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Abstract

Trickle-down is a phenomenon in high-dimensional expanders with many important ap-
plications — for example, it is a key ingredient in various constructions of high-dimensional
expanders or the proof of rapid mixing for the basis exchange walk on matroids and in the
analysis of log-concave polynomials. We formulate a generalized trickle-down equation in
the abstract context of linear-tilt localization schemes. Building on this generalization, we
improve the best-known results for several Markov chain mixing or sampling problems — for
example, we improve the threshold up to which Glauber dynamics is known to mix rapidly in
the Sherrington-Kirkpatrick spin glass model. Other applications of our framework include
improved mixing results for the Langevin dynamics in the O(N) model, and near-linear time
sampling algorithms for the antiferromagnetic and fixed-magnetization Ising models on ex-
panders. For the latter application, we use a new dynamics inspired by polarization, a technique
from the theory of stable polynomials.
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1 Introduction

Recent years have seen an explosion of work on understanding high-dimensional expansion, in other
words, higher-dimensional analogues of expansion in graphs. This has contributed to significant
breakthroughs in our understanding of Markov chains, error-correcting codes, the geometry of
polynomials, and other areas. See, e.g., [ ; ; ; ; ] for a few relevant
references.

The present work is inspired by one of the key ingredients in the theory of high-dimensional
expanders: Oppenheim’s trickle-down (or trickling-down) theorem and the related Garland method
[ ; ]. Trickle-down expresses the following geometric idea: if a simplicial complex is
locally very well-connected (in the sense of expansion), then the complex must be composed of
disjoint pieces, each globally very well-connected.

To be a bit more precise, a pure simplicial complex of dimension k — 1 with n vertices is described

by a (possibly weighted) subset of ([Z]), which are the highest-dimensional faces of the complex.
The “top links” of the complex are induced by conditioning these faces to contain a specific set of
k — 2 vertices and forming the family/distribution of the additional 2 vertices; these top links can
be thought of as a graph whose edges are these 2-sized subsets. Oppenheim’s trickle-down tells
us that if the top links of the complex are very good spectral expanders, then this “trickles down”
to ensure the complex itself is a spectral high-dimensional expander provided the mild condition
that it is not disconnected at any level. Spectral expansion of the complex means that a natural
1 — k — 1 up-down walk, which starts at a vertex, moves to an adjacent face, and then goes to a
uniformly random vertex of that face, has a large spectral gap.

Important Markov chains like the Glauber dynamics can naturally be viewed as types of down-up
walks on a weighted simplicial complex, and trickle-down has revealed itself to be an invaluable
tool for proving sharp mixing time bounds for important classes of distributions like spanning trees,
bases of matroids, more generally, distributions induced by log-concave polynomials, and quite
recently edge colorings of graphs; see, e.g., [ ; ; ;

Our contribution. In this work, we extend the reach of the trickle-down approach beyond the
context of high-dimensional expanders. We do this by formulating a trickle-down equation in
the more general context of linear-tilt localization schemes. Localization schemes, introduced by
Chen and Eldan [ ], constitute a framework that naturally generalizes the concept of iterative
“pinning” in high-dimensional expanders (conditioning on vertices, as in the discussion of “links”
above). In short, linear-tilt localization schemes generalize the operation of pinning to iterative
reweighing of a measure by linear functionals (a.k.a. tilts). The generalized trickle-down equation
gives a systematic way to perform backward induction and to show that the original measure is
“well-connected” as long as the simpler/localized measures are. See Section 1.2 for more details.

The new perspective arising from the trickle-down equation allows us to make progress on several
important problems in the sampling literature, and also derive important structural consequences
like concentration of measure which have so far been beyond the reach of existing tools. We briefly
overview a couple of representative applications here, but there are more — see Section 1.1 and
Section 1.3.

Example application: mixing in the Sherrington-Kirkpatrick (SK) model. The SK model is a
celebrated spin glass model from statistical physics [ ; ]. This is an Ising model where



the interaction matrix is sampled from the GOE (Gaussian Orthogonal Ensemble). In other words,
the matrix | is a random n X n symmetric matrix with independent entries (for i < j)

~ N(,p/n)

where > 0 is the inverse temperature, and the induced probability measure v on {+1}" is given by

v(x) oc exp({x, Jx)/2).
It was previously known for < 0.25 that, with high probability over the choice of |, the Glauber
dynarmcs] mixes in nearly-linear time [ ; ; ]. This threshold does not have any

apparent physical meaning (for example, there is no phase transition associated with the Gibbs
measure until § = 1). However, mathematically it was an inherent limit of previous techniques
because it is the sharp threshold for an associated functional, arising from the Hubbard-Stratonovich
transform, to be convex. Analyzing the trickle-down equation for this model arising from stochastic
localization, we can break the convexity barrier and still obtain optimal mixing times:

Theorem 1 (Informal). For the SK model, there exists absolute constant ¢ > 0 such that up to p = 0.25+c¢ =
0.295, with high probability over the choice of |, Glauber dynamics mixes in O(n logn) time.

This is obtained as a special case of a general result that improves the mixing time bounds for many
Ising models in terms of the spectrum of their interaction matrix, Theorem 3.

Another feature of the generalized trickle-down is that it makes sense for continuous models as
well as discrete ones. We obtain, analogously to the improvement in the aforementioned result for
Ising models, an improvement for higher-spin-dimension variants, namely, the well-known O(N)
model, under both the Langevin and Glauber dynamics. See Section 1.3 for details.

Example application: mixing for antiferromagnetic Ising models on expander graphs. The
antiferromagnetic Ising model at inverse temperature f > 0 with external field /s € R" on a graph G
is the probability measure on the hypercube {+1}" given by

v(x) o exp| —f Z xixj +(h, x)

i~

where i ~ j is the adjacency relation in graph G. For a worst-case graph, the largest value of g up
to which polynomial time sampling is possible is known and it corresponds to what is called the
“tree uniqueness threshold” for the Gibbs measure on the infinite d-regular tree [ ; ;
]. The uniqueness threshold is asymptotically =~ 1/d as d — co. We show this can be greatly
improved in expander graphs.
Theorem 2 (Informal). Consider a d-regular graph with adjacency matrix A on n vertices, and suppose
that max{|A2(A)|,|Aw(A)|} < A. Forall B < 1/2A there exists an algorithm, which we call the polarized

walk, which samples from the antiferromagnetic Ising model in O(nd) time.

For example, in a random d-regular graph this means we can handle g up to a threshold of ©(1/Vd)
instead of @(1/d). We also obtain results for Glauber dynamics when d is small. See Section 1.1
and Section 1.3 for more discussion.

IThis is a Markov chain which at every step, picks a random site i and resamples the spin X; according to the
conditional law v(- | X;). It is also known as the Gibbs sampler.



1.1 Owur results

We now proceed to formally state the main results of this work, obtained based on the generalized
trickle-down equation. Since these results apply to large classes of models, we give more specialized
and concrete examples illustrating their application in the later Section 1.3.

Our main results involve systems of n spins, with each of the n spins taking values on the unit
sphere SN™1 = {x € RN | ||x|| = 1}. We use oV~! to denote the natural “uniform” probability
measure on SV71. As a special case, the 0-dimensional unit sphere is the discrete set {+1}, and we
use Ber.. to denote the uniform distribution in that case. Our main results bound the covariance
matrix cov(v) of the underlying distribution v, from which approximate tensorization of entropy,

abbreviated as ATE, (see Section 2.3) and appropriate mixing time results follow.
For a distribution u on (a subset of) RN, such as oV~! or Ber,, and vector w € RN, we use Twu to

denote the exponentially tilted distribution given by the following density (see Definition 33):

ATwu
dy

(x) o< exp({w, x)).

Improved spectral condition for rapid mixing of Glauber dynamics in Ising models. A distribu-
tion v on {+1}" is an Ising model with interaction matrix | and external field & if

V() o exp(%(x,]x) + (h,x))

for all x € {£1}". Note that the diagonals of | are arbitrary; they do not affect the measure v.
Theorem 3 (Theorem 54 below). Suppose that v is an Ising model parameterized by some external field
h € R" and interaction matrix | satisfying | > 0. Suppose, without loss of generality, that the diagonal of |
is constant, so there exists a such that J;; = a > 0. Let n = a/||]||op € [0, 1]. Then

llcov(¥)llop < qn(ll/llop)

where q, : R>g — Rxq U {oo} solves the Volterra integral equation

an(z) = r(z) + /0 an(y)*dy
with
r(t) = IEx~Beri,g~N(0,1) [COV((]:er\/?g Beri)] = [Ex~Beri,g~N(0,l) [1 - tanhz(tx + \/;g)] <1

Furthermore, v satisfies approximate tensorization of entropy with constant at most

11lop
exp(/0 q,,(z)dz) .

Remark 4 (Spectral interpretation). As mentioned above, there is no a priori significance to the
diagonal entries of |. For this reason, some works, including this one, use the convention that | is
positive semidefinite without loss of generality. On the other hand, it is probably most common
to parameterize the Ising model in terms of an interaction matrix with zero diagonal. Such a
matrix will typically have both positive and negative eigenvalues because the mean of its spectral

5
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Figure 1: logg,(z) from Theorem 3 plotted using numerical integration in Mathematica for
n=0,0.1,...,0.9,1. The curve for nn = 0 was, before this work, the best known bound for all values
of n in the Ising model; it asymptotes to oo at z = 1, which is tight due to the phase transition in the
Curie-Weiss model [F1106]. For 1 = 0.5 the function log g, asymptotes to oo at z slightly above 1.18
and for n = 1.0 it asymptotes around 1.40.



distribution is zero. Fortunately, the above theorem has a very clean interpretation in terms of the
zero-diagonal parameterization.

Let ] be a matrix with zero diagonals which specifies the interactions in the Ising model, so
v(x) o exp({x,]x)/2 + (h,x)). If we add a copy of the identity to ], we can always ensure the
resulting matrix is positive semidefinite without changing the corresponding measure. More
specifically, we can define | = 7 + ol where a = —/\mm(f). Then when we apply Theorem 3, our «
will be the same as the one appearing in the theorem statement. We have

”]Hop =a+ Amax(i)

SO
o 1

= = — — €
|U||op 1+ |Amax(])/Amin(])|

We have 1 ~ 0 when the spectrum of | has only very tiny negative eigenvalues. In that case,
Theorem 3 reduces to the same bound as the existing results [ ; ; ]. However,
in most applications, | has non-negligible negative eigenvalues, so 1 > 0 and then this result
significantly improves on the previous work — see Fig. 1 and examples in Section 1.3. For example,
in many cases, ] has an approximately symmetrical spectrum and so n ~ 1/2.

n [0,1].

Langevin dynamics in the O(N) model. The O(N) model [ ] is a famous class of models in
statistical physics parameterized by an ambient dimension N. In this model, there are n interacting
spins and each spin lives on the (N — 1)-dimensional unit sphere SN~!; the name O(N) is a reference
to symmetry under the N-dimensional orthogonal group. In the case N = 1, the 0-dimensional unit
sphere is simply the points {+1} and so the O(1) model is just the Ising model. The case N = 2 is the
XY model and the case N = 3 is the (classical) Heisenberg model, which are very famous models in
statistical physics; for example, the XY model on a two-dimensional lattice exhibits the celebrated
BKT phase transition [ ; ] for which the 2016 Nobel Prize in Physics was awarded.

When N > 2 the unit sphere becomes connected, so the (manifold) Langevin dynamics is a
natural sampling algorithm to analyze. Bauerschmidt and Bodineau [ ] proved a log-Sobolev
inequality for this dynamics under a bounded operator norm assumption on the interaction matrix
J. Analogous to the Ising case, we prove a new result with a refined spectral condition that yields
improved bounds in most applications. An interesting feature of this result is that for each N, the
bound is given by an explicit rational function.

Theorem 5 (Theorem 72 below). Suppose N > 2,n > 1 and that v is the probability distribution on
(SN with probability density

dv 1 &
@(x) o exp| 5 1<iZj<n]ij<xi/ Xj) + ;Uli/ Xi)

with respect to the uniform measure u = (aN=1)" on (SN=1)*. Here | and h are parameters and we assume
the interaction matrix | satisfies | > 0. Suppose, without loss of generality, that the diagonal of | is constant,
so there exists a such that J;; = a > 0. Let 1= a/||]||op € [0, 1]. Then”

”COV(V)”op < qq,l/N(”]llop)

2This result is improved compared to the conference version of this paper [ 1.



where q, 1N = (1/N)Qy(z/N) and Qy : [0, 5(17)) — Ry is given by

—/\1)\%(1]2 + M 4 A%Az
As(nz + 1M1+l — A3 (nz + 1)’

Qn(z) =1 1)

with A1 > 0 > Ay the two roots of the quadratic equation nA? — nA — 1 = 0, explicitly

N+ +4n n—~n+4n

M=M= 2 , Az =Aa(n) = 2

7

and where

A
Ao

Furthermore, the log-Sobolev constant of the Langevin dynamics is at least

[11lop
Cnexp —/0 qn,l/N(z)dz

where Cn > 0 is a constant depending only on N, inherited from [ I
Example 6. The equations simplify considerably in the case n = 1/2: we have that A1 = 2 and
Ay = -1,

1
s(n) _E

2/(A1=A2)
-1].

—(z/2+1)3 -1 48+24z+12z2+273

Qe = I 22+ 1) 48-2422 -85 -1

and
s(1/2) =2 [41° - 1] ~ 1.1748.

Remark 7. Our methods automatically yield an additional result, Theorem 68, which for each
particular value of N can likely yield a small improvement in the threshold obtained by Theorem 64.
We expect the improvement is relatively small, and determining the quantitative guarantee requires
a nontrivial computation for each value of N, so we did not further pursue this direction.

As stated, this result applies to the continuous-time (manifold) Langevin dynamics. To get an
algorithm, some discretization scheme is usually applied. Fortunately, the log-Sobolev inequality
also applies polynomial time guarantees for the discretized Langevin dynamics on manifolds

[LE20].

Glauber dynamics in the O(N) model: nearly linear time sampling. Besides the Langevin
dynamics, there is another very natural dynamics to consider in the O(N) model — the Glauber
dynamics.

Compared to Langevin, Glauber dynamics has the advantage that it doesn’t require discretization
or choice of step size to implement. All known discretization schemes for the Langevin dynamics
incur extra dimension-dependent factors, even in the simplest Euclidean setting [see, e.g., ].
Concretely, this means that while we established a “dimension-free” LSI constant, combining it with
the discretization analysis of Langevin as in [ ] pays an extra dimension factor of 1, yielding a
runtime guarantee of O(n2d) for a graphical model of maximum degree d (i.e., row-sparsity d in J)
even in the simplest case N = 2.
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Figure 2: log Q,(z) from Theorem 5 plotted using numerical integration in Mathematica for
n1=0,0.1,...,0.9,1. For the O(N) model, the actual function bounding the covariance is g, 1,n5(z) =
(1/N)Qy(z/N). So for example, in the case of the XY model which is N = 2, the = 0.5 curve
asymptotes to oo slightly above 2.34 and for the Heisenberg model it asymptotes to oo slightly above
3.52. Similarly for 7 = 1, when N = 2 the resulting curve asymptotes to oo slightly above 2.73 for XY
and at around 4.09 for Heisenberg.



We improve on this by proving that under the same conditions as before, the mixing time of Glauber
dynamics is O(n logn), i.e., as fast as possible, and that each update step of the dynamics can be
implemented very quickly. Together, these yield a nearly linear time sampler for our class of models.
Here is the precise result:

Theorem 8 (Theorem 73 below). In the same setting as Theorem 5, the probability measure v satisfies
approximate tensorization of entropy (ATE) with constant

I/1lop
exp(/O q,],N(z)dz) .

Furthermore, single steps of Glauber dynamics can be e-approximately implemented using O(dN +log(1/€)-
(log N +loglog(1 + B)) arithmetic operations assuming at most d nonzeros in the corresponding row of |,
and where B = max; 2.i|Jij| + || hill. In other words, we can sample from a distribution that is e-close in
total variation distance to the conditional distribution at the spin chosen to be updated. To sample from a
distribution e-close to v in total variation distance, we run the Glauber dynamics for T = nlog(n/e) steps
and set € = £, resulting in an overall runtime of max{nnz(J), n} - N - polylog(1/¢,n, N, log(1 + B)).

Glauber dynamics over semi-log-concave base measures. In the mathematical physics literature,
it is common to study more general distributions such as “soft spin” systems where the spin is
R-valued. Seee.g. [ ] for some references and discussion in the context of field theory. Our
methods can give a general bound in terms of semi-log-concavity properties of the base measure of
the spin system. We say that a measure is f-semi-log-concave if cov(7, ) < BI for every w € R”"
[ |; see the preliminaries for more discussion.

Theorem 9 (Theorem 64 below). Suppose that i = &), 1) is a product measure where each u'") is a
probability measure on RN Let | > 0 with J;; = a for all i € [n], and define the measure v by its density

dv 1
@(X)OCGXP Eizj]ij<Xi,xj> :

Let n = a/||J|lop. Suppose that for all i € [n]and s € [0, a] the measure Q_sy(i) defined by

dG-_su"

(x) o exp(s|x[|*/2) )

exists and is p(s) > 0 semi-log-concave. Then || cov(v)|lop < qy,0(lJllop) where q,,, solves the integral
equation

_ 1 : 2
Tro(2) = nz + [p(nz)1~! +/0 Tnpls)ds ©)

Illop
exp (-/0 q,],p(z)dz) .

The covariance bounds we obtain for the O(N) model are a special case of this result — when
p(s) = p is constant, the integral equation admits an explicit solution g, ,(z) = pQ,(pz) where Q, is
from Eq. (1). See Theorem 69.

and ATE holds with constant at most

10



Nearly linear time sampling for a class of Ising models via polarized walks. Antiferromagnetic
Ising models are those where neighboring spins repel rather than attract each other. An impressive
line of work has shown that for the antiferromagnetic Ising model on a worst-case d-regular graph,
there is a computational phase transition at the uniqueness threshold of the infinite d-regular tree;
see, e.g., [ ; ; ] for a few of the relevant works. This means that above a certain
precise threshold for the strength of interactions in the model (inverse temperature), no polynomial
time sampling algorithm exists under standard hypotheses from computational complexity.

What about non-worst-case graphs? Based on the picture coming from statistical physics as well
as related rigorous results, we do not expect the uniqueness threshold to be relevant for random
graphs; see [ ] and references within. In particular, for d-regular random graphs sampling
should be possible up to a threshold of ©(1/ Vd) instead of the ©(1/d) scaling of the uniqueness
threshold. For constant degrees d, this was recently proven by Koehler, Lee, and Risteski [ 1
where a polynomial time algorithm inspired by variational inference was developed. This was
recovered as part of a general result improving sampling guarantees for all expander graphs.

Can we improve this result to hold for all degrees d, to run in nearly linear time, and to be achieved
by a simple Markov chain? Our Theorem 3, while applicable to antiferromagnetic Ising models, is
not well-adapted to this setting because adjacency matrices of expander graphs have a large “trivial”
eigenvalue, and its effect on the model is not so trivial.

Nevertheless, there is a natural class of models we can analyze using our techniques which captures
both the antiferromagnetic Ising model on expanders as well as some other important applications
like fixed-magnetization models. This class of models can be understood as spectrally bounded
Ising models with an arbitrarily strong confining potential proportional to (¥; x; — k)* for any k € Z.
This potential® allows the measure to localize near a slice {x | }; x; ~ k}. Since this class of models
includes those with fixed magnetization, Glauber dynamics may not even be ergodic. Fortunately,
an interesting connection to the geometry of polynomials suggests a different Markov chain which
does rapidly mix! We call this chain the polarized walk and describe it in more detail in Section 1.2.

Concretely, we establish the following result, which tells us that the polarized walk samples
successfully in nearly linear time from a large class of models:
Theorem 10 (Theorem 86 below). Suppose that v is a measure on the hypercube {£1}" of the form

2
1 Y
V() o exp| 5(x, J2) + (I, x) - %(Z xz-)
forsome ] = 0,y 2 0,and h € R", and suppose that ||]||op < 1/2. Then:

1. The polarized down-operator has (1 - %)—entmpy contraction with respect to v.

2. Hence, the polarized walk on v mixes within € total variation distance in O (mn log(n/ e)) steps.

3. Let y
— T _ 21T
Q=] n”

31n the actual statement, we do not include the parameter k explicitly, since it can be absorbed into the external field
of the model.

11



and let d be the maximum number of non-diagonal nonzero entries in a row of Q. Each step of the
projected down-up walk can be implemented in O(d logn) amortized time so the polarized walk

outputs a sample within € total variation distance of v in total runtime O ( = 2” Tor ndlog(n)log(n/ e))

Corollary 11 (Corollary 91 below). Let v be the antiferromagnetic Ising model wzth parameter 5 on a
random d-regular graph G. Suppose 0 < p < (1-0)/(8Vd — 1) for a constant 5 > 0. With probability 1-o(1)
over the random instance G, we can sample from ¥ s.t. dry(9,v) < € in time O(6~'nd log(n)log(n/¢)).

Glauber dynamics on low-degree expanders. As discussed above, there is no hope of Glauber
dynamics mixing for the general class of models studied in Theorem 10. However, it is still possible
Glauber mixes rapidly for some subclasses of models. In the case of antiferromagnetic Ising models
of bounded degree on expander graphs, we prove that the Glauber dynamics does indeed mix in
O(n logn) time. One proof of this result is based on ideas from [ ] and in fact, yields mixing
for a larger class of models(see Theorem 103); in Remark 105 we explain a variant of the result
which is obtained using a trickle-down approach instead.

Theorem 12 (Corollary 104 below). Suppose that

v(x) o< exp(—é(x,Ax} +(h, x))

where A is the adjacency matrix of a d-regular graph on n vertices and suppose that max{|A2(A)|, |1, (A)|} <

A IfAB < 1—1/c for some c > 0, then v satisfies approximate tensorization of entropy with constant at

ceOB)

most e and the Glauber dynamics on v mixes in O (eceo(ﬁd) -nlogn| steps.

1.2 Our techniques

In this section, we give a brief overview of some of the techniques in this paper. In this part, we
largely focus on the motivating applications involving the Glauber dynamics and polarized walk in
the Ising model.

Challenge: nonconvexity of the Hubbard-Stratonovich transform. In the continuous domain,
there has been a long and mathematically deep study of sampling log-concave distributions, i.e.,
probability densities o /() where f is a concave function. In comparison, no distribution supported
on the hypercube {+1}" or products of unit spheres (as in the O(N) model) can be log-concave
because its support is not even a convex set.

Nevertheless, many previous works [ ; ; ; ; ; ; ] have been
able to analyze Ising and O(N) models using the celebrated Hubbard Stratonovich (HS) transform
[ ]. There are different ways to view this trick; at its heart, it essentially corresponds to
applying the Fourier transform. However, a more probabilistic view is to say that we take X ~ v for
v an Ising model with interaction matrix | and define a random vector

Y =X+G, G~N(0OXx), =]

For this carefully chosen covariance matrix X, it can be checked via the Bayes rule that the posterior
law X | Y becomes a product measure. This is the Hubbard-Stratonovich trick. As a result, the task
of sampling the discrete random vector X and continuous random vector Y become computationally
equivalent. In particular, we can sample X and Y efficiently if the law of Y ends up being log-concave.

12



Moreover, more sophisticated analyses use the log-concavity of Y to derive rapid mixing of the
Glauber dynamics for X.

This trick is elegant and it is tight in a certain sense: for the Curie-Weiss/mean-field Ising model,

2
p(x) o< exp %(Z xz-) )

i

with x € {£1}" and inverse temperature > 0, the high-temperature or rapid mixing regime of
the model (B < 1) exactly corresponds to the set of parameters where the Hubbard-Stratonovich
transform is log-concave.

However, it is less clear if this analysis is tight for other models. For the Sherrington-Kirkpatrick
model, the Hubbard-Stratonovich transform is log-concave exactly when g < 0.25. Is this barrier
fundamental? No. To go beyond this threshold (and prove all of our main results listed above), we
need to develop new arguments which do not rely on log-concavity.

Remark 13. The papers [ ; ] use an alternative to the Hubbard-Stratonovich transform
trick called needle decomposition, which decomposes the Ising model into Ising models with rank-one
interaction matrices [cf. analogous notions in convex geometry, ]. Although this is a different
decomposition, it runs into the same barrier — the Curie-Weiss model is a rank-one model and
the HS transform analysis is tight for it. The works [ ; ] use an inductive approach
instead, but only obtain results up to comparatively small values of f3.

Trickle-down equation in localization schemes. The way we go beyond the log-concavity
threshold is by finding a more “intrinsic” approach to analyze the mixing time of discrete
distributions. From a long line of previous work [see, e.g., ; ; ; ; ;

; ; ; ; ], we know that there are deep connections between proving
mixing time bounds and establishing control of the covariance matrix of a distribution under
arbitrary tilts or pinnings. As a reminder, exponential tilts are reweighings of a distribution p(x)
by a factor proportional to exp({w, x)) for some external field vector w. See also Section 2.4 of the
preliminaries. So to prove our results, we develop a systematic method to control the covariance
matrix of all of these tilts.

To do this, we take inspiration from the celebrated trickle-down phenomenon in high-dimensional
expanders [ ], and develop a general trickle-down method that applies in the abstract setting
of linear-tilt localization schemes. A linear-tilt localization scheme [ ] for a probability measure vy
induced by a martingale difference sequence Z; corresponds to a random sequence of measures

v

avy

This general framework captures the usual pinning localization scheme used in high-dimensional
expanders, stochastic localization, and other localization schemes like negative-field localization,
etc. [ ]. In this context, we prove the following generalized trickle-down equation (Eq. (8), see
Section 3 for precise definitions and notation):

——(x) =1+ (x —mean(v;), Zt11).

cov(vy) — cov(vy) cov(Ziyr | Ft) cov(vy) = E[cov(visr) | il

The key point is that this recursion allows us to perform backward induction over time to control
the covariance matrix at time t by the covariance matrix at time ¢ + 1. In particular, we identify the
exact analogue of trickle-down in stochastic localization, which we then use to prove our results.
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Analyzing trickle-down via geometry of the base measure. A naive application of the trickle-
down method will only reprove the existing results obtained via the log-concavity of the Hubbard-
Stratonovich transform. The reason for this is that for natural analogues of the distributions we
study, these thresholds would actually be tight; we expand on this in the below example.

Example 14 (Gaussian SK model). For example, we could consider a “Gaussian SK model” which is
defined just like the usual SK model but w.r.t. the Gaussian measure instead of the hypercube, so
that its probability density function is

p(x) o exp(B(x, Jx)/2 = ||x]|5/2) ,

where | is a scaled GOE matrix plus twice the identity, i.e., it is symmetric and independently
Jij ~ N(0,1/n) fori < jand J;; = 2for i € [n]. The diagonal is included to ensure | is approximately
PSD — this is a necessary convention because the stochastic localization process we use with
trickle-down needs to use the driving matrix J'/2. Both the base Gaussian measure o eIx12/2 4y
in this example and the uniform measure on the hypercube have the same covariance, and in
the Gaussian model the condition < 1/4 is clearly sharp for rapid mixing. More precisely, the
Gaussian model does not even exist when > 1/4, since the top eigenvalue of | is concentrated
about 4, and if f] /2 — I has eigenvalues > 0, then the integral f p(x)dx becomes infinite.

So to obtain any actual improvement for SK and other Ising models, we need to use something
fundamental about the fact that our distribution is supported on the hypercube {+1}". Ultimately, the
improvement arises from specific concentration/anticoncentration properties which the Gaussian
measure lacks. Here is an example, which helps illustrate the key role that the diagonal entries of |
play in our analysis:

Lemma 15. If X ~ v where the probability measure v on {+1}" is the Ising model with interaction matrix
J = 0 and external field h, then for any site i € [n] we have

P[], X) + hi| = Jii] = 1/2.

Proof. From the definition of the Ising model, we can observe that the conditional law at site i

satisfies
E,[X; | X.i] = tanh({Ji ~i, X<i) + hi),

where X.; denotes X with coordinate i removed. From this equation and the monotonicity of the
tanh function, we see that X; and (J; ~i, X~;) + h; are positively correlated. So conditional on any
value of (J; ~i, X~;) + h;, the random variable X; has at least a 50% chance of having the same sign
as this quantity, which proves the result. O

The reason this is useful is that the random vector | X + h naturally arises as part of the external
field for large times in the trickle-down procedure we use (see proof of Lemma 57; in fact, what
we really do is observe a connection between a multi-spin and single-spin stochastic localization
processes); the fact that it is large means the relevant product measure on the hypercube has a large
bias, which means it has a small covariance. The actual anticoncentration analysis we use is more
sophisticated and yields a tighter quantitative bound: see Section 4 for details, and Section 5 for
more general results.

Polarized walks and the geometry of polynomials. Our general result for Glauber dynamics in
the Ising model cannot handle models of the form studied in Theorem 10. This reflects a limitation of
the Glauber dynamics itself — in the fixed-magnetization limit y — oo with /& = 0, the distribution
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becomes close to supported on the slice of the hypercube {x | }}; x; = 0} and the Glauber dynamics
will not be ergodic. This is because every two points on the slice differ in at least two positions.

Fortunately, our analysis based upon the geometry of polynomials naturally suggests a different
random walk, the polarized walk, which we show will sample in nearly linear time. We formally
describe the dynamics in terms of its transition matrix in Section 7, but first explain the intuition
behind it here. The ordinary Glauber dynamics can naturally be viewed as the composition of a
down step (erasing the spin at a randomly chosen site) and an up step (resampling the erased spin).
Since this is not ergodic for large values of y, we instead use the following polarized down step:

1. Given as input state x € {+1}", select a coordinate i uniformly at random from [].
2. Output x with entry x; set to —1.

Compared to the down step in the Glauber dynamics, which erases the spin at a particular site, the
polarized down step is different in two key ways: first, it can only change coordinates of x which are
equal to +1, and second, if it does pick such a coordinate i where x; = +1, it sets the coordinate to
—1 instead of erasing it.

Given this down step, the polarized up step takes as input a vector y € {+£1}" and samples from the
posterior distribution on x ~ v assuming that y is the output of the projected down operator. This
is completely analogous to the definition of the usual up step. Because the projected down step
only replaces +1 spins by —1 spins, the projected up operator only replaces —1 spins by +1 spins.
See Definition 84 for the explicit transition matrix of this operator. Note that the polarized walk
does not treat +1 and —1 symmetrically, even though they are symmetrical in the definition of the
model. This means that an alternative dynamics with +1 and —1 reversed can also be used.

Once we choose a way to break the symmetry, these dynamics naturally arise from a construction
in the geometry of polynomials called polarization, which is a natural way to map a polynomial to a
multiaffine polynomial while preserving the property of being log-concave /Lorentzian | ;

]. These polynomials show up in our work by identifying a spin vector x € {+£1}" with the
set x, of indices with +1 spins, and then looking at the generating polynomial 3; u(S)x° of the
corresponding probability measure p on sets. See Section 2.5 for details.

By setting up the right stochastic localization process, we decompose our original Ising measure
into a mixture of negatively-spiked rank one Ising models. As a remark, this is in contrast to [ ;
], where the decomposition used positively-spiked rank one models. More specifically, we

obtain models of the form 5
Y .
p(x) o« exp —%(Z xl) +(h,x)|.

1
This can be thought of as the antiferromagnetic analogue of the classical Curie-Weiss model (Eq. (4));
interestingly, this simple-looking statistical physics model ends up connecting in a very elegant way
with the geometry of polynomials. We use this connection to prove that the polarized dynamics
mixes rapidly in this model, and then using trickle-down along with some new facts about entropy

contraction in stochastic localization (see Lemma 39), we establish the mixing time bound in
Theorem 10.

Quickly implementing the up step of the polarized dynamics is nontrivial — to do this, we build a
data structure based on self-balancing binary search trees (see Proposition 87). This completes the
construction of the nearly linear time sampling algorithm.

15



1.3 Some example applications

Sherrington-Kirkpatrick (SK) model Recalling the discussion earlier, in the SK model the matrix
J is a random n X n symmetric matrix with independent entries (for i < j)

Jii ~ N(0, B?/n)

where f > 0 is the inverse temperature. It was previously known for f < 0.25 that the Glauber
dynamics mixes in nearly linear time [ ; ; ]. From the famous results of Wigner
[see, e.g., ], we know thatas n — oo, the smallest and largest eigenvalues of the zero-diagonal
interaction matrix | are —2 + 0(1) and 2 + o(1) respectively. Hence, applying Theorem 3 to the
equivalent interaction matrix | — Amin(J) - I with 7 = 1/2+ 0(1) (see Remark 4) shows that our general
result implies nearly linear time mixing up to = 0.295; see Fig. 1.

d-regular diluted SK model. In spin glass theory, diluted versions of mean-field spin glasses, which
are supported on sparse random graphs, have long been studied [see, e.g., |; for example, with
the motivation that sparse interactions are more realistic models of various physical phenomena.
One natural diluted version of the SK model has its support on a random d-regular graph; for
example, in the case of Rademacher disorder, for each edge (i, j) the edge weight J;; would be
sampled i.i.d. and uniformly from {£f}. In this case, the zero-diagonal interaction matrix has
operator norm at most 2Vd — 1 + o(1) with high probability by a version of Friedman’s theorem
[ ; |. Thus, the best previous results yield O(n log n) mixing time up to the threshold

425 and our result with 7 = 1/2 + o(1) improves the guarantee to hold up to ~ ?/'%.

V-1

Hopfield networks. Hopfield networks [ ; ; ] are a neural model of associative
memory that have been hugely influential and extensively studied. Formally, given i.i.d. random
patterns 1y, ..., 1), sampled uniformly from {+1}”, the Hopfield network at inverse temperature
B = 0 is the Ising model with interaction matrix

BN o
]_271;170170'

This is thought of as a “Hebbian” learning rule because for each memory 7, and for “neurons” i
and j, the term (17, )i(110); is positive if (1,); = (1,); and negative otherwise. Therefore if | is thought
of as the “wiring” of the neurons, then for each pattern all of the neurons which “fire together”, i.e.,
have the same spin, are “wired together”.

When the number of memories m is a constant, there is a polynomial time sampling algorithm for
this model for all 8 [ ]. But this is not the only regime of interest. Perhaps the most studied
setting is when m and n jointly go to infinity at a fixed aspect ratio m/n ~ A. In random matrix
theory, statistics, and other areas this is called a “proportional scaling limit”, and in this limit the
spectrum of the interaction matrix | will go to a scaled version of the celebrated Marchenko and
Pastur law [ ]. From the definition of the model, we know that the diagonal entries all equal
ﬁ2_1: = l% This means the spectrum of the zero-diagonal matrix | = J — % - I is a shifted and scaled
version of the Marchenko and Pastur law. For every value of A, applying our main result will
improve the threshold for rapid mixing compared to prior works [ ; ; ].

Unlike the previous examples, the optimal choice of n will vary depending on A because the
Marchenko and Pastur law is asymmetrical. The precise improvement will depend on the particular
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value of A. For example, when A = 1, the largest eigenvalue of | will be 2 + 0(1) asymptotically
almost surely, and the diagonal entry will be /2. Applying our result with = 0.25 will improve
the guaranteed rapid mixing threshold from around $ = 0.5 to around g ~ 0.54.

O(N) model with bounded row norms. The following discussion is related to a conjecture of
Dyson, Lieb, and Simon [ |; see Remark D.1 there. Suppose that the interaction matrix | has
small row norms off the diagonal; more specifically, let

R = ||/llcomeo = max Z|]ij| i€[n]

jij#i

We can assume the diagonal entries of | all equal R without loss of generality; then by Gershgorin’s
circle theorem, | is positive semidefinite with operator norm at most 2R. Applying Theorem 5, we
therefore obtain O(n log 1) time mixing for all R up to Ns,(1/2)/2 ~ 0.5874N. In general, for every
value of N it was proved by Dyson, Lieb, and Simon [ ] that the covariance matrix has operator
norm O(1), i.e., satisfies a bound independent of the number of sites 7, as long as R < 0.5N, and
they conjectured that, at least in nice cases like ferromagnetic models on lattices, this bound can be
improved to hold when R < N. Bauerschmidt and Bodineau [ ] improved the covariance bound
result to a log-Sobolev inequality up to the same threshold. Our result improves the threshold by
an N-independent multiplicative constant without making any further assumptions on J.

Antiferromagnetic Ising on random graphs. For random d-regular graphs on n vertices, as long
asff < 8%, we can sample from the antiferromagnetic Ising model with parameter  using the

polarized walk; see Corollary 91. Our runtime is nearly linear in the number of edges, thus optimal

up to log factors. In Corollary 104, we show that the Glauber dynamics mixes in O (eo(‘/ﬁ) -nlog n)
steps. Our results also apply to other random graph models such as Erdés-Rényi.

Fixed magnetization (ferromagnetic or antiferromagnetic) Ising on random graphs. For random
d-regular graphs on n vertices, as long as < 8%, we can sample from the fixed magnetization
(ferromagnetic or antiferromagnetic) Ising model with parameter f§ at an arbitrary magnetization
level k using O(6~ 'k log n) steps of the down-up walk (Corollary 96). Bauerschmidt, Bodineau,
and Dagallier [ ] concurrently and independently gave a bound on the mixing time of the
down-up walk in the same parameter regime, but their bound has an exponential dependency on
the degree d, i.e., exp(O(\/E)); see Lemma 2.6 in [ ]. The main goal in [ ] is to bound
the mixing time of the Kawasaki dynamics, a localized version of the down-up walk when one
can only exchange the spin of neighboring vertices. They do so by comparing Kawasaki dynamics
with the down-up walk, incurring an extra exp(O(Vd + h))log* 1 factor | , Lemma 4.1] and

thus showing that the Kawasaki dynamics mixes in O(exp(O(Vd) + h) - n log® n) steps. The extra

log5 n - exp( O(Vd + h)) is unlikely to be necessary; our mixing time bound for the down-up walk is
the first step to remove this dependency.

Using the equivalence between sampling and counting [ ], we have an FPRAS for the partition
function of the fixed magnetization antiferromagnetic and ferromagnetic Ising at any magnetization
level and up to the same threshold for . The sum of these partition functions over all magnetization
levels is precisely the partition function for the Ising model, thus we also obtain FPRAS for the
partition function of Ising models, and thus algorithms to sample from these models using counting
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to sampling reduction. This will work even in the case that the external field has inconsistent
signs, which is #BIS-hard without further assumptions [ ]. In the ferromagnetic case and
antiferromagnetic with fixed degree d cases, similar results were obtained in prior work of Koehler,
Lee, and Risteski [ ] with a different algorithm; in the antiferromagnetic case, the polarized
walk gives another possible algorithm with nearly linear runtime.

Our results also apply to other random graph models such as Erdgs-Rényi (Corollary 97), and more
generally to expanders (Proposition 95).

1.4 Other related work

There have been many works studying Glauber dynamics in continuous state spaces. For example,
in convex bodies Glauber dynamics is the well-known “coordinate hit-and-run” Markov chain, see,
e.g. [ ; ]. Glauber dynamics has also been analyzed in spin systems [ ; ] under
conditions similar to Dobrushin’s condition.

The recent works [ ; ] (see also [ ]) developed and analyzed a sampler for the SK
model based on AMP (Approximate Message Passing) and stochastic localization. An advantage of
this approach is that it provably works up to < 1, which is the entire replica-symmetric regime of
the model with zero external field. On the other hand, this method ends up sampling in a much
weaker sense (achieving sublinear Wasserstein distance), does not apply to related models like
diluted spin glasses, and does not imply structural properties of the measure like subgaussian
concentration. It is worth noting that the work [ ] also shows an impossibility result for
sampling via a class of Lipschitz algorithms in the replica symmetry-breaking regime (f > 1); it is
possible that this is an impossible task for all polynomial time algorithms. Besides the SK model,
there have also been recent works on mixing in spin glasses with higher order interactions (p-spin
models) on the sphere and hypercube at sufficiently high temperature | ; ; 1.

Also specifically in the context of the SK model, recent works [ ; ; ] have obtained
O(1) bounds on the operator norm of the covariance matrix of the SK model when < 1, improving
polylogarithmic bounds due to Talagrand [ . To contrast with our analyses, we establish
(and crucially need) bounds which hold uniformly over all external fields h for a fixed /“quenched”
realization of the interaction matrix J. This is because an O(1) bound on the operator norm of
the covariance matrix is, by itself, obviously not a sufficient condition for rapid mixing, Lipschitz
concentration, and so on to hold for a probability measure. Because of the difficulties involved in
handling all external fields & at once, there is unfortunately no obvious way to apply the techniques
based on the cavity method and TAP equations used in those works.

Recently, Kunisky [ ] gave some evidence that the constant in the spectral condition used to
guarantee polynomial time mixing of the Glauber dynamics in [ ; ] is sharp not just
for Glauber dynamics (where it is tight in the Curie-Weiss model) but in fact for all polynomial
time algorithms. It would be interesting if anything along these lines can be said for the more
sophisticated spectral conditions established in Theorem 3 and Theorem 64.

1.5 Organization

In Section 2, we state general facts and preliminaries which are used in the following sections. In
Section 3, we formulate the general trickle-down equation for linear-tilt localization schemes, which
is used in the remainder of the body of the paper. In Section 4, we prove Theorem 3 concerning
rapid mixing of the Glauber dynamics in Ising models. In Section 5 we prove the analogous results
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with semi-log-concave base measures. In Section 6, we apply the semi-log-concave theory to obtain
our results for both the Langevin and Glauber dynamics in the O(N) model. Section 7 proves
rapid mixing of the polarized walk. Finally, in Appendix B we prove rapid mixing of the Glauber
dynamics on low-degree expanders.
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2 Preliminaries

In this section, we summarize, in a mostly self-contained fashion, the relevant facts about Markov
chains, localization schemes, geometry of polynomials, etc., which are needed to prove our results.
Some of the facts we state — in particular, Lemma 29 — appear to be more general than what has
previously appeared in the literature, and we will need this level of generality.

We use [n] to denote the set of n elements {1, ..., n}. We also use [ii] to denote {1, ..., 7}, where
we think of 7 as an element distinct from i. We use 2["! to denote the family of subsets of [n] and

([Z]) to denote subsets of size k. We use 1 to denote the all-ones vector, where the dimension is
inferred from context. For a set S C [n], we use 15 € R" to denote the indicator vector of the set S.
We use 11, 15, ..., 1, to denote the standard basis vectors in R”.

By default, we treat vectors as column vectors. For vectors u,v € R" we use (1, v) € R to denote
the inner product and u ® v = uv™ € R™" to denote the outer product. We use #®? to abbreviate
URU=uuT.

For a probability measure u on a space Q2 and function f : QO — R? we use the shorthands E,[f]
and uf to denote the expectation Ey,[f(x)].

Definition 16 (Mean and covariance). Suppose that i is a probability measure on (a subset of) R".
We use mean(u) to denote Ey~,[x]. Similarly, we define the covariance matrix as follows:

COV(H) = [Ex~y[x®2] - IEx~y[x]®2-

With some abuse of notation, for a random variable X, we use mean(X) and cov(X) to denote the
mean and covariance of the law of X. We also naturally allow conditioning in mean and cov, which
result in vector/matrix-valued random variables. So for a g-algebra # and random variable X, we
have cov(X | ¥) = E[X®? | F] - E[X | F]®2.

We use N(m, L) to denote the Gaussian distribution with mean m and covariance matrix .. We use
Ber(p) to denote the Bernoulli distribution on {0, 1} having mean p and use the shorthand Ber to
denote Ber(1/2). We use Ber.(m) to denote the distribution on {1} whose mean is m and use the
shorthand Ber.. to denote Ber.(0).
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2.1 Markov kernels

Definition 17 (Markov kernel). A Markov kernel « from € to QO assigns to every point x € () a
probability measure x(x, ) on C'.

We assume Q) and ()’ are measurable spaces equipped with o-algebras #, ¥, which we usually
omit for the sake of brevity. The kernel x would be a function QO X ¥’ — [0, 1] such that for each
x, k(x, ) is a probability measure on (€, ¥’), and for each S € ¥’ the function x — «(x,S) is
measurable w.r.t. (QQ, 7).

In the literature, sometimes Markov kernels are called channels. For finite spaces (3, (), we view «
as a row-stochastic matrix. Note that when Q" = (), x could be viewed as defining the transitions of
a Markov chain on Q.

A Markov kernel x from Q to ()’ can be combined with a Markov kernel k¥’ from Q' to Q” in order
to give a Markov kernel x«x’ from € to Q)"

K (x, ) = / ¥ (y, S)(x, dy) = Eyorun[¥'(y, S)].
yeQy

For finite spaces, this corresponds to matrix multiplication. We can also take the direct product of
two kernels x and y from Q to Q" and from () to Q)" respectively, and define x X y to be a kernel
from Q to Q' x Q” with k¥ X y(x, ) = x(x, ) X y(x, ).

A measure p on ) can be combined with a Markov kernel x from € to ()’ to get another measure
px on €)'

yK(S):/QK(x,S)y(dx).

For finite spaces, this corresponds to a vector-matrix multiplication, viewing u as a row vector. Note
that if y1 is a probability measure, i.e., if u(QQ) = 1, then so is ux.

While distributions multiply on the Lh.s. of a Markov kernel, functions multiply on the r.h.s. Given
a Markov kernel « from Q to (0’ and a measurable function f : O’ — R?, define xf : Q — R as

Kf(x) = / e, dy) = By LF0]
yely

Definition 18 (Semidirect product). Consider a distribution u on Q and a Markov kernel x from Q
to (. We can generate random variables X, Y, by first sampling X ~ u and then, conditioned on
X, sampling Y ~ x(X, -). Note that the marginal distribution of Y is ux. The joint distribution of
(X,Y) is the semidirect product u > k. We also use « x u to denote the distribution of (Y, X).
Definition 19 (Time-reversal). We say that a Markov kernel x’ is the time-reversal of the Markov
kernel x w.r.t. the distribution p if x’(Y, -) is the (regular) conditional probability distribution of
X given Y, when (X,Y) ~ p > «. A shorthand definition is that y and x define the same joint
distribution as ux and x” define:
pxx =« = (uK)

Although time-reversal, being a conditional probability, is technically not necessarily unique, with
slight abuse of notation, we use the following convenient shorthand to denote x’(y, -):

plrey
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In Bayesian terminology, u would be a prior distribution, and y an observation obtained by passing
a sample from p through the channel «; u | k¥ > y is simply the posterior distribution, given this
observation. For finite spaces, we can write this posterior as

_ p,y)
(] 5y = 0

If y is another kernel from Q to Q0”, then observations of x and y commute with each other:

(ulx>ylyvz=@|lyrz)|ce>y.

This is the posterior of X ~ u given that independent observations Y ~ x(X, ) and Z ~ y(X, -) were
Y=y,Z =z

While a kernel k allows us to map measures from () to measures on ()’, the densities of these
measures are mapped according to the time-reversal kernel «’.

Proposition 20. Suppose that 11 is a probability measure on Q) and « is Markov kernel from Q) to €O’ whose
time-reversal is k. If v is another measure on ) absolutely continuous w.r.t. j1, then

d(vi) K,d_v
d(ux)  du’

Proof. For any test function f on QO’, we have

d d d
Eye [(Kﬁ) W)- f(y)] By [[EXNK/@,.) [d—;(x)] ' f(y)] _E.., [ﬁ(x) Ey oo [f )]

= / QEy~K<x,.)[f(y)] v(dx) = F(y) vi(dy).

yey

This proves that K’Z—Z is the density of vk w.r.t. ux. O

Definition 21 (Mixture decomposition). A mixture decomposition of a distribution u on Q is a
collection of distributions ug indexed by 0 € (Y, together with a distribution 7= on )’ such that for
all events S C Q, 1g(S) is measurable in 0 and u(S) = Eg~=[p6(S)]. We abbreviate this as

p=Egn [[JQ]

Mixture decompositions are in direct correspondence with Markov kernels from Q to {’. Given a
mixture decomposition we define a Markov kernel «: first let the kernel x’ be x’(0, ) = ug, and
note that mx” = p. Now let k be the time-reversal of ¥’ w.r.t. 7. Going the opposite direction, for
any Markov kernel x from Q) to €)', we can let 7 = ux, and «’ be the time-reversal of x w.r.t. u, and
define pg = «’(0, ). We automatically get x” = , i.e., Eg-r[po] = p.

2.2 Entropy contraction

Definition 22 (¢-entropy and ¢-divergence). Given a convex function ¢ : R>p — R and measure u
on space Q, p-entropy is defined as an operator that takes functions f : QO — R and outputs

Ent{[f] = Eulp o f1- @(ELlf]).
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We also define the related notion of a ¢-divergence.” For a measure v that has density dv/du w.r.t.
u we define the p-divergence as

dv
Dyl u) = Entﬁ[@] .

Note that p-entropy and ¢-divergence are always nonnegative, by Jensen’s inequality. Two special
cases of @ give the familiar variance and entropy functionals:
Definition 23 (Variance and y2-divergence). Specializing to ¢(x) = x2, we define variance as

Var,[f] = Ent]/[f] = E.[f*] - E.[fT,
and the y2-divergence as

d
X w = Dyl w) = Var[ﬁ] )

Definition 24 (Relative entropy and KL-divergence). Specializing to ¢(x) = x log x, we define the
relative entropy as

Ent,[f] = Enty[f] = Eu[f log f] - Elf1log(ELlf]),
and the Kullback-Leibler (KL) divergence as

d
Dialv | )= Ent, |52 .

Definition 25 (Entropy contraction). We say a Markov kernel « from € to €’ has (1 — p) contraction
of p-entropy w.r.t. a distribution p on Q if for all measures v absolutely continuous w.r.t. 1 we have

Dyvr || px) < (1= p)Dp(v || p),

or equivalently, assuming «” is the time-reversal of x w.r.t. y, if for all density functions f on (),
EntﬁK[K'f] <(1-p) Entﬁ[f].

We will use the following useful characterization of shrinkage of ¢-entropies under «:
Proposition 26. Suppose that v is a measure absolutely continuous w.r.t. a probability measure u on Q, and
Kk is a Markov kernel from ) to CQ)'. Then

D dv p d(VK) dv
) Ceeldv] Lo [dO) | ¢ v
Dyl 1) = Dy(vi || ux) = Ent,, [dy] Ent“"[d(yk)] = By [Ent“"<>y[du” '

d(vk)
d(px)

Do(vie || px) = Enti [1'f] = Euclp 0 K1 = p(vi(Q)) = Byl 0 &' f] = p(v(Q)),
where we used the fact that vk(Q’) = v(Q). Similarly, we can write
Dy || ) = Entf[f]1 = Eul@ o f1 - ((Q)) = By [Exiy ) [@ © f1] = p(v(Q)).
Subtracting we get
Do(v Il ) = Dy | 15) = By [Every o © F1 = 90 F )] = By [ Ent?, 171]

which finishes the proof. O

Proof. Let f = Z—;. If k¥’ is the time-reversal of k¥ w.r.t. i1, we have

=«'f,so

4 f-divergence is more commonly used in the literature, but for consistency with @-entropies, we use ¢-divergence.
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Note that Proposition 26 implies this difference is > 0 for convex ¢, since Ent? is always > 0. In
other words, we always have (weak) contraction of p-entropy with p > 0. This is known as the
data processing inequality. Using Proposition 26 we can write (1 — p) contraction of p-entropy in a
useful form in terms of density functions:

Proposition 27. Suppose i is a probability measure on Q and « is a Markov kernel from € to (). Then we
have (1 — p) contraction of g-entropy iff for all densities f,

Ey~ux [EntZlKDy [f]] >p- Entﬁ[f].

Remark 28. Entropy contraction for a Markov kernel « and all probability measures p is referred to
as a strong data processing inequality [see, e.g., ]. In this work, we are concerned primarily
with entropy contraction w.r.t. a fixed probability measure p.

We now prove an important concavity property of the p-entropy decrement.
Lemma 29. Let k be a Markov kernel from Q) to (', and let f be a density function on Q). The following
functional on distributions u is concave:

i [Ey~w< [Entﬁ@y [f]] :

In other words, if we have a mixture decomposition for u, given by u = Eg~x[ue], then

e 1] B, 1]

Proof. A mixture decomposition can be described by a Markov kernel y such that © = py, and
te = i | y > 0. This means we can write the r.h.s. of the desired inequality as

P — ¢
Eo~uy [[Ey~(u|y>9)1< [Ent(y|yl>9)|1<l>y [f] ] ] = By~ux [[E9~(#|K>y)y [Ent(y|7<l>y)|yl>6 [f]] ] :
Here we switched the order of expectation by using the fact that both sides take expectation w.r.t.

(y,0) ~ u-(x xy). For each y, by applying Proposition 26 to the distribution p’ = u | ¥ > y and
Markov kernel y, and using nonnegativity of Ent?, we get

Ent’ [f] 2 Eg-yy [Entj,w[ f]] .

Taking expectation w.r.t. y ~ ux, and expanding u” = u | x > y finishes the proof:
¢ '
[EyN.“K [Enty|1<l>y [f]] 2 [EyNFK [[E6~(.U|K‘>y)7/ [Ent(p|1<l>y)|yl>9[f]]] ) M

2.3 Functional inequalities and mixing

Glauber Dynamics and ATE. Our results for the Glauber dynamics go via establishing a
fundamental information-theoretic inequality called Approximate Tensorization of Entropy (ATE). Let
Q=0 x---Q, be aproduct space. For i € [n], define the Markov kernel D.; as one that maps
x =(x1,...,x,) € Q deterministically to x.; by erasing its ith component, i.e.,

X~i = (xlr sy Xie1, ®/ Xitlseoey xn)-
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Definition 30 (Approximate Tensorization of Entropy, [ ; ). Let u be a probability
measure on R"”. We say u satisfies Approximate Tensorization of Entropy (ATE) with constant C if
for every other measure v absolutely continuous w.r.t. p,

DxL(v|lp) <C Z Exwv [Dxe (v | Dai > x2) || (u| D2y > x20)) ],
i=1

or equivalently, for all nonnegative functions f,

Enty[f]1< C ) Exeu[Entyp_or [f]] -

i=1
This inequality has a third equivalent reformulation. It asserts that

1

z)KL(VDn—m—l ” #Dn—m—l) < (1 - Cn

)z)mv I

where D,,_,,—1 is the Markov kernel that picks a coordinate i € [n] uniformly at random and erases
it (“down operator”), i.e., the average of D.1,...,D.;. This can be seen from the equivalence
described in Definition 25.

ATE is a very strong functional inequality, which yields an array of useful consequences “for free”
once established. We do not go into full details about all of these consequences because we do not
explicitly need them in this work, but give a brief overview below. They are fully explored in the
references (with additional important references to prior work). First, we recall its implications for
concentration of measure and mixing;:

Proposition 31 (Fact 3.5 of | 1). If ATE for measure u holds with constant C then:

1. The MLSI (Modified Log-Sobolev Inequality) for Glauber dynamics holds with constant 1/Cn.

2. As a consequence of the MLSI, on a discrete space, defining (imin = min{u(x) | x € supp(u)}, the
e-mixing time is O(n(loglog(1/min) + log(1/€))).

3. As a consequence of the MLSI, a Wy entropy-transport inequality holds with constant C and this is
equivalent to subgaussian concentration of Lipschitz functions with constant C and with respect to the
Hamming metric.

4. As a consequence of the MLLSI, the Poincaré inequality for Glauber dynamics holds with constant 1/Cn.

5. If u is defined on a discrete space and additionally b-marginally bounded, i.e., Px-,[X; = x; | X.; =
X~i] > b for all x, then the log-Sobolev inequality for Glauber dynamics holds with constant Op(1/Cn).
This is furthermore equivalent to hypercontractivity of the semigroup.

Here are some other useful consequences:

1. As a consequence of the MLSI, reverse hypercontractivity for the Glauber semigroup holds
with an appropriate constant [ I

2. As a consequence of the Poincaré inequality, u"°™ is C-spectrally independent [ I
Spectral independence is defined below in Section 2.5.

3. If ATE holds uniformly over all external fields (which is the case for all of the results in this
paper), then spectral independence holds under all external fields by the previous point,
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which is equivalent to fractional log-concavity of the generating polynomial (see Section 2.5).
In turn, this implies entropic independence/subadditivity of entropy/Brascamp-Lieb type
inequalities [ ; ]

4. Block tensorization of entropy holds with an appropriate constant — see [ ] for details.

5. ATE yields non-asymptotic bounds on the statistical performance of pseudolikelihood
estimation [ ; ].

6. ATE yields strong guarantees for identity testing in an appropriate oracle model [ I

7. For bounded degree and marginally bounded graphical models, ATE yields KKL and
Talagrand isoperimetric inequalities [ I

8. On the hypercube {+1}", ATE implies the log-Sobolev inequality for a different continuous-
time dynamics: the inequality concretely takes on the form Ent[f] < C };||d; \/7 ||§ with
2ig(x) = g(x1,...,xi—1,+1, Xis1, ..., xn)—g(x1,...,xi-1,—1,Xiz1, ..., Xn). The corresponding
semigroup can be understood as a variant of Glauber with a variable transition rate (that can
become much larger than one in some situations). This type of inequality was studied in,
e.g.[ ; ];see [ ] for more discussion.

Riemannian Langevin dynamics. Just like in Euclidean space, the Langevin diffusion on a
Riemannian manifold is a continuous random walk. Given a probability distribution with relative
density du o ef("dx on the manifold, the corresponding Langevin dynamics to sample from p can
be written as the solution of a manifold-valued stochastic differential equation:

dX; = gradf(X,)dt + V2dW,

where grad denotes the Riemannian gradient, and W; is Brownian motion on the manifold. See
[ ; ] for more about this equation and discretization schemes, and [ ] for a textbook
treatment of stochastic calculus on manifolds.

For our results, all we need to know about this process is the form of the log-Sobolev inequality for
the Langevin semigroup when the manifold is a product of » many N — 1 dimensional spheres. As
a special case of the general definition, we say the log-Sobolev inequality for the manifold Langevin
dynamics for distribution u holds with constant C if for all nonnegative functions f,

Ent,[f] < C Z E, [Hgfadi\/fﬂz] , 5)
i=1

where grad, is the spherical gradient w.r.t. site i. This is the same inequality studied in the previous
work [ ] on the O(N) model. Via the Herbst argument, it implies subgaussian concentration of
Lipschitz functions. See [ ; ] for more background on the log-Sobolev inequality and
diffusion processes.

2.4 Stochastic localization

Given a measure vp on R”, a standard n-dimensional Brownian motion W; and an adapted process
C; valued in positive semidefinite n X n matrices, define the Stochastic Localization (SL) process to be
the solution to the stochastic differential equation (SDE)

dFt(X) = Ft(X) . <X — mean(vt), Ctth), (6)
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where dvy = Fydvg and Fy = 1. See, e.g., [ ; ; ] for the proof of the existence and
uniqueness of this SDE for a sufficiently regular process C; — in this work, we will only need the case
where the driving matrix C; is constant. The stochastic process v; is a probability-measure-valued
martingale, which means that v;(A) is a martingale for any measurable event A.

We will use the following Gaussian channel interpretation (see [ ; ]) of stochastic
localization with a time-invariant driving matrix.
Theorem 32 (Theorem 2 of | D). Let C be a positive definite n X n matrix and v a distribution over

R"™. Let X* ~ vy, let B; be an independent standard Brownian motion, and define
Y = X" + C_lBt.
Define dv; = F;dvy where the Radon-Nikodym derivative F; is defined so that E,[F;] = 1 and

Fi(x) o exp (C2yt,x>—%(x, 2.

Then there exists a Brownian motion W; adapted to the filtration generated by the y; process such that Fy is a
solution of the SDE (6) with C; = C.

In this setting, the SL process is closely related to the Follmer drift (see, e.g., [ 1) and the
Polchinski (renormalization group) equation, see [ ; ]. We remark that in Ising models,
if we look only at time t = 1 and choose driving matrix C = J/2, then y; is just the output of the
Hubbard-Stratonovich transform.

Entropic stability. We also need to use some results concerning the key concept of entropic stability
which we now recall. As a reminder, entropic stability itself arises as a generalization of the
concept of entropic independence [ ], well-suited for simplicial localization schemes, to
other linear-tilt localization schemes [ I. In particular, it tells us the exact analogue of entropic
independence for stochastic localization.

Definition 33 (Exponential tilt). Given a probability measure u on R”, we let 73, denote the
exponential tilt by w. This is the probability measure with Radon-Nikodym derivative

ATy u
du

(X) o e(w,x)

provided that E, -, [e<w'x>] < 00,

In the literature, an exponential tilt is sometimes called an external field.

Definition 34 (Entropic stability, Definition 29 of [ I). For u, a probability measure on R", a
function ¢ : R" X R" — Ry, and a > 0 we say that u is a-entropically stable with respect to 1 if for
every w € R", the exponential tilt 7, u exists and

¢ (mean(75 ), mean() < a D (T || p).

Entropic stability with respect to a quadratic functional induced by the driving matrix implies the
following conservation of entropy estimate for stochastic localization.

Proposition 35 (Proposition 39 of [ I). Let v; be the stochastic localization process with driving
matrix Cy, and suppose that for some T > 0 and almost surely for all t € [0, T] that v; is a;-entropically
stable with respect to the function Y (x,y) = 3||C¢(x — y)||3. Then for all nonnegative functions f,

T
E[Ent,,[f]] > exp(—‘/0 atdt) -Enty,[f].
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The following connects entropic stability with the covariance matrix of tilted measures.
Lemma 36 (Lemma 40 of [ 1). Let u be a probability measure on R", and let A and C be positive
definite matrices. If cov(Tpu) < A for every w € R", then u is a-entropically stable with respect to

¥(x,y) = 3IC(x =3 for @ = [|CACl|op.

The property of having bounded covariance under all tilts is known as semi-log-concavity [ I
it is a weakening of the assumption of strong log-concavity of probability measures on R" due
to the Brascamp-Lieb inequality [ ]. This property is equivalent to the assumption of the
previous lemma after an appropriate change of basis, and weaker than fractional log-concavity of
the generating polynomial defined in the next section.

Definition 37 (Semi-log-concavity). Let u be a probability measure on R". We say that u is
B-semi-log-concave if cov(7y, 1) < BI for every w € R".

Related to semi-log-concavity, defining the following semigroup on probability measures will
simplify the notation in several of our arguments. It is related to the action of the heat semigroup
on the Fourier transform, but it is nonlinear due to the presence of the normalization factor. Note
that it commutes with the exponential tilt operation 7, and that it acts as the identity operator for
measures whose support lies on a sphere of constant radius.

Definition 38. Given a probability measure i on RN and s € R, define probability measure G; u by
its relative density

dGs

dy

assuming that the integral defining the normalizing constant exists (this is automatically true when
s > 0).

£ (x) o exp(=s]|x[|2/2)

Supermartingale property of relative entropy. Finally, we give an application of Lemma 29 in the
context of stochastic localization. We will use this along with entropic stability to prove entropy
contraction (i.e., approximate tensorization of entropy) estimates for down-up walks as well as
the polarized walk. The very general form of the estimate is crucial for the latter application. For
the Glauber dynamics, this was previously observed for the variance functional in [ ],and a
special case of this result with entropy was previously used by Lee [ ] to prove approximate
tensorization of entropy estimates.

Lemma 39. Let v; be the stochastic localization process with driving matrix C;. For all Markov kernels x
and nonnegative functions f, the stochastic process (indexed by time t > 0)

[|Ey~w,< [EntV,|K|>y [f]]

is a supermartingale. Equivalently, for all 0 < s < t we have

[E[[Ey~w< [Entvt|1<l>y[f]] | ﬁ] < [Ey~v51< [Entv5|1<l>y[f]] ’

where F is the filtration generated by the underlying Brownian motion in stochastic localization.

Proof. By the martingale property of stochastic localization, we have the mixture decomposition
vs = E[vi | 751,

so the result follows immediately from Lemma 29. O
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2.5 Geometry of polynomials

Definition 40 (Strongly log-concave polynomials [ ). We say that a multivariate polynomial
f € R[z1,...,z,] with nonnegative coefficients is strongly log-concave if for each of its derivatives
g =di, -+ dj f, either ¢ =0, or log g is concave over R ..

When f is homogeneous, strong log-concavity is equivalent to complete log-concavity [ ,
Theorem 3.2], also known as Lorentzianity [ , Theorem 2.30]. See, e.g., [ ; ;
; ] for more background.

We now recall a few key facts we will need about strongly log-concave polynomials. We specialize
some facts to the homogeneous case since this is what we will use in this paper.

Proposition 41 (Proposition 2.7 of | ], Proposition 5.1 of [ ). A homogeneous bivariate
polynomial f(y,z) = Yp_, cky™ *z¥ is strongly log-concave iff its coefficients form an ultra log-concave
sequence, that is {k | cx > 0} is a contiguous interval of integers, and forall1 < k < n —1,

2
c Ck-1 €
( Tk ) > kn 1 kn+1 '
®) 6 G
Recall that the elementary symmetric polynomial ey in variables z1, . .., z, is

ex(z) = Z l_[zi.

Se([’;]) i€S

The elementary symmetric polynomials play a key role in polarization, which we define next.
Polarization was first studied in the context of stable polynomials, i.e., polynomials that are root-free
in a half-plane of the complex plane [ ].

Definition 42 (Polarization). Suppose that g = > e71 ca [1iL, z;" is a polynomial that has degree
at most x; in variable z;. Define the polarization of g to be the multi-affine polynomial in variables
(zij) for i € [n] and j € [x;] defined by

n

polar (g) = Z cs l—[ em(zilxj;i- -y ZiKi)'

o i=1 (a,-)

When « is clear from context, we simply drop it and write polar for polarization.
Proposition 43 (Proposition 18 of [ A ). If a homogeneous polynomial g is strongly
log-concave, then so is its polarization polar,(g).

Strong log-concavity and similar properties of polynomials extend to distributions through the
concept of generating polynomials.

Definition 44 (Generating polynomial). If y is a probability distribution on 2["l, we define its
generating polynomial to be

gﬂ(zl’ N ,Zn) = [ESN‘u

1—[] =Y ws [

ieS ScCln] ieS

Next, we define a generalization of strong log-concavity.
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Definition 45 (Fractional log-concavity). For a € (0,1], we say a multi-affine polynomial g €
R[z1,...,z,] with nonnegative coefficients is a-fractionally-log-concave (a-FLC) if log g(z{, . . ., z};)
is concave on RZ,,.

We note that if a multi-affine g is a-FLC, so are its derivatives, since they can be derived as limits:
dig = lim g/z;.
Zj—00
In particular, for multi-affine polynomials, 1-FLC is the same as strong log-concavity. We say a
probability distribution on 2/l is a-FLC if its generating polynomial is a-FLC.

Definition 46 (Homogenization). For a multi-affine polynomial ¢ € R[zy, ..., z,], we define its
multi-affine homogenization to be gh"m € R(z1,...,24,21,...,2Z,] defined as

hom = =\ _ = _ Z1 Zy
g (zl,...,zn,zl,...,zn)—zl~~-zng(_—,...,_— .
Z1 Zy

Similarly, for a distribution y on 2I"l, we define u"™ to be the distribution whose generating

polynomial is gi°™. In other words, uhom will be a distribution supported on (") ¢ 2lula],
where for each S C [n] we let

phom({i|ieSyu{ilig¢S}) = u(s).

We will also often deal with distributions uy on {+1}". Identifying {+1}" with 2011 we define the
generating polynomial of such a y1 as

gp(zlr---/zn):[Ex~p[ l_[ Zl} = Z [J(x) 1_[ Zi,

ixj=+1 xe{x1}" ixj=

and its homogenization as

gﬂom(zl,.. yZn, 21, ., 2n) = X~#[ n Zj - n zl] Zy(x) 1_[ Z 1_[ Zj.

1x;= ixj= ixi= ixi=—1

We also associate another homogeneous multi-affine polynomial with u by first homogenizing with
a single additional variable, followed by polarization:

polargﬂom(m, e Zn,Y,...,y) = polarE,

| = ]_[ Zi]

iZX[:1

elilxi=—13| (Y1, - -, Yn) }
= [Ex~yl : Zi| -
|

We define the corresponding distribution as the polar homogenization of v.

Definition 47 (Polar homogenization). For a given n, let IT denote the Markov kernel from 20n]
to ("M1A)) which maps S € [n]to SUT, where T € (n[_"ll]&") is chosen uniformly at random. For a
distribution  on 2" we call uIT the polar homogenization of u. This is a distribution supported on

sets SLUUT where S C [n]and T C [ii] and |S| +|T| = n:
u(s) _ u(s)

(s) (&)
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We extend the definition of exponential tilts, Definition 33, to distributions u on 2"l by identifying
2["1 with {0,1}" c R". In other words,
#(S) ITies e

Twu(S) =
#( ) gy(ewll‘”’ewn)

where g, the generating polynomial of u, gives us the normalizing constant. Note that a-fractional-
log-concavity is closed under exponential tilts.

Definition 48 (Correlation matrix). Let i be a probability distribution over 2I"l. Its correlation
matrix W' € R™" is defined by

Wi, j) = Ps~ulj € S| i€ S] = Psyli € S].

Definition 49 (Spectral independence). For 1 > 0, a distribution u on 2["! is said to be n-spectrally
independent if

Mmax (5 < 1.

Remark 50. The original definition of spectral independence in [ ] imposes this requirement
on u as well as all of its “links.” Here, we follow the convention in [ ] and use the term
spectral independence to refer only to a spectral norm bound on the correlation matrix of u.
Proposition 51 (Remark 70 of [ 1). A distribution u on 21" is n-spectrally independent iff

VZlog Su (zi/n, . ,z,lq/n)‘zzﬂ = (1/17)2D\Ifff’r -(1/n)D <0,

where D is the diagonal matrix with entries D;; = Ps-,[i € S]. Moreover, u is 1/n-FLC iff Ty u is
n-spectrally independent for all w € R".

With some abuse of notation, for distributions u on 211 we use cov(u) and mean(u) to denote

cov(ls) and mean(1s) where S ~ u. We note that DWW is the same as the cov(u).

Spectral independence is frequently used to obtain Var contraction rates for down kernels.
Definition 52. For a fixed ground set [n] and 0 < ¢ < k < n, we let Dy_,; denote the Markov kernel
from ([Z]) to ([?]) defined as follows: given a set S, we map it to a uniformly random subset T € (?)

For a distribution y on ([Z]), we have 11/k contraction of Var under the kernel Dy._,; iff u is n-spectrally
independent [ ,see, e.g., |

3 Trickle-down equation in linear-tilt localization schemes

3.1 Trickle-down equation

Linear-tilt localization scheme. Let vy be a probability measure. Suppose there exists a sequence
of random vectors Z; generating filtrations ; = 0(Zo, ..., Z¢) so that E[Z;11 | #¢] = 0, i.e., they form
a martingale difference sequence. Define the corresponding measure-valued stochastic process
(v¢) by its Radon-Nikodym derivative

vy
th

(x) =1+ (x —mean(v;), Zt+1).
Note that

d
E., [;—;j] = 1+ (mean(v,) — mean(v;), Zis1) = 1,
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so, provided we check nonnegativity, v¢,1 is indeed a probability measure (almost surely). To
ensure nonnegativity and guarantee v, is a probability measure, we make the assumption

Py, [(x —mean(v;), Zi41) 2 1] = 1. )
Also, observe that for any measurable set S
E[vi+1(S) | F] = vi(S),

because E[Z;+1 | F¢] = 0. So (v¢); is a measure-valued martingale.

We say this process is a linear-tilt localization scheme if additionally, for any measurable event S, v¢(S)
almost surely converges to either 0 or 1 as t — oo. This is consistent with the terminology of Section
240f [ ]. However, the calculations we perform next do not require this additional assumption.

Trickle-down equation. Now we formulate a general trickle-down recursion. Recall that we have
the following law of total variance for v;:

cov(vt) = Exuy, [x%?] = Eyey, [¥]%% = Eyoy, [x®?] — mean(v;)®?
= E[Exev,,, [x®2] — mean(vi)®? | 7] + E[mean(vs41)®* — mean(v;)®? | il
= E[cov(vts1) | Fi] + cov(mean(vesr) | F3).

Observe that by definition

mean(vi;1) — mean(v;) = Ey-,[x - (x — mean(v1), Zt41)]

= By, [x ® (x — mean(v}))]Zs41 = cov(v)Zi41

" cov(ve) = E[cov(vi) | 7] +E[(mean(vis1) — mean(v,))®? | 7]

= E[cov(ves1) | Fi] + cov(vy) E[Z82 | Ft| cov(vy) (8)
= E[cov(vi41) | Fi] + cov(ve) cov(Zisr | Ft) cov(ve)

or rearranging, we have
cov(vy) = cov(ve) cov(Zis | Fr) cov(vy) = E[cov(vesr) | Frl.

We can recursively apply Eq. (8) up to any time T > ¢ to yield the more general integral formula

T-1
cov(vy) = E[cov(vr) | Fi] + ) | Elcov(vs) cov(Zes | F5) cov(vs) | ] ©)

s=t

which will be very useful in the present work.

3.2 Examples

Example: stochastic localization. Recall first that stochastic localization is the SDE with driving
matrix C; defined as
dF(x) = Fy(x){x — mean(v;), C;dW;)

where W; is a brownian motion and dv; = F;dvy.
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For A > 0, which we will take to zero, we can parameterize time in multiples of A. The Euler-
Murayama discretization of the SDE for stochastic localization with driving matrix C; would

be
Aviea

de
where Z;.a ~ N(O, AC?). Taking the limit of A — 0, Eq. (9) becomes

(x) =1+ {(x —mean(v), Z¢+a)

T
cov(vy) = E[cov(vr) | ] +/ [E[COV(VS)CS2 cov(vs) | Ftlds (10)
t

which is the trickle-down equation for stochastic localization. To be precise, the discretized process
with fixed A > 0 is not a localization scheme since it can assign events negative probabilities;
however, it is a valid localization scheme in the limit A — 0. For completeness, we include a more
formal proof of Eq. (9) below.

Theorem 53. Let vo be a probability measure on R" and let (v;)>0 be the stochastic localization process
with driving matrix C;. Then Eq. (10) holds for any 0 < t < T.

Proof. This is the same proof as above, except executed rigorously in the limit A — 0 using stochastic
calculus. It is also a standard calculation in the literature on stochastic localization, see e.g. [ ].
We have

dmean(v;) = Exy, [x - (x —mean(v;), CtdWi)] = Ex~y, [x ® (x — mean(v;))|CrdW; = cov(v;)CrdWy.
Applying the Ito6 formula, we get

d(mean(v¢)®?) = cov(v;)C? cov(v;)dt + mean(v¢) ® (d mean(v;)) + (d mean(v;)) ® mean(v;)

= COV(V{)CtZ cov(v;)dt + martingale,

where martingale denotes a pure diffusion term, i.e., one with no drift. Since cov(v¢) = Ex~y, [x®2] —
mean(v;)®?, and E,-,,[x®?] is a martingale, we have

d cov(vy) = d Exvy, [x®2] — d(mean(v;)®?) = martingale — cov(v;)C? cov(v;)dt.
Integrating and taking the conditional expectation, which cancels the martingale terms, it follows

that forany T > ¢,

T
cov(vy) = E[cov(vr) | F¢] +/ [E[cov(vS)Cf cov(vs) | Ftlds
t
as claimed. n

Example: pinning in set systems (pure simplicial complex). Suppose that v is a probability
measure on ([z]) which we embed in {0,1}" c R" by mapping S € ([’;]) to 15. Following the
high-dimensional expanders paradigm, we can naturally define a sequence of measures in the
following way: let S ~ vy, let (ay, ..., ax) be the elements of S ordered according to a uniformly
random permutation, and for t € {0, ..., k} define

v =vo | Dkt > {a1, ..., as},

where Dy_,; is the down kernel from Definition 52. In other words, v; is the posterior distribution
of T ~ vg given the observation {ay,...,a;} C T. We can optionally define v; = vy for every t > k to
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be consistent with the definition of localization schemes. Also, it is worth noting that the “link” in
high-dimensional expanders terminology will not be v;, but the law of S \ {a1,...,a:} for S ~ v;.

This is a linear-tilt localization scheme® w.r.t. the filtration 7; = o({a1, ..., a;}). This is because

vi(T) - a1 € T] Matr1 € T] = Prey,[ar41 € R])
Prv.[at+1 € R] Prv[a:+1 € R]
1,
=v(T)- |1+ {11 — mean(v;), s >)
t(T) ( < T (vt) Prov[ae1 € K]
=v(T)- (1 + (Tt — mean(v¢), Zt+1))

vi1(T) =

= Vt(T) : (1 +

where we define Yi11 = 1,4, /Prw,[a:+1 € R] and Ziy1 = Yis1 — E[Yia | ). Here we used
(17 —mean(v¢), E[Yi41 | F¢]) = 0, which follows from Eq. (11) below and observing that for any R in
the support of v; we have (1g, Tj,]\(4y,..,a;}) = k—t, which also means (mean(v;), Tj,}\(a,

-----

From the definition of the random vectors Z;, it is clear that they generate the same filtration
¥+ as the variables a; and that they form a martingale difference sequence. We observe that the
conditional law of a;,1 given ¥; is the same as picking an element uniformly at random from
T \{ai1,...,a:} where T ~ v;. Using this we have

_ Pr-v[e € R] Te ILITITIS!
EYea | Fl= ) T PO eR T ke (1)

e€[n\a1,...,at

So
cov(Zi1 | Fr) = E[Y22 | 7] — E[ Vi | Fi]*?

= 1 . Z ﬂ;®2 _ (H[H]\{al ,,,,, ﬂ[})®2
k-t ee[n\{ay,....ar} Pr-v[e € R] k—t

Again, the vector T[,)\(a,,....a;} is Orthogonal to all 11 — mean(v;), and thus is in the kernel of cov(v;).
So Eq. (9) simplifies a bit, and we obtain the equation

cov(v;) = E[cov(vr) | F¢] + Z cov(vs)N cov(vs) | F¢] (12)

where Nj is a diagonal matrix encoding the marginals of the link at {ay, ..., as}; in other words,
N = diag(mean(vs) — T4, 43)- When we set T =t + 1, this is a familiar equation from which
the trickle-down equation of Oppenheim [ ] and matrix trickle-down [ ] can both be
derived. For the reader’s convenience, we illustrate how this works for Oppenheim’s trickle-down
in Appendix A.1. We also give another example in a similar spirit in Appendix A.2 illustrating
trickle-down of semi-log-concavity.

4 Rapid mixing of Glauber dynamics in Ising models

In this section, we prove the main result about rapid mixing of Ising models. The supporting
lemmas are given after the proof of the main theorem. Some elements of the analysis can be
done in a more general setting, but to keep the presentation concrete we hold off on making most
generalizations until the next section of the paper.

5This observation generalizes one from Section 2.4.1 of [ ] made in the context of spin systems.
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4.1 Covariance bound and approximate tensorization

Theorem 54. Suppose that v is a probability measure on {+1}" defined by

v(x) exp(%(x,]x) +(h, x))

for some external field h € R" and interaction matrix | satisfying | > 0. Without loss of generality, suppose
that the diagonal of | is constant, so there exists a such that J;; = a > 0. Let n = a/||]||op € [0, 1]. Then

llcovW)llop < gq(llTllop)

where g, : R>g — R U {oo} solves the Volterra integral equation

(@) = (1=r(nz) + [ qtuPay

where
r(a) = Eg~Ber. (tanh(0)),g~N(0,1) | tanh*(ac + Vag)] .

Furthermore, v satisfies Approximate Tensorization of Entropy with constant at most

I71lop
exp(/0 q,](z)dz) .

Proof. Let v; be the stochastic localization process with driving matrix C; = J'/? and vy = v, and
define Xy = cov(v¢). Recall from Eq. (10) that

1
L = E[5) | 7] + / E[ZJ%, | F1ds
t
so applying Lemma 57 we have
1
X < diag(1 - r(a(l -1t))) +/ E[Xs]Xs | F1]ds.
t

Define f(t) = sup,||cov(g—y,n)llop, Where pi1_4),;, denotes an Ising model with interaction matrix
(1 —t)] and external field /. Then, by considering the stochastic localization process started from
this model, we have that (1) = 1 and

1
B0) < [1=ralt = )]+ lap | BCsYs
t
so we can apply Lemma 55. Therefore

”20”0p < 7/(1)

where y(t) is the solution to (13) with K = ||]||op and f(¢) = 1 - r(at), so
t
Y(t) = [1 = rat)] + llop /O (5)2ds.
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Making the change of variables q(z) = y(z/|]llop) (i-e., z = ||]||opt) yields the integral equation

Z/”]”op z
(@) = 1= rlaz )+ Wlop [ p(6Pds = 11 =r(az/Iflep)] + [ qy(was
where we made the corresponding change of variables y = ||]||ops inside the integral. Hence

”Z‘OHOP < Eh](“]”op)

which proves the bound on the covariance matrix.

By Lemma 36, this implies that every such v is |||l opg5(|| /|| op)-entropically stable with respect to
the function ¢(x, y) = %H JY2(x - y)||§. The measure v; is a product measure and therefore satisfies
ATE with constant 1. Therefore, for any nonnegative function f

1
Ent,,[f] < exp /O gt o) Tllopdtt | E[Enty, [£1]

1
< exp /0 qU(t”]”op)”]”opdt Z [E[[EX~1~V1 [Entvl(-|X~,‘)[f]]]

1
< expl [ et ) 3 Ex o Bt 11

where in the first inequality we used Proposition 35, the second inequality is tensorization for the
product measure, and the last inequality is the supermartingale property (Lemma 39). Making the
change of variables z = t||]|| op proves the result.

O]

Lemma 55. Suppose f(t) > 0 for t > 0 and K > 0. Either there exists a unique solution for all time, or
there exists T > 0 and a solution on [0, T) to the integral equation

t
() = () + K /0 V(s )ds, a3)

such that the solution is unique and satisfies y(t) — oo as t — T. Suppose a(t) is a function satisfying

t
a(t) < f(t)+K/ a(s)?ds.
0
Then a(t) < y(t).

Proof. See Chapter 5 of [ ] — Theorem 5.3.1 establishes the comparison inequality, Theorem
5.2.1 establishes existence, and Theorem 5.4.4 establishes uniqueness. O

We recall the following basic fact.
Lemma 56. Suppose that i is a probability measure on {+1} such that u(x) o exp(hx). Then E,[X] =
tanh(h) and Var,[X] =1 - tanh?(h).

Proof. This follows from the definitions using that tanh(h) = £ e O

T oelteht
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Lemma 57. Under the assumptions of Theorem 54, let v be the stochastic localization process with driving
matrix Cy = JY2. Then for any t € [0,1],

E[Z: | ] = diag([1 - r(a - (1 = t)]ie[n))
where r is defined in Lemmma 58 and 1 = cov(vy).

Proof. We first prove the result when t = 0 and then generalize. Recall from Theorem 32 that the
measure V1 is equal in law to the product measure

p(x) ocexp({JY1 + b, x))
where Y; = X* + J7V/2G is generated by sampling X* ~ v and independently G ~ N(0, I), so that
JYi+h=]X*+h+]%G.

Hence X is diagonal and furthermore by applying Lemma 56 we have

E[(Z1)ii] = 1 = Exenyg g0, [tanh®(Ji, X*) + Ij + Vi)l < 1-r(i)

where r is defined in Lemma 58 which we applied to get the final bound. This proves the result in
the special case t = 0.

We now consider the case where t > 0. We know, either by explicit calculation or by Theorem 32, that
v¢ is an Ising model with interaction matrix (1 — f)] and external field /. Furthermore, conditional
on ¥; the measure v is equal in law to a product measure

p(x) o exp({(JY] + hy, x))

where X’ ~ v,

Y =(1-H)X" +V1-t] V¢
with G” ~ N(0, I) so that
(A=Y +h = (1= X + by + V1 - t]V2G.
Hence applying Lemma 58 in the same way proves the result in general. O

Lemma 58. Suppose that v is an Ising model on n sites with interaction matrix | and external field h. Then
forany i € [n]

Ex~v,g~n0,)[tanh®((J;, X*) + hi + VIig)l = ifb\ff(]ii)

where
r(a) = Eg-Ber.(0),g~n(0,1)[tanh*(ac + Vag)]

and Ber(z) is the law of a random variable valued in {£1} with mean z.

Proof. Using that
E[X; | X7;] = tanh(J; ~; - X7; + h;)

and considering b = (J; ~i, Xii) + h;, we can lower bound

Ex-~vp,g~n0,) a2 ((Ji, X*) + Tt + VJii@)] = Exe~vy g0 n [E[tanh®({(Ji, XY + h; +\Tiig) | b]]
> z}?ug Eqo~Ber. (tanh(b)), g~A(0,1) [ tanh*(b + Jiia + V3ig)l.

By Lemma 59, the infimum on the right hand side is attained at b = 0. O
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4.2 A monotonicity inequality via coupling stochastic localizations

In this section we prove the following lemma as a consequence of a more general construction of a
coupling of two stochastic localization processes, which we elaborate upon below.
Lemma 59. For any a > 0, the global minimum of the function t, : R — R defined by

ta(b) = Eg~Ber. (tanh(v)),g~N(0,1[tanh*(b + ac + Vag)]

is attained at b = 0.

Proof. 1t is equivalent to show that the global maximum of 1 — ¢, is attained at b = 0. Using the
Gaussian channel interpretation (Theorem 32), 1 — t,(b) can be interpreted as the operator norm of
the covariance matrix of stochastic localization initialized at the measure Ber.(tanh(b)) and run for
time a. Since tanh? is monotonically increasing on R and symmetric, the assumption of Lemma 61
is satisfied, and so the desired conclusion follows. ]

It remains to establish the desired fact about stochastic localization. Note that the stochastic
localization process used here is different from the one in the previous section (the process here is
operating on a single “spin” of the system, without interacting with the other spins). Informally,
the general lemma established below allows us to lift certain monotonicity inequalities from the
final measure arrived at in stochastic localization back to the initial measure.

The argument takes advantage of symmetry in a key way.
Definition 60. We say a probability measure y on RY is spherically symmetric if for every orthogonal
matrix R and measurable set S, u(RS) = u(S).

For example, when N = 1 spherical symmetry means that the measure is unchanged under the
reflection map x — —x. We can now state a more general monotonicity result.

Lemma 61. Suppose that 11 is a probability measure in RN which is spherically symmetric. Let T > 0.
Suppose that the following reverse monotonicity inequality holds: for any v, w € RN such that ||v|| < ||w||,

| cov(TuGrillor = |l cov(TwGrllop-

Then the following reverse monotonicity inequality holds. Let v, w € RN be such that ||v|| < ||w||. Suppose
that for h € {v,w}, the law of stochastic process u(h) for t > 0 is stochastic localization with identity
driving matrix initialized at po(h) = Tpy, i.e. initialized at

duo(h)

(h,x)
i (x) oc e\,

Then
E[ll cov(ur(@)llor] = E[ll cov(ur(w))llopr]-

Proof. This follows directly from Lemma 62, since it constructs a coupling where || cov(ur(v))|lop >
|| cov(ur(w))|lop holds almost surely (in other words, one stochastically dominates the other).
Taking expectation on both sides proves the desired result. O

Now we state and prove the crucial coupling result.

Lemma 62. Suppose that u is a probability measure in RN which is rotationally symmetric. For any v, w
with ||v|| < ||w]| there exists a joint coupling of stochastic processes pi¢(v), u¢(w) indexed by t > 0 such that:
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1. The marginal law of the stochastic process (u(v)); is stochastic localization initialized at 1o(v) = Tou
with driving matrix C; = L.

2. Likewise, the marginal law of (1 (w)); is stochastic localization initialized at uo(w) = Ty 1 with driving
matrix Cy = L.

3. There exist adapted RN -valued stochastic processes vy, wy such that uy(v) = 75, G, (W) = Tw, G 1L,
and ||v¢|| < ||we|| for all times t almost surely.
Proof. For simplicity, we give the proof below in the case that 1 is a measure on a discrete set, but

the same argument works in general with only minor changes.

The construction is a multi-step process. First we construct u(v) for all times as stochastic localization
driven by an N-dimensional Brownian motion W;. Recall that the definition of stochastic localization
driven by Brownian motion W; is that

dp (v)(x) = i (v)(x){x — mean(u;(v)), dW;)

so that by Ito’s formula
1
dlog i (0)(x) = x — mean(yu (v), W) — 5| = mean(yu (0)]|dt
1 1
= (x, dWp) + (x, mean(gu (0)))dt — 5 |x]1%d — | mean(us(0))|%dt ~ (mean(p (0)), dW).
where we note that the last two terms are independent of x. Hence if we define v; by vy = v and

dv; = dW; + mean(u;(v))dt then we have u;(v) = 75, G: .

Now to construct u¢(w), let B; be an independent N-dimensional Brownian motion and construct
u¢ and w; in the same way as stochastic localization driven by Brownian motion B, for all times ¢
up to stopping time

©=inf{t 2 0: [[vsl] = [lwe]]}.

Observe by continuity that |[v.|| = ||w.|| almost surely since initially ||v]| < ||w]||. From time
onward, we define u;(w) in the following way. Let R be an orthogonal operator such that Rv; = w,.
For t > 1, define

B} = R(W; = Wp)1[t > 1] + Bmin(t, )

and observe that the law of the process B; is that of a standard N-dimensional Brownian motion.
Now for all times t we can define

dpy (w)(x) = py(w)(x)(x — mean(u;(w)), dBj)

to be the stochastic localization process driven by Bj, which extends the definition we gave before
past the stopping time 7. Similarly, we can now define for all times that w; is the corresponding tilt
given by the SDE dw; = dB; + mean(u;(w))dt.

On the other hand, for t > 7 observe that
d(Rvs) = Rdvy = RAW; + Rmean(7,,G: ) = dB; + mean(Tro, G 1t)

by Lemma 63. This is exactly the SDE defining w;, so by standard uniqueness theory [ ] we
have that w; = Ro; fort > 1.

In conclusion, from the definition of the stopping time we have that ||v;|| < ||w|| for t < 7, and by
our construction above we have that ||v¢|| = |[w;|| for t > 7. This proves the final claim. O
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Lemma 63. Suppose that u is a spherically symmetric distribution in RN. Then for any orthogonal matrix
R and vector v € RN such that T, u exists, R mean(7, 1) = mean(7g, V).

Proof. Expanding the definition, we have that

Rmean(Tyu) = Zi/Rxe@'x)dy(x)

[

1 _
"7 / ye K W dy(y)

:ZLU/W(Rv,y)dy(y)
= mean(Trop)

where Z, = f e{“¥) du(x) is the (rotationally invariant) moment generating function, in the second
step we made a change of variables y = Rx and used rotational invariance of y i.e. du(Rx) = du(x),
and in the third step we again used that R is an orthogonal transformationi.e. (v, R"'y) = vTR™ 1y =
vTRTy = (Ro,y). O

5 Rapid mixing of Glauber dynamics in spin systems over semi-log-
concave base measures

In this section, we establish a version of our analysis for spin systems where the base measure is
semi-log-concave. This greatly generalizes the setting of the Ising models. The general result is
generally less tight than specializing the technique to the particular measure of interest, but as we
will show the result is easy to apply, and interestingly the resulting integral equation often admits a
closed-formula solution.

We will need to use the following standard notation in the argument: A ® B denotes the Kronecker
product of matrices A and B. Explicitly, if A is a matrix of dimension m X n then

AnB -+ AyuB
A®B=| - ol
AmB -+ AuuB

Theorem 64. Suppose that i = R)'—, ¥ is a product measure where each u" is a probability measure on
RN. Let ] > 0 with J;; = a forall i € [n], and define the measure v by its density

dv 1
@(X)OCQXP Eizjhj(xi,xﬁ :

Let n = a/||J|lop. Suppose that for all i € [n]and s € [0, a] the measure Q_Sy(i) defined by

dG-su

(x) o exp(s]|x]|*/2) (14)

exists and is p(s) > 0 semi-log-concave. Then || cov(v)|lop < qne(ll]llop) where q;,, solves the integral
equation

— 1 : 2
100 o+, el 19
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and ATE holds with constant at most

lJllop
exp /0 qnp(2)dz| .

Remark 65. The assumption that the reweighted measure (14) is p(s)-semi-log-concave lets us obtain
much better results than if we only assume p(0)-semi-log-concavity for u”. For example, if u(*)
is y-strongly log concave, then this assumption is satisfied with p(s) = % by the Brascamp-Lieb
theorem [ ]. In fact, the same bound holds for all y-semi-log-concave measures, see Theorem 102.
In our main applications, p is constant, which is much better than the generic guarantee, and also
in this case we will show that the integral equation is analytically solvable.

In the next sections, we prove this theorem and also show how to derived the aforementioned
analytical solution.

5.1 Decoupling argument for stochastic localization

Our analysis of the Ising model involved a key reduction from arguing about a joint stochastic
localization process to a more tractable single-site stochastic localization process. As a first step in
our argument, we revisit this idea and formalize it as a general decoupling principle.

Lemma 66. Suppose that = X);_, u\") is a product measure where each %) is a probability measure on
RN. Let | > 0 with J;; = a for all i, and define the measure vq by its density

dVQ 1
W(x)ocexp E;]ij<xi,xj> .

Let vy for t > 0 be the stochastic localization process with driving matrix C; = (J ® I N2, and fori € [n]

@ _ Lx,(X;i) denote the (random) marginal law of X; under v;. For every i € [n] there exists a

t .
probability measure A; on RN such that the marginal law of the random measure ng) satisfies

() =L ()

is constructed as follows:

let v

where the random measure 17(11)

1. Let Hi ~ Ajand W; = (Wi,t)t is a standard Brownian motion in RN independent of H;.

2. Let
~ (i)
VO . %2 *
dy(i)(xi)ocexp(]iillxill +(Hj, x7)).

3. Then, (ﬁgi))tzo is the stochastic localization process generated by W with driving matrix C; = JiiIn
starting from ~g).
Furthermore, we have the following block-diagonal decomposition of the average covariance:
E [cov(f/gl))]

E[cov(v1)] =
E [cov (17(1”))]
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Proof. The first step is to apply Theorem 32 — let By and W; be the Brownian motions defined there.
By Theorem 32, at time one stochastic localization cancels out the quadratic term in the log-density
yielding

%(x) oc exp (((J ® In)y1, x))

where y; = X" +(J®In)~ 1/2B; € RN" and X* ~ . Defining h! = (J® Iy)y1 and writing hl = (h})?zl
we have that for any i € [n]

hi = ZL‘;‘X; +VIiGi
=

where G; = (31_)1 ~ N(0, Iy) is independent of X*. Furthermore,

Define H; = Z]-# ]inj* so that
hi = H; + JiX; + V]iiGi.

Let 7% denote the conditional law of X* given H ; and observe that its relative density with respect
0 i g y p
to the base measure is
d~(1)

d (i) (x ) o exp (]11||x ”2 + (Hz,x ))

Let ﬁii) be defined as the stochastic localization process with driving matrix Ci = Jiln generated by
a fresh N-dimensional Brownian motion W;. By appealing to Theorem 32 again to determine the

law of v( ) conditional on H i, we find that the two constructions of random measures on spin i via
stochast1c localization have the same conditional law:

L0y | H) = LGV | Hy.
Taking the expectation over H; yields the stated equality in law, where A; is the law of H;. From
this, the equality in covariances follows since v1 is a product measure. O

5.2 Proof of covariance bound and approximate tensorization

The decoupled stochastic localization process can be controlled using the following lemma.
Lemma 67 (Eqn. (16) of [ ). Let u; be the stochastic localization process initialized at g with
time-homogeneous driving matrix C; = Q. Then

E[Q cov()Q] = (H + (Q cov(up)Q)™) ™

Note that this result upper bounds the average covariance matrix at time ¢ by a function of its
covariance at time 0 — so in a sense, if the trickledown concept is based upon backwards induction,
this inequality is a complementary application of forward induction. The lemma has a short proof
by combining Gronwall’s inequality with the SDE for the covariance matrix. See also [ ]fora
related proof of this lemma without direct reference to stochastic localization.
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Proof of Theorem 64. Some steps in this proof are similar to the analysis for the Ising model, so we

elaborate in the most detail on the parts which differ. We view the spin system as a distribution

on RN" and let v; be the stochastic localization process with the time-invariant driving matrix
= (J ® Iy)"/2. By Theorem 32, or by a direct computation, this yields

dv 1-t
d—yt(x) o< exp| (he, xi) + —— Z]z’j(xi,xj>)
i
for some adapted process /; in RN". Recall the trickle-down equation

1
cov(vy) = E[cov(vy) | F] + / E[cov(vs)] cov(vs) | Filds
t
and applying the triangle inequality yields

1
| cov(vi)llop < [|E[cov(vi) [ Ftlllop +/t I E[cov(vs)] cov(vs) | Filllopds.

By the decoupling argument from Lemma 66, the covariance matrix of v; is block-diagonal, and
each block can be reinterpreted as the covariance resulting from running stochastic localization with
identity covariance in RN for time J;;(1 — t) starting from the measure G_j,,1-»u”. By Lemma 67
and the assumption that J;; = @ we get that for each i, the corresponding block of the covariance
satisfies

E[cov(v1(X; =) | F¢] < [04(1 — I +cov(vi(X; =) ] !

I
oc(l t)y+1/p(a(l —1t))
where in the last step we used the semi-logconcavity assumption. We therefore have the inequality

1 1
a(l—t)+1/p(a(l —t)) + ”]”OP/t E[l Cov(vs)”ép | F11ds

As in the argument for the Ising model, by considering at every time the worst-case value of
|| cov(v¢)|lop and making a comparison argument, this yields the inequality || cov(v¢)||op < f(f)
where f solves the integral equation

| cov(vi)llop <

1 LR
£ = =iy tWor || s
Recalling that 7 = a/||]||op, so a = 17||]||op, we can rewrite this as

£) = 1 IJllop(1-t) t s
ft) = nllfllop(1 =) +1/p(a(l - t)) +/0 ft+s/ll]llop)ds.

Letting z = [|Jllop(1 — £) and gy,p(z) = f(1 - z/||]llop) yields
np(z) = f(1 - Z/||]||op)

T (-1 - 2
’72+[p(7]z) /f(l (z=s)/lIJllop)“ds

2
Tzt P(UZ) / Tnplz = 8)°ds

v [p(nz)] = /0 npls)ds

Approximate Tensorization of Entropy (ATE) follows from the covariance bound in the same way
as in the Ising case (using entropic stability and the super-martingale property). O
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5.2.1 Aside: A general distribution-specific bound

In some cases we expect to obtain tighter results by avoiding the generic bound from Lemma 67,
e.g. as we did in the Ising case. In this spirit and for completeness, we record the following result
which follows from the ideas we have already explained. Although computing the bound reduces
to evaluating quantities which are independent of the number of spins #, in practice it may not be
as easy to apply as the bound based upon semi-log-concavity. We do not build upon this result in
the remainder of this paper.

Theorem 68. Suppose N > 2,1 > 1 and that v is the probability distribution on RN" with density

dv 1 &
@(X)OCGXP > Z ]ij(xi,xj>+;<hi,xi>

1<i,j<n

with respect to the probability measure u = ®!'_, uo where g is a probability measure on RN. Here | and h
are parameters and we assume the interaction matrix | satisfies | > 0. Suppose, without loss of generality,
that the diagonal of | is constant, so there exists a such that J;; = a > 0. Let n = a/||]||op € [0, 1]. Then

llcov(v)llop < G0 (Il op)

where gy, : R>0 — R U {oo} solves the Volterra integral equation

qu,uo(z):ruo(UZ)Jf/O o0y dy,

where

Tu(t) = sup [Exwy,g~A0,D) [Cov(g—t(];ﬁxﬂ/?gxuo)]

beRN op

Furthermore, Approximate Tensorization of Entropy (ATE) is satisfied with constant at most

171lop
exp(/O q,,,N(z)dz) .

Proof. The proof is the same as that of Theorem 64, except that we do not apply Lemma 67 in which
case the quantity r,,, remains in the final bound. O
5.3 Analytical solution using the Riccati equation

The following argument allows us to explicitly solve the integral equation in many cases of interest,
where the semi-logconcavity bound is constant.
Theorem 69. Suppose that the assumption of Theorem 64 is satisfied for a constant function p(s) = p > 0.
Then the solution of (15) exists, and is finite and unique, for z € [0, s(n)/p) and is given by
qU,p(Z) = PQn(PZ)

where Q;, : [0, s()) — Ry is given by

—/\1/\%(7]2 + 1)A1_/\2 + A%/\z
Az + D=4t — A2(nz + 1)’

Qq(z) =1
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Figure 3: Plot of s(n) as a function of 1 varies from 0 to 1. The function is very close to, but not
exactly, affine on this domain.

with A1 > 0 > Ay the two roots of the quadratic equation nA?> — nA — 1 = 0, explicitly

N+ R R

M=M= 2 , Ay = Aa(n) = 2 ,
and where [ RO
W= Ur ‘1]
Proof. In this case we have .
p(@) =+ [ (o 6

We now show how to exhibit a solution of this equation (we already know it will be unique, see
Lemma 55). Differentiating with respect to z yields

’ -1 2
=—+ :
qn,p(z) (T]Z + p_l)z %,p(z)
This is a Riccati equation so we can solve it by making an appropriate substitution (see e.g. [ D.

Explicitly, making the substitution g, , = —u’/u yields a differential equation

d%u nu

dz? (nz +p71)? B

Making the substitution x = log(npz + 1) and simplifying yields the differential equation
nu” —nu' —u=0.
We can guess particular solutions by observing that u = ¥ yields the quadratic equation

nA2-nA-1=0
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which has solutions
N+’ +4n
= 2
and so in general for some c1, c; € R the solution must be of the form

A

Alx

U = c1eM¥ + cpet?* = c1(npz + 1)A1 + c2(npz + 1)A2

where A1 > 0, A, < 0 are the two roots. Substituting back, this gives

—c1Ai(npz + DM = cda(npz + 1)1
c1(npz + DM + ca(npz + 12
—ClAl(T]‘DZ + 1)/‘1_)\2 —0An
c1(npz + 1YM=12+1 4 co(npz + 1)

np = 1P

Assume for the purpose of contradiction that c; = 0, then g, ,(z) = —11pA2/(npz + 1) so g, is a
solution for all z > 0 and g,, — 0 as z — co. However, from (16) we can see ¢,,,(0) = p > 0, so
the integral on the right hand side of Eq. (16) and thereby g, , are bounded below by a positive
constant for all z. By contradiction, c1 # 0.

Therefore, if we define C = —c,/c1 we can write

-A(npz + 1)A1_A2 + CA,
M Gz + )i —Clnpz +1)°

%,p(z) = (17)

In the case z = 0, we therefore have

_ _ -A1+CAy
p=a0)=np——¢
sol—-C =-nA1+Cniy, ie.
Cl4gh A
1 +T]A2 /\%

where we used that A1, A3 are roots of A2 = 1 + nA. So multiplying through by A2, we have

—/\1/\%(an + 1)A1_A2 + /\%/\2
Ad(npz + 1Yh~12* — A2(npz + 1)

qn,p(z) =1p

This formula is only valid for z from 0 to the first positive root z; of the denominator (since e.g. the
right hand side is typically infinite and therefore no longer a solution of the ODE at time z1). Since
npz +1 > 0 for z > 0, the positive roots must satisfy

(mpz + 1y = C.
So in fact there is exactly one positive root and it is given by

1
— [cV/(=A2) _q =s(n)/p.
| | =sm)/p
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6 Rapid mixing of Langevin and Glauber dynamics in O(N) model

For any N > 1, let Sy—1 be the unit sphere in RN. Recall that for N > 2, this is a connected smooth
submanifold of RN with dimension N — 1.

6.1 Covariance bounds and rapid mixing of Langevin

We start with the following result which gives the semi-log-concavity estimate.
Theorem 70 (Theorem D.2 of | ). For N > 1, define fn(h) to be the cumulant generating function
for the N — 1 dimensional unit sphere, so

fn(h) =log exp(h - s)u(dA)
sESN-1
where 1 is the uniform measure on the sphere. Then:
1. f is spherically symmetric, so fn(h) = Fn(|| h||2) where Fy : Ryo — R.
2. The function gn(h) = F},(h) solves the differential equation

gy +gn(hY + (N = Dgn(h)/h =1
on R with boundary conditions gn(0) = 0 and g},(0) = 1/N.
3. We have g{(0) = 0 and g{,(h) <0 for all h > 0. In particular, g is concave on Rx.

4. For h # 0, the eigenvalues of V2 fx (h) are gn (17ll2) with multiplicity one and gn /(|| hl2) /|| k|2 with
multiplicity N — 1. In particular, for all h we have ||V2fN||Op < maxy>o gy (k) = 1/N.
Remark 71. The differential equation defining ¢y is a Riccati equation which actually admits an
explicit solution in terms of Bessel functions. The solution can be found using the same techniques
from the proof of Theorem 69.
Theorem 72. Suppose N > 2,n > 1 and that v is the probability distribution on S | with probability

density
d 1 <
i(x) o exp(i Z Jij{xi, xj) + Z<hi/xi>)

1<i,j<n i=1

with respect to the uniform measure y on SY" . Here ], h are parameters and we assume the interaction
matrix | satisfying | > 0. Suppose (without loss of generality) that the diagonal of | is constant, so there
exists a such that J;; = a > 0. Let 1= a/||]||op € [0, 1].

Then
”COV(V)”OP < qn,l/N(””lop)

where q,, 1N s as defined in Theorem 69. Furthermore, the log-Sobolev constant of the Langevin dynamics is

at least
[11lop
Cn exp —/ qn,l/N(z)dz
0

where Cn > 0 is a constant depending only on N, inherited from [ I
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Proof. The covariance bound follows from Theorem 64, Theorem 69, and the fact that the spherical
measure is 1/N-semi-log-concave from Theorem 70.

The log-Sobolev bound also follows from an completely analogous argument (using the same
stochastic localization process as in Theorem 64, entropic stability, and the fact that the right hand
side of (5) is a martingale under stochastic localization), except that to cover the base case we appeal
to the uniform log-sobolev inequality from [ I O

6.2 Nearly linear time sampling via Glauber dynamics

Theorem 73. In the same setting as Theorem 72, the probability measure v satisfies ATE with constant at

most
1 1lop
exp /0 qni/n(2)dz ] .

Furthermore, a single step of the Glauber dynamics can be e-approximately implemented using O(log(1/€)(log n+
loglog(1 + B)) arithmetic operations, where B = max; %, |Jij| + || hill. In other words, we can sample from
a distribution that is e-close in total variation distance to the conditional distribution at the spin chosen to be
updated. Therefore, to sample from a distribution e-close to v in total variation distance, we run the Glauber dy-
namics for T = nlog(n/¢) steps and set € = +. The total runtime is O(n log(n/¢)(log N +loglog(1+ B))).

Proof. ATE follows from Theorem 69 given the semi-log-concavity bound previously established.
What remains is to discuss the implementation of Glauber dynamics.

Each step of the Glauber dynamics sample the spin x; € SN~! conditional on the remaining spins
xj being set at u;. The density nt(x;) at x; is exp((h; + X Jijuj, x;)). By applying a suitable rotation
matrix, we can assume without loss of generality that

h; + Z],-juj =bey

where b € Ry and e; is the basis vector with the first coordinate being 1 and the rest of the
coordinates being 0. By the triangle inequality, we have b < B where B is as in the theorem
statement.

If b = 0 then x; is uniformly distributed on the sphere SN~, thus we can sample x; in O(n) time.
Below, suppose b > 0. If N = 1 then 7t is a Bernoulli distribution, so sampling can be done in O(1)
time. (This is the case of the Ising model.) Below, we assume n > 2.

Let y = (x;, e1), then y € [-1, 1]. Note that if we can sample y exactly, then to sample x;, we only
need to uniformly sample from the set {u € SN=X(u, e;) = y}, which is isomorphic to the sphere
572, and this can be done in O(N)) time.

By Fact 74, the density of y induced by 7 is

n(y) o< p(y) := exp(by)(1 — yH) NI/,

Case N =2. If N =2, then we can do a change of variable by writing y = cos(0) for 6 € [-7, ).
Then p induces a density ¢ supported on [-7t, 1) defined by ¢(0) = exp(b cos(6)). We consider
the restriction @ of ¢ to [-71/4, 1/4), which satisfies the preconditions of Lemma 75 with V(0) =
b(1 - cos(0)) and V”(6) = bcos(0) € [b/V2,b] for O € [-r/4,7/4). Next, we sample from ¢ by
rejection sampling from ¢ :
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¢ Sample u uniformly from {0, 1,2, 3}

e Sample 0 € [-7t/4,7/4) from @ then output 6 = 0 + umn/2 with probability exp(b(cos(6) —
cos(0)) < 1.

This rejection sampling algorithm succeeds with probability § D f_ 7;//1 exp(b(cos(0 + um/2) —

cos(0))d0 > 1/4. Combined this with Lemma 75, we have an algorithm that runs in O(log(1/¢))
time and output a sample from ¢ s.t. drv (P, @) < €.

Case N =3. If N = 3, then the cumulative distribution of p can be exactly computed:

Yy
Fly) = [ plundu = b7 explby) — expl=b)

thus one can sample from p in O(1) time by inverse-CDF sampling. Explicitly, we uniformly sample
r from [0, F(1)] and then output the unique y s.t. r = F(y).

Remaining cases (N > 4). We now deal with the four and higher-dimensional cases. Note that
p(y) = exp(=V(y)) with

.2
> log(1 - y~)

V(y) = -by -

and observe that

(N-3)1+y3)

Y 2
VV(y) = - —3)—2—, Vv = - :
V(y)=-b+ (N 3)1 7 V(y) G-y 2 > (N-3)>0
Letc = % Observe that the unique solution to VV(y) = 0in [-1,1] is yo = —“254_6 € (0,1]. Let
V() = Vi + 10) = Vo)

and observe that V is supported on [VN —=3(~1 - o), VN = 3(1 - yo)], V(0) = V'(0) = 0 and
V”(0) > 1. Note that if y2>1- exp(—(% +b+V(y))=1-(1- yg)b(l‘yﬂ)“/2 then

1

V(y) = V(yo) = —log(1 - y*) —b - V(yo) > 5
andif y> < 1- exp(—(% +b+V(yo))) then V”(y) < 2(N - 3) exp(Z(% +b+V(yo))).
Thus, Lemma 75 applies for V with a = VN —3(-=1 - y0),b = VN - 3(1 - yo), and

’

a
=_.]1= (1 _ 2)b(1-]/0)+1/2 -1,
N3 \/ Yo Yy
b
= /1= (1 _ yZ)b(l—y0)+l/2 - Yo,
VN -3 ‘/ 0

K= 2exp(2(% + b+ V(yo))).

Note that
(N =3)2 +4b%2—- (N -3)

0<2b(1—yo) =2(b - -

)< (N -3)
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and

L C2+4+1<1+1— b +1
1_%_ 2c 27 ¢ S N-3
thus
log log(max{|a|, |b|}x) < loglog(N exp(1 +b + V(yo)))
2b(1-yo)+1
=loglog| N ( L )
1-y5
=log (logN + N log vl O(log N +loglog(1 + b))
where the second line follows from the definition of V. O
Fact 74 (Well-known, see e.g. [ I). Let p(x1) be the probability density of the first coordinate Xy

of a random vector X sampled uniformly at random from the N — 1 dimensional unit sphere SN~ in RN
centered at the origin. Then p is supported on [—1, 1] with density

pla1) o (1= )2,

In the implementation of each Glauber dynamics step, we need to sample from a distribution
supported on the sphere S"~!, which can be reduced to sampling from a log-concave distribution
supported on a real interval. The following shows how to do the latter task using a modification
of the technique in [ ]. While [ ] requires the potential function(s) to be supported
on the entire real line and to have uniformly bounded second derivative, our result only requires
bounded second derivative in a large enough interval of the support.

Lemma 75. Consider V : [a,b] — R U {xco} with 0 € [a,b]. Suppose V(0) = VV(0) = 0 and
V”’(x) = a > 0 for x € (a,b). There exists a’,b" s.t. a < a’ <0< b <bst V(x)>1/2if
x €la,a’lU[b,bland V"(x) < Bif x € [a’,b’]. Let @ be a distribution [a, b] s.t. p(x) oc exp(=V(x)).
For x = B/a, we have that:

e There exists an algorithm which runs in O(loglog(max{|a|, |b|}«)) time and with probability (1),
outputs a sample from p.

* Given any € > 0, there exists an algorithm which samples from p s.t. dry(p,p) < € in O(log(%) .
log log(max{|a|, |b|}x)) time.

Proof. Without loss of generality, we can assume a =1so that V"(x) = 1Vx € [a,b] and V" (x) < k
for x € [a’, b’]. Otherwise, we can replace V with V where V(x) = V(x/va).

We use a rejection sampling algorithm similar to in [ ]. To account for the fact that V" (x) is
only bounded above by « in the interval [a’, b’], we only need to slightly modify the proof so that
X_, x4 € [a’,b].

First, we build the envelope g, which is a distribution over [a, b], then we draw a sample from g and
accept with probability %. We only need to show that the acceptance probability of this algorithm

is Q(1). For the second claim, we repeat this algorithm O(log(1/¢€)) times and output the result of
the first successful run. If all runs fail then output a uniform sample from [a, b]. We define g as
follows.
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1. Find the first index i, € {0,1,...,[log,(0'Vx)|} s.t. V(2'+/yk) > 1/2. If i, exists, let
xy =24 /\kelseletx; = b’

2. Find the first index i € {0,1,...,[log,(—a’Vx)]} s.t. V(=2-/+/x) > 1/2. If i_ exists, let
x_=-21 /\kelseletx_ =a’

3. Let g(x) « §(x) where

exp(—5— - W) ifxela,x_]
Glx) =141 if x € [x_, x4]

exp(—% — —(x_;”)z) if x € [x4,b]

First, observe that V(x) > x2/2 for all x € R and V(x) < xx?/2 for all x € [a’,b’] thus 1/2 < V(b’) <
x(b')?/2 and 1/2 < V(a’) < x(a’)?/2. Thus min{log(b’v), log(—a’+/x)} > 0 and the first two steps
are well-defined. Sampling from q can be done in O(1) time, since cumulative distribution of g at x
is Pz.no,1)[u < Z < u’] where u, u’ can be computed in O(1) time given x_, x,,4a,b, x.

Let p(x) = exp(=V(x)). We only need to check that f(x) < j(x) and that there exists absolute
constant C > 0 s.t.

b b
CZ; =/ exp(=V(x))dx > Z; =/ G(x)dx.

To prove this inequality, by using the argument in [ ], we only need to check that x, =
@) ( fox+ f)(x)dx) and —x_ =0 ( fx (i f)(x)dx) . We will show the first inequality; the second is entirely

analogous. If i, doesn't exist, then since V is increasing in [0, b],
V(x./2) = V(' /2) < V(Uos'V0I 30y < 1/2.

If i, exists and i, > 0 then by definition of i,, V(x,/2) < 1/2. In both cases,

X x4/2
/ p(x)dx > / exp(=1/2)dx = Q(x).
0 0

The remaining case is i = 0. Note that x, = 1/+/x € (0, b’] thus

X+ 1/K 1
p(x)dx > —xx?/2)dx > — = =
/0 p(x)dx /0 exp(—xx“/2)dx e 3

The rest of the proof follows from [ , Proof of Theorem 3], since the upper bound V" (x) < «
is only used for proving the above claims. The rest of the proof in [ ] only uses V" (x) > 1,
which does hold for the entire domain of V.

O]

7 Sampling Ising models with the polarized walk
In this section, we establish guarantees for sampling antiferromagnetic Ising models on spectral

expanders and related results. Major differences from the previous sections is the use of the tools
from geometry polynomials and the closely related polarized walk rather than the Glauber dynamics.
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7.1 Estimates via geometry of polynomials

Lemma 76. Suppose that v is a measure on the hypercube {+1}" of the form

2
_r ‘
v(x) o« exp o (Z xl)
for any y > 0. The homogenized generating polynomial of v

fer .z 2=y v [z [
1

X i:xl: i:JCj=—1

is 1/2-fractionally log concave.
Remark 77. Recall that the corresponding homogenized distribution v

on ([n]g[ﬁ]). We will not need this fact, but it is worthwhile to note that Lemma 76 implies the 2-step

hom j5 a version of v supported

down-up walk on v"°™ mixes in O(n?) steps and entropy contraction of the down operator D,,_,(,—7)
w.rt. vhom je forall 7t : (["];Jm) — Rsp

2

DKL(ﬂDn—)(H—2) ” VDH_)(”_Z)) < (1 B m

)@mn 1),

D,,_,(4-2) is the Markov kernel that maps S € ([”]er[ﬁ]) to a uniformly random subset of S of size
n — 2. The 2-step down-up walk corresponds to the 2-block Glauber dynamics for v, which operates

by choosing uniformly random {i, j} € ('2)), then resampling the spin at i, j conditioned on the
remaining assignments.

Remark 78. This result is sharp. Consider n = 2,h = 0. As y — oo, v converges to the uniform
1

which is 1/2-fractionally log-concave; that it is exactly 1/2-spectrally independent can be checked
by explicitly computing its influence matrix.

Remark 79. 1t is interesting to compare Lemma 76 to the NP Hardness result from Appendix H of

distribution over [_11] and [ ] . The homogenized generating polynomial converges to z1z2 + z2Z1,

[ ]. There they show that, replacing (3; x;)* = (T, x)2 with {a, x)? in the definition of v(x), for
an arbitrary vector a € Z", results in a hard problem. More precisely, for 2 coming from the number
partitioning problem, no polynomial time algorithm can approximately sample from such a model
within a TV distance of 1/2 unless RP = NP. Thus, Lemma 76 cannot be recovered from a generic
fact about negatively-spiked rank-one Ising models — its validity has to do with the arithmetic
structure of the interactions.

One key to the proof of the result will be some fundamental facts relating the spectral independence
and fractional log-concavity of different variants of a probability measure 1, which we establish
Now.

Lemma 80. Let i : 21" — Ry be a probability distribution and ™ : 21"l — R be the complement of

w e, u([n]\ S) = w(S). Let phom - ("MIA) — R be the homogenization of . Then:
1. If pand p*™ are %-spectmlly independent then uho™ is %-spectmlly independent.
2. If wand pc"™ are a-FLC then ph*™ is a/2-FLC.
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Proof. For a probability distribution p : 2X — Ry, let mean(p) € R;(O be the vector with mean(p); =
P,[i].
We consider u, u®™, uho™ as distributions over 21, 2171 2[11Vl7] yespectively. Thus cov(u) is indexed

by [1], cov(u®™) is indexed by [i] and cov(yhom) is indexed by [n] U [11].

Because being FLC is equivalent to being spectrally independent under arbitrary tilts, the second
claim follows from the first. Indeed, for A € RV 1 « yhom = (A= y)horj‘ with A; = Ai /A; and
(A% p)OmP = A+ uOMP with A2 = % By the assumption on u and u®™P, A + u and (A * i) are 1-

spectrally independent thus the first claim implies A * ph°™ = (1 + p)ho™ i 2-gpectrally independent.
Since this is true for all A, u"°™ is a/2-fractionally log-concave.

We now proceed to prove the claim about spectral independence. First, note that cov(u) = cov(u™P)
and mean(u"°™) = (mean(u), mean(u<°™P)). Furthermore, we claim that

COV([.lhom) — [i _24]

with A = cov(u). To see this, observe that P hom [i] = Puli], P hom [i] = Pycomp[i] =1 - P,[i], and
(COV(™));7 = B o [7, 71 = P o [7] P o]
= Ps-uli,j ¢S] =Ps-yli € S]Ps-ulj ¢ S]
=Psuli ¢ S]—Psuli € S,j € S] = Ps~puli ¢ S](1 —Ps-ylj € S])
= —(Ps-uli €S,j€S]—Ps-yuli ¢ S]Psulj € S]
= —(cov(™™)); ;,
and furthermore
—(cov (™)) ; = —=(Ps-ulj € S]=Psuli €S, j € S)) + (1 = Ps.yli € S Psylj € S|
=Ps-uli€S,j eS| —Ps.uli € S)Ps-yulj € S
= (cov(u"™)); ;.

Next, for any vector ¥ € RVl we can write ¥ = ¥o||¥1 with ¥ € RI"l and ¥; € RI"]. Then
xT (%diag(mean(yhom)) - cov(yhom)) X

= %(?cg diag(mean(u))¥o + X diag(mean(u™))¥1) — (¥o — ¥1)TA(Xo — X1)

= 2%, (%diag(mean(y) - A) Xo+X] (%diag(mean(ycomp)) - A) X1

+2(X) AXo + X] AX1) — (X0 — ¥1)TA(Xo — X1)

=2%] (%diag(mean([u)) - A) Xo +X{ (idiag(mean(ymmp)) - A) 1+ Fo+31)TAGo+ %) = 0

where the last inequality follows from the following inequalities:
%diag(mean(y)) > cov(u) = A,
édiag(mean([ucomp)) > Cov(u®©m™P) = A,

A = cov(u) = Ey[(x — mean(u))(x — mean(u))T] = 0.
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Since the above inequality is true for all X, we conclude that %diag(mean(yhom)) — cov(uhom) > 0
and pho™ is 2-FLC. O

Lemma 81. Let u : 21"l — Ry be a probability distribution. Then:
1. If1(u) is 1-spectrally independent then so is y.
2. IfT1(p) is a-fractionally log-concave then so is .

Proof. To prove the second claim, we need to show A = i is 1-spectrally independent for all A € RZ,.

Note that IT(A * ) = (A||1) * IT(p) is %—spectrally independent as a scaling of IT(u), so the second
conclusion follows from the first one. We now prove the first claim about spectral independence.

We examine the covariance matrix of I1(u). We show that for i,j € X,

(cov(IT(w)))i,j = (cov(w))i; and mean(IT(u)); = mean(u);

Indeed,
1

mean(I1(y)); = > u(SUT) = > uS) = Y. u(S) =mean();

SCX:ieS,TUY:|T|=n—|S| SCX:ieS,TUY:|T|=n—|§| (ISI) ScX:ieS
Similarly,

Pragli, ] = 2 pSUT) = ) p(S)=Pyli, ]

SCX:i,jeS, TUY:|T|=n—|S| SCX:i,jes

and

(cov(TI(t)))i,j = Prili, j1 = Prig[i] Priw 7] = Puli, j1 = Pulil Pulj] = (cov(p))i ;-

1/a-spectral independence of I'l(1) means that 0 < (%diag(mean(ﬂ(y))) — cov(IT(u))) thus

0= ldiag(mean(l‘[(;1))) — cov(l_[(y))) = ldiag(mean(y)) — cov(u).
o xx @

Proof of Lemma 76. Let p : 2"l — R be defined by u(S) = v(xs) where

(¢s); = 1 Vie$s
As)i = -1 else

Note that v = yh°™. Let @ = 1. By Lemmas 81 and 82, u is a-fractionally log concave. Since the
generating polynomial of u“™¥ is again Ilg, u“™? is a-fractionally log concave. Thus by Lemma 80,
v = phom js £-fractionally log-concave. O

Lemma 82. For any n > 1 and ¢ > 0 the bivariate polynomial

N Y _c(k-n n—
g(x,y):Z(k)e (k=2 k=

k=0
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is strongly log-concave. Furthermore, its polarization

n

(k= 1
Hng(xlz---rxn/yl;---/yn) = Z Z e c(k n/Z)Z/ZXSyT

(k)
k=0 se(i) re( 1} nk

which is a multilinear polynomial, is strongly log-concave.

. . .. —c(k— 2 . .
Proof. The first conclusion is is true because the sequence (e ~¢k="/2) )i, is log-concave, i.e.

e=ck=n/20 5 \Jo—c(k=1-n/2)2 p—c(k+1-n/2)?2

which follows from the the more general fact that the function e~ on the real-line is log-concave.

Given this, strong log-concavity of the bivariate polynomial follows from Proposition 41. Strong
log-concavity of the multilinear polynomial follows from polarization (Proposition 43). O

7.2 Trickle-down

Lemma 83. Suppose that v is a measure on the hypercube {+1}" of the form

2
v(x) o« exp %(x,]x) +{h,x)— %(Z xl-)

forsome ] =0,y > 0and h € R". If [|J||op < 1/2 then

2
llcov(v)llop < 7=
F 1= 20lllop
Moreover, if we define v; to be the stochastic localization process with driving matrix Cy = J'/2, then

2
”COV(Vt)”op < 1-2(1—

Ol N op

Proof. By Theorem 32 (or by explicit calculation), we have that

2
v1(x) oc exp| (h + Hy, x) — %(Z xi)

i

for some random vector H;. By Lemma 76 we know that the measure v; is 1/2-fractionally
log-concave, and by Proposition 51 this tells us that the covariance matrix of v1 has operator norm
at most 2. Hence by (10) and submultiplicativity of the operator norm we have that

1
[cov(v)llop < 21+/t Elllcov(ve)ll*[I]llop]-

Observe that the solution to the differential equation dy/dt = ||J|| opy? with initial condition y(0) = 2
is y(t) = m. So by performing a comparison argument in the same way as in the proof of
Theorem 54, we obtain the result.

54



The second statement follows from the first one and the definition of v;(x), since (by e.g. Theorem 32)

2
ve(x) o< exp %(x, 1-t)Jxy+{(h+Hy,x)- %(Z xi)

and [[(1 = )]llop = (1 = Dl llop; O

7.3 Dynamics

Definition 84 (polarized operators). Suppose v is a probability measure on the hypercube {+1}".
Let 7 : 21"l — R be defined by #(S) = v(xs) where xs € {+1}" is defined so that for each i € [n],

1 ifies,
— 18
(xs)i {—1 otherwise. 18)

Consider the polarization I'(#) of ¥. For x € {+1}" let x, = {i : x; = 1}. The down operator D,,_,,_1)
on I(v) corresponds to the following Markov kernel DP®! mapping® x € {+1}" to T € 2I"! with the
following transition probabilities:

% if T = x; \ {i} for somei € x,
DPl(x, T) = ¢ b if T = x,, (19)
0 otherwise.

The polarized up-operator, define with respect to v, maps T € 2"l to x € {+1}" with transition
probabilities as follows:

1 mvp(—% if T =x, \ {i} forsomei € x,,
P, x) = Sl T = 20
0 otherwise.

The polarized walk on v is the Markov operator DPPIUP®L. Explicitly, its transitions are as follows
for x, x" € {x£1}™:

S el ifxl=x Ui g x,
- rBCJr vDVPg&;) if x} = x, \ {i},i € x4,
(DPIUPY)(x, x') = 4 o X spmiomey i xh = \{JU{j} i x,jex., 1)

vyDPol(T)

n
(1)t
0 otherwise.
Proposition 85. Suppose that v is a measure on the hypercube {£1}" of the form
2
Y ‘
v(x) oc exp _E(Z xl) .
1

The polarized down operator D has (1 — 1/n)-entropy contraction with respect to v.

®We can equivalently view it as a Markov operator on {+1}" if we identify a vector x € {+1}"* and the set x.
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Proof. Recall that by Proposition 41 the polarization I1(v) is log-concave, thus D,,_,,,—1) has (1 - %)—
entropy contraction wrt I'1(7). For any probability distribution v’ on the hypercube {+1}", we
therefore have that

Z)KL(V,DpOl ” VDPOI) = Z)KL(1_[(1/,)1)11—>(n—1) “ H(V)Dne(n—l))

< (1 _ %) D (TT0) || TI())

_ (1 _ %)@KL(v' 1),

Theorem 86. Suppose that v is a measure on the hypercube {£1}" of the form

2
V(x) o< exp %(x,]x) +(h,x) — %(Z xi)

forsome ] = 0,y 2 0,and h € R", and suppose that || ]||op < 1/2. Then:
1. The polarized down-operator DP°! has (1 - %)—entmpy contraction with respect to v.

2. The polarized walk on v mixes within e-TV distance in O(mn log(n/€)) steps.

3. Let
')/ --T

Q=J- 1

and let d be the maximum number of non-diagonal nonzero entries in a row of Q. Each step of the
polarized walk can be implemented in O(d log n) time, so the polarized walk outputs a sample within

e-T'V distance of v in total runtime O (mnd log(n) log(n/e))

Proof. First we prove the entropy contraction claim. As in Lemma 83, define v; to be the stochastic
localization process with driving matrix C; = | 12 then

2
V1(X) = V§H1)(x) o exp (l’l + Hl,x> - %(Z xi)

i

for some random vector Hy. Let 7t be the distribution of H;, we can write
H
V= / vi 1){:lrc(Hl).

Fix a test function ¢ : {+1}" — R.(. By Lemma 83 and Lemma 36 v; is a;-entropically stable with

. 2([T Mo ..
respect to gb(x/ y) = %”]1/2(3( - y)”z = %”Ct(x — y)“z with a; = % thus by Proposition 35,

1
expl~ [t Bntlp) < ElBnteen [p(0l) = EnslEnt, o]
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By Proposition 85, DP°! has (1 — x)-entropy contraction wrt v4 with x = 1/n. Using the equivalent
definition of entropy contraction in Definition 25 with F = DP°! and the supermartingale property
(Lemma 39), we have

K [EH1~71[Entx~V§H1)[(P(x)]] < [EH1~71[[EZNV;H1)DPO1 [EntxwviHl)(,Dz)[ﬁo(X)]]] < [Ez~pDP0| [EntX~[u(-|>z)[(P(X)]]

thus

2
1/ lfop —2(1 =)

1 1
E(l = 2|[Jllop) Ent, [¢] = Kexp(—/0 dt | Ent,[¢@] < IEZNHDpol[EntXN[J(.DZ)[(P(X)]].

1-2)Jllo . .
So we have shown that DP°! has (1 — %)-entropy contraction with respect to u.

Approximate tensorization of entropy implies a mixing time bound which depends on the probability
of the smallest atom in the probability measure. We now eliminate this dependence to state a
slightly sharper bound.

Exchange inequality. We show I'l(v) satisfy the exchange inequality as defined in [ , Lemma
23], which implies that the down-up walk on I'l(v) reaches a poly(n)-warm start after O(n logn)
steps and thus the same holds for the polarized walk on v.

The exchange inequality says that for any sets R, R” in the support of II(v) and u € R \ R’, there
exists v € R’ \ R such that

M()(R)TI(r)(R') < 2° )R\ {u} U {o}) TW)(R \ {0} U {u}). (22)

We now show how to prove Eq. (22). Let 1 be a probability measure on 211 such that #1(S) = vi(xs),
where xgs is as defined in (18), and where

2
v1(x) exp(—% (Z xi) +(h, x}).

1

Recall from Proposition 41 that I1(¥) is log-concave, thus Eq. (22) is satisfied if we replace v with
71. Moreover, we consider I1(p) as a probability distribution over 2X5Y where as in Definition 47 ,X
is the set of vertices, that is [11], and Y is the set of dummy variables, also of size n. For R € X U,
IT(p)(R) is defined by

p(RN X)

(p)R) = ————
(1rAx)

we have that

TI0)R) s TR exp 57,11

with 7 = xrnx. So we only need to check that
1 1 ’ T O(n) 1 L g
exp E(hﬁ) exp E(ﬁﬁ) <2""exp §<S,]S> exp §<S,]S> (23)

where we define 7’ = Xrinx, 5 = X(R\{u}u{o})nx, and 8" = X(rA\{o}ufu})nx- There are two cases:
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* 5 (s’ resp.) is r (r’ resp.) with coordinate i flipped. Then

1 1
exp (5(&]@) exp (‘§<s,IS>) = exp Z]ijrirj < exp (Zlhjl) = O
J#1 J#1
since Y i4lJijl < 1l < VllJllop and [[Jllop < 1/2 by assumption.

* s (s’ resp.) is r (" resp.) with coordinates i and j flipped. Then

exp (%(T,]ﬂ) exp (—%@,]S)) = eXP(Z re(Jkiri + ]kj”j)) < eXP(Z(l]kil + |]kj|)) = 00V,

ki, ki,
The same inequality holds if we replace r with " and s with s”. Thus Eq. (23) holds in both cases

and we finished showing the exchange inequality for IT(v).

For any distribution v’ on 2!"], by the construction of the polarized walk we have that
II(v'DP'UP) = TI(V)) Dy (n—1) U -1y
Thus, for t; = O(nlogn), by the result of [ ] we have
Dir (v(DPIUP) || v) = Dy (TI(v(DPO'UPY) || TI(v))
= Dk (I ) Dy -1y Un-1)-n)" | TI(v))
< poly(n)

This combines with the entropy contraction implies that after O(mn log Z) steps of the
polarized walk, we obtain a distribution ¥ s.t. drv(?,v) < e.

Implementing a step of the walk. Now we show each step of the polarized walk can be
implemented in O(d logn) time. For each vertex i, we define the quantities B;(x) = }; j Qijxj + hi
and R;(x) = exp(Bi(x)) which represent the effect of the other sites on site i. Note that we can
compute B;(x) and R;(x) in O(d) time given the list of neighbors of i. Throughout the algorithm,
we store

¢ The currentstate x, which is a vector on the hypercube {+1}", and thesetx, = {i € [n] : x; = 1}.
¢ The current value V. We maintain the invariant that V := V(x) = exp (%(x, Qx) + (I, x)).

* A data structure D storing tuples (i, R;) at the vertices of a binary search tree keyed by i,
which additionally allows the following operations:

1. Sum(): output }; R; for all (i, R;) currently stored in the data structure.

2. Range-Search(v, {): given ¢ > 0, output the minimum i in the subtree rooted at the node
v such that

We omit v and simply write Range-Search(?) if v is the root of the tree.

58



3. Update(i, R): sets R; to R. If i doesn't already exist in the data structure then it inserts
key i with value R; = R into the tree.

4. Delete(i): delete the pair (i, R;) from the binary search tree.

We maintain the invariant that i € O iff x; = —1 and R; = exp(Bj(x)) > 0 for all j € D. With this
invariant, O contains at most n nodes at any given time, so all operations on this data structure take
O(log n) time by using the implementation specified in Proposition 87. It takes O(nd log n) time to
initialize the algorithm at an arbitrary x € {+}" by inserting all vertices assigned to — into D.

Now, we show that each step of the polarized walk can be implemented in O(d log 1) time.

For the down step, in O(log 1) time, we sample a coordinate 7 in x; with probability 1/n or L with

probability % Let T = x,. If the sample is a coordinate i € x., in a total of O(d logn) time we
perform the following updates:

e Update T =T \ {i}, compute R; = exp(B;(x)) and insert (i, R;) into D. Update V « V/R%.
» Update Bj(x) < Bj(x) —2Q;j and R; < R;/exp(2Q;;) for all j € N(i) such that x; = —1.
¢ Update x = xr.

Note that we maintain the invariant V = exp(%(x, Qx) +(h,x)) with x = xr, R; = exp(B;(x)) and
j € Dif xj = -1, orequivalently, j ¢ T.

For the up step, let L be the output of Sum(). Then:
1. With probability 2=L(L 4 27T1)-1 set the new state ¥’ s.t. x/, = T and finish the step.

2. Otherwise (so with probability L(% + "_Tm)‘l), do the following

n
e Sample ¢ uniformly at random in the interval [0, L]. Let j be the output of Range-Search(¥).
Note that j is sampled with probability
Rj _ exp(B;(xT)) _ v(xTugy)
L Zj/gT eXP(Bj'(XT)) Zj’«zT V(XTu{j'}) '

* Remove j from D, and update V « VR]z.
* Update By (x) < Bi(x) +2Qjr and Ry < Ry exp(2Qjx) for all k € N(j) such that x = —1.
* Update x = xtu(j},

The total time for the up step is O(| N(j)| log n) = O(d log n). O

Proposition 87. The data structure D as described in the proof of Theorem 86 can be implemented so that
each operation takes O(log n) time, where n is an upper bound on the number of nodes stored in D at any
given time.

Proof. To implement O, we will use a self-balancing binary search tree (BST) — for example, an
AVL tree or red-black tree (see e.g. [ ]). Each node of the tree stores the tuple (7, R;) and is
keyed by i, i.e., a transversal of the tree should return a list sorted in increasing order i of all tuples
(i, R;) in the tree. Each node also stores the sum of R; for all j in its left subtree

Si= > R;

j€left-subtree(7)
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Insertion/deletion/update for BST involves following the path from the root to a certain node, and
we only need to update S; along this path, which is of length O(log ) in a self-balancing BST. Thus,
insertion/deletion/update takes worst case O(log 1) time.

To implement Sum(), output the sum of S; along each node in the path from the root to the element
with the largest key 7 in ©. The algorithm only does O(1) work at each node along a path from the
root to a certain node, again taking O(log ) time.

To implement Range-Search(v, ), repeat the following;:
e If{ =S,, output v.

o If ¢ < S, : If the left-child v.left of v exists, recursively call Range-Search(v.left, {). If not,
output v.

o If ¢ > S, : If the right-child v.right of v exists, recursively call Range-Search(v.right, ¢ — Sy). If
not, output v.

The algorithm only needs to do O(1) work at each node along a path from the root to a certain node,
so it runs in time O(log n).

Let i be the correct output of Range-Search(v, {) according to its specification, i.e., the minimum 7 in
the subtree rooted at the node v such that
Z R iz {.

j<i

We prove by induction that this i is indeed the output of our implementation. Let T(v) be the tree
rooted at v and consider three cases:

* Ifl =5, =2 jerw) Rj theni = v, thus our algorithm behaves correctly.

* Ifl < Sy = Xjcojer(v) Rj thenv > i, since i is the minimum key satisfying the above inequality,
ie,i=min{i’ € T(v) | { < X jerv) Rj}, thus i € T(v.left). For any i" € T(v.left)

2. Ri= ) Ri= )R
j<i’,jeT (v left) j<i’,j<v,jeT(v) j<i’,je€T(v)

thus i = min{i’ € T(v.left) | { < X.i.i icT(0.1eft) Rj}, and thus by the inductive hypothesis it
will be the output of Range-Search(v.left, ¢).

* Ifl{ >S5y = 2icojer(o) Rj thenv <iandi € T(v.right), since };_; icro) Rj 2 € > X<y jer0) R;-
Analogously, i i jer(o) Rj = ¢ iff i’ € T(v.right). For any i" € T(v.right)

So+ D Ri= > Rj+)Ri= > R
j<i’,jeT (v.right) j<v,jeT(v) j<i’ j<i’,jeT(v)
thus
i=minsi’ € T(v) | ¢ < Z Rj ¢ =mingi’ € T(v.right) [ £ =S, < Z Rj¢,
j<i’,jeT(v) j<i’,jeT (v.right)

thus by the inductive hypothesis it will be the output of Range-Search(v.right, { — S).
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7.4 Concentration of measure and entropy-transportation inequality

We say a Markov operator P with state space {+1}" is p-local if P(x, y) # 0 only if || x — y||*> < p.
By a standard Herbst argument [ ], if a p-local Markov chain with stationary distribution
v : {£1}" — Ry has modified log-Sobolev constant « then v exhibits sub-Gaussian concentration
of Lipschitz function with constant O(a).
Definition 88. We say v : {+1}" — Ry satisfies sub-Gaussian concentration of Lipschitz functions
with constant K if

Ka? )

Psw [f(S) = E,[f(S)] +4a] < eXP(_?

where f : {+1}" — R is an arbitrary a c-Lipschitz functional with respect to the Hamming metric.
This is equivalent to a Wj-entropy transport inequality [ , Theorem 4.8].

Corollary 89. Under the assumptions of Theorem 86, the probability measure v satisfies sub-Gaussian
(1—2||I||op))
m .

concentration of Lipschitz functions with constant K = O (
7.5 Antiferromagnetic Ising model

Proposition 90. Let v : {+1}" — Ryq be the antiferromagnetic Ising model on graph G = G([n],E), i.e.,

v(x) o« exp (—g(yc,Ax) +<(h, x))

where A is the adjacency matrix of G, and p > 0 and h € R" are given parameters.

Let dmax, Amin be maximum and mimimum degrees of G respectively. Consider the normalized Laplacian
matrix L of G, i.e., L = 1 — D™Y2AD~V2 where D is the diagonal matrix with D; ; be the degree of vertex i.
The eigenvalues of Lare 0 = Ay < Ay < -+ A, < 2. Let A(G) = maxix1|1 — A;l.

If0<B< %(dmaX — dinin + AmaxA(G)) ™! for & > 0, then Theorem 86 and Corollary 89 applies i.e.

1. We can sample from ¥ s.t. dry(D,v) < € by running the polarized walk for O(6~'n log £) steps. The
total runtime is O(6 ' ndmax log 2 log n).

2. v has sub-Gaussian concentration of Lipschitz functions.

Proof. Let the eigenvalues of D 12AD12 = [ — L be Bi = 1 - A;. Note that the unit eigenvector
associated with f1 = 1is v = %1, thus we can write

1 -
D 24D Y2 = EllT +B

where, since B is symmetric, || Bl|op = max;z1|fi| = max;z1|1 — A;| = A(G). Thus

B /27y 1/27 12 11/2
—-BA =—-——(D“1)(D"'*“1)T — BD'*BD
pA == (DV)DVA)T - p
Bdmax=>1 P >2T 1/27v(1/27 1/2pN1/2
= —— 11" + ~(dmax11" = (DV*1)(D'*1)T) - pD'/BD

Let

1 - - - 1-6
u= E(dmaXnT - (DY) (DY?1)T), Vv =-DY?BDY?, J= — [ +BU+V).
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Note that ) .
Ujj = ;(dmax - DS/ZD}/Z) < E(dmax - dmin)

SO ”u“op < [[U]| 0 = max; Z]|uz]| < (dmax = dmin)- Also,
Vllop < ID2lloplIBllopll DYllop < dmaxA(G)

thus
1-6

IBU + Vllop < BUIUllop + I Vlop) < |Bl(dmax = dmax + dmaxA(G)) <

and 0 < ] < 152, Since adding multiples I to A doesn’t change the distribution v, we can write

2
1 d
() o expl {x,Jx) + (I, x) - o (Z xz-) )
with | as defined above, thus Theorem 86 applies. Also, since all non-diagonal entries of Q is same
as that of —A, the maximum number of non-diagonal nonzero entries in each row of Q is bounded
above by dmax. O

We thus obtain the following results for the antiferromagnetic Ising model on random graphs.

Corollary 91. Let v be the antiferromagnetic Ising model with parameter § on G where G is a random

d-regular graph. Suppose 0 < f < 8% for a constant & > 0. With probability 1 — o(1) over the random

instance G, we can sample from ¥ s.t. dry(¥,v) < € in O(67'nd log 2 log n) time and v has sub-Gaussian
concentration of Lipschitz function.

Proof. By Friedman’s theorem [ ], with probability 1 — 0(1), we have that dmaxA(G) = dA(G) <
2Vd =1+ o(1). O

Corollary 92. Let v be the antiferromagnetic Ising model with parameter p on G where G = G(n, p) is

a Erdos-Renyi random graph. Let d = (n — 1)p be the expected degree. Suppose p > IO%. There exists
. 1 . ope _ .
constant C > 0s.t. if 0 < B < N then with probability 1 — o(1) over the random instance G, we

can sample from ¥ s.t. dry(D,v) < € in O(nd log & log n) time and v has sub-Gaussian concentration of
Lipschitz function.

Proof. By a standard Chernoff bound, with probability 1 — 0(1), dmax < d + O(y/dlogn) and

dmin = d — O(y/d log n). With probability 1 —o(1), G is connected. By [ ]Jand [ , Theorem
1.1], A(G) £ O(%). Applying Proposition 90 gives the desired result. O

7.6 Application to fixed magnetization models

As a special case, our general theory applies to the fixed magnetization Ising model, i.e., the
restriction of the Ising measure to the slice }; x; = k of the hypercube {+1}" for any k. See e.g.
[ ]. This is because we can recover fixed magnetization as the limit y — oo of our more
general model. These results will be applicable in particular to models on both ferromagnetic and
antiferromagnetic expander graphs.
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Proposition 93. Suppose that integers k,n satisfy —n < k < nand k =n mod 2. Suppose | > 0 and
h € R" are arbitrary and let u be a probability measure on the slice {x € {£1}" : 3, x; = k} with probability
mass function

(x) o exp (§<x,1x> + <h,x>) |

For every A > 0, define the Ising model v, on the hypercube {+1}" by its probability mass function

i

2
va(x) oc exp %(x,]x) +{(h,x)— % (Z Xi— k) .

Then vy — pas A — oo.

Proof. The parity constraint is exactly the condition which determines whether }}; x; = k has a
solution for x € {+1}". So the result follows because v (x) — 0 as A — oo for any x € {+1}" not
satisfying the constraint }}; x; = k, and because the conditional law of x given };; x; = k under v, is
exactly u. O

As the following corollary shows, the result we prove has consequences not just for the polarized
walk but also the ordinary down-up walk. To be more precise, we can identify a vector x € {+1}"
with the set x; = {i : x; = +1} of plus-valued entries, so the usual Di_,x_; down operator on sets
corresponds to picking a random +1 entry of x and setting it to —1, and as usual the up operator
Uk-1-k samples from the posterior on x given such an observation. As the proof of the following
result shows, the down-up walk is simply a less lazy version of the polarized walk, and this results
in it mixing faster when the number of + entries is small.

Corollary 94. Let y be as defined in Proposition 93. If||]||op < 1/2 then

1_2”]”0]0
n

1. The polarized down-operator DP°! has (1 - -entropy contraction with respect to 1.

2. The polarized walk on v mixes within e-T'V distance in O (1 =T log(n/ e)) steps.

3. Let m = (n + k)/2 € [0, n] be the total number of + spins under the fixed magnetization model.
By identifying a spin assignment x € {£1}" with the set of vertices assigned to +, we can view

u as a distribution over ([:1]). The (ordinary) down-operator D, _,(y,—1) has (1 - %)—entmpy
contraction with respect to .

4. The (ordinary) down-up walk on v mixes within e-T'V distance in O (1 =TT log(m/e)) steps.
5. The probability measure u satisfies sub-Gaussian concentration of Lipschitz functions with constant

121,
K =0 (=252

Proof. The first two points follow by combining Proposition 93 with Theorem 86 taking y = A. For
the third point, first observe that from the output of the channel DPl we can determine whether a
+-spin was dropped, since the magnetization is fixed. Hence, by the chain rule for KL divergence
we have

+k -k
D (w'DP || uDP!) = —Z)KL(# D || uD)+ = — D [l ),
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so using the contraction of the polarized down operator, we have

n-—=k

’ 2n !’ !’
Dxr(w'D || uD) = m@KL(}l DPol || uDPol) — m@KL(}l Il w
2n 1_2”]”0}) n—k ,
S(n+k(1_ n )_n+k)DKL(# e
2(1 _zlmlop) ,
< (1 - T) D (p" |l w)-

The mixing time bound follows in the same way as before (using the exchange inequality).

For the last point, let m and m’ be the number of + and — spins respectively, then min{m, m’} = ”_lel
The down-up walk on the set of vertices assigned to + (— resp.) has modified log-Sobolev constant

Q (%) (Q (1_2”]”"*’) resp.). Both of these walks are 2-local walks, so the conclusion follows by

m’

the Herbst argument, same as in Corollary 89. O

Application: ferromagnetic Ising with fixed magnetization on expanders.

Proposition 95. Let u : {£1}" — Ry be the canonical Ising model on graph G = G([n], E) at fixed
magnetization k. More precisely, u is a probability measure on the slice {x € {+1}" : }; x; = k} with
probability mass function

p(x) oc exp —g(x,Ax> +{h,x)
where A is the adjacency matrix of G, and p and h € R" are given parameters

Let dmax, Amin be maximum and mimimum degrees of G respectively. Consider the normalized Laplacian
matrix L of G, i.e., L = 1 — D™Y2AD~V2 where D is the diagonal matrix with D; ; be the degree of vertex i.
The eigenvalues of Lare 0 = A1 < Ay < -+ A, < 2. Let A(G) = max;z1|1 — A4

If1B| < %(dmax — dmin + dmaxA(G)) ™! for & > 0, then Corollary 94 applies i.e.,

1. Let m = (n + k)/2 € [0, n] be the total number of + spins under the fixed magnetization model. We
can sample from {i s.t. dry(fi, u) < € by running the down-up walk for O(6~'m log ) steps.

The down-up walk can implemented using O (ndmax log n) time for preprocessing and O(dmax log 1)
time for each step, hence the total runtime is O(ndmax log n + 6~ mdmax log nlog ).

When the external field is uniform, i.e., h; = hVi and the graph is d-regular (dmax = dmin = d), then
the preprocessing time and the time to implement each step can be reduced to O(md log(md)) and
O(dlog(md) + log %) respectively, thus the total runtime is O(6™ m log Z(dlog(md)log %)).

2. u has sub-Gaussian concentration of Lipschitz functions with constant K = O (ﬂ—ilkl)

Proof. As in proof of Proposition 90, we can rewrite the probability mass function of y as
1 ﬁdmax 2
() o< exp (§<x,1x> () = () xi) )
1
where 0 < ] < 152, Since y is supported on the slice }; x; = k, we can further rewrite y as
(x) o exp (§<x,1x> . <h,x>)
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thus Corollary 94 applies.

For implementing the random walk, we use the algorithm in Theorem 86, which resulted in the
stated runtime.

Below, we discuss how to improve the runtime for d-regular graphs with uniform external fields.
We use the same notation as in the proof of Theorem 86. For a given assignment x, B;(x) only
depends on the number of neighbors of i with + spin. In particular, if i has no such neighbors,
then B;(x) = —d + h. Thus, instead of keeping track of all vertices with — spin as the algorithm
in Theorem 86 does, we only need to keep track of those which have at least one neighbor
with + spin. More precisely, we insert i with x; = =1 and N(i) N T # 0 into O, and maintain
the set Free_ = [n] \ T \ D. We can compute F = Y ;cpree. exp(Bi(x)) = exp(—d + h)|Free_| and
L = }.icp exp(Bi(x)) by calling Sum() on D. Thus, we can implement the up step by uniformly
sampling from Free_ with probability 7= and (weighted) sampling from D with probability 2=
where the weighted sampling is implemented in the same way as in Theorem 86. The down step
can be implemented same as in Theorem 86, except that we insert the sampled coordinate i into D
or Free_ depending on the assignment of its neighbor.

Maintaining 9. The number of vertices in O is bounded by md, since the m vertices with +
spin have at most md neighbors. At initialization, it takes O(md) time to compute the number
n(x) of + neighbors of each — vertex i with at least one + neighbor. To do so, we loop through all
+ vertices j and their neighbors i and increase 7; (x) by 1. Since R;(x) is a function of n(x), i.e.,
Ri(x) = exp(Bi(x)) = exp(2n —d + h), we can build D by inserting (i, R;(x)) with ni(x) > 0’ in
total O(mdlog(md)) time. Maintaining 9 in each down-up step takes O(d log(md)) time.

Note also that computing the initial value V(x) = — exp(g(x,Ax) + (h, x)) can also be done in
O(md) time given n; (x) for i s.t. n(x) > 0. Indeed, let S; = {i : n(x) > 0} and Sy = {i : n/(x) =
0 and x; = 1}, we can write

logV(x) = ~5 3 xiBix) = - | " xiBitw) + (5~ )15al — (0~ 1511 = 1521)

i i€Sy

Thus, computing V(x) takes |S1| +|S2| = O(md) time.

Maintaining Free_. Since |Free_| > n —m(d + 1), if md log(md) < n /4 then uniformly sampling
from |Free_| can be done by uniform sampling from [1]° then accept the sample if it is not in T U D.
To ensure that the failure probability stays below €/2 in poly(md) steps of the down-up walk, we
only need to do rejection sampling log m?d times. In this case, there is no need to keep an explicit
data structure for Free_, and the preprocessing time is O(md log(md)). Each step of the down-up
walk takes O(d log(md) + log(m?d)) = O(d log(md) + log(%)) time to maintain 9 and Free_.

If mdlog(md) > n/4 then we can keep a data structure (i.e., a binary search tree) for Free_ that
enables uniform sampling for preprocessing time of O(|Free_|) = O(n) = O(mdlog(md)), and the
sampling time is O(log|Free_|) = O(log(md)). Each step of the down-up walk takes O(d log(md))
time.

O]

"There are O(md) such i.
8Each sample can be produced in constant time by hashing.
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Corollary 96 (Fixed-magnetization on random-d-regular graphs and expanders). Let u be the
canonical (ferromagnetic or antiferromagnetic) Ising model with fixed magnetization k and parameter f
on graph G. If G is a random-d regular graph and < 2 \/3171’ with probability 1 — o(1) over the random
instance G, the down-up walk on u mixes in Og(m log %) steps.

Corollary 97 (Fixed-magnetization on Erdos-Renyi random graphs). Let u be the canonical (ferromag-

netic or antiferromagnetic) Ising model with fixed magnetization k and parameter p on G where G = G(n, p)

is an Erdos-Renyi random graph. Let d = (n — 1)p be the expected degree. Suppose p > 10%‘ Let m = "T”‘
There exists constant C > 0s.t. if 0 < g < L then with probability 1 — o(1) over the random instance

C+/dlogn !

G, the down-up walk on u mixes in O(m log %) steps.
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A TIllustrative examples of trickle-down

A.1 [Illustration: Oppenheim’s trickle-down

For illustrative purposes, we show how Oppenheim’s celebrated trickle-down result [ Jindeed
follows by carefully bounding the trickle-down equation Eq. (12) applied withT =1 and t =0, i.e.,
from the equation

cov(vg) = E[cov(vq)] + %COV(VQ)NO_ 1 cov(vp). (24)

where Ny = diag(mean(1y)) is a diagonal matrix encoding the marginals of the measure vy. Also,
recall that N1 denotes a diagonal matrix encoding the marginals of the link, so it has entries
(N1)ii = v1(i) for i # a1 and (N1)aya, = 0.

The proof will be equivalent to the usual one, but we will use slightly different terminology and
notation consistent with the rest of this paper. The following fact is not needed for the proof, but is
a helpful reminder of the link between spectral independence and the 1 — k — 1 up-down walk:
Lemma 98 ([ 1). Suppose that v is a probability measure on ([Z]). Then v is C-spectrally independent
iff A2(P) < C/k, where P = Uy, Dy is the (lazy version of the) 1 — k — 1 up-down walk.

See e.g. the preliminaries of [ ] for a self-contained proof of the previous lemma with identical
notation.

Recall from Proposition 51 that C-spectral independence is equivalent to the statement cov(v) < CkII
where cov(v) is the covariance matrix of the random vector 15 for S ~ v, and Il = diag(n) where
ni; = v(i)/k. The following lemma gives a slightly tighter PSD inequalilty which is yet another
equivalent formulation of spectral independence.
Lemma 99. Suppose that v is a probability measure on ([Z]) which is C-spectrally independent, equivalently
cov(v) < CkIL Then in fact

cov(v) < Ck(IT - ntme 7).

Proof. First recall (by expanding the definitions) that if P = U;_,x Dy is the (lazy version of the)
1 — k — 1 up-down walk, then
cov(vo) = kK*(IIP — ™)

where 1; = (1/k)vo(i) and I'T = diag(m) so Ny = kIT.

Define A = C/k, which by Lemma 98 is an upper bound on the second eigenvalue of P. Recall
that P is self-adjoint with respect to the inner product u,v +— uTIlv. Let u; = i), Uy, ... be the
right-eigenbasis of P guaranteed by the spectral theorem (orthogonal under that inner product)
with eigenvalues A1 = 1,A,,..., and let f be arbitrary with components f; = (fT7Ilu;)u; so by
Plancherel’s theorem fTIIf = }; f'I1f;. Then for any f,

fTOPf = Y AifTTIfi = ) AT < (L= ADFTTLf +4 ) fTTf = (L= A)(f ) + AfTIIf

which proves that TTP < (1 — A)nn™ + AIl. Multiplying by k? proves the result. O

Lemma 100. Suppose that v is a probability measure on ([Z]) and Ay(P) is the second-largest eigenvalue of

P = U;xDy—1, the (lazy) 1 — k — 1 up-down walk. Let uy be the corresponding right eigenvector of P.
Then
cov(v)up = k?Ao(P)ITus.
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Proof. Recall, as in the proof of Lemma 99, that cov(v) = k*(ITP — nt7) where 7t; = (1/k)vo(i) and
IT = diag(n) so No = kI1. Recall that the largest right eigenvector of P is the all-ones vector, and let
uy be the second largest right eigenvector of P, which has eigenvalue A,(P) < 1. Recall that P is
self-adjoint with respect to the inner product u,v — uTITv and so by spectral theorem we have

U, =1, I11 = 0. From the above facts, we have that
cov(v)up = kK*(ITP — ™ )up = k2 A(P)Tuy.
O]

The following statement is Oppenheim’s trickledown theorem. It may look a bit different from the
usual statement, because we have stated it for a lazy version of the 1 — k — 1 up-down walk, but it
is directly seen to be equivalent to the “active” version — see Remark 13 of [ ]. In particular,
note that when C = 1, trickle-down preserves the property of being 1-spectrally independent
inherited from the link, so trickle-down can easily be applied recursively in this case.

Theorem 101 ([ 1). With the notation as above, suppose that almost surely

21 < CNjy,

and Ao(P) < 1 where P = Uy_,xDy—1 is the (lazy version of the) 1 — k — 1 up-down walk. Then

Proof. First observe from Eq. (24) and Lemma 99
Yo = E[X1] + %ZON(;lZO (25)
< C(k—1)E[IT — mym] | + %zoNglzo (26)
= C(k = 1) E[T]y — nn™] = C(k = I)(E[mim] ] — mne™) + %ZQN(;lZO (27)

where IT; = diag(m1) and (71); = v1(i)/(k = 1) for i # a1, (111)s, = 0. (In other words 7 is the
marginal of the “link”.) Note that for S ~ vg

(k= 1)y = E[1g\q, | a1] = E[1s | a1] = 14,
so by the law of total expectation
(k=1 E[m] = E[1s] - E[1,] = (k - D,
i.e., E[t1] = . Note that
1-2/k)E|1s1]|.. ifi#]
[E[ls\m; ] _J1=2/0 [55]11 nrEg
il (1= 1/k) E[1s]; ifi=j
SO
cov(ls\a,) = |0 13, | - E[Lse | ET, ]

= (1-2/k)E[1s17] + T - (1 - 1/k)* E[15] E[1]]
=(1-2/k)%Z,, +I1-nnT
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so by the law of total variance and Eq. (24)

(k = 1[E[min] | = nrT] = cov(E[Ls\a, | a1])
= COV(ls\m) - [E[COV(lS\al | a1)]
= (1-2/k)Zo + T - tr™ — E[X4]
1

2
- %zoNo—lzo - EZO +II-nn'.

Substituting into Eq. (27) yields

Lo 2 Ck = D[~ nnT] - C(k = 1)(E[rmym] | = ™) + %ZONO_lZO

C (1 _ 2 1 -
=Ck-D[II-nn"]- 1 EZONO Iy, — %zo +I-nn" |+ %ZONOlzo
and rearranging gives
2C 1. 1 1
1- k=1 Yo<Ck-1-1/(k=1)[IT-nnT]+ %(1 - C/(k-1))LoN, Lo (28)

Therefore by (28) and Lemma 100, we have for u, the right eigenvector of P corresponding to its
second eigenvalue A, that

_2C N\ooy oo, 2C .
(1 k(k—l)) k /\2112 Huz = (1 —k(k—l)) u2 Zouz

. 1
scw—l—lﬂk—nwzﬂw+(g—z@t7ﬁ

C
(k-1

LIZT ZoN(]_lZouz

=C(k—1-1/(k = 1))ug Iup + (1 ) k*Aju] Tlup
i.e., Ay satisfies the quadratic inequality

2C
k(k—1)

osC(k—l—l/(k—l))—(l— (k-1

) kAo + (1 < ) k*A3.
Multiplying by k — 1 makes this
0< C(k* —2k)— (kK* =k —2C) kAy + (k= 1= C)kK*A7 = (A, = 1) ((k — 1 = C)k*A, — C(k* — 2k))

so using the assumption A, < 1 we have that

1, < CO=2/0) A1 -2/k)
k—1-C 1-1

if we define A = C/(k — 1). The conclusion follows from Lemma 98 and Proposition 51. O
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A.2 TIllustration: trickle-down of semi-log-concavity

Oppenheim’s trickle-down shows how spectral independence/fractional log-concavity can trickle-
down from top links. As another example of the trickle-down idea, we prove a simple and roughly
analogous result about semi-log-concave measures. In the special case of strongly log-concave
measures, the analogous fact follows from the Brascamp-Lieb theorem [ I
Theorem 102. Suppose that i is a y-semi-log-concave measure on RN. Then for T < vy, the probability
measure G_tu defined by

aG_ru

du

(x) < exp(T|lx[1%/2)
is V%T semi-log-concave.

Proof. Let vo = G_ru and let v; be the stochastic localization process with identity driving matrix
initialized at vo. By (10), for all t € [0, T] we have

T

T 1
cov(vy) = E[cov(vT) | F¢] +/ E[cov(vs)? | Filds < ; +/t E[cov(vs)? | F]ds.
t

Letting f(t) = sup,, || cov(TwG:ivo)llop we therefore find that

1 T
f(t) < ;+/t f(s)“ds.

Recall that the solution of dg/dt = —f(s)? and ¢(T) = 1/y is g(t) = yH%T, so by a standard

comparison argument f(f) < and plugging in t = 0 gives the desired result. O

1
y+t=T

B Glauber dynamics for antiferromagnetic Ising models on low-degree

expanders
In this appendix, we observe the following general result, which follows by combining key
observations of the work [ ] (more specifically, Corollary B.2 there) with a version of the
“annealing” argument from [ ]. One of the applications of this result is O(n log ) time mixing

of the Glauber dynamics for antiferromagnetic Ising models on low-degree expanders.

The resulting algorithm has an incomparable runtime guarantee versus the algorithm proposed and
analyzed in [ ] based on nonconvex optimization and rejection sampling. As an advantage, the
dependence on 7 in the runtime is nearly linear for the Glauber dynamics, whereas the algorithm
from [ ] requires poly(n) time to output a single sample. As a disadvantage, the guarantee for
Glauber dynamics has a doubly-exponential instead of single-exponential dependence on Tr(J-).
(In the application to antiferromagnetic Ising models on expanders, this means the guarantee for the
Glauber dynamics would have a doubly-exponential dependence on the degree, but see Remark 105
below.)

Theorem 103. Suppose that v is a probability measure on the hypercube {£1}"

v(x) « exp(%(x,]x) +(h, x))
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for some |, h such that ] < 1 —1/c (but ] is not required to be positive definite). Let | = ], — ]J_ be the
decomposition of | into its positive and negative definite parts. Then

llcov(v)|lop < cecTU-)

T
exp(/ ceCSTr(])ds)
0

Proof. By Corollary B.2 of [ ], v has a density with respect to another Ising model © where
7 has an interaction matrix of spectral diameter Amax(J), and g—; < eTU-) where | = J, — J_ is the
decomposition of | into psd and negative definite components. It follows that for any function f,

and v satisfies ATE with constant at most

where T = Amax(J) — Amin(J)-

Vary[f] = E/(f - E/[f]?] < EJ[(f - Ex[f])?] = [En[s_:((f — Exlf1?| < eV Varg[ f].

In particular, if we consider f to be a linear function and use the bound on the covariance matrix of
7t from page 405 of [ ], this proves the first conclusion.

We consider the stochastic localization process with driving matrix C; = | + AI where —A is the
smallest eigenvalue of |. By using the above argument to bound the covariance at every time ¢ and
appealing to entropic stability and the supermartingale property exactly as in the end of the proof
of Theorem 54, we obtain the conclusion. ]

As a consequence of this result, we get O(nlogn) time mixing of the Glauber dynamics for
antiferromagnetic Ising models on A-spectral expanders with interactions of strength up to O(1/A),
e.g., up to O(1/Vd) on random graphs and other very good spectral expanders, provided that
d=0(1).

Corollary 104. Suppose that

v(x) oc exp —%(x,Ax) +(h, x)

where A is the adjacency matrix of a d-reqular graph on n vertices and suppose that max{|A2(A)|, |1, (A)|} <
A IfAB < 1—1/c for some c > 0, then v satisfies ATE with constant at most ece”.

Remark 105. For the above corollary, instead of using the results of [ ], we could use the
trickledown-based result of Lemma 83 to bound the covariance matrix. This would reduce the

range of f we can handle by a constant factor, but it would improve the dependence on d to be
eOBd),
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