Low-Latency Parallel Row-Layered Min-sum
MDPC Decoder for McEliece Cryptosystem

Jiaxuan Cai and Xinmiao Zhang
Dept. of Electrical & Computer Engineering, The Ohio State University, Columbus, OH 43210 U.S.A.
{cai.1072, zhang.8952} @osu.edu

Abstract—In the latest round of post-quantum cryptography
standardization, the McEliece cryptosystem utilizing medium-
density parity-check (MDPC) codes remains a candidate. The
row-layered Min-sum decoding for MDPC codes has better trade-
off on performance and complexity. Previous work adds con-
straints to the parity-check matrix construction in order to enable
efficient parallel decoding. However, the constraints for large
parallelism cause undesirable reduction on the number of usable
secret keys and hence the previous scheme has limitations in
achieving higher speed. This paper proposes two new schemes to
substantially reduce the latency of row-layered MDPC decoding.
Instead of further increasing the constraints to achieve higher
parallelism, multiple identity blocks in the parity-check matrix
are processed simultaneously in the first scheme and large blocks
of variable width are processed in a hybrid way in the second
design. Efficient hardware architectures are also developed for
both proposed decoders. For an example code, the two proposed
decoders achieve around 40% speedup compared to the best
prior effort with less than 10% area overhead.

Index Terms—Error-correcting codes, McEliece cryptosystem,
medium-density parity-check codes, Min-sum algorithm, parallel
decoder, post-quantum cryptography, row-layered scheduling.

I. INTRODUCTION

Existing cryptography standards are at risk from the immi-
nent quantum computing attacks. The McEliece cryptosystem
based on medium-density parity-check (MDPC) codes is a
finalist for the post-quantum cryptography standard by the
National Institute of Standards and Technology [1], [2]. The
parity-check matrices of MDPC codes consist of a few very
large random circulant matrices and serve as the secret keys.
They have inherently different structures compared to those
of low-density parity-check (LDPC) codes used for error
correction. Hence, most existing methods for LDPC decoder
optimization do not apply to MDPC decoders.

Previous literature on MDPC decoder design mainly con-
siders the simple bit-flipping algorithm and its variations
[3]-[10]. However, the Min-sum algorithm [11] can achieve
orders of magnitude improvement in decoding failure rate
(DFR) when proper scalar values are utilized [12], [13]. This
enhances resistance against the reaction-based attacks that
exploit decoding failures to recover the secret parity-check
matrix [14], [15].

The Min-sum MDPC decoder in [12] achieves parallel pro-
cessing by dividing the parity-check matrix into segments row-
wise and processing the segments simultaneously. However,

This material is based upon work supported by the National Science
Foundation under Award No. 2052641.

the random locations of the nonzero entries in the parity-check
matrix limit the achievable speedup factor to a single digit
and cause large memory overhead. The row-layered scheduling
[16] is utilized in the MDPC decoder design in [13] to reduce
the latency and memory requirement, which contributes to the
majority of the decoder complexity. To effectively increase
the speed of decoding with L rows in a layer, this design
forces the distances between any two adjacent nonzero entries
in a column to be at least L during the construction of the
random parity-check matrix. Accordingly, the parity-check
matrix is divided into blocks of L x L identity submatrices, and
processing one submatrix in each clock cycle leads to L times
speedup compared to a serial decoder. However, for a large L,
such as 64, it takes a very long time to find a random secret
parity-check matrix satisfying the constraint and the number
of usable secret keys becomes insufficient. Besides, larger L
leads to higher DFR, which makes the scheme more vulnerable
to reaction attacks.

This paper proposes two schemes that achieve higher de-
coding speed without imposing constraints that undesirably
affect the usability of the McEliece cryptosystem or increase
its vulnerability to attacks. Our first design simultaneously
processes multiple identity blocks within the same row layer
in order to improve the parallelism. The memories storing
the messages are divided into more banks to support such
simultaneous processing and the effective achievable speedup
is analyzed. In the second proposed scheme, the constraint
on the minimum distance between adjacent nonzero entries,
p, is set to be less than L, the number of rows included in
a layer. Each row layer is dynamically divided into blocks
with L rows but variable columns with a nonzero entry in the
top left corner to simplify the computation units and on-the-fly
address generation in the decoding process. A hybrid decoding
scheduling scheme is also developed to eliminate the DFR
degradation caused by having more than one nonzero entry in a
column of a layer. Hardware implementation architectures are
also developed for each decoder in this paper. For an example
MDPC code constrained by p = 32, the two proposed decoders
achieve around 40% speedup compared to the best prior effort
[13] with less than 10% area overhead.

This paper is organized as follows. Section II introduces
background information. The two proposed schemes are pre-
sented in Sections III and IV. Complexity analyses and con-
clusions follow in Section V and VI, respectively.



II. BACKGROUND

The MDPC code is characterized by its parity-check matrix
H. In the McEliece cryptosystem, the secret key comprises
no randomly generated vectors, each with r bits and a Ham-
ming weight w. The structure of H is [Ho|H;y| - [Hyy—1],
where H; (0 < ¢ < mng) is a circulant matrix whose
initial column is the ¢-th random vector. The last vec-
tor needs to be randomly regenerated if H, _; is non-
invertible, so that the generator matrix G can be constructed as
[|[H, L Ho[H, ! Hy|- [H, ] H,, |7). For the post-
quantum cryptography standard, n ranges between 2 and 4,
r is between 3079 and 32771, and w is between 45 and 161,
depending on the target security level.

The encryption process of the McEliece cryptosystem is
mainly MDPC encoding. The (ng — 1)r-bit plaintext is mul-
tiplied with the generator matrix G to derive the ngr-bit
codeword c, which is then added with a random vector, e, with
at most ¢ nonzero bits to generate the ciphertext x. Here ¢ is a
constant ranging from 42 to 264 depending on the parameters
of the MDPC codes. The decryption process is to carry out
MDPC decoding on x. If e is a correctable error vector, then
c is recovered. Its first (ng — 1)r bits equal the plaintext since
G is systematic.

Algorithm 1 Scaled Min-sum Decoding Algorithm [11]
1: Input: x = [xg, 21, , Tp_1]
2: Initialization: u; ; = v;

3: for k =1 to I, do

4 Stop if xHT =0

5 Check node processing:

6 minl; = minjesv(i) |ui,j|
7: idxr; = arg minjesv(i) |u,;7j|
8
9

meZ = minjESU(i),j;éidxi |ui,j
8i = Djes, ()sign(Ui ;)

10: for each j € S,(4)
» v | manl; if j # idx;

: v | =

i min2; if j = idx;

12: sign(v; ;) = s; ® sign(u, ;)
13: Variable node processing:
14: Ui =Y+ QD ies, ()i Vi
15: A posteriori info. comp. & tentative decision:
16: T = QD ies, () Vi
17: x; = sign(¥;)
18: end for

A Tanner graph can be utilized to represent the H matrix. In
this graph, variable nodes represent columns in the H matrix,
check nodes correspond to rows, and edges between check
and variable nodes denote nonzero entries in H. Algorithm 1
[11] shows the Min-sum decoding algorithm. It iteratively up-
dates and exchanges reliability information between connected
check and variable nodes in the Tanner graph and makes
decisions on received bits. For an input bit z; (0 < j < n), its
reliability information, denoted as +;, is initially set to 4+-C' or
—C, when z; is ‘0" or ‘1’, respectively. C is a constant whose

)
|
|
s
<
)
o
S|
)
o)

0l1[2]3]4[5[6[7]8[9]10[11]12[13][14[15]16]0 1 14[15[16

16 | 1 1 1 1 1 1

Fig. 1. Example H matrix for a toy MDPC code with (ng,r, w) = (2,17, 3)
and constraint p = 4 divided into identity blocks [13].

optimal value can be decided from simulations. Throughout
this paper, u; ; represents the variable-to-check (v2c¢) message
from variable node j to check node z, while v; ; represents the
check-to-variable (c2v) message from check node ¢ to variable
node j. The decoding iteration number is denoted by k. S, (%)
(Sc(y)) refers to the set of variable (check) nodes connected
to check (variable) node ¢ (j). In order to reduce the DFR,
the sum of c2v messages is scaled by a factor, «, during the
computation of v2c messages and a posteriori information, ;.
A decoding failure is declared if no valid codeword is found
after I, iterations.

The row-layered decoding scheduling scheme [16] achieves
faster convergence and reduces the memory requirement. In
this scheme, H is partitioned into blocks of L rows and each
block row is referred to as a layer. Additionally, each column
in a layer can have no more than one nonzero entry. While
decoding layer f in iteration k, the v2c and c2v messages cor-
responding to a nonzero entry in H are represented as u(*/)
and v*f) | respectively. The row-layered decoding utilizes the
most updated c2v messages to generate the v2c messages. It
is achieved by updating the a posterior information based on
the most recent c2v messages as

=5 av =15 4 kS, (1)

Comparing Lines 14 and 16, the v2c message utilizing the
latest c2v messages is calculated as

ulFl) = 5 — vk )

In summary, in row-layered decoding, (1) and (2) replace Lines
16 and 14, respectively, of Algorithm 1.

Since the locations of the nonzero entries of H are random,
dividing H into blocks of rows and columns in a straight-
forward manner leads to very limited achievable speedup and
high hardware complexity [12]. To enable more efficient paral-
lel processing, it was proposed in [13] to add the constraint that
the distance between any pair of adjacent nonzero entries in
each of the ng r-bit random vectors needs to be at least p. Then
H can be divided dynamically into identity blocks of size px p.
Processing one identity block in each clock cycle effectively
achieves p times speedup compared to a serial decoder. A toy
example of the H matrix with p = 4 and dynamic division is
shown in Fig. 1.



En  Dout

RAM U0

H matrix
shifting

H matrix
nonzero

eniry
indices

addry|
ATy

Addr Din

En  Dout

RAM UI

jaddr,
——

Addr_Din

Din  Dout| 4

RAMI En - Dout Dout

RAM U2 RAM M

493 Addr Din

En  Dout.

RAM U3

B4y Addr Din

Fig. 2. Top-level architecture of row-layered Min-sum MDPC decoder
processing multiple identity blocks simultaneously.

v2e, mag. ©
compare h
i £
3
v2c, nag. |compare |»
> Ji
J

compare

!

() CNU A

(b) CNU B

Fig. 3. (a) CNU A capable of processing two input v2c messages to update
minl, min2, idx and s; (b) CNU B for generating c2v messages [17].

III. MULTI-IDENTITY BLOCK PARALLEL PROCESSING

Higher parallelism is needed to further reduce the decoding
latency. The parallelism in the design of [13] is determined
by the constraint p. It is becoming very difficult to find an
H satisfying a larger p, such as 64. Moreover, the number of
secret keys satisfying a larger p constraint reduces dramatically
and the DFR may also increase with p. Both of these issues
compromise the security of the McEliece cryptosystem. Two
new parallel decoders are proposed in this and the next sec-
tions to achieve substantially higher processing speed without
further increasing p.

Our first proposed decoder utilizes the same constraint and
dynamic matrix division as those in [13], but processes an
integer m; > 1 identity blocks in the same layer each time.
This effectively increases the processing speed without further
increasing p. Besides, since there is also at most one nonzero
entry in each column in a layer, our design achieves the same
DFR as that of the previous layered decoder with the same
layer size.

The block diagram in Fig. 2 presents our first proposed
parallel decoder for an example case of m; = 2. The check
node unit (CNU) for computing c2v messages from v2c
messages can be found in many literature, such as [17]. The
details of the CNU for m; = 2 are shown in Fig. 3. It
is divided into two parts. CNU A is capable of processing
mq = 2 v2c messages from two identity blocks at a time. It
iteratively calculates minl, min2, idzx, and s following Lines

TABLE I
SPEEDUP FACTOR COMPARED TO SERIAL DECODER ACHIEVED BY THE
FIRST PROPOSED DESIGN FOR EXAMPLE MDPC CODES WITH
(no,r,w) = (2,4801,45) AND p = 32.

# of RAM U banks my
(depth) 2 [ 3] 4
2 (151) 33.1 - -
3 (101) 36.1 | 38.1 -
4 (76) 443 | 505 | 53.1

6-9 of Algorithm 1. They are stored in RAM M in Fig. 2
as compressed c2v messages. Since the L rows of H in a
layer are processed simultaneously, the compressed messages
for L rows are stored at each RAM M address. To shorten
the data path, all necessary comparisons are done in parallel
in CNU A using 5 comparators. The CNU B in Fig. 3 (b)
derives an actual c2v message from the compressed form as
listed in Lines 11 and 12 of Algorithm 1. Since our design
processes L rows in a layer simultaneously, L copies of CNU
A and two groups of CNU B are adopted. The first and second
groups, denoted by CNU By and CNU By, in Fig. 2, recover
the v*~1:/) and v*F) respectively, in (1). Each group has
m1 L copies of the architecture in Fig. 3(b).

In Fig. 2, RAM U is initialized by the channel information
and is then overwritten by the most updated a posteriori
information during the decoding process. To simplify the
information storage and facilitate the parallel processing of
each layer, the decoder input bits are divided into L = p-
bit groups and the a posteriori information for each group is
stored in an address of RAM U. In the dynamic matrix division
scheme, an identity block can start from any column of H,
and does not necessarily align with the information stored in
a single address of RAM U. In the design of [13], RAM U
is divided into two banks for the even and odd addresses, and
the messages for one identity block can always be extracted
from two addresses, one from each memory bank. The shifter
in Fig. 2 is used to assemble the messages from different
RAM U banks into those for the identity blocks. However,
to process my > 1 identity blocks at once, RAM U needs
to be divided into more banks to reduce the memory access
conflicts. On the other hand, shallow memories occupy larger
silicon area per bit in many CMOS processes. This is because
the sense amplifiers do not scale down much for shallower
memories and they occupy a significant portion of the RAM
area. The memory access conflict and RAM silicon size need
to be jointly considered.

Table I shows the speedup that can be achieved by our first
proposed design compared to a serial decoder for example
MDPC codes with (ng,r, w) = (2,4801,45) considered for
the standard and constraint p = 32. The CNUs handling a
larger number of inputs may have a longer data path. However,
they can be pipelined to achieve the same data path as that of
the CNU handling one input each time at the cost of [r/L]
extra clock cycles for each decoding iteration. The speedup
achievable by our design shown in Table I is derived by
counting the number of clock cycles needed for each iteration



averaged over 10 randomly generated MDPC codes. Denote
the number of RAM U banks by b. If b > 4 for the example
code considered in Table I, then each bank only has a depth of
less than 60. To reduce the size of RAM U, it is divided into
at most b = 4 banks in our consideration. Since each RAM
U bank stores the information of L = p bits in each address,
the number of p X p identity blocks for which the information
can be read in each clock cycle does not exceed b. Therefore,
having m, > b does not bring further speedup.

If the a posteriori information for all the m; identity blocks
being processed at a time is located in distinct RAM U banks,
then all the information can be read out and the m; blocks
are processed in one clock cycle. However, it is also possible
that some of the a posteriori information for the my blocks
is located in different addresses of the same RAM U bank
and there are memory access conflicts, especially for larger
my and/or smaller b. In this case, the CNUs wait for more
clock cycles until all the information for the m4 blocks is read
out. Because of the memory access conflicts, the achievable
speedup is much lower than mq L. As shown in Table I, for
the same b, the additional speedup achievable by using larger
m; is decreasing. Besides, larger m; substantially increases
the number of comparators in CNU A and requires additional
copies of CNU B. For the same m;, having more RAM U
banks helps to further increase the speed. However, RAM
U should not be divided into too many banks so that the
depth of the each bank is very small. In the example decoder
architecture illustrated in Fig. 2, four RAM U banks are
adopted.

To reduce the memory requirement, only the column index
of the ‘1’ in the top left corner of each identity block in the
first layer of H is stored in RAM I in the beginning of the
decoding as shown in Fig. 2. During the decoding, the column
indices for the next layer are derived from those of the current
layer by adding L mod r in the “H matrix shifting” block and
the results are written back to RAM 1. RAM S is used to store
the sign bits of the v2c messages. u(*) is buffered in RAM
T until it is added up with aw®" to update the a posteriori
information.

IV. VARIABLE-WIDTH LARGE BLOCK PARALLEL
PROCESSING

Our first proposed scheme presented in the previous section
has the layer size L equal to the constraint p on the H
matrix and tries to process mip nonzero entries from 1mg
identity blocks in the L rows of the same layer simultaneously.
To circumvent the memory access conflict issue of the first
proposed design, this section proposes an alternative design
that puts L > p rows of H in a layer. Each block row is divided
into blocks with variable widths that start with a nonzero entry
in the top left corner. Many of these larger blocks can be
processed in one clock cycle due to the sparsity of the code
and hence this second design also achieves effective speedup.

To simplify the generation of the addresses for accessing
RAM U and M, p and L are set to be integer powers of 2.
To reduce the complexity of generating the locations of the

o
o
[

=

6718 9wof[t1[12]1314]15[16] 0 [1]27]3

w
IS

8 [910[11]12]13[14]15[16

= o
=

| q

6

1

K 1 CIKD
; |

S
W

E S S -

o]

NN IS =S

Fig. 4. Example H matrix divided by the proposed variable-width dynamic
division scheme for a toy MDPC code with (ng,r,w) = (2,17,3) and
constraint p = 4, with blue lines indicating hybrid processing scheme
divisions.

=]

<

—s—unconstraint
-o--p=32, L=32
—=—p=32, L=64
| | |

100 102 104 106 108 110
Weight of the error pattern

Decoding Failure Rate (DFR)

Fig. 5. DFRs of MDPC codes with (ng,r, w) = (2,4801,45) and Imax =
30 with and without code construction constraints using different layer size.

nonzero entries of H on the fly, a variable-width dynamic
division scheme for the H matrix is proposed in our design,
as shown in Fig. 4 for a toy MDPC code with p = 4 and
L = 2p. In our scheme, each block starts from a column
with a nonzero entry in the first row of the layer, and ends
after L columns or before the next column that has a nonzero
entry in the first row, whichever comes first. A block may
contain up to mg = [L/p] diagonal lines, but each of them
starts in the first column of the block. In this case, the starting
columns of the blocks in the next layer are derived by adding
L mod r to those of the current layer, and the starting rows
of the diagonal lines within the block do not change in the
corresponding blocks.

The row-layered scheme [16] originally allows only one
nonzero entry in each column of the layer and the formula
for updating the v2c messages in (2) is developed for this
case. When there is more than one nonzero entry in a column,
the v2c messages for the second and later entries are not
based on the most updated information from every check node.
As a result, it causes degradation on the DFR. For LDPC
codes, the degradation is very small [18], [19]. However, it
becomes much more significant for MDPC codes due to their
relative higher density. Fig. 5 shows the DFRs of a randomly
generated MDPC code with (ng,r,w) = (2,4801,45) and
maximum iteration number I,,,, = 30. As shown in [13],
adding constraint that is small or moderate, such as p = 32, in
the code construction does not lead to noticeable performance
loss. However, when using L. > p, the DFR is increased
significantly. Simulations have also been run for several other



TABLE II
SPEEDUP FACTORS COMPARED TO SERIAL DECODER ACHIEVED BY THE
SECOND PROPOSED DESIGN FOR EXAMPLE MDPC CODES WITH
(no,r, w) = (2,4801,45) AND VARIOUS p AND L.

L 32 64 128
p
247 | 39.6 | 58.6
8 263 | 41.9 | 60.0
16 279 | 439 | 634
32 - 46.2 | 65.5

randomly generated codes. Although the performance loss is
not always as big as that shown in Fig. 5, some of them are
still noticeable.

To eliminate the performance degradation, a hybrid process-
ing scheme is proposed in our design. Each block with multi-
ple nonzero entries in the same column is divided horizontally
into segments, each with no more than one nonzero entry in
a column, as shown by the blue lines in Fig. 4. Each segment
is processed in a separate clock cycle. In the processing of a
layer, if a block is divided into more than one segment, the
later segments are processed after the last block in the layer is
gone over, so that the most updated c2v messages are always
incorporated. The clock cycles in which the blocks/segments
of the first layer are processed are labeled in Fig. 4. Since each
updated message is generated using exactly the same formula
in (2), our hybrid processing scheme does not lead to any DFR
degradation.

Although the blocks with more than one nonzero entry in a
column need more clock cycles to process, they contribute to a
small percentage of all the blocks. Many blocks have only one
nonzero entry in each column and more than p nonzero entries
are processed each time. As a result, our proposed scheme
can achieve more than p times speedup compared to a serial
design as listed in Table II. For various combinations of p
and L, 10 randomly generated MDPC codes with (ng, r,w) =
(2,4801, 45) were examined, and their average speedup factors
are shown in the table. From the data in Table II, larger values
of L and p result in higher speedup. However, very large L
should be avoided since it will lead to shallow memories for
storing the compressed c2v, a posteriori, and other messages.
Although larger p only leads to small improvement in speed,
the largest p that does not undesirably affect the security level
or key search time should be utilized.

The overall decoder architecture for implementing the hy-
brid processing scheme with variable-width blocks is very
similar to that shown in Fig. 2 with the following three
differences: i) the locations of the nonzero entries of H are
generated differently as described in the second paragraph of
this section; ii) a block in this scheme may include up to mo
diagonal lines. However, as it can be observed from Fig. 4,
each of the first p rows always has one nonzero entry. Hence,
the first p copies of CNUs only need to handle one input
each, while the others have mo inputs each; iii) mo shifters
and reverse shifters are needed to align the messages for the
up to meo diagonal lines in each block.

TABLE III

THE NUMBER AND SIZES OF THE RAM BANKS UTILIZED IN THE
PROPOSED DECODERS AND THAT FROM [13] FOR (ng, r, w) MDPC CODES
WITH CONSTRAINT p, g-BIT C2V AND V2C MESSAGE MAGNITUDE, AND

a-BIT a posteriori INFORMATION MAGNITUDE.

RAM [13] First design (this Second design (this
name paper) paper)
’ 1 bank, ngw X
RAM 1 bank, 1 bank, (ogy (nor)] +
[now/m1] x .
I now X [logy (nor)] i [logs (nor)] ma
1)([logzp] + 1))
1 bank
1 bank 1 bank ’
RAM g y X
[r/p] % p(2q + [r/p] x p(2q + [r/map]
M| 4 Tloga(non]) | 1 Tloga(mor))) | 2P0 LE
[tog2(nor)])
ngM " ZI}[E?HI—T’X [now /1 ntz)?{lll](—r/ p| X nowFrt;irr;i}o] X
owir/pi=p mip map
RAM 2 banks, b banks, 2 banks,
U nolr/2p] X pla+ | molr/bp] X p(a+ ngr/2map] x
1) 1) maop(a+ 1)
RAM p banks, p banks, p banks,
T now X (a+1) minow X (a+1) | monow X (a+ 1)

V. HARDWARE COMPLEXITY COMPARISONS

This section analyzes the hardware complexities of the two
proposed parallel MDPC decoders and compares them with the
best previous parallel decoder that processes a single identity
block of p x p per clock cycle [13].

Memories are the primary contributors to the silicon area of
the overall MDPC decoder. Table III provides a summary of
the sizes for all RAMs involved in the decoders for (ng, r, w)
MDPC code. The RAM I of the second design is larger
compared to that in [13] because it stores both the starting
column index of the first diagonal and starting row indices
of the other diagonals in the same block. Both the first and
second designs utilize the same number of RAM T banks as
in [13] but require the size of each RAM T bank to be m;
and mo times of that in [13], respectively. This is because
the two designs need to process at most mq Or mo nonzero
entries instead of a single entry at a time. Although the two
proposed designs may have different depths, widths, or number
of banks for the other RAMs, the overall sizes of those RAMs
are almost the same as those in [13].

To better show the relative sizes of the memories, they
are listed in Table IV for an example MDPC code with
(ng,r,w) = (2,4801,45) and p = 32. It is assumed that ¢ = 4
bits are used to represent the magnitude of each c2v and v2c
message, and each a posteriori message is represented by 11
bits. When the CNUs need to handle more than two inputs,
their complexities become much higher. Hence m; and ms
are set to 2 in our analyses and comparisons. To avoid using
very shallow memories, RAM U is divided into b = 4 banks
in the first decoder. The proposed designs are compared with
the parallel decoder that processes a single identity block of
32x 32 per clock cycle [13]. Although the overall size of RAM
U is the same in terms of the number of bits stored, the one in
the first proposed design has 4 instead of 2 banks and hence
the depth is halved. Compared to the design in [13], the first



TABLE IV
COMPLEXITY COMPARISONS FOR THE PROPOSED DECODERS WITH
m1 = mg = 2 AND THAT FROM [13] FOR AN MDPC CODE WITH
(no,r,w) = (2,4801,45) AND p = 32.

[13] First design | Second design
(m1 =2) (m2 = 2)
RAM T (bits) 1260 1260 1800
RAM M (bits) 111136 111136 111872
RAM S (bits) 434880 434880 437760
RAM U (bits) 105600 105600 105600
RAM T (bits) 31680 63360 63360
Total memory (bits) 684556 716236 720392
(normalized) (D (1.05) (1.05)
Logic (# of XORs) 15342 22054 36678
Total Area (# of XORs) 528759 559231 576972
(normalized) (1) (1.06) (1.09)
Speedup compared to serial 32 443 46.2
design (normalized) (D) (1.38) (1.44)

proposed design has twice the size in RAM T because up to
m1 = 2 instead of a single v2c message is processed by each
CNU in each clock cycle. The second proposed design has
larger RAM I because it needs to record the information for
up to mo = 2 diagonal lines for each block in the H matrix.
Since the layer size is L = map = 2p, its depth of RAM M is
a half compared to that of the first design. Similarly, it needs
RAM U of half depth and RAM T twice in size compared to
the design in [13]. Overall, the memory sizes of both proposed
designs are only 5% bigger than that of [13].

The first proposed design employs p = 32 copies of the
CNU A in Fig. 3(a) and 2m;p = 128 copies of the CNU B in
Fig. 3(b). As mentioned previously, only the (my — 1)p = 32
of the L = msyp = 64 CNUs utilized in the second proposed
decoder need to handle two inputs at a time. Hence, it uses
p = 32 copies of the CNU A in Fig. 3(a), (ma — 1)p = 32
copies of CNU A handling single input [17], and 2p+2(ms —
1)map = 192 copies of CNU B. The number of adders in the
overall decoder architecture shown in Fig. 2 equals the number
of copies of CNU B. The complexities of the CNUs, adders,
shifters, and multiplexors in Fig. 2 are analyzed and listed as
the logic complexity in Table IV. Assuming that the area for
storing one bit in memory equals that of 0.75 XOR gates [10],
the total area in terms of the number of XOR gates needed
for each design is also computed and listed. The two proposed
designs only incur less than 10% area overhead.

Although the data path of the CNU A handling two inputs
is longer than that of the CNU A with one input used in [13],
the data path for adding the a posterior information is much
longer. Hence the two proposed designs achieve the same
critical path as the design in [13]. As a result, the achievable
speedup is decided by the number of clock cycles needed for
the decoder. Compared to the design in [13], our two proposed
designs can achieve around 40% speedup.

VI. CONCLUSIONS

This paper tackles the limitation on the achievable par-
allelism in previous row-layered MDPC decoders for the

McEliece cryptosystem. Without increasing the constraint on
code construction, two schemes are proposed in this work to
process more entries of the parity check matrix at a time. The
first design processes multiple identity blocks concurrently and
the second utilizes larger blocks with variable width and a
hybrid processing scheme. Both of them achieve substantial
improvement on the decoding speed with small hardware
overheads and no DFR degradation. Future work will try to
further reduce the decoding latency and memory requirement.

REFERENCES

[1] D. J. Bernstein, et al., “Classic McEliece: conservative code-based
cryptography,” NIST, Nov. 2017.

[2] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto, “MDPC-
McEliece: new McEliece variants from moderate density parity-check
codes,” Proc. IEEE Intl. Symp. on Info. Theory, pp. 2069-2073, Oct.
2013.

[3] H. Bartz and G. Liva, “On decoding schemes for the MDPC-McEliece
cryptosystem,” Proc. of Intl. ITG Conf. on Syst., Commun., and Coding,
pp. 1-6, Mar. 2019.

[4] T. B. Paiva and R. Terada, “Faster constant-time decoder for MDPC

codes and applications to BIKE KEM,” IACR Trans. on Cryptographic

Hardware and Embedded Syst., vol. 2022, no. 4, pp. 110-134, Aug. 2022.

P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Analysis of the

error correction capability of LDPC and MDPC codes under parallel

bit-flipping decoding and application to cryptography,” IEEE Trans. on

Commun., vol. 68, no. 8, pp. 4648-4660, Aug. 2020.

[6] S. Arpin, et al. “A study of error floor behavior in QC-MDPC codes,”
Proc. Intl. Conf. on Post-Quantum Cryptogr., pp. 89-103, Sep. 2022.

[7]1 1. V. Maurich and T. Giineysu, “Lightweight code-based cryptography:
QC-MDPC McEliece encryption on reconfigurable devices,” Proc. IEEE
Design, Autom. & Test in Europe Conf. & Exhib., pp. 1-6, Mar. 2014.

[8] 1. V. Maurich, T. Oder, and T. Giineysu, “Implementing QC-MDPC
McEliece encryption,” ACM Trans. on Embedded Comput. Syst., vol. 14,
no. 3, pp. 1-27, Apr. 2015.

[9] J. Hu and R. Cheung, “Area-time efficient computation of Niederreiter
encryption on QC-MDPC codes for embedded hardware,” IEEE Trans.
on Computers, vol. 66, no. 8, pp. 1313-1325, Aug. 2017.

[10] Z. Xie and X. Zhang, “Sparsity-aware medium-density parity-check
decoder for McEliece cryptosystems,” IEEE Trans. on Circuits and Syst.-
11, vol. 70, no. 9, pp. 3343-3347, Sep. 2023.

[11] J. Chen and M. Fossorier, “Density evolution for two improved BP-
based decoding algorithms of LDPC codes,” IEEE Commun. Lett., vol.
6, no. 5, pp. 208-210, May 2002.

[12] J. Cai and X. Zhang, “Low-complexity parallel Min-sum medium-
density parity-check decoder for McEliece cryptosystem,” IEEE Trans.
on Circuits and Syst.-1, Sep. 2023.

[13] J. Cai and X. Zhang, “Highly efficient parallel row-layered Min-Sum
MDPC decoder for McEliece cryptosystem,” IEEE Trans. on Circuits
and Syst.-I, under review, 2023.

[14] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on
MDPC with CCA security using decoding errors,” Proc. ASIACRYPT,
pp. 789-815, Dec. 2016.

[15] P. Santini, M. Battaglioni, F. Chiaraluce, and M. Baldi, “Analysis of
reaction and timing attacks against cryptosystems based on sparse parity-
check codes,” Proc. Code-Based Cryptogr.: 7th Intl. Workshop. pp. 115-
136, Jul. 2019.

[16] M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit programmable
LDPC decoder chip,” IEEE Journ. of Solid-State Circuits, vol. 41, no. 3,
pp. 684-698, Mar. 2006.

[17] X.Zhang, VLSI Architectures for Modern Error Correcting Codes, CRC
Press, Jul. 2015.

[18] X.Zhang and Y. Tai, “High-speed multi-block-row layered decoding for
Quasi-cyclic LDPC codes,” Proc. IEEE Global Conf. on Signal and Info.
Processing, pp. 11-14, Dec 2014.

[19] Y. Sun, G. Wang and J. Cavallaro, “Multi-layer parallel decoding
algorithm and VLSI architecture for quasi-cyclic LDPC codes,” Proc.
IEEE Intl. Symp. Circuits and Syst., pp. 1776-1779, May 2011.

[5

—_



