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1. Introduction

In the online resource allocation problem, a seller allocates D types of resources to T incoming customers. The tth
customer has a payment function, denoted v; : Rf — R,, which satisfies a natural set of assumptions listed in
Assumption 1 (differentiable, concave, and monotonically increasing; see a more detailed statement in Section 3).
The payment function reveals how much a customer will pay for any assigned bundle of resources. The seller
has a procurement cost function, denoted by f : RY — R, which represents the cost incurred by the seller in pro-
curing the resources in the cumulative allocation and is known to the seller a priori. The procurement cost func-
tion satisfies Assumption 2 (differentiable, convex, and monotonically increasing; see a more detailed statement
in Section 3). We use x; € [0,1]" to denote the bundle allocated to customer , where the dth entry of x; represents
the amount of the dth type of resource in this bundle. The goal of the seller is to maximize the revenue collected
from the assigned bundles to the customers minus the procurement cost of the cumulative allocation. Had the
seller known the T customers’ payment functions beforehand, then the optimal allocation would be the result of
the following offline optimization problem:

T T
maximize ;Ut (x0) —f (;Xt> (P-1)

subjectto 0=<x,<1 Vte[T],

where x; € [0,1]D for t=1,...,T is the optimization variable. The challenge of online resource allocation comes
from its online nature; the seller does not have any knowledge of the future customers and must make an irrevo-
cable allocation upon the arrival of each customer.

Online resource allocation has been studied extensively in the setting of fixed resource capacities such as Blum-
rosen and Nisan (2007), Chakraborty et al. (2013), and Tan et al. (2020), where there is a hard budget for each
type of resource, and the unlimited supply setting as in the works of Balcan et al. (2005), where the seller has
unlimited access to each resource type. In the work of Balcan et al. (2008), the authors consider both the fixed


mailto:mitas.ray@gmail.com
https://orcid.org/0000-0001-6100-0096
mailto:omids@uw.edu
mailto:ratliffl@uw.edu
mailto:mfazel@uw.edu
https://doi.org/10.1287/ijoo.2021.0012
https://doi.org/10.1287/ijoo.2021.0012

Downloaded from informs.org by [2607:fb91:1520:594a:8471:f143:62b6:3a3a] on 01 February 2025, at 23:28 . For personal use only, all rights reserved.

Ray et al.: Improved Competitive Ratio in Online Resource Allocation
2 INFORMS Journal on Optimization, Articles in Advance, pp. 1-18, © 2024 INFORMS

resource capacity and unlimited capacity setting. However, in many real-world situations, additional resources
may be procured albeit at increasing marginal costs, such as energy costs for running computer processors as
described in Makarychev and Sviridenko (2014) and Andrews et al. (2016) and hiring costs for skilled labor as
explained in Blatter et al. (2012). This motivates the problem of online resource allocation with procurement costs
introduced by Blum et al. (2011).

Past literature, such as Blum et al. (2011) and Huang and Kim (2018), consider the procurement cost function
to be separable—that is, the total cost incurred is the sum of the individual procurement costs for each resource.
The work of Blum et al. (2011), which was further improved in Huang and Kim (2018), propose an online mecha-
nism in which the seller determines the price of a particular item as a function of how much has already been
sold, and the customer then chooses the bundle that maximizes their valuation function. In both works, it is
assumed that the procurement cost function is separable, so the cost of procuring one item has no effect on the
cost of procuring another. However, in a real-world setting, there may exist limited procurement infrastructure
where procuring one resource does affect the cost of procuring another. It is thus important to generalize this set-
ting and consider procurement cost functions that are nonseparable.

Although the work of Chan et al. (2015) studies the setting of nonseparable procurement costs, the assump-
tions made essentially restrict the procurement cost function to polynomials. Therefore, the class of more general
(nonpolynomial) separable cost functions has not been addressed, and there is no strategy on how to handle pro-
curement cost functions that do not meet the stringent assumptions in Chan et al. (2015). We, on the other hand,
in Theorem 3, drop the assumptions that restrict the function class to polynomials allowing us to consider the
general nonseparable case. In Online Appendix E, we provide a concrete example that highlights the polynomial
restriction in Chan et al. (2015).

Many algorithms in this setting are primal-dual algorithms, which come from updating the dual variable at
each time step and using it to assign the primal variable as seen throughout the literature such as in Buchbinder
et al. (2007), Buchbinder and Naor (2009), Devanur and Jain (2012), Agrawal et al. (2014), Azar et al. (2016), and
Eghbali and Fazel (2016). A key measure of algorithm performance in online optimization is the competitive
ratio, which is defined as the ratio of the objective value achieved by the algorithm to the offline optimum (see
Section 3.1). The competitive ratio we consider is under the adversarial arrival order, where the seller does not
know the arriving customers or the order of their arrival. For more details on different arrival models, we refer
readers to section 2.2 in Mehta (2013).

The problem of online resource allocation appears often in the operations research community for problems
like airline revenue management, as described in Hwang et al. (2021) and Jaillet and Lu (2012), hospital appoint-
ment scheduling, as in Legrain and Jaillet (2013) and Erdogan et al. (2015), and bidding in auctions, as in Bertsi-
mas et al. (2009), among others. However, many of the underlying assumptions in these problems are different
from the ones we make in our setting. For example, Hwang et al. (2021) considers the arrival time of a fraction of
agents to be chosen by an adversary, whereas the remaining agents come at random times. The optimization pro-
blems are also formulated differently for each setting; for example, Legrain and Jaillet (2013) consider a linear
objective with budget constraints. Although many of these differences seem minor, the overall problem changes
enough to not be directly captured by our formulation. Nonetheless, these setups encourage us to scrutinize our
assumptions to capture many problem settings. Section 1.3 enumerates a few motivating applications of the
framework proposed in this paper. For more details on related work, see Section 8.

1.1. Contributions

We analyze a greedy primal-dual algorithm, formalized in Algorithm 1 in which a surrogate function is used in
place of the procurement cost function to optimize the performance of the algorithm. We discuss a simple exam-
ple in Section 6 to show that the competitive ratio of the greedy primal-dual algorithm without a surrogate func-
tion approaches zero asymptotically, illustrating the need for a surrogate function. Our main contributions come
in the design of the surrogate function.

e For polynomial procurement cost functions, we design a surrogate function to be used in the algorithm that
achieves a better competitive ratio than algorithms proposed in existing literature (Chan et al. 2015), in particular,
our competitive ratio has better dependence on the degree of the polynomial. A thorough comparison with prior
work is presented at the end of Section 5.1.

e For general procurement cost functions, we write the surrogate function design problem as a quasiconvex
optimization problem in which the optimization variables define the surrogate function. This strategy comes from
adopting an optimization perspective for maximizing the competitive ratio similar to Eghbali and Fazel (2016).
This technique allows us to construct surrogate functions for a wide class of procurement cost functions beyond



Downloaded from informs.org by [2607:fb91:1520:594a:8471:f143:62b6:3a3a] on 01 February 2025, at 23:28 . For personal use only, all rights reserved.

Ray et al.: Improved Competitive Ratio in Online Resource Allocation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-18, © 2024 INFORMS 3

those that are separable, as in Huang and Kim (2018), and polynomials, as in Chan et al. (2015). Our result is stated
formally in Theorem 3.

e Because Algorithm 1 solves a saddle-point problem at every round, it may not be practical in many situations.
We therefore propose Algorithm 2 that updates the primal and dual variables sequentially. This algorithm can be
interpreted as a posted pricing mechanism and is therefore incentive compatible. We extend the quasiconvex surro-
gate function design technique to this algorithm. Our results are stated formally in Theorems 5 and 7.

We complement our theoretical results with simulations in which we implement our design techniques on a
numerical example and show better performance over prior work.

1.2. Organization

This paper is organized as follows. We close this section with a few motivating examples to show the generality
of our framework. Section 2 covers the preliminaries, and the formal problem statement and primal-dual algo-
rithm are introduced in Section 3. We analyze the competitive ratio for our primal-dual algorithm in Section 4
and then propose our surrogate function design techniques in Section 5. In Section 6, we implement our design
techniques on a numerical example. In Section 7, we extend the competitive analysis and design techniques to
another primal-dual algorithm that computes the primal and dual variables sequentially. A comprehensive over-
view of related work in the literature is provided in Section 8.

1.3. Motivating Examples

To illustrate applicability, we provide several online resource allocation problems that can be cast in the pro-
posed framework described in Problem (P-1). In each application, we describe the incoming valuation functions
vy, the cost function f, and what our decision vector at time t—that is, x;, represents.

1.3.1. Online Auction. A seller has a set of D items and T customers arrive sequentially. Let x; € [0, 117 represent
the decision vector at time f representing the bundle allocated to customer ¢. Each item can be included in a bun-
dle at most once. Hence, the decision vector is constrained to 0 <x; <1. The payment function v; : le — R, is
revealed by the tth customer upon arrival. The procurement function is denoted f: RY — R.. The objective of
the seller is to maximize their profit—that is, the sum of the payments of the customers minus the procurement
cost of the total allocation. Variations of this framework are discussed in Bartal et al. (2003), Chan et al. (2015),
and Huang and Kim (2018).

1.3.2. Data Market. A manager supervises a set of D experts with differing expertise. Data analysis tasks, such as
classifying medical images, arrive online sequentially and each task can be assigned to any subset of the experts.
Upon arrival, task f reveals a vector ¢; where [¢;]; quantifies the value that expert d would provide the manager
if assigned to task t. The value function is linear—that is, v:(x;) = ¢/ x;. When a task is assigned to an expert, the
amount of time they are being paid to spend on it is bounded. Therefore, the decision vector is constrained to
0 <x; = 1. The manager is responsible for paying for the experts’ time and the resources needed for the experts to
do their work, which is captured in a cost function f : RY — R,. The cost of hiring skilled labor is marginally
increasing and follows a convex cost function, as described in Blatter et al. (2012). The objective of the manager is
to maximize the value of the completed work minus the cost of getting the work completed. Variations of this
application are mentioned in Ho and Vaughan (2012).

1.3.3. Network Routing with Congestion. A network routing agent has a set of D pairs of terminals and T users
arrive online with valuation functions over these routed connections. Because each pair of terminals can be
assigned to a user at most once, the decision vector x; is constrained to 0 <x; <1. Let v; : Rf — R, represent the
payment function that each customer reveals upon arrival and let f : R? — R, denote the congestion cost func-
tion that can represent the energy needed to maintain the routed connections. Because energy usage follows dise-
conomies of scale—that is, energy usage is superlinear in terms of processor speed as described in Makarychev
and Sviridenko (2014) and Andrews et al. (2016), f satisfies Assumption 2. The objective of the network routing
agent is to maximize the valuations of the customers minus the energy costs of the cumulative assignment. Varia-
tions of this framework are discussed in Blum et al. (2011).

2. Preliminaries
In this section, we review mathematical preliminaries as needed for the technical results. Throughout, we will
use boldface symbols to denote vectors. For a D-dimensional vector u € RP, let u;, or equivalently [u];, denote the
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ith entry. The inner product of two vectors u,v € R” is denoted (u, v) or, equivalently, uv. The generalized
inequality with respect to the nonnegative orthant is denoted u > v, and is equivalent to u; > v; for all i. Define
1[u > v] to be the vector where the ith entry equals one if u; > v; and zero otherwise. The index set {1,...,K} is
denoted [K]. Several function properties are needed for the analysis in this paper. A function f : R — R is sepa-
rable if it can be written as f(u) = Z?:l fi(u;). A function f : RP” - R is quasiconvex if dom(f) is a convex set and
for each a € R, the sublevel set, S, = {u € dom(f)|f(u) < a} is a convex set.

Given a function f : RP — R, its convex conjugate f* : R® — R is defined be

f'(v)=sup v u—f(u).

For any function f and its convex conjugate f*, the Fenchel-Young inequality holds for every u,v € R”:
f@)+f(v)=u'v. 1)

For a differentiable, closed and convex function f, its gradient is given by Vf(u) = arg max, v u —f*(v), and fur-
thermore, f** = f. Letting v = Vf(u), the Fenchel-Young inequality holds with equality:

f)+£ (V@) = u" V). @

Similarly, given a function g : R” — R, the concave conjugate g, : R — R is defined by

.(v) = il’ulf viu—g(u).

An analogous inequality to (1) holds: g(u) + g.(v) < u"v for all u,v € R”. For a differentiable, closed, and concave
function g, its gradient is given by Vg(u) = argmin_ v'u — g.(v) and, furthermore, g.. = g. Again, with v = Vg(u),
Fenchel-Young inequality with equality:

8(w) +g.(Vg(u)) = u’Vg(w). 3)

3. Problem Statement

We formalize the problem statement described in Section 1 by explicitly describing the online and offline compo-
nents, as well as the assumptions made on the payment functions of the customers and the procurement cost
function of the seller.

As described in Section 1, had the seller known all the customers that were to arrive, they would have solved
Problem (P-1) to obtain the optimal allocation to make to each customer. We denote the optimal value of Problem
(P-1) as P*. However, the challenge faced by the seller is that they have no knowledge of future customers, and
so the seller must make decisions that trade off making a profit now with saving resources to potentially make a
larger profit later. The seller knows the procurement cost function, f, before any customers arrive. Upon arrival,
the customer reveals their payment function, v;, and the seller must then make an irrevocable allocation before
interacting with the next customer. In Section 7, we discuss an algorithm that does not require the customer to
reveal their payment function. We have the following assumptions on the payment function of each customer.

Assumption 1 (Customer Payment Function). The function v; : RY — R, satisfies the following:
1. The function v; is concave, differentiable, and closed.
2. The function v, is increasing; that is, u > v implies that v;(u) > vy(v).
3. The function v, at 0 has value 0, that is, v;(0) = 0.

Concavity in Assumption 1(1) comes from the idea that a customer is willing to pay marginally less for a larger
bundle, which comes from the natural desire for the customer to receive a bulk discount. Assumption 1(2) reflects
the customer’s willingness to pay a larger amount for a larger bundle and Assumption 1(3) states that a customer
would pay nothing for an empty bundle.

The procurement cost function satisfies the following assumptions.

Assumption 2 (Procurement Cost Function). The function f : RY — R, satisfies the following:
1. The function f is convex, differentiable, and closed.
2. The function f is increasing; that is, u > v implies that f(u) > f(v).
3. The function fat O has value O, that is, f(0) = 0.

Convexity in Assumption 2(1) captures the idea that procuring scarce resources comes at an increasing cost.
Assumption 2(2) comes from a larger cumulative allocation incurring a larger production cost and Assumption
2(3) states that the seller incurs no cost for allocating nothing.
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3.1. Performance Metric

The performance of an algorithm making allocations in this setting is evaluated by its competitive ratio, which is
the ratio of the objective value achieved by the algorithm to the offline optimum for all possible instances. We
provide the formal definition below.

Definition 1 (Competitive Ratio). Consider the set of decision vectors produced by an algorithm, ALG, as {xt}t 1
and the offline optimal decision vector that achieves P* from Problem (P-1) as {x;}/_,. Then, ALG has a competi-
tive ratio of « if

ALG Zt LX) — fCL 1Xt)
TP Zt 1 0:(X) f(Zt 1

for all {vt}thl.
Note that a € [0,1] and the closer to one, the better the algorithm.

3.2. Primal-Dual Algorithm
We now present the primal-dual algorithm for the online optimization problem with procurement costs. We first
express the dual of (P-1) as

T D

D* = n}tizr?)i,rzrflzige ; ;max{[zt g — [A]y, 0} — Z Ui(zs) + f(N), (D-1)

which is derived in Online Appendix A. The algorithm we develop solves an optimization problem for time ¢

considering that decisions for time steps [t — 1] have already been made. Let X; denote the decision made by an
algorithm at time i. The greedy solution at time ¢ is the result of

-1 -1
mgf)l(nuze vi(x¢) f(tz: X; + xt> +f <tz: )‘(i> . (M-1)
i=1 i=1

The ob]ectlve of (M-1) represents the gain in the objective of (P-1) at time t if we make decision x;, because the
decisions {X;}/_| cannot be changed. From Assumption 2(1), we know that f = f**, and from Assumption 1(1), we
know that v; = v;.., which allows us to rewrite (M-1) as

-1 -1
mglfitnhze rrg})lrzrtl)lge 2/ Xy — vp(z) — AT (; X; + xt> + (N +f (; )Zi) ) (M-2)
A greedy algorithm using this decision rule allocates at time t based on the incoming v;, the previous decisions,
and f. Unlike prior works of Chan et al. (2015), Azar et al. (2016), and Huang and Kim (2018), we do not require
the procurement cost function to have a monotone increasing gradient (see Assumption 2); therefore, our frame-
work captures more problems. To improve the performance of this algorithm, we ask the following question.
Can we design a surrogate function for f (with a monotone increasing gradient) such that decisions made with respect to
this function give a better competitive ratio for our original problem? Consider the following optimization problem,
with the surrogate function denoted by f;,

T T
imi t(xe) — fs t
maximize ;U Xt) — fs (;x> (P-2)

subject to 0<x; <1 Vte[T],

where x; €[0,1]” is the optimization variable and v; : RY — R, satisfies Assumption 1. The only difference
between Problem (P-1) and Problem (P-2) is that f has been replaced by f;,, which satisfies the following
assumptions.

Assumption 3 (Surrogate Function). The function f, : RY — R, satisfies the following:
1. The function f, is convex, differentiable, and closed.
2. The function f; is increasing; that is, u > v implies f;(u) 2 fs(v).
3. The function f;at O has value O, that is, f;(0) =
4. The function f, has an increasing gradient; that is, u > v implies Vf;(u) = Vf(v).
5. The surrogate function is always larger than the procurement cost function, that is, fy(u) = f(u) forall 0 <u<T1.
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Assumption 3, (1)—(3), is identical to Assumption 2, (1)-(3). Prior works, such as Azar et al. (2016), make
Assumption 3(4) for the procurement cost function f. On the other hand, we relax this requirement and design a
surrogate function f; that satisfies this assumption instead. Assumption 3(5) is designed to make sure the result-
ing algorithm makes allocations more cautiously than the greedy algorithm without a surrogate function to best
handle the uncertainty of future customers. Section 6 provides a simple example to illustrate this intuition. We
discuss our choice of the surrogate function in more detail in Section 5.

Using the same strategy as above of writing the marginal optimization problem, now with respect to Problem
(P-2), we can write the decision rule of Algorithm 1.

Algorithm 1 (Simultaneous Update)
Input: f, : RP - R
1 fort=1,...,Tdo
2 receive v 4

(At,Z4,X;) = arg min max 2/ x: — vp(zt) — AT (O Xi +xe) +f2(A);
A=0,z,>0 0=x=

Line 3 in Algorithm 1, the main computational step of the algorithm, involves solving a (convex-concave)
saddle-point problem. We point out that standard convex optimization methods (Bubeck 2015) can be used to
solve this subproblem with desired accuracy, and the complexity analysis of these methods (number of iterations
needed to reach e-optimality) can be incorporated in the overall computational complexity analysis of our algo-
rithm. In Section 7, we discuss an algorithm that computes the primal and dual variables sequentially.

In the remainder of this section, let X; denote the decision vector at time ¢ given from Algorithm 1 called with
fs. Algorithm 1 called with f; ensures that at every time step t,

)_([Zl[it—xtz()], (4)

where A; = st(zl 1X;) and Z; = Vvy(X,), which comes from the Karush-Kuhn-Tucker (KKT) conditions, as described
in Online Appendix A.

The subscript notation of s—taken from surrogate—denotes the objective of Problem (P-1) resulting from the
decision vectors coming from Algorithm 1 called with f;. The primal objective is given by

T T
P = Z v(X¢) —f<z 7_(1‘)/ ®)
t=1 =1
and the dual objective is given by

T D T
= Z Z max{[Z;]; — [A+]y, 0} — Z 0(Z¢) + £ (A7) (6)

t=1 d=1 t=1

These equations are used in the analysis of Algorithm 1 in Section 4.

4. Competitive Ratio Analysis for a Primal-Dual Algorithm
In this section, we bound the competitive ratio of Algorithm 1 called with f; in Theorem 1. To do this, we first
show that Algorithm 1 called with f; does not make a decision that causes the objective to become negative.

Lemma 1 (Nonnegative Objective). If f; is convex and differentiable and f,(0) = 0, then
T T
th()_(f) _fs <Z 7_(t> >0.
=1 t=1
Proof. We upper bound this expression by incorporating the decision rule of Algorithm 1 called with f; as follows:
S o) = £ D x| 2D Vorx) X —fi| Y %
t=1 t=1 t=1 t=1
) < N t t-1
® Z Vorx) ") — £ D> X |+ D xi
=1 i=1 i=1

t

> Z<wt(m - Vf. (Zx) x>

t=1

—
NeH
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Inequality (a) comes from the concavity of v;. Equality (b) comes from writing fS(ZtT:1 X¢) as a telescoping sum
with the assumption that f£;(0) = 0. Inequality (c) follows from convexity of f,. Finally, the decision rule of Algo-
rithm 1—that is, X; = 1[Z; — A; > 0]—called with f; ensures that the inner product is always nonnegative. O

Now, we bound the competitive ratio of Algorithm 1 called with f;.

Theorem 1 (Competitive Ratio Bound). Suppose that f; : RP — R satisfies Assumption 3. The competitive ratio of Algo-
rithm 1 (called with f,) is bounded by 1/ay ¢, where

_ f(Vfs(u))
k2o oihlfn s(w) —f(u)’

Proof. The general overview of the proof is as follows: writing D; (6) in terms of P (5), we bound the gap
between D; and P,. From here, we lower bound D; by D* (D-1), which in turn allows us to use weak duality to
relate D* and P*.

We start with writing D in terms of Pj:

D, = szax{ Zt]y — [A4)a, O} — th*(zt) +f*(Ar)

t=1 d=1

T T
22 - A0S - 3 un(@) + (hr)
=1 t=1

T
“’)Zwt(xo % - Zst (2) % — > on(ze) + f(Ar).
t=1

Equality (a) comes from the decision rule of Algorithm 1 called with f;, which ensures that X; = 1[Z; — A; > 0].
Equality (b) comes from replacing A; with V£,(3"_, X;) and z; with Vo,(X;). Now, we proceed to bound the duality
gap between D, and P, by first observing the following relationship:

o T T T )
D (S) Zvvt(it)Tit —fs (Z’@) - th»(it) +f* (A1)
=1 =1 =1
@ L T T L ) i
=Y Vorx) e —fo D X | = D (Vou(ke) "% — 0i(%0) + £ (A1)
=1 =1 =1
T T . T T
= th()_(f) —f;; <Z)_(t> +f*(AT) "rf (Z)_(t> —f (Z)_(t>
=1 =1 =1 =1
© T ) T
=P —f, (th> +f (A7) +f (Zi) :
t=1 t=1

Inequality (c) follows directly from the convexity of f,. Equality (d) comes from the concave Fenchel-Young
mequahty—that is, Equation (3) with ¢ = v; and u = X;. Equality (e) follows by substltutmg the definition of P, =
S v(Xs) — f(3/_, %) where in the preceding equality we add and subtract f(3"/_;%;). We bound the gap
between D, and P; as a multiplicative factor of P; to relate these quantities as a ratio:

FOS %) = Ar) —f(Sia %) @ S %) —f (VAT o X)) —f (i %)
Ps S onxe) = F(C 1 %)

® S X) = f (VA %) = f( %)
fS(Zt 1Xt) f(Zf 1X)

O fi(w) —f(Vfs(w) — f(u) _
> O<1u£T1 fs(u) f(u) ﬁffs
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In equality (f), we replace At with V£ (3L, X;). Inequality (g) follows from Lemma 1 and the fact that the numer-
ator is upper bounded by P; — D; < 0 (see (e)) and hence nonpositive, and inequality (h) follows from observing

that 0 < Zthl X; =< T1. Hence,

T

By Ps st<2f<t> —f' (A7) —f(Z)'(t> < P D;.

t=1

Define

7 (Vhw)
apr =1 —ﬁf,]g = sup ]m 7

0<u=T1
Assumption 3(5) ensures that ay ; > 0, which, in turn, ensures that the competitive ratio is nonnegative and thus
a meaningful quantity. We now lower bound D, by D* and subsequently use weak duality to get that
D, > D* > P*. From Assumption 3(3), we know that st(Zle X)) = VfS(ZiT=1 X;) for all t € [T] because x; > 0 for all
i € [T]. This implies that A=< Arforallte[T], so

D ZZmax{ Zt d— [At dr 0} th*(zt) +f (AT)

t=1 d=1

> ZZmax{ zi]y — [Ar];, 0} — th(zt) +f (A1) = D*.
t=1 d=1
Hence, Ps — D* 2 Psf; , and applying weak duality, we get that P; — P* > P, . Rearranging this equation gives
us the following;:

&> 1 1

T1-B o

This concludes the proof. O

This theorem allows us to write the competitive ratio as the result of an optimization problem for a large class
of f and f,. Our objective then becomes to design f; such that ay is as small as possible because this would, in
turn, yield a stronger competitive ratio bound. We can then verify the following intuition: To increase the
denominator of (7), we see that we must craft f; to be sufficiently larger than f to make cautious allocations in the
face of adversarial uncertainty. However, to decrease the numerator of (7), we must not design f; to be too large;
otherwise, the algorithm will be overly cautious and make too little allocation. In the next section, we discuss
how to choose f; to optimize this ratio.

5. Designing the Surrogate Function

As the analysis in the preceding section shows, the choice of the surrogate function plays a crucial role in obtain-
ing an improved competitive ratio bound. In this section, we propose techniques to design f; for particular classes
of functions. In particular, in Section 5.1, we propose a technique for designing the surrogate of polynomial func-
tions and we obtain the competitive ratio bound in this setting. In Section 5.2, we exploit quasiconvex optimiza-
tion to design the surrogate function for a general f.

5.1. Polynomial Function
We propose a design technique for a special class of fi polynomials that satisfy Assumption 2. We let
fs(u) = % f(pu), p > 1. Note that Vf;(u) = Vf(pu). The intuition here is to stay cautious because we make no assump-
tions about the arriving input. Now, it suffices to determine p. This surrogate function was proposed in Chan
et al. (2015), but their analysis yielded a suboptimal choice of p.

Theorem 2 shows that finding the optimal p for a general class of polynomial functions comes back to solving
a one-dimensional optimization problem.

Theorem 2 (Competitive Ratio for Polynomial Functions). Suppose that uwe€RP. For any KeN, suppose fi(u) =
SOk, ckgi(u) is a convex function such that ¢, > 0 for each k € [K] and gi(u) = []2, u™, where S22, T = 1, and 11 € R,
for all pairs (k,i) € [K] X [D]. Assume that T := 7;» > 2, where i* = arg max,;. Then, choosing parameter p as p = 71/
guarantees a competitive ratio of at least T~*/"V for Algorithm 1 called with Jfi(pu).
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Proof. We first use induction to show that

inf sup —fi(vp wfi(pw) f("[—l) P

P>l g<u=T15 fK(Pu) —fx(u) — P>1 -1’

and then apply Lemma 2 to the optimization problem. First note that for any K € N, the Fenchel-Young inequality
holds with equality as described in Equation (2) in Section 2. That is,

Sk Vpu f(p) = (Voufi(pu), pu) — fi(pu).

We now begin the inductive argument on K. For K =1, fi(u) =1 Hl 14; "', where Zl 1T1,i = T1 =2 and 74,; is non-
negative for all i. Using the definition of f;, we have

fi (Voufiow)) (Voufi(pw), pu) —ilpu)
f _— 1 f u pu 4
11?’r>11 0<s\111<T1 fl(Pu) —fi(u) Pr>11 ojugn %fl(Pu) —fi(u)

(®) p™ (11 — 1)f1(u)
= mf su —_—
P>1 g<u=T1 (p7 =1 = Dfr(u)

T]

lnf(T — 1)m .

Equality (a) comes from the Fenchel-Young inequality holding with equality. Equality (b) comes from the follow-
ing:
filpw) = p“fi(u),
(Voufi(pu), pu) = p“11f1(u).
Equality (c) comes from removing fi(u) from the numerator and denominator, thus eliminating any dependence
of u in the optimization problem. This concludes the proof for K = 1.

Suppose that the result holds for K—1 e N. We argue the result for K € N. For notational convenience, we
define

-1
a _Ckpu TK(Tk—l) bk —Ck(TK_l)(ST>’

1
)= (g4(w))

Without loss of generality, let 71 >--- > g where 77 > 2. We show that removing cxgx(u) upper bounds the opti-
mization problem. We begin with the following:

Vpuf(pw), pu) —fr(pw) @ Sk ckp™ (1 — Dgi(u)
Lic(pw) — fie(w) S elp ! = Dgil(w)

_ S cep™ (T — Dge() + cxp™ (tx — 1)gx(u)
Soroy ck(ptt — D)gr(u) + cx(p™ 1 — 1)gk(u)

© P ( hg(u) (ZKz—l akgk(u)) +cx(tx — 1) )
T w11 hK(u)( 1 Ck(g;iitll)gk(uD +cx

O p (te—1) I (W)Y (@ — b)gi(w)
=—— | (tx + .
-1 () (5 0 () g(w) ) + e
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Equality (d) comes from the following:
K
felpu) = cp™gi(u),
k=1

K
(Voufi(pu), puy = p*rigi(u).

k=1

Equality (e) comes from factoring out p™g¢y(u) from the numerator and (p~! — 1)gk(u) from the denominator.
Equality (f) comes from rearranging the fraction inside the parentheses by bringing (7x — 1) out front.

ka—l -1
ay — bk = Ck <p’fk—ﬂ<(r[k — 1) — (TK — ].) (m)) >0.

Now, we have

Voufilpu), pw) —filpw) @ _p™ [y I @ — bogilw)
Milpw) —f(w) T pt—1 ) e (Bt ) gu(w)

w_o (m e S bgw) )

k=1 _ K-1 k11
p k=1 Ck ( —grkfl_l)gk(u)

0 S P — Dgw)
> (P! = Dgi(w)
_ (Voufk-1(pu), pu) — fx_1(pu)
sfi-1(pw) — fia(u) '
Inequality (g) comes from removing cx from the denominator. Equality (h) comes from removing hx(u) from the

numerator and denominator of the fraction inside the parentheses. Equality (i) comes from combining the
expression back into a single fraction. We now finish the claim with the following;:

FVpufi(pw) o) (Vpufk(pu), pu) — fr(pu)

inf su = inf
P1 oxuxm %fx(pu) —fxk(@) P> o<uzmt %fK(Pu) — fx(u)
v w R ’ — K-
< inf sup { Pff 1(pu) pu) fK 1(pu)
P>l g<u=T1 Efol(p“) — fi_1(u)
(é) inf f§_1 (vpufK—l(pu))

P>l g<u=<T1 %fKA(Pu) — frx-1(u)

0 ph
Equality (j) and equality (k) come from the Fenchel-Young inequality, which hold at equality. Inequality (1)
comes from the inductive hypothesis.
We now apply Lemma 2 to solve

Pt /D),

arg mln(Tl — 1)ﬁ

p>1

71/(11-1)
1

Plugging this choice of p back into the objective gives us © which concludes the proof. O

5.1.1. Comparison with Chan et al. (2015). Chan et al. (2015) approach a similar optimization problem but exploit
their additional assumptions on the procurement cost function that essentially restricts their class to polynomials.
They choose their design parameter to be p = AVA=D wwhere A is defined as the smallest cumulative degree of a
term in f; that is, A := 1., where j* = arg min;7;. Chan et al. (2015) are interested in the asymptotic behavior of the
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competitive ratio in terms of 7, and both their choice of p and our choice of p give the same O(t) competitive
ratio bound.' However, we achieve a more refined competitive ratio bound with our choice of p = 7!/ 1.

5.2. General Case

In this section, we propose a design approach for a general procurement cost function. We show that the algo-
rithm metric we aim to optimize is a quasiconvex function of f;, the surrogate function we are aiming to design.
Therefore, the search over an appropriate family of f; can be carried out by quasiconvex optimization. Note that,
although the approach is general, solving the problem computationally requires discretizing the variable u € R?,
and thus this method is suitable for cases where D is small.

Theorem 3 (Surrogate Function Design). Let a€ Rf, where 17a>1, and fi(u) = fozl an,gn(u), where g, satisfies
Assumption 3 for all n € [N]. Consider a discretization of the set {u|0<u=<T1} and denote the points in this discretized

set as U. The following problem
minimize max AVAC)

a1 weld fs(u) —f(u)

can be solved as a quasiconvex optimization problem.

Q-1

Proof. To show that Problem (Q-1) is a quasiconvex optimization problem, we must verify that the constraints
are convex and the objective is quasiconvex. It suffices to show that

“(Vfs(u
AL/ A0
well fo(u) — f(u)
is a quasiconvex function in a. Because a nonnegative weighted maximum of quasiconvex functions is also quasi-

convey, it suffices to show that ; ((uv)f_j(}:l)l)) is quasiconvex in a for a fixed u. We can directly apply the definition of

quasiconvexity. Let S,(f;) be the sublevel sets of f, for a € RY. We have the following:

_)qT [ (Vfs(w))
Sa(ﬁ;)—{l a>1 mﬁa}

={1"ax 1|f"(Vfi(w)) < a(fs(w) —f(w)}.

For a fixed value of u, [Vf;(u)], is linear in a for all d, and because f* is always convex, composing a convex func-
tion with a linear function of a is convex in a. Finally, because f;(u) is linear in a, the constraints of S,(f;) are con-
vex, and thus S,(f;) is a convex set. O

Because Problem (Q-1) is a quasiconvex optimization problem from Theorem 3, we can solve it by a sequence
of convex feasibility problems, using bisection on «; see Online Appendix C for details and psuedocode.

6. Numerical Examples

In this section, we illustrate the performance of our algorithm for specific procurement cost functions. In our first
example, we use a simple procurement cost function to demonstrate the need for a surrogate function when call-
ing Algorithm 1. In our second example, we consider a nonseparable polynomial procurement cost function and
compare the performance of Algorithm 1 for different surrogate function design techniques.

Example 1. Consider the procurement cost function f(u) = u?, where u € R,. The following numerical example
shows the necessity of a surrogate function, and how running Algorithm 1 with the original procurement cost
function has a competitive ratio of zero asymptotically. We show this by crafting a particular arrival instance in
which we highlight the weakness of not using a surrogate function. The intuition is that not using a surrogate
function allows the decision making to be excessively greedy, in that the algorithm does not caution itself from
accumulating a large procurement cost for minimal revenue. In this instance, the incoming valuations are linear,
and so we have v;(x;) = c;x;. We have ¢; = 2t. Assume that T is divisible by two. From the decision rule of Algo-
rithm 1 called with f,, that is, X; = 1[c; — f/(Y/_, )], calling Algorithm 1 with f,(u) = u? leads to an allocation of x;
= 1 for all t which gives a cumulative reward of T. The optimal allocation is one that sets x; = 1 for all t > and
yields an objective of 3(T? + T). Therefore, using f;(1) = u?, Algorithm 1 returns a set of decisions that has a com-
petitive ratio of zero as T becomes large. Both of our design techniques give a surrogate function of f;(u) = 2u?.
Calling Algorithm 1 with f;(1) = 2u? leads to an allocation of x; = 0.5 for all ¢, which gives an objective of TTZ +71
Therefore, using f,(u) = 2u?, Algorithm 1 returns a set of decisions that has a competitive ratio of } as T becomes
large. This example then shows that not using a surrogate function may lead to a competitive ratio that tends to
zero as T becomes large.
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Example 2. Now, consider the procurement cost function f(u) = u# + (u + u,)*, where u € R2. Figure 1 shows the
shape of the surrogate function using the design techniques from Sections 5.1 and 5.2, respectively. For f; from
Section 5.1, we use the surrogate function f;(u) =1 f (pu), and with Theorem 2, we choose p = 4"/°. This means
that f;(u) = 4u? + 43y + up)*. This choice of p then gives a competrtlve ratio bound of 4~*/3 ~ 0.1575. For f, from
Section 5.2, we use surrogate function f;(u) = ajuf + an(u1 + 1)* from Theorem 3. To solve Problem (Q-1), we set
T =10 and have 100 points per square unit in the discretization; that is,

U= {ulu; €{0,0.1,0.2,...,9.9,10} Vie {1,2}}.

This achieves the competitive ratio bound of approximately 0.1577 with a; ~ 3.791 and a, = 2.386. The surrogate
function from Section 5.2 allows for an additional design parameter that allows us to achieve a slightly better

competitive ratio bound than the surrogate function from Section 5.1. However, the technique from Section 5.2
has a much higher computational cost due to numerically solving the quasiconvex oPtlmization problem in Prob-
lem (Q-1). Figure 2 compares the cumulative objective values up to time f, that is, ", ; vi(X;) — f (Zle X;), of Algo-
rithm 1 called with different surrogate functions. For the surrogate functions, we have the label f representing
the surrogate function equal to the original production cost function, and so Algorithm 1 is called with
ut + (1 + 12)>. We have the label fpoly re resentm% the surrogate function from using the technique in Section
5.1, so Algorithm 1 is called with 4u} +4'3(u; + u5)”. We have the label fdeﬂgn representmg the surrogate function
from using the technique in Section 5.2, so Algorithm 1 is called with alu1 +ay(uy + uz) where a; ~ 3.791 and
a; ~2.386. Finally, we have the label fu representlng the surrogate function from using the technique in Chan
et al. (2015), so Algorithm 1 is called with 843 +2(i; + u,)*. The online arrivals are generated by reasoning about
instances that would be adversarial for Algorithm 1 called with the original procurement cost function, that is,
arrivals that would cause the algorithm to behave too greedily and amass a large procurement cost for minimal
revenue. In this instance, the incoming valuations are linear, that is, v,(x;) = ctT X;, where

Vf(t-1) iftisodd
Cr =
! Vf(2t-1) if tis even.

7. Posted Pricing Mechanisms

In this section, we propose Algorithm 2, which is a primal-dual algorithm that computes the primal and dual
variables sequentially, unlike Algorithm 1, which computes the primal and dual variables simultaneously as the
solution to the saddle-point problem in Equation (M-2). Algorithm 2 is much more computationally efficient and
possesses an economic interpretation of incentive compatibility as defined in Definition 2.

Definition 2 (Incentive Compatibility). An online algorithm for Problem (P-1) is called incentive compatible when
each customer maximizes their utility by being truthful, that is, each customer reports and acts according to their
true beliefs.

Algorithm 2 is called a posted pricing mechanism, as defined in Definition 3, and immediately satisfies incen-
tive compatibility.

Figure 1. (Color online) Problem (Q-1) Applied to f(u) = uf + (13 + )

x ° f 5 ° f
1S fs (5.2)
10

Note. The surrogate functions corresponding to Section 5.1 (left) and Section 5.2 (right) are shown.
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Figure 2. (Color online) Plot Comparing the Objectives up to Time t of Algorithm 1 Called with Different Surrogate Functions

le6
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time step

Note. For the surrogate functions, we have f representing the surrogate function equal to f, fu.l, representing the surrogate function from using
the technique in Section 5.1, fyesign representing the surrogate function from using the technique in Section 5.2, and fua using the technique in
Chan et al. (2015).

Definition 3 (Posted Pricing Mechanism). An online algorithm is a posted pricing mechanism when the seller posts
item prices and allows the arriving customer to choose their desired bundle of items given the prices.

The interpretation here is that upon arrival, the customer chooses the allocation that maximizes their utility,
and this would be identical to the allocation that the seller would assign had the user reported their true valua-
tion function. From the notation of Algorithm 2, the dual variable, A, represents a price that is revealed at each
time step, before the customer arrives, and then the allocation for this arriving customer is then determined by
this price. The posted price at time step ¢, therefore, does not depend on v;, so the arriving agent does not need to
reveal it. A posted pricing mechanism is therefore desirable in applications where the privacy of v; is important.

Algorithm 2 (Sequential Update with Offset)
Input: f: RP - R, Vofiset € Rf
1 fort=1...Tdo

2 th = st(ztll X; + Voffset);

o _ 3T
3 X =argmax,_, -4 v(xe) — A x¢

We propose the primal-dual algorithm in Algorithm 2. Here, in comparison with Algorithm 1, A is being used
to set the threshold at time ¢, independent of the allocation made at time ¢. Thus, the value of A; does not require
solving a saddle-point problem. Furthermore, in comparison with Algorithm 1, in addition to passing in the
function, f, as an argument, we pass in an offset vector, vogset, to Algorithm 2 that allows us to additively control
the threshold. The naming of both Algorithm 1 as Simultaneous Update and Algorithm 2 as Sequential Update
to distinguish between how the primal and dual variables are computed comes from Eghbali and Fazel (2016).

7.1. Analysis Without Offset

In this section, we analyze the competitive ratio of Algorithm 2 called with vt = 0 and f; satisfying Assump-
tion 3. This ensures that at every time step t, x; = 1[z; — A; > 0], where A; = VJ‘S(Z;1 x;) and z; = Vo(x;) from
Lemma 4. Now, we bound the competitive ratio of Algorithm 2.

Theorem 4 (Competitive Ratio Without Offset). Let f; satisfy Assumption 3. The competitive ratio of Algorithm 2 called
with f, and Vogser = 0 is bounded by 1/ ay . where

- £ (Vfi(w)
T 2P ) — () — 1T (Vi) — V©)

This proof is very similar to that of Theorem 1 and so the proof is provided in Online Appendix D.1.

7.1.1. Designing the General Surrogate Function. In a similar vein to Section 5.2, we now propose a design tech-
nique for the surrogate function, f; to be used in Algorithm 2 based on Theorem 4.
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Theorem 5 (Surrogate Function Design Without Offset). Let f(u) = Zn _19n(w) where g, satisfies Assumption 2 for all
ne[N]. Let a€ RN, where a > 1, and fi(u) = En 10n8n(0). Consider a discretization of the set {u|0<u=T1} and denote
the points in this discretized set as U. The following problem

minimize max [ (Vfs(w))

a1 2 R Folw) — f(w) — 17 (Vfi(w) — V£(0))

can be solved as a quasiconvex optimization problem.

Q-2)

This proof is very similar to that of Theorem 3 and so the proof is provided in Online Appendix D.2.

7.2. Analysis with Offset
In this section, we show that posting a more cautious price, that is, setting a larger threshold due to the uncertainty
from the allocation, allows for a clean analysis of the competitive ratio of Algorithm 2. We term a larger price as
more cautious because an allocation is not made unless the larger threshold is reached, implying a larger degree
of caution for the current time step. This larger threshold comes from the assumption that the gradient of f; is
increasing, and so adding a nonnegative offset to the argument increases Vf.

In this section, we analyze Algorithm 2 called with f; satlsfymg Assumption 4 and Vet = 1. This ensures that
at every time step t, X; = 1[Z; — A; = 0], where A= VfS(Z, 1 X;i+1) and z; = v4(X;) from Lemma 4.

We now consider the following assumptions on f..

Assumption 4 (Surrogate Function). The function f, : RY — R satisfies the following:
1. The function f, is convex, differentiable, and closed.
The function f; is increasing; that is, u > v implies f,(u) > f(v).
The function f,at 0 has value 0, that is, f; has an increasing gradient; that is, u = v implies Vf;(u) = fs(v).
The function f;(0) = 0.
The surrogate function is always larger than the procurement cost function, that is, f;(u) > f(u) for all 0 <u < (T — 1)1.
The following holds: f;(a) — f(a) < fi(b) —f(b) if0<a=<b.

Assumption 4, (1)—(4), is identical to Assumption 3, (1)—(4).
We now bound the competitive ratio of Algorithm 2.

AN S

Theorem 6 (Competitive Ratio with Offset). Let f; satisfy Assumption 4. The competitive ratio of Algorithm 2 called with f,
and Votser = 1is bounded by 1/ay, . where

- f(Vfstur 1)
s o<us<u(IT) 11 fs(w) —f(w) -

This proof is very similar to that of Theorem 1 and so the proof is provided in Online Appendix D.3.

7.2.1. Designing the General Surrogate Function. In a similar vein to Section 5.2, we now propose a design tech-
nique for the surrogate function, f; to be used in Algorithm 2 based on Theorem 6.

Theorem 7 (Surrogate Function DeS|gn with Offset). Lef f(u) = Zn 18n(w) where g, satisfies Assumption 2 for all n € [N].
Let a€ RN, where a > 1, and fi(u) = Zn 1angn(0). Consider a discretization of the set {u|0<u = (T — 1)1} and denote the
points in this discretized set as U. The following problem

[ (Vfsu+1))

minimize max ———~5————- (Q'3)

a>1 uel fs(ll) f(ll)
can be solved as a quasiconvex optimization problem.

This proof is very similar to that of Theorem 3 and is provided in Online Appendix D.4.

8. Related Work

In this section, we review further related work at the intersection of online matching and combinatorial auctions.

8.1. Online Bipartite Matching

Online bipartite matching discussed in Karp et al. (1990), Kalyanasundaram and Pruhs (2000), Devanur et al.
(2013), and Kesselheim et al. (2013), among other works, is a classical problem that has been studied and reintro-
duced for many applications. Recently, the natural application of Internet ad placement has caused a resurgence
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of online bipartite matching and its generalizations through the AdWords problem as seen in Mehta et al. (2007)
and Devanur and Hayes (2009). In the AdWords problem, a search engine is trying to maximize revenue from a
set of budget-constrained advertisers, who bid on queries arriving online. The AdWords problem is different
from our framework in the following respects. The first aspect is that the AdWords problem is not a special case
of our setting with the linear objective function. The AdWords problem could be rewritten as maximizing
Zthl blx; —f (Zthl diag(b;)x;) subject to 0 <x; <1, 1Tx; < 1 Vt € [T] where [b;]; is the bid of advertiser i (with bud-
get B)) for the tth impression, diag(b;) is a diagonal matrix with b; on its diagonal and f(z) = 0 if z; < B; Vi and
infinity otherwise. However, in our framework, the online arriving information (e.g., b;) does not appear in the
argument of f. The second aspect is that in the AdWords problem, there is a hard budget constraint for each
advertiser, and if we enforce this constraint in a penalized fashion (as above), the penalty function f would not be
differentiable. On the other hand, in our setting, we consider a soft budget where additional resources could be
acquired with cost according to a prespecified differentiable procurement cost function f. Devanur and Jain
(2012) generalized the AdWords problem to allow the revenue to be the sum of a concave function of the budget
spent for each advertiser. All the aforementioned problems have a separable cumulative budget constraint that
must be satisfied, and so the algorithm techniques of choosing the allocation as a function of the budget are not
applicable to our problem.

8.2. Primal-Dual Algorithms
State-of-the-art techniques for AdWords, its generalizations, and related problems have been primal-dual algo-
rithms as discussed in Buchbinder et al. (2007) and Buchbinder and Naor (2009). A primal-dual algorithm uses
the dual problem formulation and updates the dual variables to determine the values of the primal variables.
The advantages of primal-dual algorithms are two-fold. Firstly, the analysis for the competitive ratio of a primal-
dual algorithm then decomposes into writing the dual objective of the algorithm in terms of the primal objective,
because weak duality can then be used to connect the two (see the opening paragraph of our proof of Theorem
1). Secondly, the dual variable may have a meaningful interpretation of how to determine the primal variable.
We adopt the intuition for primal and dual variables from problems of profit maximization as in Balcan et al.
(2008) and Chawla et al. (2010). Although these problems are different from our framework, Balcan et al. (2008)
considers a limited or unlimited supply of resources, and Chawla et al. (2010) considers customers arriving from
a known distribution, the interpretations of the primal and dual variables are key in developing our posted pric-
ing mechanism in Section 7. In both Algorithm 1 and Algorithm 2, our allocation rules come naturally from real-
izing that the payment obtained must be greater than the additional production cost. The dual variable can then
be interpreted as the price offered to the incoming buyer, as further discussed in Section 7.

This powerful tool of duality is best seen in online covering and packing problems Chan et al. (2015) and Azar
et al. (2016). The offline covering problem can be written as

mini]g}ize f(x) subject to Ax =1,
xeR"

where f is a nonnegative increasing convex cost function and A is an m X n matrix with nonnegative entries. In
the online problem, rows of A come online and a feasible assighment x must be maintained at all times where x
may only increase. The offline covering problem can be written as

. . . AT ,
maximize Zj:y] f(ATy)

and in the online setting, columns of AT arrive online upon which y; must be assigned. The packing problem is
dual to the covering problem as the jth entry of y corresponds to the jth row of A. In the works of Chan et al.
(2015) and Azar et al. (2016), the authors use this duality to analyze similar algorithms proposed for each prob-
lem. The bulk of the results in Chan et al. (2015) are focused on the covering and packing problems, upon which
the authors then adapt their results to the online resource allocation problem in Section 5 of their work. In this
paper, we obtain stronger results for the online resource allocation problem by studying the problem directly
rather than trying to adapt results from the related problem of online packing.

We share a similar perspective in this work with Eghbali and Fazel (2016). The authors there study a generali-
zation of AdWords in which the objective is a concave function and constraint sets and linear maps arrive online
and propose a convex optimization problem to design a surrogate function to improve the competitive ratio.
However, the problem studied in Eghbali and Fazel (2016) is different from ours in the following ways: (1) the
data coming online in Eghbali and Fazel (2016) is linear, whereas in our setting the payment functions arriving
online are generally concave, and (2) the objective of the offline optimization problem in Eghbali and Fazel
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(2016) is a coupled term between allocations at different rounds, but in our objective, in Equation (P-1), we have
a sum over decoupled terms representing the cumulative payment, as well as a coupled term in the procurement
cost function. Because these key differences do not allow our problem to be mapped to that in Eghbali and Fazel
(2016), we must develop separate surrogate function design techniques based on the competitive ratio analysis
for our problem.

8.3. Arrival Models

Most of the online optimization problems analyzed with respect to competitive ratio are studied under three
arrival models: (1) the worst-case/adversarial model, with no assumptions on how the requests arrive; (2) the
random order model, where the set of requests is arbitrary but the order of arrival is uniformly random; and (3)
the independently and identically distributed (IID) model, where the requests are IID samples from an underly-
ing distribution. For a more in-depth survey, see section 2.2 in Mehta (2013). Our setting is that of the worst-case
model. The key approach to problems in the worst-case model is for the decision maker to apply a greedy algo-
rithm that maximizes a function of how much revenue can be immediately gained versus how much revenue
may be achieved later. In doing so, the decision maker must be cautious in spending the budget or accumulating
a resource that may be better consumed in the future. This decision-making strategy connects loosely to the ideas
of regularization for online optimization problems in the regret metric as seen in classical algorithms such as fol-
low the regularized leader, as discussed in McMahan (2011), and multiplicative weights, introduced in Little-
stone and Warmuth (1994). A key difference however from the regret setting to the competitive ratio setting is
that in the regret setting, regularization aims to keep the gap between the current and previous decision small,
whereas, in the competitive ratio setting, regularization is used to make cautious decisions to protect resources
that may obtain more value if used in future allocations.

In the random order model, the typical approach is to have an exploration period, where the decision maker
learns about the distribution of the arriving requests, followed by an exploitation period in which the decision
maker uses this knowledge to maximize their revenue. This is most clearly seen in the classical secretary problem
described in Chow et al. (1964) in which a set of candidates arrive one by one for an open job position, and the
manager must hire or reject the candidate before interviewing future candidates. AdWords is studied in the ran-
dom order model in Devanur and Hayes (2009) and the algorithm proposed uses the same technique of initial
exploration, in which the bids on the first few queries are used to learn weights on the bidders used to select the
allocation, and an exploitation period, in which these weights are applied to future queries to make the assign-
ment. Similar strategies are used for generalizations of AdWords such as online linear programming, as in Agra-
wal et al. (2014) and Agrawal and Devanur (2014), and profit maximization subject to convex costs, as in Gupta
et al. (2018). The key difference between the random order model and our setting of the worst-case model is that
previous customers tell us nothing about future customers, and so we forgo learning about our customers and
focus solely on cautiously allocating our resources.

8.4. Online Combinatorial Auctions

In many related works, our problem of online resource allocation has been titled online combinatorial auctions.
Online combinatorial auctions have been studied in the setting with fixed resource capacities; that is, there is a
hard budget constraint for each resource, as discussed in Blumrosen and Nisan (2007), Balcan et al. (2008), Chak-
raborty et al. (2013), and Tan et al. (2020), and in the setting with unlimited resource supplies, in which additional
resources can be acquired at no cost, such as Balcan et al. (2005) and Balcan et al. (2008). Our setting falls in
between these; resources can be acquired or developed following a procurement cost. This problem was pro-
posed by Blum et al. (2011) for separable procurement cost functions in the worst-case arrival model. Blum et al.
(2011) devised a posted pricing mechanism, in which customers wanting to purchase the kth copy of any item
would be charged a price equal to the procurement cost of the 2kth copy of that item. Huang and Kim (2018)
build on this result by characterizing the competitive ratio of optimal algorithms in this setting for a wide range
of separable procurement costs as the solution to a differential equation. Our framework generalizes this setting
by considering nonseparable production cost functions. Additionally, we bring an optimization viewpoint to this
setting in which we use (quasi-)convex optimization to design the best surrogate function, rather than restricting
ourselves to a small function class as do these papers.

9. Conclusion and Future Directions
In this paper, we studied the broad online optimization framework of online resource allocation with procure-
ment costs. We analyzed the competitive ratio for a primal-dual algorithm and showed how we can design a
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surrogate function to improve the competitive ratio. We proposed two techniques to design or shape the surro-
gate function. The first technique, discussed in Section 5.1, addressed the case of polynomial cost functions and
determined a closed-form choice for the scalar design parameter, that guarantees a competitive ratio of at least
77/ where 7 is the largest cumulative degree of a single term in the polynomial. This bound is optimal from
a result in Huang and Kim (2018) (theorem 10). The second technique, discussed in Section 5.2, considered a gen-
eral class of procurement cost functions and relied on an optimization problem, which is quasiconvex in the
design parameters, to determine a surrogate function. This allowed us to further improve the competitive ratio
at a higher computational cost. In Section 6 we investigated the surrogate function arising from each design tech-
nique for numerical examples.

As a future direction, we aim to generalize Theorem 3 to allow a much larger class of functions for the design
of the surrogate. We will also investigate which choice of g, would lead to optimal smoothing for a certain class
of f. Future steps also include a modified analysis that would allow more flexibility in f but make more assump-
tions on the arriving inputs. Additionally, practically motivated assumptions on the structure of the incoming
payment functions might lead to competitive ratio results for Algorithm 1 that will not approach zero if f; is close
to f. Furthermore, the different assumptions on the input order such as the random order model may be more
suitable for certain applications, and competitive analysis in this regime has yet to be studied for this exact prob-
lem. In addition, different assumptions on the procurement cost function may be better suited for applications
where the procurement cost functions satisfy the increasing gradient property, that is, Assumption 2(3) (continu-
ous supermodular functions), but are not necessarily convex as discussed in Sadeghi and Fazel (2020), Sadeghi
et al. (2020a, b, 2021), and Raut et al. (2021).
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Endnote

1 In their work, Chan et al. (2015) define the competitive ratio to be the inverse of ours; to avoid confusion in case the reader refers to their
work, we compare their result with ours according to their definition of competitive ratio.
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