sect. 2 formore
details. While it leads to optimization problems formally
equivalent to those presented in Hartman et al. (2023a),
this extended framework allows us to go beyond the sole
case of human body shapes and investigate applications
to other types of data.

• amore comprehensive description and justification of the
computationalmodel and proposedmethodology, includ-
ing several ablation studies to validate our choice of
number of basis vector fields, shape matching functions
and Riemannian metric on the latent space, see Sect. 8.

• an extended comparisonwith state-of-the-art latent space
methods for body shape analysis (including FARM and
3D-coded), c.f.Sect. 6;

• experiments on an extra dataset of human bodies from
SHREC, c.f. Sect. 6.

• an experiment on the shape and pose disentanglement
properties of our framework both with and without the
presence of labels in the training data, cf. Sect. 6.4;

• a new application of the method on different data high-
lighting the effectiveness of this approach for scans of
human faces and human hands; c.f. Sects. 6.5 and 7.2.

• a new section on constructing the deformation bases in
the absence of 4D training data, c.f.Sect. 7;

• an open source coding package for basis restricted ESA
with precomputed bases for human body and face analy-
sis, available at https://github.com/emmanuel-hartman/
BaRe-ESA.

1.1 RelatedWork andMotivation

Analyzing three-dimensional (3D) surfaces has become an
increasingly important topic, where the need for such algo-
rithms is motivated by the emergence of high-accuracy 3D
scanning devices, that have resulted in a significant increase
in the availability of such data. The resulting application
range from human health analysis (Desrosiers et al., 2017),
facial animation (Qin et al., 2023; Otberdout et al., 2022a),
computer graphics (Deng et al., 2022) or synthetic human
data generation (Zhang et al., 2020) to computational
anatomy (Grenander & Miller, 1998).

Although the framework developed in this article is fairly
general and, we believe, could be relevant for a variety of
real data applications, our simulations will primarily focus
on datasets of 3D human bodies and faces. These involve
particularly challenging problems given the high degree of
variation in shape and pose, and the lack of point correspon-
dences and consistent mesh structure across such datasets.
Geometric shape analysis: The general field of Riemannian
shape analysis has produced several mathematical frame-
works and numerical pipelines to tackle some of the key
problems in the comparison and statistical analysis of 3D
surfaces. These models are built from a Riemannian met-
ric on a “shape space”, in which the“shape”of a surface
is usually regarded as what information remains after fac-
toring out shape-preserving transformation groups such as
reparametrizations or rigid motions. Two main frameworks
have in particular stood out in constructing Riemannian met-
rics on such shape spaces: on one hand, the diffeomorphic
approach of Beg et al. (2005); Younes (2019) and, on the
other, the elastic metric setting introduced in (Younes, 1998;
Srivastava & Klassen, 2016). An important aspect in both
models is that the formulation of basic shape analysis tasks
such as the estimation of the geodesic distance between two
given surfaces for instance, is typically framed as the min-
imization of a reparametrization invariant matching energy
in which computation of the distance and of the optimal reg-
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istration (i.e. of the unknown point correspondences) must
be tackled jointly. This should be viewed in sharp contrast
with the majority of traditional approaches in shape analy-
sis (Audette et al., 2000) in which registration is performed
as a pre-processing step using methods such as functional
maps (Ovsjanikov et al., 2012) and where the subsequent
analysis is then done independently of this registration. This
practice has been, however, increasingly questioned as it
can, in some cases, lead to a severe loss of data struc-
ture/information or generate bias in the analysis, see e.g.
Srivastava and Klassen (2016) and the references therein. On
the other hand, the joint estimation of distance and registra-
tion often induces several practical challenges in particular
when working with simplicial meshes such as triangulated
surfaces. Some approaches (Kurtek et al., 2012; Jermyn et
al., 2017; Su et al., 2020a; Tumpach et al., 2016; Laga et
al., 2022) rely on analytical representations or approxima-
tions for the surfaces and the reparametrization group (using
e.g. spherical harmonics) but are therefore often limited to
a predefined topology. As an alternative, it was proposed,
first for the diffeomorphic model in (Vaillant & Glaunes,
2005; Charon & Trouve, 2013), and later adapted to the
ESA framework (Bauer et al., 2021; Hartman et al., 2023b),
to instead introduce discrepancy loss functions built from
measure representations of surfaces. Those discrepancy func-
tions, in particular the metrics derived from the framework
of varifolds, have been shown to provide robustness to scan
inconsistencies, such as varying mesh samplings and topo-
logical noise.

Despite those successes, one of the key remaining lim-
itation of Riemannian shape analysis is the fact that pure
geodesic trajectories are often not inherently representative
of realistic longitudinal changes in real data. For instance,
in one of the data application of this paper, it has been
observed that simple geodesic interpolation between two
human body poses does not generally reproduce the natu-
ral body motion that would be expected, c.f. Appendix B.
An important current research challenge is thus to develop
ways to enforce various types of physical, biological or data-
specific constraints within Riemannian shape frameworks.
In the diffeomorphic setting, some progress has been made
towards that goal either through the introduction of sub-
Riemannian (Arguillère et al., 2015;Gris et al., 2018) or other
types of constrained models (Charlier et al., 2018; Hsieh et
al., 2022; Charon &Younes, 2023). Yet these approaches are
typically built around user specified constraints or principles
rather than being entirely data-driven and are also known
to be numerically costly when working with high resolution
data. The basis restricted approach of the present work in part
overcomes those difficulties by leveraging, on the one hand,
the advantages of the elasticmetric frameworkwhen it comes
to numerical complexity and, on the other hand, by extract-
ing from the dataset itself the adequate constrained subspace

of deformations. In the registered setting a similar approach
has been used in the conference paper (Pierson et al., 2022)
by some of the authors and Tumpach. Such basis models are
highly related to latent space models, popular in geometric
deep learning (Bronstein et al., 2017, 2021), which we will
describe next.
Low dimensional deep deformation models: Recently,
deep deformation models have become increasingly popular
for shape representation and deformation. These approaches
propose to build a deformation model for different types of
deformable shapes, such as the human body (Bouritsas et al.,
2019; Lemeunier et al., 2022; Huang et al., 2021; Groueix et
al., 2018a), the human face (Bouritsas et al., 2019; Otberd-
out et al., 2022b; Besnier et al., 2023), or animals (Huang
et al., 2021) based on a limited training set of parameterized
shapes.

However, those methods need to deal with parameteri-
zation invariance at inference. This is often done using a
PointNet encoder (Qi et al., 2017; Besnier et al., 2023), which
maps a shape to its latent vector independently of its dis-
cretization. Other approaches have been proposed, but they
come with an high training cost (Trappolini et al., 2021)
or use intrinsic quantities such as the Laplacian (Sharp et
al., 2022; Wiersma et al., 2022), that can be sensitive to
topological changes. We note, however, that in practice, the
invariance of thosemethods remains limited, because of their
reliance on large datasets of parameterized surfaces for train-
ing purposes. They often need additional post-processing
registration steps in inference to reproduce plausible geo-
metric reconstruction of shapes (Huang et al., 2021; Groueix
et al., 2018b; Trappolini et al., 2021).

Moreover, the performance of these methods is often lim-
ited in the context of large deformations: they regularly
fail to sufficiently learn the non-linear map from the flat
latent space to the shape space. Consequently, they are lack-
ing generalizability when confronted with unseen data. To
address these issues multiple deformation energy losses have
been introduced in the training phase, such as geodesic dis-
tances (Cosmo et al., 2020), ARAP (Huang et al., 2021;
Muralikrishnan et al., 2022), or volumetric constraints (Atz-
mon et al., 2021). Manifold regularization of learned pose
spaces (Tiwari et al., 2022; Freifeld & Black, 2012) has also
been proposed. Those geometric quantities however increase
the total training costs of those approaches.

In contrast, our approach does not rely on a non-linearmap
but imposes an affine map, called the affine decoder, from a
given low dimensional latent space to a corresponding space
of shapes. This space is defined using pre-estimated basis.We
impose non-linearity on the deformation space via the pull-
back of a second-order, parametrization-invariant, Sobolev
(Riemannian) metric. The registration of a scan becomes
an interpolation problem between the template and the scan
representation in the low dimensional space, cf. Equation
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5, proposing plausible registrations of the shape. Moreover,
interpolation and extrapolation problems are formulated as
geodesic boundary and initial value problems and are easily
implemented using modern scientific computation libraries.

2 Mathematical Background

2.1 The Riemannian Shape Space of Immersed
Surfaces

In this article, the“shapes”of interest are surfaces immersed
in the Euclidean space R

3. Mathematically, and from the
continuous viewpoint, we define a parametrized shape as an
immersion from a generic 2D parameter domain T (a com-
pact 2-dimensional manifold) intoR3, i.e. a smooth mapping
q : T → R

3 such that the Jacobian map dq(u) is injective
for all u ∈ T . For instance, T can be taken as a compact
domain ofR2 if one considers open surfaces (such as human
faces) or the sphere S2 in the case of closed surfaces (such
as whole human body surfaces). We shall denote by Imm the
space of all immersions from T to R3.

In order to provide a quantitative way to compare such
shapes, one needs to introduce a similarity measure on Imm.
As pointed out in the introduction, we are here interested in
similaritymeasures that originate from aRiemannian setting,
in other words we wish to view Imm as an infinite dimen-
sionalmanifold and equip itwith aRiemannianmetric. In this
setup the corresponding geodesic distance function provides
the similarity measure for shape comparison. In addition this
will allow us to reduce tasks such as shape interpolation
and extrapolation to geometric operations – the geodesic
initial and boundary value problem. First, note that, as an
open subset of C∞(T ,R3), Imm can be directly viewed as a
Fréchet manifold for which the tangent space Tq Imm at each
immersion q can be naturally identified with C∞(T ,R3) or
equivalently as the space of smooth deformation fields along
the parametrized surface q, cf. Figure1 for an explanatory
illustration of the shape space of parametrized immersed sur-
faces.

In this setting, a Riemannian metric G is a family of
inner products Gq : C∞(T ,R3) × C∞(T ,R3) → R+ that
depends smoothly on the foot point q ∈ Imm. We further
recall that, from G, one obtains a“distance”on Imm which,
for any q0, q1 ∈ Imm, is obtained as:

dG(q0, q1)
2 = inf

{∫ 1

0
Gq(t)(h(t)), h(t))

}
(1)

where h(t) = ∂t q(t) ∈ Tq(t) Imm and where the infimum
is taken over all paths q : [0, 1] → Imm with q(0) = q0
and q(1) = q1. We call (1) the parametrized matching

Fig. 1 Illustration of the Riemannian shape space of parametrized
immersed surfaces

problem. Anyminimizing path, if it exists, is then a geodesic
between q0 and q1.

To define the Riemannian metric G we will rely on the
setting of elastic shape analysis (ESA) which has derived
various families of metrics that further satisfy the key prop-
erty of reparametrization-invariance. To explain this property
we introduce the notion of a reparametrization φ as an ele-
ment of the diffeomorphism group Diff(T ), i.e., the set of
smooth and bijective maps on the parameter domain . This
group acts on any given immersion q by right composition,
i.e., (q, φ) �→ q◦φ. ThemetricG is called reparametrization
invariant if for any φ ∈ Diff(T ) we have

Gq◦φ(h ◦ φ, k ◦ φ) = Gq(h, k) (2)

and the importance of this property will become clear below
in Sect. 2.2, where we will quotient out the action of this
group.

Perhaps the simplest of those metrics is the so called
invariant L2 metric defined for all q ∈ Imm and h, k ∈
C∞(T ,R3) via:

Gq(h, k) =
∫
T

〈h, k〉 volq

where volq is the volume measure on T induced by q,
that is, denoting (u1, u2) some coordinates on T , volq =
|∂u1q ∧ ∂u2q|. The integration with respect to this induced
volume measure is precisely what leads to the invariance of
the metric (and by extension of the geodesic distance). One
crucial shortcoming of the above metric however, which was
first shown byMichor andMumford in (Michor &Mumford,
2005; Bauer et al., 2012), is that the associated dG turns out
to be fully degenerate and a fortiori not a true distance, i.e.,
with respect to this metric all shapes are considered to be
equal.

One way to address this issue is by introducing higher-
order metrics on Imm. In this article, we shall focus on the
class of second order invariant Sobolev metrics which has
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shown several desirable properties in past works (Bauer et
al., 2011; Hartman et al., 2023b). More specifically we will
consider the 6-parameters family of metrics obtained by the
following combination of 0-th, 1-st and 2-nd order terms
weighted by the nonnegative constants a0, a1, b1, c1, d1 and
a2:

Gq(h, k) =
∫
T

(
a0〈h, k〉 + a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+ d1g
−1
q (dh0, dk0) + a2〈�qh,�qk〉

)
volq .

(3)

In the above, dh denotes the vector-valued 1-form onT given
by the differential of h which we can alternatively view, in
a given coordinate system, as a 3 × 2 matrix field on T ,
gq is the pullback of the Euclidean metric on R

3 which
we may view as a 2 × 2 symmetric positive definite matrix
field on T , in which case g−1

q (dh, dh) = tr(dhg−1
q dhT ).

The second-order term involves the vector Laplacian �q

induced by the parametrization which in coordinates can
be written as �qh = 1√

det(gq )
∂u1

(√
det(gq)g

u1u2
q ∂u2h

)
.

Lastly, let us briefly comment on the particular splitting of
the first-order part of the metric in the four different terms
appearing in (3). For the sake concision, we shall refer the
interested reader to the appendix (or to (Su et al., 2020b;
Charon & Younes, 2023)) for the technical definition of the
orthogonal decomposition of dh into the sum of the ten-
sors dhm, dh+, dh⊥, dh0. We will only say at this point that
such a splitting is motivated by its interpretation from lin-
ear elasticity theory, with the terms weighted by a1, b1, c1
in (3) corresponding to thin shell shearing, stretching and
bending energies induced by the deformation field h respec-
tively: more specifically: the term involving dhm measures
the change in the local surface metric (this corresponds to
shearing of the surface), whereas the term involving dh+
measures the change of the area volume density which cor-
responds to local stretching of the surface. Finally, the term
involving dh⊥ measures the change of the surface normal
vector, which can be associated to surface bending.

Consequently, the class of invariant H2 metrics (3) pro-
vides a flexible family allowing, through the selection of
the weighting coefficients, to emphasize or penalize dif-
ferent types of deformations. Each of those metrics is
reparametrization-invariant and unlike the L2 case it induces
a true distance on Imm:

Theorem 1 Let a0 > 0 and let either a1, b1, c1, d1 > 0 or
a2 > 0 then the induced geodesic distance of the metric G on
the space Imm is non-degenerate, i.e., for any two surfaces
q0, q1 ∈ Imm with q0 �= q1 we have dG(q0, q1) > 0.

For a proof of this result we refer to the Appendix, cf.
Section A.1. Furthermore, as we shall explain later, there are
natural discretization schemes to compute such second-order
metrics on e.g. triangulated meshes.

2.2 Quotienting out Reparametrizations

Note that the model described so far leads to distances and
geodesics between parametrized shapes. From a practical
standpoint, this intrinsically assumes known point to point
correspondences, namely point q0(u) on the source surface
is matched to q1(u) on the target. Apart from pre-registered
datasets (such as the DFAUST one described below), it is
common in most applications that raw or segmented surface
meshes do not come with such given correspondences, and
even display inconsistent number of vertices and/or mesh
structures. Thus one is typically interested in comparing sur-
faces independently of how they are parametrized/sampled.

Mathematically, this canbedoneby looking at the quotient
shape space S = Imm /Diff(T ) of the equivalence classes
[q] = {q ◦ φ φ ∈ Diff(T )} of all possible reparametriza-
tions of q. A key advantage of the invariantmetric framework
introduced in the previous section, and in particular of the
invariant Sobolev metrics (3), is that one can recover a Rie-
mannian distance on S as follows. Given unparametrized
surfaces [q0] and [q1], the quotient distance is obtained
by fixing a parametrization q0 and solving the following
unparametrized matching problem:

dG([q0], [q1])2 = inf
(q(·),φ)

{∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))

}
(4)

where the minimization is now over paths q : [0, 1] → Imm
and reparametrization φ ∈ Diff(T ), with the constraint that
q(0) = q0 and q(1) = q1 ◦ φ i.e. [q(1)] = [q1]. In other
words, the quotient distance is obtained by jointly finding an
optimal path from q0 to an optimal reparametrization of the
target.

However, the variational problem (4) is generally chal-
lenging to tackle and to implement on discrete surface
meshes. It involves estimating parametrizations of the two
surfaces over a predefined domain (such as the sphere) and
then requires discretizing and optimizing over the group
Diff(T ) (Jermyn et al., 2017; Su et al., 2020b). An alter-
native approach in registration problems is rather to enforce
the matching constraint [q(1)] = [q1] indirectly via a dis-
crepancy function �([q(1)], [q1]) that only depends on the
unparametrized shapes and therefore consider the relaxed
matching problem:

inf
q(·)

{∫ 1

0
Gq(t)(∂t q(t), ∂t q(t)) + λ�([q(1)], [q1])

}
(5)
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in which λ > 0 acts as a Lagrange multiplier for the ter-
minal constraint, and the minimization is now only over
parametrized surface paths t �→ q(t); in other words, we
bypass the need for directly optimizing reparametrizations.

To define�, one typically introduces ameasure of similar-
ity between the geometric point sets q1(T ) and q(1)(T ); we
discuss a few possible options in Appendix A.3, including
the Hausdorff and Chamfer distances often used for that pur-
pose in computer vision. In this paper, following many other
works and our previous publication (Hartman et al., 2023b),
we instead rely on similarity terms derived from geometric
measure theory, specifically the family of kernel metrics on
the space of varifolds (Kaltenmark et al., 2017). A notable
advantage of this framework is that it leads to actual distances
that can be differentiated with respect to the point positions
of either shape. Although we will abstain from presenting
this construction in the main text for concision, we refer the
reader to the Appendix for details and qualitative comparison
of varifold metrics with other classical point set discrepan-
cies.

3 Restricted Latent SpaceM

As highlighted in the introduction, one limitation of the gen-
eral H2 metric framework is that it does not impose any
restriction on deformation fields beyond the energy penal-
ties in the metric (3). When it comes to modelling human
bodymotion for example, it has been observed that geodesics
between two poses most often do not emulate a "natural"
interpolation of the pose, despite the flexibility in the choice
of metric coefficients. A second practical downside is the
numerical complexity of having to solve a very high dimen-
sional optimization problem over paths of surfaces for any
estimation of a distance and geodesic, which can become
quite significant when generalizing that approach for more
complex statistical tasks such as Fréchet mean estimation or
parallel transport.

3.1 Latent Space Representation

As a way to address the above challenges, we propose a sim-
plified and linearized finite dimensional shape space model
by restricting ourselves to parametrized surfaces q that result
from a fixed template surface q̄ ∈ Imm and a predefined
admissible set of P linearly independent deformation fields
{hi }Pi=1 of the template. More precisely, with the affine map-
ping F : RP → C∞(T ,R3) defined by:

F : (αi )i=1,...,P �→ q̄ +
P∑

i=1

αi hi , (6)

we introduce the space Lq̄ = F(RP )
⋂

Imm.

Remark 1 (Relation to Linear Blend Skinning formulations)
The formulation resembles the Linear Blend Skinning (LBS)
formulation present in common models of the human
body (Loper et al., 2015; Anguelov et al., 2005): the shape
is represented as a template deformation, which is a sum of
body pose and identity deformations. The main difference is
that standard LBS formulations the pose deformation is done
using a precomputed skeleton which is linearly rigged to the
template mesh, inducing non-linear pose deformation as a
combination of skeletal articulation rotations. In our model,
the non-linearity directly comes from theRiemannianmetric,
and no skeleton is needed.

Consequently any surface q ∈ Lq̄ can be then represented
uniquely by a finite-dimensional vector α = (αi ) ∈ R

P we
will call the latent code of q, thus allowing us to work on
a potentially much lower-dimensional space. Yet Lq̄ should
still remain rich enough so as to express the predominant
geometric variations in the dataset of interest. As we shall
address in 5.2, this suggests using a basis {hi } that is built
in a data-driven way. Furthermore, this latent space model
allows the use of composite bases, where different subsets
of vector fields are associated to distinct types of morpho-
logical variations. This will prove particularly relevant to
the applications of this paper when we are interested in e.g.
disentangling body pose from body type changes or facial
expression from facial morphology changes.

Remark 2 Note that, in general, Lq̄ is an open subset of the
affine space F(RP ) and contains q̄ .However, not all elements
of F(RP ) are immersions unless certain specific conditions
on the vector fields are satisfied. This holds in particular if for
all i = 1, . . . , N and u ∈ T , dhi (u)T dq̄(u) = 0. However,
we will not assume this condition in the rest of the paper.

3.2 Induced RiemannianMetric

The next logical question to address is which metric to take
on the above latent space. In sharp contrast to most encoder
models in geometric deep learning which often implicitly
consider the standard Euclidean structure, our approach is
rather to take advantage of the properties of invariant met-
rics on shape spaces and pull the metric back to the latent
space. Namely, for any α ∈ F−1(Lq̄) and β, η ∈ R

P , let us
define: Gα(β, η) := GF(α)(dαF(β), dαF(η)) in which G is
a Riemannian metric on Imm which we shall take from the
invariant family (3). As the mapping F is affine, this pull
back metric on R

P can be expressed more explicitly as:

Gα(β, η) = GF(α)

⎛
⎝ P∑

i=1

βi hi ,
P∑
j=1

η j h j

⎞
⎠ = βT Gαη
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where in the last equation,Gα = [GF(α)(hi , h j )] is the sym-
metric positive definite P × P matrix giving the metric at
the latent code α. Estimation of the distance between any
two surfaces q0 = F(α0) and q1 = F(α1) then reduces
to standard finite-dimensional Riemannian geometry and is
obtained by finding a path of coefficients t �→ α(t) ∈ R

P

minimizing E(α) = ∫ 1
0 (∂tα)T Gα(∂tα)dt with α(0) = α0

and α(1) = α1.

4 Shape Analysis in Latent Space

Relying on the latent space representation and its Riem-
manian metric introduced in the previous section, one can
perform efficiently a variety of shape analysis related tasks,
which we describe in the following paragraphs.

4.1 Calculating Latent Space Representations

We start by describing how we can calculate a latent space
representation that is (up to numerical accuracy) independent
of the parametrization of the surface, i.e., given a surface
q ∈ Imm we aim to find a latent code representation α such
that F(α) = q ◦ φ for some (unknown) reparametrization
function φ ∈ Diff(T ). To tackle this problem we rely again
on the varifold similarity term, i.e., we reformulate the latent
representation problem as the task of finding a latent code
representation α such that

�(F(α), q) = 0. (7)

One remaining difficulty is that, for most datasets such as
those of Sect. 5.1, raw surface scans are not given with con-
sistent mesh structures and a fortiori cannot be assumed to
all belong to Lq̄ for a given fixed template q̄ . To circumvent
this difficulty we consider a relaxed formulation of the latent
code representation problem; instead of searching for a latent
code α satisfying Eq. (7) we simply aim to minimize the var-
ifold distance �(F(α), q) over all latent codes α ∈ R

P . In
our experiments it turned out to be beneficial to add an extra
regularizing term to this minimization problem, which we
choose to be the geodesic distance of F(α) to the template
q̄ , i.e., we minimize the energy

(
�(F(α), q) + 1

λ
d
Lq̄
G (q̄, F(α))2

)
(8)

over all α ∈ R
P , where λ > 0 is a weight parameter. Using

the definition of the geodesic distance d
Lq̄
G on the latent space

Lq̄ this requires us to minimize the path energy

�(F(α(1)), q) + 1

λ

∫ 1

0
Gα(∂tα(t), ∂tα(t))dt (9)

over all paths α : [0, 1] → R
P . Numerically, we con-

sider time-discrete paths of coefficients α = (α(0), α(1/T ),

α(2/T ), . . . , α(1)) for a selected number of time steps T ,
with ∂tα being approximated by forward finite difference.
Furthermore, q and q̄ are in practice given as sets of vertices
and triangular meshes while each hi is of a collection of vec-
tors sampled on the vertices of q̄ . This turns the problem into
an unconstrained minimization over RP(T−1) for which we
use the L-BFGS algorithm of the scipy library; here the free
variables are only in RP(T−1) as the path starts at q̄ and thus
α(0) = 0. The precise discretization of the different terms
in (11), based on the principles of discrete differential geom-
etry, is detailed in Appendix A.2. Our implementation, that
builds on some of the authors’ previous package for surface
matching,1 is done in Python and relies on libraries such as
PyTorch and PyKeops which allow to automatically differ-
entiate those terms on the GPU. Our implementation is also
publicly available onGithub2 and relies on the same libraries.

4.2 Shape Comparison and Interpolation

Quantifying the global difference between surfaces is gener-
ally essential when attempting for example to cluster data in
a population. The Riemannian metric setting gives a direct
way to measure such differences via the distance itself and,
what is more, lead to geodesic paths that interpolate between
the objects. The availability of such geodesic paths has the
double advantage of allowing to interpret the properties and
behaviour of the distancewhile also providing away to recon-
struct a dynamical evolution from one data point to another.

Within the framework of Sect. 3, we have seen that the
estimation of distance and geodesics between two surfaces
q0 = F(α0) and q1 = F(α1) in L can be done by finding a
path of least Riemannian energy in the latent space, i.e., by
minimizing the path energy

∫ 1

0
Gα(∂tα(t), ∂tα(t))dt (10)

over all paths α : [0, 1] → R
P such that α(0) = α0 and

α(1) = α1. Discretizing the path in time t this leads to an
unconstrained minimization problem over RP(T−2) with the
free variables being α(1/T ), α(2/T ), . . . , α((T −1)/T )) as
α(0) = α0 and α(1) = α1 are fixed.

Given new data, for which we have not yet calculated
a latent space representation, we could proceed as follows:
calculate first a latent space representation using the method
of the previous section and then solve the geodesic problem
using the above algorithm. In practice it is, however, more
effective to solve both of these tasks in one step. This can

1 https://github.com/emmanuel-hartman/H2_SurfaceMatch
2 https://github.com/emmanuel-hartman/BaRe-ESA
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be done using again the varifold distance and by considering
the path minimization problem

∫ 1

0
Gα(∂tα, ∂tα)dt

+λ�(F(α(0)), q0) + λ�(F(α(1)), q1). (11)

where α : [0, 1] → R
P is again a path in the latent space

Lq̄ . The presence of the two discrepancy terms in (11) is
necessary to make the above problem well-defined for any
q0 and q1 in Imm and not just in Lq̄ . The solution (11) can
be thus interpreted as the distance and geodesic between the
closest approximations of q0 and q1 by elements of the latent
space.

4.3 Shape Extrapolation

The shape extrapolation problem consists in predicting the
future evolution of a surface given an initial deformation
direction. In our Riemannian framework this reduces to
solving the geodesic equation with given initial condition
q(0) = q0 (the initial pose) and ∂t q(0) = h (the deforma-
tion direction), cf. Figure1. The geodesic equation is the first
order optimality condition of the energy functional; it is a
non-linear PDE, that is second order in time t and forth order
in space (twice the order of the metric). For the exact formula
of this equation, which is rather lengthy and not particularly
insightful, we refer the interested reader to the literature, see
eg. Bauer et al. (2011). To solve such initial value problems
in our latent space, we modify methods of discrete geodesic
calculus (Rumpf & Wirth, 2013) to our setting. We approxi-
mate the geodesic starting at α0 in the direction of β with a
PL path with N + 1 evenly spaced breakpoints. At the first
step, we set α1 = α0 + 1

N β and find α2 such that F(α1) is
the geodesic midpoint of F(α0) and F(α2), i.e., we solve for
α2 such that

α1 = argmin
α̃

[Gα0(β0, β0) + Gα̃(β̃, β̃)]

where β0 = α̃ − α0 and β̃ = α2 − α̃. Differentiating with
respect to α̃ and evaluating the resulting expression at α1, we
obtain the system of equations

2Gα0(β0, hi ) − 2Gα1(β̃, hi ) + Dα1G ·(β̃, β̃)i = 0,

2Gα0(β0, ki ) − 2Gα1(β̃, ki ) + Dα1G ·(β̃, β̃)i+m = 0

(12)

where {hi , ki } is our basis of deformations as introduced
above. We denote the system of equations in (12) by

(α2;α1, α0) = 0, where we stress again that α0 and α1

are here fixed and known. We solve this system of equations

for α2 using a nonlinear least squares approach, i.e., by com-
puting

α2 = argmin
α̃

‖
(α̃;α1, α0)‖22.

We repeat this process N −1 times, thereby constructing the
discrete solution up to time t = 1.

4.4 Motion Transfer in Latent Space

As previously discussed, composite bases offer a means
to independently depict various modes of shape deforma-
tion. Specifically, when applied to human body and facial
morphology, these bases allow us to separate identity and
pose alterations, enabling motion transfer. In practical terms,
when presented with a series of unregistered scans depict-
ing a single identity engaged in an action, we can obtain
latent code representations for each frame of the action. We
then substitute the coefficients of the shape basis with the
shape coefficients of the desired identity. This process yields
a sequence of shapes that faithfully embodies the desired
motion transferred onto the desired identity. Note that this is
significantly simpler (albeit different) than performing paral-
lel transport in the Riemannian manifold of surfaces as done
in e.g. Hartman et al. (2023b).

4.5 Random Shape Generation

Additionally, we can utilize the Riemannian structure on our
latent space representation to offer a data-driven method for
generating randomshapes fromunregistereddata.Wemaydo
this by learning an empirical distribution on the tangent space
of the template shape.Given a data set of unregistered shapes,
we solve the latent code retrieval problem and compute the
initial vectors of the resulting geodesics in the latent space.
We can then fit Gaussian mixture model on the resulting col-
lection of tangent vectors and solve the initial value problem
from the template in the direction of the vector generated
from this model. In the case where we compute multiple
bases to describe different modalities of shape change, the
model may be fit to independently generate different types
of shape changes.

5 Experimental Methodology

In this section we will describe the different datasets, which
we will use in the experimental section, as well as the cor-
responding basis construction and the choice of parameters.
In addition we will present different ablation studies, that
further motivate the chosen energy functional.
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5.1 Used Datasets

Human Body dataset: The main type of data considered in
this article consists of human body scans. To construct our
basis we will make use of the publicly available Dynamic
FAUST (DFAUST) (Bogo et al., 2017) dataset. This dataset
contains high quality scans, along with corresponding reg-
istered meshes that will be used as training data. More
specifically DFAUST (Bogo et al., 2017) is comprised of
4D scans captured at 60 Hz of 10 individuals performing 14
in-place motions. Due to the high speed of the recording,
DFAUST scans contains several singularities in the surface,
such as holes or even artificial objects (eg. parts ofwalls). The
corresponding registered surfaces to each scan are created
using image texture information and a novel body motion
model. A set of 7 long range sequence are left for testing.
The remaining 133 sequences, which we denote DFaustT,
make up the training set from which we compute the defor-
mation and motion basis.

For the quantitative experiments, we consider three testing
datasets on which we validate our model trained on DFaustT;
first, we consider a subset of the static FAUST dataset (Bogo
et al., 2014) for testing our models performance for registra-
tion and point correspondences. The static FAUST database
is a 3D static scan dataset designed for human mesh registra-
tion tasks, that contains scans of minimally clothed humans
and corresponding registered meshes. We selected scans of
10 individuals in 9 different poses from the training set that
show no rotations along with the corresponding ground truth
registrations and use them as our first testing set, denoted
FaustE. In addition, we consider a subset of the SHREC
dataset (Marin et al., 2020) to demonstrate the generalizabil-
ity of our model in shape reconstruction tasks as it contains
human shapes from significantly different modalities than
that of our training set including scans of clothed humans and
synthetic shapes of human bodies. For our third and final test-
ing set, we divide the 7 sequences from DFAUST left aside
for testing into 10 representative mini-sequences which we
use to evaluate our framework’s ability to reconstruct human
motions. We denote this DFaustE.
Face scan dataset: As a second validation dataset, we con-
sider human face scans from the COMA (Ranjan et al., 2018)
database. It contains high-quality scans of human faces, along
with corresponding registered meshes in the FLAME topol-
ogy (Li et al., 2017) that will be used as training data. More
specifically COMA is comprised of 4D scans of human faces
captured at 60 Hz of 12 individuals performing 12 extreme
facial expressions. The scans are available as raw scans of
the whole face and often contain significant parts of the chest
that are not present in the final registrations. Moreover, some
detailed parts can be cropped or disappear in the scans, e.g.
ears of the individual. The corresponding registered surfaces
to each scan are created using image texture information, face

landmarks and the FLAMEmodel. A set of 12 sequences are
left for testing and the remaining 132 sequences were used
to compute the deformation and motion basis.
Handdataset:Asa third typeof datawe also consider human
hand scans from theMANOdatabase (Romero et al., 2017); a
dataset comprisingmore than 800 registered hands with vari-
ous poses from 50 individuals. These individuals were asked
to reproduce daily life poses that were then scanned. The
training set comprises approximately 800 registered hand
poses and the MANO database provides a separate testing
set consisting of 50 scans with available ground truth regis-
trations.

5.2 Constructing the SpaceLq̄

To construct the deformation bases for motion and identity
changes, we interpret registered mesh sequences of motions
(expressions, resp.) as paths in shape space whose tan-
gent vectors are implicitly restricted to the space of valid
motions. We first collect meshes of the same pose (expres-
sion) from each identity and compute the (unrestricted)
pairwise geodesics between these meshes with respect to
our second-order Sobolev metric, where we use the Pytorch
implementation of Hartman et al. (2023b). Note that these
meshes show only moderate deformations and thus there are
no difficulties with applying the unrestricted matching algo-
rithm. We then collect the tangent vectors to these paths and
perform PCA to define our basis for shape/identity deforma-
tions.

It would be possible to adopt a similar strategy for generat-
ing the body pose (or face expression) deformation basis, i.e.,
collect shapes with the same body type (face identity, resp.)
and calculate the unrestricted pairwise geodesics between
these meshes. However, we had previously noticed Hartman
et al. (2023a) that this may sometimes lead to unnatural
motions for large movements. Instead, we shall first take
advantage of the available 4D data in our targeted applica-
tion datasets, allowing us to perform principle component
analysis directly on the tangent vectors of those real motion
sequences to obtain a valid pose (expression) data basis. This
will be the approach used in the experiments of Sect. 6. Yet,
in order to also validate our approach in the absence of 4D
data, we present, in Sect. 7.1, results obtained by following
the same procedure as for the identity basis i.e. based only
on 3D data for the basis construction. In the final experi-
ments involving the MANO dataset (Sect. 7.2), we use an
even simpler strategy to construct the bases: namely we sim-
ply consider linear deformations between all shapes in the
training data as set of vectors for our PCA construction. As
we will demonstrate, for this application, this cheaper proce-
dure already produces satisfactory results outperforming the
benchmark methods.
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We should also note that we here pre-construct all
bases from a fixed predefined training set. Another possible
approach, used for instance in Muralikrishnan et al. (2023)
(albeit only for shape deformations), is to progressively
enrich some initial estimation of a basis via a bootstrap-
ping scheme, providing a possible alternative way to build
shape/pose deformation bases from only a small training set
of registered meshes.

5.3 Parameter Selection

Next we describe the choice of parameters in our exper-
iments. For the human bodies the coefficients for the
H2-metric were chosen to enforce close to isometric defor-
mations that allow for some stretching and shearing to
allow change in body type. In the case of human body
faces, we reduce the strecthing and shearing penalization,
and enforce normal consistency. We added a small coef-
ficient to the remaining terms to further regularize the
deformations. The final six parameters for the H2-metric
are set to (1, 1000, 100, 1, 1, 1) for human bodies and and
(1, 10, 10, 10, 1, 1) for human faces and hands. The basis
size for all three applications is as follows (the number of
basis vectors was chosen experimentally, cf. Section8): the
motion basis has n = 130 elements (70 elements for hands),
whereas the basis for the body type variation has onlym = 40
elements. Furthermore, we perform sequential minimiza-
tions where the parameter σ of the varifold term is decreased
from 0.4 to 0.025 and the balancing term λ is increased from
102 to 108. In the applications to human faces and to human
hands, we needed only two minimizations with the parame-
ter σ of the varifold term at 0.01 and 0.005 and the balancing
term λ at 106 and 1010.

5.4 EvaluationMethods

In our experiments, we will evaluate results quality using
different similarity measures (distances) between the outputs
of the different methods and the original scan. The “shape”
matching is evaluated by comparing each method against
the original scans using three different remeshing invariant
similarity measures. First, we evaluate the methods using the
varifold metric introduced before. As our method minimizes
this distance during the registration process, we include two
additional metrics to avoid bias: the widely used Hausdorff
distance, which provides a good insight for the quality of a
mesh reconstruction, but can be sensitive to single outliers
present in low-quality scans and the Chamfer distance (Fan
et al., 2017; Groueix et al., 2018b), which is more robust to
such outliers.

In the first set of experiments – latent code retrieval,
Sect. 6.1 – we will in addition evaluate the quality of the

obtained point correspondences – in this section, we use data
with given ground truth point correspondences. Thereforewe
will compute the mean squared error of each method to the
ground truth registrations of the testing set. Unfortunately,
one method (LIMP) does not return the same mesh structure
as the ground truth registrations and thus we could not com-
pare it this way. We thus add the geodesic error metric, to
evaluate the matching quality. From the registered mesh, we
extract point-to-point correspondences between the template
and the given scan. Then for each point of the scan, we com-
pute the geodesic distance (on the template mesh) between
the proposed corresponding point and the ground truth cor-
respondence. The final computed metric is the mean of these
errors. For a detailed description of all these evaluation met-
rics, we refer to Appendix A.3.

5.5 ComparisonMethods

Finally, we will briefly describe the other state-of-the-art
methods that we considered for comparison. Amore detailed
description of these methods can be found in the Appendix
A.5. We primarily compare to methods that rely on latent
space learning for registration, interpolation, and extrapo-
lation tasks and do not consider other methods that can
potentially tackle the same tasks but without a low dimen-
sional latent space (Eisenberger et al., 2021), or that are
specifically designed for other tasks (Muralikrishnan et al.,
2022). We compare our approach to LIMP (Cosmo et al.,
2020), which models shape deformations using a variational
auto-encoder with geodesic constraints; ARAPReg (Huang
et al., 2021), which models deformations using an auto-
decoder with regularization through the as rigid as possible
energy; and 3D-Coded (Groueix et al., 2018a), which is sim-
ilar to LIMP but with lighter training and without geometric
loss regularization. LIMP and 3D-Coded both utilize a Point-
Net architecture as an encoder, which enables invariance
to parameterization. On the other hand, ARAPReg recov-
ers latent vectors within a registered setting utilizing the
L2 metric, which assumes that the target meshes possess
an identical mesh structure as the model’s output. To make
this framework viable for our application we replace the L2-
metric by the varifold distance thereby extending ARAPReg
to unregistered point clouds. We trained all three networks
on the DFAUST dataset using reported training details from
the respective papers. As a final comparison, we consider
the FARM approach (Melzi et al., 2019) from the class of
functional maps-based methods. As FARM does not com-
pute any interpolation or extrapolation of shape changes, we
will however exclusively compare to this method for shape
registration tasks.
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6 Experimental Results Using 4D-Training
Data

In this section, we will demonstrate the capabilities of our
framework in several different experiments. For human body
scans, which will be our main targeted application, we will
present a thorough comparison to several other state-of-the-
art algorithms. Therefore we will provide quantitative and
qualitative analysis of the registration and point correspon-
dence accuracy, the shape reconstruction quality, and the
accuracy of interpolations and extrapolations to recreate real
sequences of human motions. Furthermore, we give quali-
tative examples of our framework applied to random shape
generation and motion transfer tasks. At the end of the sec-
tion, we will present similar experiments for the COMA
dataset, which consists of human face scans. The compu-
tational cost of our method is discussed in Appendix A.4.

6.1 Mesh Invariant Latent Code Retrieval

To demonstrate the effectiveness of our latent code retrieval
algorithm, cf. Section4.1, we tested its performance on the
three human body testing data sets described in Sect. 5.1.
In this experiment, we construct latent code representations
with BaRe-ESA, LIMP, 3D-Coded, ARAPreg, and FARM
and measure the distance from the reconstructed meshes
to the original scans using the evaluation methods outlined
in Sect. 5.4. In Fig. 2 we present a qualitative compari-
son of the obtained results. A quantitative comparison of
the performance of the different methods is presented, with
shape registration evaluation in Table 1 and geometric recon-
struction of the human shape in Table 2. Both evaluations
demonstrate that BaRe-ESA significantly outperforms the
mesh autoencoder methods with respect to the registration
and reconstruction evaluation metrics, with a performance
quite similar to 3D-Coded in terms of reconstruction quality.

6.2 Interpolation and Extrapolation Results

We now turn our attention to the interpolation problem for
human bodies, i.e., the task of constructing a deformation
between twodifferent humanbodyposes, that follows a “real-
istic” motion pattern. We use the start and end points of our
10 test mini-sequences from the DFAUST data set as the
input for these experiments. This allows us to compare the
obtained results to the full mini-sequences, seen as a ground
truth motion. In Fig. 3, we show a qualitative comparison
of our method with ARAPReg, 3D-Coded, and LIMP. Our
method is successful at recovering the latent codes that repre-
sent the endpoints and producing interpolations that remain
in the space of human shapes. We further perform a quantita-
tive comparison of the methods by measuring the distance to
the ground-truth sequences at each break point with respect

Fig. 2 Registration of seven elements of FAUST using four methods
trained on DFAUST. The registrations produced by 3D-Coded, FARM,
and ARAPReg have regions with large deformation errors. BaRe-ESA
consistently produces a decent representation in all examples. The col-
oring of each mesh encodes the pointwise registration error from the
ground truth with blue encoding 0mm error and red encoding ≥ 15mm
error (Color figure online)

to the evaluation metrics introduced in Sect. 5.4; these results
are displayed in Table 3. One can clearly observe that our
method again outperforms the others both qualitatively and
quantitatively.

Next, we consider the related problem of human body
shape extrapolation, i.e., the task of predicting the future
movement given a body shape and an initial movement
(deformation). We consider again the 10 mini-sequences
from the DFAUST dataset. We then recover the latent codes
of the first two meshes in the sequence and use the first latent
code and the difference of the codes as input to the method
described in Sect. 4.3. In Fig. 4, we present again a qualita-
tive comparison of our results to the extrapolations computed
using LIMP, 3D-Coded, and ARAPreg (see the supplemen-
tary material for their corresponding animations). One can
see that our method is successful at producing extrapolations
that capture the correctmotion of themeshwithout any extra-
neous movements and without leaving the space of human
bodies. As with the interpolation comparison, we measure
the distance to the ground-truth sequences at each break-
point and display the results of the quantitative comparison
in Table 4. Similar to the previous experiments, our method
significantly outperforms LIMP, ARAPReg and 3D-Coded.
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Table 1 Human body shape
registration results. We compute
the registration error on the
FaustE data set. Where
applicable, we compute the
mean squared error (MSE) and
geodesic error between each
method’s outputs and the ground
truth registrations of FaustE

LIMP ARAPReg 3D-Coded FARM BaRe-ESA

MSE NA 0.035 0.053 0.043 0.014

Geodesic Error 0.15 0.031 0.038 0.038 0.013

Table 2 Human body shape
reconstruction results. We
compute the Hausdorff,
Chamfer, and Varifold
reconstruction errors between
the outputs of the methods and
the original scans. We evaluate
these methods on the FaustE and
ShrecE testing sets

Hausdorff Chamfer Varifold

FAUST SHREC FAUST SHREC FAUST SHREC

LIMP 0.23 0.17 0.098 0.070 0.073 0.057

ARAPReg 0.11 0.11 0.117 0.028 0.021 0.036

3D-Coded 0.07 0.07 0.020 0.022 0.023 0.034

BaRe-ESA 0.08 0.13 0.019 0.029 0.014 0.034

Fig. 3 Interpolation results comparison between our method, LIMP,
ARAPReg and the Ground Truth from DFAUST. While the path pro-
duced by LIMP does not properly register the endpoints and the path
produced by ARAPreg does not stay in the space of human bodies,
BaRe-ESA successfully produces a path of human shapes whose end-
points match the source and target shapes

6.3 Motion Transfer and Random Shape Generation

As two further examples of the capabilities of the proposed
framework, we present applications to motion transfer and
random shape generation. To perform motion transfer, we
first represent a motion as a sequence of latent codes and
then simply replace the shape coefficients of each element of
the sequence with the shape coefficients of the target shape.
An example of this method in action is displayed in Fig. 5.

Another possible application of our framework is random
shape generation. The idea is to use a data-driven distribu-
tion on the human shape tangent space. Therefore we first
perform latent code retrieval on a subset of DFAUST. We
then compute the initial tangent vector of each of these paths
in the latent space, separated in pose and shape components.
For each of these collections of tangent vectors, we fit aGaus-
sian mixture model, which is popular for generating human
shapes (Bogo et al., 2016; Omran et al., 2018). We used 10
and 6 components respectively, which proved to be sufficient
to get visually satisfying random body surfaces. The gener-
ation process consists of sampling a pose and shape vector
in the tangent space and solving the corresponding geodesic
initial value problem from the template in the direction of
the generated vector. We display a selection of 22 generated
shapes in Fig. 6.

6.4 Supervised and Unsupervised Disentanglement

All the above experiments made use of data with labels that
distinguish identities and poses in the training phase. In this
section, we will show that the obtained latent space represen-
tation inherits this property from the training phase, i.e., that
the obtained latent variables do split into a set of pose defor-
mations and a set of identity deformations. Besides, recent
works (Yang et al., 2023) have started to explore approaches
that alleviate this label dependency by constructing latent
spaces that automatically disentangle these different types of
deformations. In the second part of this section, we will thus
show that the BaRe-ESA framework shares this capability,
i.e., that the presence of labels is not a necessity and that our
method can be adapted so as to automatically disentangle
identity and pose information (and more generally between
multiple different deformation subspaces, cf. Remark 3).
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Fig. 4 Extrapolation results comparison between our method, LIMP,
ARAPReg and DFAUST Ground Truth. While all methods capture the
primary motion of lifting a leg, the extrapolations of LIMP and ARA-
Preg include extraneous motions of arms and slight changes in body
type

We start by calculating the latent codes of a set of test-
ing data from DFAUST. We then calculate t-distributed
Stochastic Neighbor Embeddings (TSNE) of the coefficients
corresponding to both the pose and the identity coefficients.
As expected, the clustering shown in Fig. 7 matches the
ground truth exactly, proving that the developed deforma-
tion basis effectively separates changes in pose from those in
identity.

Next we demonstrate our method’s ability to disentan-
gle shape deformation modalities without relying on any
prior labels. Therefore we consider again a training set of
human body scans from DFAUST. In contrast to the pre-
viously described method, we will, however, construct our
PCA basis without using any label information, i.e., we will
treat paths (tangent vectors, resp.) stemming from motions
exactly the same as paths (tangent vectors, resp.) stemming
from changes in identity. In a first step, we then perform PCA
on the tangent vectors of all these paths with respect to the
H2-inner product at the template shape.

After the construction of this unified deformation basis
(containing both pose and identity changes) we calculate the
H2-norm of each vector in the PCA basis. Guided by the
empirical observation that deformations due to changes in
pose are on a different H2 scale as compared to those caused
by changes in body shape, we separate these vectors in two
groups using an automatically chosen threshold on the H2

norm using Otsu’s method (Otsu, 1979). We treat the first
group as the pose deformation basis and the second group

as the basis for identity deformations. Both the H2-norms
of these basis vectors and the chosen threshold are shown in
Fig. 8. To compare the results with the original (label-based)
basis, we take the same total number of vectors by taking the
130 vectors above the threshold as the first group and the top
40 below the threshold as the second group. We compute the
chordal Grassmann distance between the subspace spanned
by the pose vectors of the original basis and the subspace
spanned by first group of vectors from the basis computed
without prior label information as 0.00398. For comparison
we (experimentally) computed the mean distance between
random subspaces of the same dimension based on 1000
simulated pairs of random subspaces of the same dimension,
which turned out to be 17.085. A similar computation for the
shape vectors of the original bases and the second group of
vectors from the unsupervised basis returns a chordal Grass-
mann distance of 0.00166. For comparison we computed
again the mean distance between random subspaces of this
dimension, which turned out to be 9.581. This experiment
demonstrates that the unsupervised basis construction leads
to essentially the same bases for pose and shape deforma-
tions as the original label based basis construction thereby
showing the label-independence of our framework.

To further demonstrate this result qualitatively, we com-
pute the latent coefficients with respect to the unsupervised
basis for the same testing set of human bodies as used
in Fig. 7. To illustrate the disentanglement of this basis, we
again present TSNE plots of the coefficients corresponding
to the basis vectors above and below the chosen threshold,
with points colored according to their ground truth poses and
identities, respectively. The resulting clustering, displayed in
Fig. 8, again aligns perfectly with the ground truth as in the
experiment using labeled data. This demonstrates that also
the unsupervised disentanglement accurately separates the
deformation basis into changes in pose and shape.

Remark 3 (Automatic Disentanglement in the presence of
multiple deformation modules) We should emphasize that
the approach described in this section to automatically sep-
arate pose and identity deformation basis vectors extends to
situations in which one is interested in splitting a given basis
into multiple distinct deformation modules (subspaces), at
least in situations where those different types of deforma-
tions are expected to result in H2 energies of different orders.
Following a similar process, one can simply compute the H2

norms of each vector in the PCA basis estimated from the
training set, and, using e.g. a multilevel Otsu thresholding
method (Liao et al., 2001), separate those basis vectors into
a finite number of groups. The final deformation modules
are then constructed by choosing the dominant deformation
directions from each of these clusters. More generally, when
the different type of deformations are not expected to oper-
ate on different H2-scales, other approaches to separate the
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Fig. 5 Motion Transfer: We display the original motion in the top row
and the transfer of the motion to the target shapes in the second and
third row

Fig. 6 Random Shapes: 22 random shapes generated using a Gaussian
mixture model on the space of initial velocities

Fig. 7 On the left, we display a TSNE plot of the coefficients of a
testing set of surfaces corresponding to pose deformations. The colors
in this plot correspond to the ground truth poses of the testing set. On
the right, we repeat this process with the coefficients of the deformation
basis vectors with the colors corresponding to the ground truth identity
labels (Color figure online)

latent space can be explored; e.g. one might construct non-
local metrics specifically penalizing deformations of certain
parts of the shape or adapt methods similar to those in the
recently proposed Geolatent framework (Yang et al., 2023).

6.5 Application to Human Faces

In this part we showcase the capabilities of our frame-
work in the context of human face scan analysis from the

Fig. 8 Unsupervised disentanglement capabilities of BaRe-ESA: in the
top plot, we present the H2 norms of the elements of a deformation basis
constructed without prior pose and shape information and the chosen
threshold bywhichwe separate the basis. Below on the left, we display a
TSNEplot of the coefficients of a testing set of surfaces corresponding to
the basis vectors above the threshold. The colors in this plot correspond
to the ground truth poses of the testing set. On the right, we repeat this
process with the coefficients of the deformation basis vectors (those
below the threshold) and with the colors corresponding here to the
ground truth identity labels (Color figure online)

Table 5 Face reconstruction results

Hausdorff Chamfer Varifold

LIMP 0.15 0.087 0.034

ARAPReg 0.12 0.015 0.0089

3D-Coded 0.16 0.059 0.020

BaRe-ESA 0.12 0.016 0.0091

We compute theHausdorff, Chamfer, andVarifold reconstruction errors
between the outputs of the methods and the corresponding scans
Best results are indicated in boldface

COMA dataset, where the chosen parameters and the test-
ing and training data are described in Sects. 5.1-5.3. As a
firstmeansurentwe claculated again the shape reconstruction
error for BaRe-ESA, ARAPReg and 3D-Coded, cf. Table 5.
In this task ARAPReg performed the best, with BaRe-ESA’s
performance being only marginally lower. The performance
of 3D-Coded is an order of magnitude worse. One reason for
the better performance of ARAPReg as compared to LIMP
and 3D-Coded is probably the use of the varifold distance
in our adapted implementation of this approach, the original
implementation of ARAPReg not being capable of dealing
with unregistered data. The other learning-based methods
(LIMP and 3D-coded) use instead the Chamfer distance. We
believe that this might be one source of the significantly
worse performance of these methods on the COMA dataset.
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Fig. 9 Experimental results for COMA faces. Here we present several
qualitative results from this framework applied to the COMA dataset.
In the first row, we show our latent code reconstruction (red) of two
different noisy scans of human faces (yellow). In the second row, we
display an example of a solution to a geodesic boundary value prob-
lem to interpolate between two shapes (purple). In the third row, we
display an example of expression transfer in our framework. The blue
mesh on the left represents a target face registered with our framework,
each red mesh on the right represents three additional identities and the
purple meshes below represent the transfer of the expression onto these
identities (Color figure online)

In Fig. 9, we show two latent code reconstructions of two
different noisy scans of human faces, an example of an inter-
polation between two different expressions and an expression
transfer to a identity. One can see again that our method
leads to more natural interpolation and extrapolation results
as compared to the other methods.

7 Experimental Results from 3D-Training
Data

In the previous section we took advantage of the existence of
full 4D-data during the training phase. In this section we will
demonstrate the capabilities of our framework starting solely
from 3D-data. Here we will consider again the DFAUST
dataset, and in addition present experiments on the MANO
dataset, a (static) database of human hands.

Table 6 Registration results using only data from Faust (3D) for train-
ing

MSE Hausdorff Chamfer Varifold

mean 0.028 0.21 0.046 0.025

The mean errors are calculated for a testing set from DFAUST

Table 7 Interpolation results using only data from Faust (3D) for train-
ing

Hausdorff Chamfer Varifold

mean 2.004 0.683 0.405

The mean errors are calculated for the same ten sequences from
DFAUST as presented in 6.2

7.1 A Comparison Between 3D and 4DTraining Data
Using the DFaust Dataset

Here we compare the results of our framework where we
generate our motion basis using two different methods:

1. first, we use the same method as in the previous section,
namely using all of DFaustT with real 4D data sequences
containing 39159 meshes;

2. second, we start from extremely limited 3D-data: we con-
sider only 270 scans from the FAUST dataset and we
generate the necessarymotion and deformation pathswith
an elastic matching algorithm during the training phase.

In Table 7 we present the mean error for the interpolation
problem for the same ten DFAUST sequences considered
in Sect. 6.2: comparing these results with those of Table 3
one can observe that the interpolation error is indeed higher
as compared to the error obtained by training BaRe-ESA
with 4D-data. Nevertheless we still outperform the three
other baselines (LIMP, ARAPReg, 3D-Coded) in all three
measures of performance (Hausdorff, Chamfer, Varifold).
As one can see in Tables 6 and 8 the same holds true
for the extrapolation task and for the registration tasks. For
the shape reconstruction task the performance drops to the
level of ARAPReg and LIMP. This certainly demonstrate
the advantage of having access to 4D-training data (or at
least signifincantly large training data), but at the same time
shows the capability of our framework to lead to a superior
performance without this additional information.We want to
emphasize that all the comparison methods are trained with
the full 39159 meshes, – i.e., with more than hundred times
the amount of meshes – making the results of BaRe-ESA
from this very limited training data all the more remarkable.
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Table 8 Extrapolation results using only data from Faust (3D) for train-
ing

Hausdorff Chamfer Varifold

mean 4.853 1.256 0.899

The mean errors are calculated for the same ten sequences from
DFAUST as presented in 6.2

Table 9 Hands reconstruction results

Hausdorff Chamfer Varifold

LIMP 0.063 0.035 0.0067

ARAPReg 0.039 0.016 0.0022

3D-Coded 0.068 0.031 0.0051

BaRe-ESA 0.0053 0.0048 0.0003

We compute theHausdorff, Chamfer, andVarifold reconstruction errors
between the outputs of the methods and the corresponding scans
Best results are indicated in boldface

7.2 Application to Human Hands

Finally we showcase the capability of our framework for
human hands analysis. We apply our method to the MANO
dataset. The chosen parameter and the training and testing
data are described in Sects. 5.1-5.3. Different from the two
other modalities, MANO contains only static shapes. To cre-
ate the PCAbasis we use simple linear deformations between
the registered hands in the training data to build our shape
and pose basis. We started again with calculating the recon-
struction errors, which are shown in Table 9. As one can see,
our approach significantly outperformed the other methods
by an order of magnitude. We believe that the reason lies in
the limited size of the training data compared, which is not
sufficient for these other methods; in the previous Sect. 7.1
we only trained our method from a small set of training data,
but the comparison methods still saw the full set of training
data. Qualitative results of reconstruction and interpolation
are shown in Fig. 10; while there is no ground truth avail-
able the obtain interpolations follow a visually natural hand
movement.

8 Ablation Studies

Within this section,we conduct a sequence of ablation studies
to validate our selections regarding the number of shapes
and pose basis elements, the shape-matching function, and
the Riemannian metric employed in the calculation of path
energy.

Fig. 10 Experimental results onMANOhands. Herewe present several
qualitative results from this framework applied to the MANO dataset.
In the first row, we show our latent code reconstruction (red) of two
different scans of human hands (yellow). In the second row, we dis-
play an example of a solution to a geodesic boundary value problem to
interpolate between two shapes (purple) (Color figure online)

Table 10 Ablation study on the number of basis elements

10 70 130 190

10 0.090 0.072 0.016 0.015

40 0.092 0.068 0.014 0.015

70 0.089 0.063 0.015 0.014

100 0.087 0.062 0.016 0.016

We report the registration errors where we vary the number of pose and
shape basis vectors of used in the matching process.The basis vectors
are derived from training with DFAUST and the errors of the methods
are calculated using data from FAUST
Best result is indicated in boldface

8.1 Choice of Basis Size

Our first ablation study considers the choice of basis size: in
Table 10, we present the registration error corresponding to
various numbers of shape and pose basis vectors. Each value
in the table is determined by optimizing the latent vector
reconstruction energy, as detailed in n Eq.9, for an identical
number of optimization iterations. The obtained results sug-
gest that our choice of basis size provides the ideal balance
of minimizing the latent space dimension while maximizing
the expressivity of the obtained shape model.

8.2 Choice of Matching Functional and Latent Space
Metric

To justify our choice of shape matching functional and path
energy, we compute the mean registration errors and inter-
polation errors for different combination of shape matching
and path energy functionals. In particular, we experiment
with replacing the varifold distance with the Chamfer dis-
tance and the elastic energy with the Euclidean distance on
the latent space. The results of these experiments are reported
in Table 11. First, we compare the performance of the Cham-
fer and varifold distances and demonstrate that the choice of
the varifold metric leads to significantly lower registration
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Table 11 Ablation study on the
shape matching and path energy
functions

Shape Matching Path Registration Interpolation Errors
Term Energy Error Haus Cham Var

Chamfer H2 0.032 1.273 0.510 0.348

Varifold Euclidean 0.015 1.787 0.632 0.335

Varifold H2 0.014 1.072 0.474 0.290

We report the registration and interpolation errors for each combination of shape matching and path energy
functions. For these experiments, we train the method using DFAUST and tested with FAUST
Best results are indicated in boldface

errors than the Chamfer distance. In a second experiment, we
demonstrate that the elastic matching energy produces sig-
nificantly lower interpolation errors than that of an Euclidean
path energy on the latent space.

9 Conclusions

In this paper, we proposed a general framework for basis
restricted elastic shape analysis on the space of unreg-
istered surfaces. We demonstrated superior performance
compared to state-of-the-art methods in various tasks such as
shape registration, interpolation,motion transfer, and random
pose generation. Our framework utilizes a finite-dimensional
latent space representation, which we equip with a non-
Euclidean Riemannian metric inherited from the family of
elastic metrics. This allows for a simplified representation
of shape space while preserving the ability to compare sur-
faces modulo shape preserving transformations, i.e., our
approach does not assume pre-registered surfaces or consis-
tent mesh structures, making it applicable to a wide range of
surface meshes with real data. Furthermore, the framework
shows good generalization properties and does not require
a substantial amount of training data. The paper presents
qualitative examples and quantitative analysis to support the
effectiveness of the proposed framework in various experi-
ments, including human body shape and pose data as well as
human face and hand scans.

Lastly, we want to mention limitations and corresponding
open directions for future work. Therefore we first point out
that, as compared to some of the other latent space methods,
the non-Euclidean nature of the latent space comes at the
price of solving optimization problems to estimate interpo-
lated or extrapolated geodesic paths, which can encumber to
significant computational cost for large data applications. A
possible way around this limitation would be to train neu-
ral networks in a supervised setting to learn the geometry
of the latent space, i.e., to approximate the solutions of the
interpolation and extrapolation problems.

Finally, we want to mention a simple yet potentially
relevant extension of our model, namely to introduce dis-
tinct Sobolev Riemannian metrics on the different shape

modalities, e.g. for the shape change and the pose change
deformation field in the human body motions. This comes
with the idea of adapting the metric to the different nature of
those deformations, and thus even better disentangling these
quantities.

Appendix A

A.1 Geodesic Distance Bounds

In this section we will study the induced geodesic distance
of the second order Sobolev metric used in this article.
For a finite dimensional Riemannian manifold the induced
geodesic distance is always a true distance function, i.e., it
is symmetric, satisfies the triangle inequality and is non-
degenerate. This last property can, however, fail in infnite
dimensions: there exists Riemannian geometries such that
the geodesic distance between distinct points is zero or it
might even vanish on the whole manifold. This startling phe-
nomenon was first observed by Eliashberg and Polterovich
(1993) for the H−1 metric on the symplectomorphism group
and later byMichor andMumford for the L2 metric on spaces
of immersions and diffeomorphisms (Michor & Mumford,
2005; Bauer et al., 2012). In the following theorem, we will
prove that, under certain conditions on the parameters, the
geodesic distance of the family of elastic Riemannian metric
used in this article is non-degenerate:

Theorem 1 Let a0 > 0 and let either a1, b1, c1, d1 > 0 or
a2 > 0 then the induced geodesic distance of the metric G on
the space Imm is non-degenerate, i.e., for any two surfaces
q0, q1 ∈ Imm with q0 �= q1 we have dG(q0, q1) > 0.

Proof We start with the case that a1, b1, c1, d1 > 0. For
this case we will make use of a generalization of the
SRNF (Jermyn et al., 2012, 2017) as introduced in Su et
al. (2020a). To be more specific in Su et al. (2020a) they
considered the mapping

Q : Imm → Met(T ) × C∞(T ,R3)

q �→ (q∗〈., .〉, ψq),
(A1)
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where Met(T ) denotes the space of all Riemannian metrics
on T and where ψq denotes the SRNF of q. On the space
of all Riemannian metrics there exists a one parameter fam-
ily of Riemannian metrics GE , called the Ebin or DeWitt
metric (DeWitt, 1967; Ebin, 1970). Among other beneficial
properties this Riemannian metric admits an explicit formula
for its corresponding geodesic distance as derived by Clarke
(2010) and Gil-Medrano and Michor (1991). For the precise
formula we refer to (Theorem 2,Su et al. (2020a)). For the
purpose of this proof it is only important that this distance is
non-degenerate, i.e., dGE (g0, g1) > 0 if g0 �= g1. On the sec-
ond factor of the image of Q, i.e., onC∞(T ,R3)we consider
the standard non-invariant L2 inner product as a Riemannina
metric. This has again an explicit expression for the geodesic
distance given by dL2(ψ1, ψ2) = ‖ψ1 − ψ2‖2L2 . The rele-
vance of these results for our family of metrics can be found
in the fact, that the pull-back of this product Riemannianmet-
ric via the mapping Q yields exactly the Riemannian metric
G with parameters a0 = d1 = a2 = 0 and a1, b1, c1 �= 0
(depending on the parameter choice in the DeWitt metric and
of the weighting of the two Riemannian metrics on the prod-
uct space, see (Theorem 3,Su et al. (2020a)) for the precise
statement of this result).

Unfortunately the image of themap Q in the product space
Met(T )×C∞(T ,R3) is far from being totally geodesic and
thus we cannot directly calculate the geodesic distance of the
metric G via this transform. Nevertheless, this construction
still provides a lower bound for the geodesic distance of G
on Imm, i.e., we have:

dG(q0, q1) ≥ dGE (g0, g1) + ‖ψ0 − ψ1‖2L2 , (A2)

where (gi , ψi ) = Q(q). Next we note, that Q(q0) = Q(q1)
if and only if q0 and q1 differs only by a translation and we
have shown that the geodesic distance of the elastic metric
G is non-degenerate on the quotient space Imm /translation.
It remains to deal with the case that q0 = q1 + v for some
v ∈ R

3. In this case the immersions q0 and q1 are also differ-
ent elements in the quotient shape spaceS of unparametrized
immersions,where the non-degeneracyhas been shownusing
an area-swept-out-bound, see Bauer et al. (2011). This con-
cludes the proof assuming a1, b1, c1, d1 > 0. It remains to
prove the result under the assumption that a2 > 0, but in this
situation the result follows directly from the above and the
Sobolev embedding theorem. ��

A.2 Discretization of Invariant H2 Metrics

In this section, we detail the computation of the Rieman-
nian metric term Gq(h, h) for discrete meshes and vector
fields. We shall however refer to Crane (2018) for a more
comprehensive presentation and justification of the discrete
differential approximations being used here. Let us assume

that q is a triangulated oriented surface mesh given by the
ordered list of vertices V = (v1, v2, . . . , vN ) with each vi ∈
R
3 and set of triangle faces F where each f ∈ F corresponds

to an ordered triplet of distinct indices f = ( f0, f1, f2) of
{1, . . . , n}. We then view the vector field h as a list of vectors
(hi )i=1,...,N attached to each vertex of q. Note that, equiv-
alently, one can interpret the discrete q and h as piecewise
affine linear maps on each face of the mesh, by interpolation
of the values at the vertices.

We start with the L2 term of themetric:
∫
T 〈h, h〉 volq . The

discrete volume form can be first expressed over the mesh
triangular faces. Specifically, for each face f ∈ F , we can
calculate its area as vol f = ‖(v f1 −v f0)× (v f2 −v f0)‖. The
volume form on the vertices is then obtained by distributing
the areas of the adjacent faces, namely for each vertex vi ,
we take volvi = 1

3

∑
f �i vol f . This leads to the following

discrete version of the L2 term:

∫
T

〈h, h〉 volq ≈
N∑
i=1

‖hi‖2 volxi .

Next, we consider the first order terms of the metric. For
any face f ∈ F , we can view both q and h as affine maps on
f , by interpolation of their values at the three vertices of f .
Then their differentials are constant on f and given by the
following (3 × 2) matrices:

dq f = [
h f1 − h f0 , h f2 − h f0

]
,

dh f = [
h f1 − h f0 , h f2 − h f0

]

We further have the following discrete versions of the metric
gq and unit normal nq on the face f :

g f =
[ ‖e01‖2 e01 · e02
e01 · e02 ‖e02‖2

]
,

n f = e01 × e02
‖e01 × e02‖ .

where e01 = v f1 − v f0 , e02 = v f2 − v f0 are the two edges
of the face f passing through the vertex v f0 . We then rely on
the interpretation and the discretization of the different first
order terms introduced in Su et al. (2020b). Namely,

∫
T g−1

q (dhm, dhm) volq ≈∑
f ∈F tr(g−1

f δg f g
−1
f δg f ) vol f

in which δg f represents the variation of the metric tensor g f

resulting from the variation of the vertices of the mesh in the
direction of the vector field h. In practice, in the computation
of geodesics, δg f is calculated from one discrete time point
to the next by taking the difference of the respective metric
tensors of face f . Similarly,
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Fig. 11 Discrete volume form and Laplacian on a mesh

∫
T
g−1
q (dh+, dh+) volq ≈

∑
f ∈F

tr(g−1
f δg f )

2 vol f

where each term inside the sum can be interpreted as the
change of in the area of the face f and

∫
T
g−1
q (dh⊥, dh⊥) volq ≈

∑
f ∈F

〈δn f , δn f 〉 vol f

in which δn f stands for the variation of the normal vector
n f resulting from the variation of the vertices of the mesh in
the direction of the vector field h. The last first order term is
discretized as follows:
∫
T
g−1
q (dh0, dh0) volq ≈

∑
f ∈F

tr(g−1
f ξ f g

−1
f ξ Tf ) vol f

where ξ f = dqTf dh f − dhTf dq f .
Finally, for the discretization of the Laplacian in the

second order term of the metric, we use the standard approxi-
mation on triangular meshes based on the cotangent formula.
Letting E be the set of oriented edges in the mesh viewed
as ordered pairs of distinct vertex indices, we take for any
i ∈ {1, . . . , N }:

(�qh)vi =
∑

j |(i, j)∈E
or ( j,i)∈E

(cot(αi j ) + cot(βi j ))(hi − h j ).

where αi j and βi j are the angles defined as in Fig. 11. Then
the full discrete second order order term is obtained as:

∫
T

〈�qh,�qk〉 volq ≈
N∑
i=1

‖(�qh)vi ‖2 volxi .

A.3 Mesh Invariant Similarity Measures

In this section, we add some details regarding the similarity
metrics being used in the registration procedure as well as
for the evaluation and comparison of the different methods.
With similar notations to the previous section, we consider
two discrete surfaces q and q ′ with possibly different number
of vertices andmesh structure.Wedenote by (v1, . . . , vN ) the
vertices ofq and F its set of faces, and similarly (v′

1, . . . , v
′
N ′)

and F ′ the vertices and faces of q ′.
First, we remind that the Hausdorff distance between the

two shapes is given by the formula:

dH(q, q ′) = max

{
sup

i=1,...,N
inf

j=1,...,N ′ ‖vi − v′
j‖,

sup
j=1,...,N ′

inf
i=1,...,N

‖v′
j − vi‖

}

In our numerical experiments, we use the approximate imple-
mentationprovidedby libigl (Jacobson et al., 2018).Note that
this metric is typically very sensitive to outliers.

In contrast, the Chamfer distance (Fan et al., 2017;
Groueix et al., 2018b) provides a more regular similarity cost
which is defined as:

dCh(q, q ′) = 1

N

N∑
i=1

inf
j=1,...,N ′ ‖vi − v′

j‖

+ 1

N ′
N ′∑
j=1

inf
i=1,...,N

‖v′
j − vi‖.

We use the Pytorch implementation of Thibault Groueix.3

One of the downsides of this metric for comparing discrete
surfaces, however, is that it is not necessarily robust to local
changes of point density since it is designed as a distance
between point clouds (without taking the triangle mesh into
account) and it remains somewhat sensitive to outliers and
noise (Wu et al., 2021).

As similarity terms for the algorithms of this paper and
final measure of reconstruction quality, we instead favor dis-
tances that are based on measure representations of shapes,
as introduced in (Charon & Trouve, 2013; Kaltenmark et
al., 2017). Specifically, we rely on the representation of sur-
faces as varifolds equipped with kernel Hilbert metrics. The
resulting family of metrics is equally defined for continuous

3 https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
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and discrete surfaces and the properties of those metrics have
beenwell studied, c.f. the aforementioned papers. In practice,
they are computed via the following formula:

dVar(q, q ′)2 =
∑
f , f̃ ∈F

k(c f , n f , c f̃ , n f̃ ) vol f vol f̃

− 2
∑
f ∈F
f ′∈F ′

k(c f , n f , c f ′ , n f ′) vol f vol f ′

+
∑

f ′, f̃ ′∈F ′
k(c′

f ′ , n′
f ′ , c′

f̃ ′ , n f̃ ′) vol f vol f̃ ′

where c f (resp. c′
f ′ ) denote the barycenter of the triangle

face f (resp. f ′) in q (resp. q ′). Here k is a positive definite
kernel function on R3 × S2. While several different families
of kernels are possible (see the discussion in Kaltenmark et
al. (2017)), in all the experiments of this paper, we specif-

ically take k(x, n, x ′, n′) = e− ‖x−x ′‖2
σ2 (n · n′)2 where σ can

be interpreted as a spatial scale of sensitivity of the met-
ric which is chosen to be quite small (σ = 0.025) in our
examples. In this work, we adapted the Python implementa-
tion used in H2_Sur f aceMatch4 which itself relies on the
PyKeops library (Feydy et al., 2020) for efficient evaluation
and automatic differentiation of kernel functions on theGPU.
We emphasize that such varifold metrics derive from dis-
tances between continuous surfaceswhich are independent of
their parametrization. In practice, when considering discrete
surface meshes, this typically leads to those metrics being
approximately insensitive to variations in mesh sampling, at
least for a certain range of kernel scale σ . We illustrate this
property empirically with the example of Fig. 12.

A.4 Computational Cost

As stated in the paper, our pipelines are optimization
based. We provide a substantial comparison for the differ-
ent approaches.

All the other approaches require significant training costs
compared to BaRe-ESA which requires less than one hour,
cf Table 12. On the other hand, BaRe-ESA, ARAPReg and
3d-Coded require additional optimization for the latent code
retrieval, which we found takes approximately the same time
for all three methods. The optimization cost is driven by the
mesh invariant costs – varifold or Chamfer – which have
n2 complexity, where n is the number of vertices. LIMP is
the only method that does not require optimization, but the
network behaves notably bad when the poses are unseen as
showed in the experiments. For the interpolation problem our
method requires approximately 90s if the latent codes are

4 https://github.com/emmanuel-hartman/H2_SurfaceMatch

Fig. 12 Empirical illustration of the varifold distances approximate
invariance to mesh sampling. Top row: a triangular mesh of a human
face with 57,836 faces (left) and its downsampled version with
2000 faces (right). Bottom plot: the relative error in varifold norm
dVar (q, q ′)/‖q ′‖Var between the full surface and the downsampled
one, as a function of the kernel scale σ . One can see that this relative
error remains close to 0 for scales larger than σ = 0.1 but increases for
smaller kernels. Note for reference that the surface diameter is normal-
ized to 1 while the average diameter of the mesh triangles in the original
and downsampled mesh are respectively 9.4 × 10−3 and 4.6 × 10−2

Table 12 This table presents the computation costs for the different
methods and the three tasks of model training, latent code retrieval
(once trained) and interpolation between two shapes

Method Training Retrieval Interpolation

LIMP 1.5w <1s <1s

3D-Coded 12h 160s <1s 160s

ARAPReg 2w 160s <1s 160s

BaRe-ESA <1h 160s 91s 160s

In the case of interpolation, we display on the left the running times
when latent codes are available vs, on the right, when they are not

already available, whereas it takes approximately the same
time as one latent code retrieval if they are not available. All
timing results were obtained using a standard home PC with
a Intel 3.2 GHz CPU and a GeForce GTX 2070 1620 MHz
GPU.

A.5 Description of State-of-the-Art Methods

We propose a detailed description of the state-of-the-art
method we use as baselines. We selected deep learning
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methods that builds a flat latent space for human shape defor-
mations. They describe as follows:

• Learning Latent Shape Representations with Metric
Preservation (LIMP) is a deep learning method mod-
eling deformations of shapes using a variational auto
encoderwith geodesic constraints. The encoder part use a
PointNet architecture, whichmakes it invariant to param-
eterization. The decoder part is aMulti Layer Perceptron.
The geometric constraints are used a loss functions dur-
ing the training process. The latent space is divided in
an extrinsic part and an intrinsic part and the loss is
applied on the interpolation in those dimensions. The
intrinsic part is constrained using the computation of full
geodesic matrix, which make the training process partic-
ularly heavy.

• As-Rigid-As-Possible Regularization (ARAP) is a deep
learning method modeling deformations of shapes using
an auto-decoder architecture. The latent codes and the
decoder are learned altogether. During the training, an
As-Rigid-As-Possible loss is imposed such that the
decoder directions are similar to the ARAP ones. This
procedure also makes the training procedure heavy. In
order to make it parameterization invariant, we replace
the L2 metric by the varifold distance, as an alternative
to our Riemannian latent space.

• 3D correspondences by deep deformation (3D Coded) is
a deep learningmethodmodeling deformations of shapes
using a variational auto encoder. Similarly to LIMP, the
encoder part use a PointNet architecture, which makes it
invariant to parameterization. The decoder uses a Multi
Layer Perceptron to deform a template mesh, but no con-
straint is imposed on the interpolation of latent variables.
By taking advantage of a high number of training sam-
ples (> 200000), they obtained state-of-the-art results
for human shape correspondence.

• FunctionalAutomaticRegistrationMethod for 3DHuman
Bodies (FARM) is a functional-maps based approach for
human body registration. The approach consists of mul-
tiple stages that enhance the initial mesh structure of a
human body scan to propose a valid final functional map,
based on a set of 15 landmark extracted automatically
from the scan, between a given human body scan and a
humanbody template.Afinal step of registration between
the SMPL body model and the obtained correspondence
is proposed.

In the paper, all those methods are trained using the
same training set as Bare-ESA, from Dynamic FAUST and
reported parameters from the respective papers.

Fig. 13 First line: optimal deformation calculated using the basis
informed ESA of the present article. Second line: optimal deformation
calculated using a standard H2-matching

Appendix B

B.1 Comparison to the Framework of Hartman et al.
(2023b)

In Fig. 13 we compare BaRe-ESA to the unrestricted method
of Hartman et al. (2023b). Note, that BaRE-ESA is signifi-
cantly cheaper to compute aswe reduced the dimension of the
minimization problem – the latent space dimension will be
in the order of 100s, while the dimension of the unrestricted
method is on the order of 10000s. More importantly, one can
observe that BaRe-ESA leads to significantly more natural
deformations, cf. the movement of the arms in Fig. 13.
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