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Abstract—Querying video data has become increasingly pop-
ular and useful. Video queries can be complex, ranging from
retrieval tasks (“find me the top videos that have..”’), to analyt-
ics (“how many videos contained object X per day?”), to excerpting
tasks (“highlight and zoom into scenes with object X near object
Y”’), or combinations thereof. Results for video queries are still
typically shown as either relational data or a primitive collection
of clickable thumbnails on a web page. Presenting query results
in this form is an impedance mismatch with the video medium:
they are cumbersome to skim through and are in a different
modality and information density compared to the source data.
We describe V2V, a system to efficiently synthesize video results
for video queries. V2V returns a fully-edited video, allowing
the user to consume results in the same manner as the source
videos. A key challenge is that synthesizing video results from a
collection of videos is computationally intensive, especially within
interactive query response times. To address this, V2V features
a grammar to express video transformations in a declarative
manner and a heuristic optimizer that improves the efficiency of
V2V processing in a manner similar to how databases execute
relational queries. Experiments show that our V2V optimizer
enables video synthesis to run 3x faster.

Index Terms—multimedia databases, video result synthesis,
declarative video editing

I. INTRODUCTION

Video data has experienced a remarkable surge, impacting
many aspects of our daily lives. The widespread adoption of
smartphones, social media platforms, and other digital devices
has contributed to the exponential growth in video content
creation and consumption. As a result, the need to efficiently
query and analyze video data has become increasingly vital.

Video Database Management Systems (VDBMSs), Com-
puter Vision models, and hybrid Large Language/Vision mod-
els have made tremendous progress toward machine under-
standing of video, largely solving video-to-relation querying.
However, relational data is a poor human interface for mul-
timedia data. Instead, returning a single video can provide a
more intuitive and digestible result. While VDBMSs support
extracting clips and others have hard-coded visualizations for
specific tasks, such as drawing bounding boxes, our survey
found gaps in the expressiveness of result videos and no
research on efficiently materializing them.

Video plays an ever-expanding role in our consumption of
data, and through interactive data systems, it is also becoming
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a larger part of our interaction with data. The evolution of
interfaces reflects this: desktop systems have a wide variety of
data models, but video is a clear standout on mobile devices,
where playing a single video as opposed to a set of video
results yields a better interface, as shown by the proliferation
of short-form video. As such, video results enable first-class
mobile device data interaction. Beyond mobile devices, Aug-
mented and Virtual Reality systems also have first-class video
results, especially as little data is natively volumetric. In this
future class of metaverse devices, we have more opportunities
to use multimedia queries, especially over media captured by
the device itself, in addition to the need to summarize the
videos effectively in response to queries.

Motivating Example: Consider asking “Show me all the
times zebras exhibited social behavior and overlay their IDs
and the behavior type”. We assume there are existing tables
that contain the needed information. The result must combine
potentially thousands of source videos, zoom into the correct
spot, and overlay informational text over the relevant zebras
in the frame. Today, such a video result can only be created
by handwriting code for this specific task. Additionally, the
resulting video could be multiple hours long, which would
take long to process. Through database-style optimizations
described in this paper and on-demand streaming, V2V enables
a VDBMS to execute such a query and to begin playback
within seconds.



Video Synthesis: The creation of new videos from existing
video and data sources, which we term video synthesis, is
a task that has emerged as a crucial aspect of managing
and processing the ever-expanding pool of video content. The
objective is to create coherent and meaningful video sequences
that cater to specific user requirements. We focus on video-
to-video queries, which return a video created from existing
videos. These go beyond simple clip operations; for example,
“show me the event from multiple cameras as 2x2 grid with
object overlays” includes composition and data overlay. Such
synthesis applies to a diverse range of applications, impacting
several use cases that are both practical and relevant. Since
this task joins with external data while editing, this is a video
synthesis task instead of a video editing task.

Use Cases: Video editing is already widely used, often done
manually, and is the primary method for video summarization.
Video-first social media platforms such as TikTok, Instagram
Reels, and YouTube Shorts have made short-format videos a
mainstay, necessitating the condensation of content into fast-
paced, information-dense videos. In sports and live stream-
ing (e.g., Twitch), highlight reels are popular, condensing
hours of gameplay into sequences showcasing a game’s most
pivotal and entertaining moments. In cinema, filmmakers
and fans produce trailers or “supercuts,” seamlessly weaving
together themes and iconic quotes from movies into short,
fast-paced clips. Furthermore, video editing is valuable for
summarizing presentations and meetings in the workplace.

Beyond video editing, video synthesis is necessary due to
the growth of video analytics in industry and scientific areas
such as modern wildlife conservation and ecology research [1].
Such work relies heavily on computer vision over images and
video footage, critical to our planet’s sustainable future. Scien-
tific applications of video analysis range from understanding
animal behavior such as foraging [2] or hunting events [1],
to tracking animals using animal biometrics [3]. Here, even
a short video collection activity (e.g., drone-based footage of
giraffes and zebras in Kenya [4], one of this paper’s evaluation
datasets) can yield a large amount of data (1.1TB across 377
videos) that can be overwhelming for researchers to analyze.
Empowering these researchers with an effective and efficient
platform to explore video data is extremely valuable.

Another potential application of video synthesis is in the
nascent and rapidly growing space of generative Al for video
storytelling [5]. Instead of receiving videos from a VDBMS,
videos could be generated from prompts: State-of-the-art text-
to-video generation projects such as Emu [6], RunwayML
Gen-2, and stability.ai are now capable of producing impres-
sive multi-second clips from textual prompts, combining them
with impressive multi-task image editing models. Combining
such clips with existing libraries of videos to synthesize longer,
human-watchable narratives is a useful and desirable task, and
will also require a video synthesis engine such as V2V.

The importance of low response times: For many of the use
cases above, we expect this synthesis to occur in an ad-hoc
manner to summarize and present the results of a query. This

could be the result of conventional video queries issued by an
analyst, from personalizing videos for a specific user, or from
content-based queries by end-users (e.g., tap and hold on a
car in an Instagram Reel to see a video montage of that car).
Low response times are critical to a positive user experience.

The case for a result synthesis engine: The area of video
database management systems (VDBMS) has seen notable
interest in the recent past, including systems such as EVA [7],
VOCAL [2], VIVA [8], and Blazelt [9]. For most current
systems, video results to queries are limited to basic clips
of individual videos. Instead, we envision the user asking
an analytical V2V query over their video collection and
returning a single easy-to-watch video for their analysis. This
video is optimized for easy consumption: relevant portions are
zoomed in, objects are annotated, and multiple clips are played
side-by-side. After watching this video, they can ask further
questions about the existing video or continue their analysis by
looking at additional data. While some systems provide post-
processing options as Python scripts, our work observes that
the video synthesis step can also be declaratively specified, and
can take advantage of several low-level optimizations. Another
benefit to having a single video as a final output is that it allows
for a closed query algebra, enabling users to express complex
compound query operations.

Hence, we consider V2V a complementary and pluggable
engine for existing VDBMSes, managing the result synthesis
step of the video querying pipeline. Conversely, V2V can run
independently without a VDBMS for a variety of use cases,
including generative video storytelling.

Challenges: Synthesizing video results presents several non-
trivial computational challenges that we address in V2V. First,
it inherits all of the difficulties with video editing: video
processing involves sifting through raw raster data streams,
which can be massive. Since we expect swift response times
as video queries are expected to be run in ad-hoc interactive
query sessions, making editing efficient is paramount.

The heterogeneity of video codecs, file formats, and pro-
cessing tools triggers a complex interoperability problem for
video data pipelines. Additionally, we need to coalesce dif-
ferent paradigms in video editing. For example, highlighting
objects considers the contents of each frame, but splicing
together videos considers entire video timelines. A stream/file
block-centric approach (e.g., used by FFmpeg) is better suited
for bulk operations; frameworks such as OpenCV are more
aligned with a per-frame image-centric model and are better
suited for content-focused operations. Hence, abstractions,
query grammars, optimizations, and implementations must be
carefully crafted to capture semantics.

In addition to video editing difficulties, video synthesis
incorporates joining video edits with relational data. This
requires data access interfaces, methods of defining how to
incorporate data in video transformations, and an execution
engine capable of fetching the needed data while performing
an edit. The system should also use the specific data values
to further optimize plans.



Contributions: Our contributions in this work are as follows:
e A DSL for representing video synthesis tasks.

o An OLAP-style optimizer which optimize video synthesis
tasks similarly to relational queries.

e A video editing specification rewrite system to enable data-
aware optimizations.

II. RELATED WORK

VDBMS Which Return Videos: Many existing VDBMS sys-
tems, across research, open source, and industry, can display
videos or frames to the user [10]-[15], most of which only as
a link to the video source or a basic clip. However, how such
result videos are created is, in all papers we have surveyed,
unspecified. For example, VIVA [8] allows basic clip selection,
but how these clips are generated is left open-ended. We have
also found no shortage of supporting scripts which perform
video tasks that VDBMSs are unable to. For example, EVA [7]
provides post-processing scripts to generate annotated videos
from tasks such as object detection, and Spatialyze [16] does
the same in a utility function.

VDBMS Architectures and Optimizations: VDBMSs can use
video-specific optimizations in MapReduce architectures [17],
serverless pipelines [18], [19], or on edge platforms for
real-time stream analysis [20]. SEIDEN [21] explored using
techniques such as query-agnostic indexing, sampling addi-
tional frames, and leveraging temporal continuity. Similarly,
TASTI [22] uses semantic indexing.

VDBMSs tend to push their storage needs into a dedicated
storage layer and, similarly to relational queries, pushing op-
erators into the storage layer yields significant speedups [23].
Additionally, since video is often accessed through external
tools like FFmpeg, pushing operations into those tools also
improves performance [24]. TASM [25] tiles videos to ensure
they only decode regions of video needed by a query. Other
systems, such as VStore [26] only use temporal sharding but
stores cached copies of commonly-used video artifacts.

Querying Videos: Issuing queries on video data usually
takes the form of a DSL [11], [27], [28] or a graphical
system [29]. Most of these DSLs are derivatives of SQL [9],
[30], [31] or Prolog [15], [32]. In addition to these formal
representations of queries, natural language queries [33], [34]
and voice queries [35] have both been explored over video.
VOCAL [2] enables diverse compositional analytical queries
without requiring a semantic model. Additionally, emerging
Al-centric vector/tensor databases support unstructured im-
ages, video, and audio [36]. As discussed in the previous
section, results from these VDBMSs can hugely benefit from
a complementary result synthesis engine such as V2V.

In addition to querying content, both filming and editing
techniques, such as cuts, zooms, and panning, can be queried
as temporal events [37], [38].

Declarative queries against video data allow for transpar-
ently applying advanced video-data-specific optimizations to
query plans [7], [9], [39]-[41] indexing [42], or both [43].
In addition to these general-purpose video optimizations there
have been substantial undertakings to optimize data systems

specific to certain video analytic tasks, usually by hard-coding
the plans for their common tasks. Traffic analysis [44] is the
most common, followed by tracking individuals from security
cameras [45].

Video Editing DSLs: DSLs for expressing video edits have
been explored previously [46], [47], each focusing on different
scopes. Super 8 [46] is a creativity-focused language for
creating edits comprising of segments of a certain length
interlaced with transitions and text slides. Similarly, editly [47]
performs similar tasks through its command-line interface
while supporting more complex transformations when using
a more expressive JSON-based editing specification. It limits
its video transformations to a few hand-implemented ones and
applies them at a clip-level. Additionally, the optimizations are
limited to a “fast” option which sets a low resolution and frame
rate, which makes it the only declarative video editing tool we
have found which supports any optimization at all.

A declarative approach amenable to further automated op-
timization has been unexplored, as have DSLs supporting
joining against data, motivating the need for V2V.

Conventional Editing Techniques: Supercuts [48] are pop-
ular style of montages consisting of short clips. Systems
to stitch together supercuts automatically have been ex-
plored [49].

Video Processing: Scanner [50] uses a distributed graph
data-flow processing approach to video processing. While bulk
video analysis and the data-flow processing are unsuitable to
low-latency video editing on varying specifications, Scanner’s
decoder uses keyframe indexes for partial group-of-pictures
(GOP) decodes similar to V2V. LosslessCut [51] and av-
cut [52] are two open-source projects which use knowledge
of GOPs/keyframes to speedup up clipping video without a
full decode/encode.

ML Video Synthesis: The contributions of our work are or-
thogonal and complementary to generative machine learning-
based video techniques presented in [53], [54]; our interpre-
tation of the word “synthesis” represents the combination of
existing videos, while the aforementioned work focuses on
human-guided generation of videos.

VVS [55] is a content-based video retrieval system which
removes irrelevant details via a ML network. While VSS is
adjacent to the information retrieval tasks we target, we focus
on quickly editing videos while VVS focuses on identifying
what details should be removed from videos via editing.

III. DECLARATIVE VIDEO EDITING

At its core, video synthesis is built upon video editing. We
propose a declarative video editing (DVE) system which serves
as the core of our video synthesis system. We developed a
custom DVE system as the few existing systems were not
sufficiently expressive for our needs. Specifically, they only
allowed for applying a transformation across an entire time
span, defined times in imprecise floating-point seconds, and
could not combine multiple input videos.

Note that our DVE system is not specific to the video
synthesis use case. It is generalized with video synthesis



abilities implemented on top, so further developments in DVE
systems can also benefit video synthesis. A video editing task
is expressed as a spec, which takes videos as input and returns
a single video as output.

A. Data Model

A video is an array of frames at specific times. Each
array is indexed by a timestamp, represented as a rational
number. This is the standard representation in multimedia since
many frame rates (e.g., 29.97, 30 FPS) can not be exactly
represented as finite-length decimal. A frame is our model’s
smallest unit of information. We consider a frame arbitrary
data of a specific type; for example, a 1920x1080 frame
with yuv420p-encoded BT . 709 color. The flexibility of the
data allows non-standard formats, like 3D video [56], to be
represented while ensuring type correctness.

B. Specification Model

A DVE spec represents transformations over input videos,
which are a series of transformations over frames. Since the
output of a spec is a video, we construct an array of frames
where each frame has specific transformations. An example
DVE spec is as follows:

Render,
"videol.mp4d", ...}>

<TimeDomain,
{"vidl":

Spec =
videos:

where TimeDomain defines a 10-minute video at 30 FPS:

TimeDomain = Range (0, 600, 1/30)

We use Range as shorthand for a set of evenly spaced rationals over
an interval. Render is defined to provide transformations needed on
each frame when given the frame’s time. Here we concatenate two
5-minute videos, with the second as our prior example montage:

Render (t) = match t {
t in Range (0, 300, 1/30) => wvidl[t],
t in Range (300, 600, 1/30) =>

Grid(
vidl[t + 13463/30],
Overlay (vid2[t], "overlay.png"),
zoom (vid3[t], 10.0),
vid4 [t + 9952/30]
),

Transformations are modeled as functions. Given frame x
and transformation Transform(Frame) — Frame we can
apply the transformation with Transform(z), which has type
Frame. A transformation can include multiple frames and data,
for example:

o Zoom(Frame, percent : Number) — Frame

o Overlay(Frame, image_path : String) — Frame

o BoundingBox(Frame, List(BoxCoord)) — Frame

e Grid(Frame, Frame, Frame, Frame) — Frame
These frame transformations can be created by the V2V mod-
ule or in user-defined functions (UDFs). Each frame can be
indexed as video [t] where t is the time. Such a definition
has two main benefits: First, it is an unambiguous method of
describing video transformations in a VDBMS, similar to how
relational queries are unambiguous data transformations. And

second, it allows static property checks via typing. For this
example spec, our system would identify that vidl must be
a superset of Range (0, 300, 1/30). The spec is correct
if each dependency is a subset of the ranges available in the
source videos.

C. Operators

Our execution engine consists of three core operators, which
enable running specs with a multitude of common editing
operations:

e Concat: Splice together multiple segments

e Clip: Extract a specific time segment

e Filter: Zoom, crop, stabilize, animated transitions,

highlight an object, overlay text or graphics, color grad-
ing, blur/sharpen, edge detection, denoise, background
replacement

More transformations can be added through UDFs. A trans-
formation in the spec takes some combination of frames,
data, and time (e.g., for an animated transition) and returns
a single transformed frame. A sequence of these forms a
Filter operator. Concat and Clip are temporal, as they
control which operations should occur on which frames at a
specific time. Every spec comprises concatenations of frame
transforms on ranges of videos selected by clips. We form an
unoptimized logical plan by mapping our declarative definition
to these operators where match operators create Concats,
function calls create Filters, and the indexing of videos
with time results in C1ips.

D. Declarative Video Editing Optimizations

We implement several heuristic rewrite-based optimizations.
These include conventional general-purpose optimization tech-
niques, such as temporal sharding and operator merging, in
addition to domain-specific optimizations, such as stream
copying and smart cuts.

a) Stream Copying: When performing splices or simple
clips without transformations, we can avoid re-encoding the
source. This is simple in splices: multiple compatible video
streams in the same codec can be concatenated into a single
stream [57]. When clipping, a stream copy is only frame-exact
if it happens to land on keyframe boundaries (often called
group of pictures or GOP), which is rare. Instead, our DVE
uses an alternative: smart cuts, a new approach experimentally
supported by open-source editors such as LosslessCut [51]. A
smart cut finds the first keyframe in the clipped range and
stream copies until the last. Any frames preceding the first
keyframe are re-encoded with the result spliced onto the start;
the same is done to the end of the clip. This allows for the
exact clipping of arbitrarily large clips while only re-encoding
at most two GOPs.

b) Example Optimized Plans: Consider a spec that per-
forms a simple clip spliced with a 2x2 grid spliced with a
simple filter (in our evaluation, these are specs @1, 3, and
@4, respectively). The top of Fig. 2 shows the unoptimized
plan for this spec. In this diagram, we denote stream-copy
operators as diamond-shaped grey nodes. An optimized plan
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Fig. 2. Unoptimized (top) and Optimized (bottom) Plans
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is shown below. We have applied a smart cut to the clip where
the bulk of the clip is copied from the input to the output
without re-encoding. On the 2x2 grid, we have pulled the clip
into the filter operator. This merges the clip operation into the
filter, avoiding an unnecessary encode/decode pair. We split
the last filter operator into two parts that run in parallel.

IV. THE V2V SYSTEM
A. System Architecture and Implementation

We propose a V2V as a video synthesis expansion of the
declarative video editing system detailed in Section III. V2V
declaratively defines a video edit with the additional capability
of allowing relational data to be integrated with the edit. It
does so by adding the additional step of data-aware rewriting.

Data-Aware Rewriter: The data-aware rewriter takes a V2V
specification and rewrites the spec to incorporate data-aware
optimizations. The result of the data-aware rewriter is equiv-
alent to the input spec on the specific data it references.

Video Edit Optimizer: The video optimizer takes the previ-
ously rewritten spec and turns it into a plan for the execution
engine. In the process, we perform type-checking to ensure
that all referenced videos, arrays, and members thereof are
valid. Following this, the optimizer makes multiple passes to
apply optimizations, as listed in Sec. III-D. The resulting plan
may pass data to the filters like it passes frames, but the video
optimizer does not consider their values in the optimizer.

Execution Engine: The V2V execution engine runs the com-
pleted plan. Our implemented execution engine runs a plan
AST and uses FFmpeg for all operators. We use the depen-
dency graph to execute operators in parallel as an additional
optimization at runtime.

Integrating into VDBMSs: We envision V2V as a pluggable
module that provides video synthesis functions for existing
VDBMSs. A user can issue a query in natural language, and
the VDBMS can use an LLM to write SQL queries over
cached model results and the V2V spec, turning that relational
data into a synthesized video. The VDBMS first runs the query,
which yields a relation detailing what videos are to be used and
then this is transformed into a V2V spec. The V2V system then
transforms the spec into a plan, optimizes it, and executes it
to synthesize the output video, optionally taking advantage of
any storage optimizations the VDBMS provides. The VDBMS
then passes the synthesized video to the client.

B. Data in Specs

Video synthesis must enable joining relational data with
video data. Our DVE engine supports data as additional
constant parameters. For example, the Overlay operation takes
the path of an image to overlay over a frame. We can expand
this syntax to support arbitrary data expressions as well. Since
videos are already represented as arrays, we introduce data
arrays. For example, if we have bounding boxes in a JSON
file, we could write a V2V spec as such:

TimeDomain = Range (0, 300, 1/30)
Render (t) = BoundingBox(vidl[t], vidl_bb[t])
Spec = <TimeDomain, Render,
videos: {"vidl": "videol.mp4", ...},
data_arrays: {"vidl_bb": "annotl.json"}>

Similarly, we may support arbitrary SQL as well, given that
it takes the form of a tuple of a rational timestamp and a scalar
element:

SELECT timestamp, frame_objects
FROM video_objects

WHERE video = AND model = "yolovbm";

Using SQL to define data joined with videos allows intelli-
gent data materialization. The data queries may be materialized
in portions by bounding the time, which allows for fine-grained
control between storage and compute.

C. Data-Dependent Rewrites

While supporting joining data within specs is the minimum
needed to enable video synthesis, the DVE engine can use
the joined data to further optimize plans. We term this data-
dependent rewriting, which allows spec rewrites to find more
optimal equivalent specs.

We demonstrate these rewrites by considering two opera-
tors: IfThenElse and BoundingBox. IfThenElse takes parame-
ters of type (bool, Frame, Frame). However, naive support for
joining data in specs does not allow efficient execution of such
a function. This operator is superfluous in conventional DVE,
which is not aware of data, as the conditional variable would
be constant. Our DVE optimizer cannot look at data directly
while optimizing, and adding such support to the underlying
optimizer would be a significant task. As such, the optimizer



would materialize both the left and right frame references.
Then, only at runtime would the operator select which frame
to use. This is sub-optimal.

A more subtle optimization occurs around the BoundingBox
operator with parameters (Frame, List(BoxCoord)). When a
frame has objects, the BoundingBox operator draws rectangles
over their region, transforming the frame. However, many
frames may not contain any objects. In those cases, the Bound-
ingBox operator is equivalent to the identity transformation.
This is important as DVE engines can use stream copies on
unmodified frames, the fastest class of video edits operating
near the speed of a memory copy. Thus, when a video has
no objects over the length of a group of pictures, it can be
stream-copied.

It is possible to hard-code such optimizations, but DVE
engines are complex, so we propose another solution to
achieve data-aware optimizations: data-dependent rewrites.

We use a two-pass execution method: the first is data-only,
and the second is the full execution. The first data-only pass
applies rewrites to the spec based on the data referenced
by the spec. Each operator is associated with a new data-
dependent equivalence function, denoted as fyq4.. This function
only takes non-frame ‘relational data’ parameters and returns
an equivalent expression. For example, consider array a = [3,
6, 8] and the following spec:

TimeDomain = {0, 1, 2}
Render (t) =
IfThenElse(a[t] < 5, wvidl[t], wvid2[t])

Since IfThenElse has parameters (bool, Frame, Frame), then
IfThenElseyq. has the same parameters but may only perform
computation on the boolean parameter and not the frames
which are included only as symbolic placeholders:

if
IfThenElseqae (¢, , ) = {x e
y if —c

The data-dependent equivalence function is applied across
the entire spec. This yields the data-dependent DVE spec:

TimeDomain = {0, 1, 2}
Render (t) = match t {

t in {0} => vidl([t],

t in {1, 2} => vid2([t],

Similarly, the BoundingBox is the identity transform if and
only if it has no objects on that frame:

x if b =0

BoundingBox g4, (2, b) = { if |b] >0

BoundingBox(z, b)

By running each spec twice, first with data-dependent
equivalence operators and second with full frame operators,
we can create specs that are easier to optimize efficiently
without needing data-aware optimizations in the declarative
video editing optimizer.

D. Implementation

The V2V system is implemented in the Rust language,
and we use FFmpeg as the underlying execution engine. This
takes full advantage of the parallelism support offered by both.
Specs and plans are represented using typed abstract syntax
trees (ASTs), taking advantage of Rust’s algebraic data type
system in our library API, and our executable binary reads
serialized JSON specs.

V. EVALUATION

Datasets: We evaluate the V2V system over two video col-
lections, ToS and KABR datasets. The first is clips from Zears
of Steel (ToS) from Blender Open Movies, a popular video
benchmarks film [58]. We preprocessed the film to overlay
frame information to verify each operation was frame-exact;
the video is 734 seconds at 3840 x 1714 resolution at 24fps,
and the bitrate is 18.8Mb/s H.264.

For our second dataset, we use raw footage from the
KABR effort [4], collected by researchers using drones from
a site visit to Kenya. We chose this dataset as it will resemble
many large scientific datasets. We used 4x 291-second videos
at 3840 x 2160 resolution encoded at ~ 103Mb/s H.264.

Benchmarks and Environment: To evaluate performance,
we use a benchmark representing common synthesis tasks:

1) Clip a segment of video

2) Clip 4 segments of video and splice them together

3) Clip 4 segments of video and play them simultaneously
in different quadrants of the output video

4) Clip a segment of video and apply pixel-wise filter
operation (we used a Gaussian blur)

5) Clip a segment of video and draw object bounding boxes
and class annotations

We use these tasks as our base and evaluate each with 5-second
and 1-minute input segments. In our tests, we term these
queries with 5-second inputs as Q1 — @5 and Q6 — Q10 for
the 1-minute inputs. We set the output format to be 1280x720
video in H.264 with the ultrafast encoding preset. We
used a 2x12-core (48 HT vCPUs) Intel Xeon Gold 6126 @
2.6 GHz system with 384GB DDR4 RAM running Ubuntu
18.04 LTS and FFmpeg 6.0. Care was taken to flush caches
and buffers between invocations, and averages of 5 runs were
measured after discarding an initial run.

A. V2V Synthesis Performance

The primary design goal of the V2V system is to en-
able video synthesis in interactive settings. In this light, we
evaluated the end-to-end synthesis performance of our V2V
system (planner, optimizer, and execution engine), running the
benchmark queries against each of our 2 datasets. We ran the
unoptimized and optimized plans and measured the average
execution time.

As shown in Figs. 3 and 4, on average, the optimized queries
ran 3.44x faster for the ToS dataset, and 5.07x faster for
the KABR dataset than their unoptimized counterparts. Of
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note are Q6 and Q7 on the KABR dataset, which result in
736MB 1-minute and 2.9GB 4-minute videos, now executing
in 1.75 and 4.34 seconds, respectively. The speedups through
our V2V optimizer enable these queries to be usable in interac-
tive settings. We observed subtle but interesting performance
insights in our evaluations. The optimized and unoptimized
plans for Q1 on ToS were identical, as there were insufficient
keyframes over the clipped region to apply a smart cut. Q1 on
KABR did perform a smart cut since it had keyframes every
second. On all other queries, we found substantial performance
improvements on both datasets.

We also compared the queries that joined with data against
the equivalent Python + OpenCV equivalents. These results
are shown in Fig. 5. The encoding/decoding for the OpenCV
scripts also used FFmpeg, so the codec overhead should be
identical. We found that the ToS dataset has objects on nearly
every frame, whereas the KABR dataset only occasionally has
a zebra caught by the object detector. This translated to a
speedup on the KABR dataset from the data-aware rewrites,
which removed most bounding box filters and allowed stream-
copies on some segments.
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Fig. 5. Video Synthesis Data Join Comparison

VI. CONCLUSION

This paper articulates the need for a video result synthesis
engine in VDBMSs and presents an efficient and effective
implementation. Video synthesis combines editing a video
from one or more sources while joining with relational data.
We envision a video synthesis engine as an embedded module
within a VDBMS that creates result videos. This enables
VDBMS:s to take complex queries and quickly return a single
expressive video result.

Video result synthesis allows for rapid iteration in video an-
alytics pipelines, which is especially important across diverse
scientific fields. However, while video synthesis is useful, it
can be a computationally challenging task with tremendous
scope for optimization. To address this, we expand a declar-
ative video editing grammar to enable synthesis specs that
reference data and for the optimizer to create data-aware opti-
mizations. Our experiments show that V2V optimizations en-
able synthesis to run 3.4 x faster on the ToS dataset and 5.1x
on the KABR dataset. Certain queries, such as Q6 applied to
the KABR dataset, demonstrate a substantial improvement in
execution speed, approximately 16x, reducing the execution
time from 69 seconds to 4.3 seconds. This enhancement
transitions the performance from being prohibitively slow to
feasible for interactive environments. On tasks that include
joining with data (e.g., Q5 & Q10), we average a 4.4 x speedup
against the equivalent Python+OpenCV script.
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