
Parallel Sampling via Counting

Nima Anari1, Ruiquan Gao1, and Aviad Rubinstein1

1Stanford University, {anari,ruiquan,aviad}@stanford.edu

Abstract

We show how to use parallelization to speed up sampling from an arbitrary distribution 𝜇 on
a product space [𝑞]𝑛 , given oracle access to counting queries: ℙ𝑋∼𝜇[𝑋𝑆 = 𝜎𝑆] for any 𝑆 ⊆ [𝑛] and
𝜎𝑆 ∈ [𝑞]𝑆. Our algorithm takes 𝑂(𝑛2/3 · polylog(𝑛, 𝑞)) parallel time, to the best of our knowledge,
the first sublinear in 𝑛 runtime for arbitrary distributions. Our results have implications for
sampling in autoregressive models. Our algorithm directly works with an equivalent oracle
that answers conditional marginal queries ℙ𝑋∼𝜇[𝑋𝑖 = 𝜎𝑖 | 𝑋𝑆 = 𝜎𝑆], whose role is played by a
trained neural network in autoregressive models. This suggests a roughly 𝑛1/3-factor speedup
is possible for sampling in any-order autoregressive models. We complement our positive result
by showing a lower bound of ˜︁Ω(𝑛1/3) for the runtime of any parallel sampling algorithm making
at most poly(𝑛) queries to the counting oracle, even for 𝑞 = 2.

1

{anari,ruiquan,aviad}@stanford.edu

1 Introduction

The seminal work of Jerrum, Valiant, and Vazirani [JVV86] established an algorithmic equivalence
between the tasks of approximate sampling and approximate counting, for the ubiquitous class of
self-reducible problems. This key equivalence is at the heart of the Monte Carlo Markov Chain
approach to approximate counting [ŠVV09], which has enabled breakthroughs like approximating
the permanent [JSV04] or the volume of convex sets [DFK91]. In this paper, we focus on one side of
this equivalence, sampling via counting.

Self-reducibility, in its most widely applied form, concerns distributions 𝜇 on a product space
[𝑞]𝑛 and their pinnings: conditional distributions obtained by selecting a subset 𝑆 ⊆ [𝑛] and
partial configuration 𝜎𝑆 ∈ [𝑞]𝑆 and conditioning 𝑋 ∼ 𝜇 to have coordinates in 𝑆 pinned to 𝜎𝑆:
𝑋𝑆 = 𝜎𝑆. In this setting, sampling means producing a random 𝑋 distributed according to a specified
pinning of 𝜇. Counting, on the other hand, refers to computing the partition functions of pinnings:
ℙ𝑋∼𝜇[𝑋𝑆 = 𝜎𝑆].1 Sampling via counting is in fact very easy to describe in this setting. Assuming
access to a counting oracle, we can produce samples from 𝜇 via the following autoregressive generation
process:

Initialize 𝜎← ∅
for 𝑖 = 1, . . . , 𝑛 do

for 𝑥 ∈ [𝑞] do
𝑝𝑥 ← ℙ𝑋∼𝜇

[︁
𝑋𝑖 = 𝑥

|︁|︁ 𝑋[𝑖−1] = 𝜎[𝑖−1]
]︁

𝜎𝑖 ←random sample in [𝑞] distributed ∼ (𝑝1 , . . . , 𝑝𝑞)
return 𝜎

Note that we only need to use the counting oracle to compute the computationally equivalent
conditional marginals:

ℙ𝑋∼𝜇
[︁
𝑋𝑖 = 𝑥

|︁|︁ 𝑋[𝑖−1] = 𝜎[𝑖−1]
]︁
=

ℙ𝑋∼𝜇
[︁
𝑋[𝑖−1] = 𝜎[𝑖−1] , 𝑋𝑖 = 𝑥

]︁
ℙ𝑋∼𝜇

[︁
𝑋[𝑖−1] = 𝜎[𝑖−1]

]︁ .

This process, despite its simplicity, is how thewidely successful autoregressivemodels generate their
output [see, e.g., LM11; VKK16; Vas+17; Dev+18; Yan+19; Bro+20]. State-of-the-art large language
models, or even some competitive vision models, train a neural network to answer conditional
marginal queries and then use the aforementioned process to generate samples. In the context of
language models, [𝑞] represents a token space, and 𝑛 is the length of generated text or context
length, while in pixel-space vision models, [𝑞] is possible values for a pixel, and 𝑛 is the number of
pixels in the image.

One downside of this simple sampling process is that it is extremely sequential. One has to generate
coordinates 1, . . . , 𝑖 − 1, to know which conditional marginals need to be queried in the 𝑖th iteration.
So, it is natural to ask if there is a more parallelizable sampling process. More precisely, suppose that
an oracle2 can answer conditional marginal queries of the form ℙ[𝑋𝑖 = 𝑥 | 𝑋𝑆 = 𝜎𝑆], and we can
interact with this oracle in rounds, each time asking polynomially many queries simultaneously.
We are interested in finding the adaptive complexity of sampling:

1In the literature, often 𝜇 is assumed to be an unnormalized measure. The partition function for unnormalized
measures is simply 𝜇

(︁
{𝑋 ∈ [𝑞]𝑛 | 𝑋𝑆 = 𝜎𝑆}

)︁
. Counting algorithms for unnormalized measures and normalized measures

are easily reducible to each other, so w.l.o.g. we assume 𝜇 is normalized.
2E.g., a neural network in learned autoregressive models.

2

Question 1. What is the minimum number of rounds before we can produce a sample?

At first glance, it might seem that ≃ 𝑛 is roughly the optimal number of rounds. Indeed, if we are
restricted to asking queries where we always pin a prefix 𝑋[𝑖−1] and ask for the conditional marginal
of the next coordinate 𝑋𝑖 , not much better is possible. Imagine the adversarially chosen distribution
𝜇 being a Dirac delta on a single randomly chosen 𝜎 ∈ [𝑞]𝑛 . One cannot “guess” more than ˜︁𝑂(1)
coordinates of 𝜎 at a time, and thus any query pinning more than ˜︁𝑂(1) new coordinates is useless.
Thus it takes ˜︁Ω(𝑛) rounds to find the hidden 𝜎.

Perhaps surprisingly, we show that when pinning is allowed on any subset of the coordinates, we
can significantly improve over 𝑛. For details of the algorithm, see Section 3.
Theorem 2 (Main). There is an algorithm that produces a random sample from any distribution 𝜇 on [𝑞]𝑛
by interacting in rounds with an oracle that answers conditional marginal queries, with each query returning
ℙ𝑋∼𝜇[𝑋𝑖 = 𝑥 | 𝑋𝑆 = 𝜎𝑆] for all 𝑥 ∈ [𝑞]. The total number of queries is 𝑂(𝑛), and the expected number of
rounds is

𝑂(𝑛2/3 ·min{log2/3 𝑛 · log 𝑞, 𝑞1/3 log1/3 𝑞}).

We note that, although we mostly care about parallelizing interactions with the oracle, our algo-
rithm’s internal computation can also be parallelized, and up to polylogarithmic factors, the runtime
on a PRAM would be the same as the bound in Theorem 2. We also note that the guarantee on the
expected number of rounds for our algorithm also holds with high probability at the cost of extra
logarithmic factors, see Theorem 28.
Remark 3. In autoregressive models, especially large language models, 𝑞 is usually very large, but
Theorem 2 has a mild dependency on 𝑞, at most logarithmic. Since autoregressive models are often
run on hardware already capable of massive amounts of parallelism, e.g., GPUs or TPUs, one can
expect our algorithm to speed up generation time even in practice. We leave experimental evaluation
to future works, but we also note two potential issues. First, while many autoregressive models,
such as XLNet [Yan+19] or generally any-order autoregressive models [SSE22], allow pinning of
any subset, many others only allow pinning of prefixes; as noted before, no significant parallel
speedup is possible for just prefix pinnings. Second, in practice, the oracle’s role is played by a
trained neural network, which clearly returns only approximate answers. While we can handle
approximate oracles, see Section 3.4, the guarantees we need in theory might not hold in practice.

One might wonder if the number of rounds can be further improved, perhaps by using a different
algorithm. In a dream scenario, would a polylogarithmic number of rounds be feasible? We answer
this question negatively, by providing a lower bound of ˜︁Ω(𝑛1/3) for any algorithm.
Theorem 4 (Lower bound, informal). Even for 𝑞 = 2, any algorithm sampling from arbitrary distributions
on [𝑞]𝑛 needs to interact with the conditional marginal oracle for at least ˜︁Ω(𝑛1/3) rounds.
For the more formal statement of our lower bound, see Section 5. This shows that the optimal
number of rounds, while sublinear in 𝑛, must still be a polynomially large function of 𝑛, at least
with no further assumption on the distribution 𝜇.

1.1 Related Work

Interest in parallel sampling started decades ago. As an early example, Mulmuley, Vazirani, and
Vazirani [MVV87], having found an algorithm to generate perfect matchings in parallel, asked if a
uniformly random one can also be generated in parallel. Teng [Ten95] provided negative evidence for
this. Recently, there has been a significantly increased interest in parallel sampling algorithms.

3

Markov chains, arguably the most successful sampling tool, are naïvely sequential, but recent
works have shown techniques for parallelizing some classes of Markov chains, including Glauber
dynamics, under tractability conditions on the distribution 𝜇 [FHY21; LY22; Lee23]. We note that
even sequential implementations of Markov chains such as Glauber dynamics take exponential
time on worst-case distributions 𝜇, so it is natural that these works need further assumptions on 𝜇.

Most related to our work, parallel samplingwas raised as an open question by Anari, Hu, Saberi, and
Schild [Ana+20] for several challenge distributions that admit parallel (NC, i.e., polylogarithmic time
on polynomially many machines) counting algorithms. These include the distributions of uniformly
random arborescences, directed Eulerian tours, planar perfect matchings, and determinantal point
processes. They showed polylogarithmic sampling is possible for one of these challenges: sampling
uniformly random arborescences. Later, Anari, Burgess, Tian, and Vuong [Ana+23a] showed
polynomial parallel speedups are possible for the class of entropically independent distributions,
which included all challenges except for planar perfect matchings. Most recently, Anari, Huang, Liu,
Vuong, Xu, and Yu [Ana+23b] achieved polylogarithmic sampling for all challenge distributions
except for planar perfect matchings, using the stronger “weighted counting oracle.” This stronger
oracle returns marginals not just after pinnings, but under all “exponential tilts,” and interestingly,
is what another class of generative AI models, namely diffusion models, attempt to learn.

We note that all of these prior works use some tractability assumption about the distribution 𝜇. In
fact, none of them are able to nontrivially speed up sampling of planar perfect matchings, one of the
original challenges. In contrast, in our work, the emphasis is on arbitrary distributions 𝜇, as none of
the tractability assumptions of prior work is likely to hold for example by distributions learned by
autoregressive models. As an application of our results, we show how to nontrivially speed up
parallel sampling of planar perfect matchings in Section 4.

Recently, generative modeling in AI has produced amazing results. State-of-the-art models, de-
pending on the domain or modality, are often autoregressive or diffusion-based. Given their huge
importance in practice, significant attention has been paid to improving the sampling efficiency
of these models, particularly via parallelism. For example, Picard iterations in diffusion models
[Shi+23] and speculative decoding in autoregressive models [Che+23; LKM23] have shown practical
accelerations. There are many other techniques introduced in the literature, evaluated experimen-
tally, by way of example “prediction and forecasting” [WH20] and fixed-point iterations based
on Jacobi and Gauss-Seidel equations [Son+21]. To the best of our knowledge, these works focus
on real-world distributions and do not theoretically prove an unconditional asymptotic parallel
speedup. Interestingly, some of these practical parallelization techniques, for example, speculative
decoding, share similarities with our sampling algorithm, Algorithm 3. In speculative decoding,
a draft model, a much faster but less accurate model, is used to generate guesses sequentially for
future tokens and these guesses are “verified” using a larger but more accurate model in parallel.
Our algorithm is also based on a guessing and verification paradigm but differs from speculative
decoding because we cannot afford to sequentially run a draft model. We emphasize that our
work is focused on theoretical guarantees, and works with a single oracle, not tiers of oracles with
cost/accuracy tradeoffs.

Finally, adaptive complexity has been studied for many other computational problems, for example,
submodular maximization [BRS19; LLV20] and minimization [BS20; CCK21; Cha+22]. Most notably,
the parallel complexity of search via a decision oracle was studied in the seminal work of Karp,
Upfal, and Wigderson [KUW88], who showed, similarly to our results, that a polynomial speedup,
and no better than a polynomial speedup, was possible.

4

1.2 Techniques

Our algorithm works by modifying the autoregressive sampling process in two ways. First, we
choose the order of coordinates according to a uniformly random permutation. Second, to break
sequentiality, we generate “guesses” of future coordinates, by computing the marginal of each 𝑋𝑖

conditioned on the current pinning, in parallel, and sampling from these marginal distributions
independently for each 𝑖. While these independent samples clearly ignore dependencies between
coordinates, we can in a second stage verify in parallel that each 𝑋𝑖 would have been the sample pro-
duced if we had continued sequentially. We advance up to the point where our guesses successfully
pass verification and then iterate.

The key idea behind our analysis is that as we pin more and more random coordinates, the de-
pendencies between the remaining coordinates weaken in an average sense. This intuitive idea
is formalized by the so-called pinning lemmas [RT12; Mon08] which we use in our analysis, see
Section 2.1. Weakened dependencies intuitively mean that our guesses are not likely to deviate
from what sequential sampling would have produced. This is formally proved in Section 3.

Finally, a tool we use from existing literature on parallel sampling is a universal coupler [LY22]. This
is used to ensure consistency between the guessing and verification stages. In both of these phases,
for each 𝑋𝑖 , we would like to sample from a marginal distribution. Universal couplers ensure that
when the marginal distributions are “close”, the samples are likely to be exactly equal. We extend
the analysis of universal coupling to multiple distributions, as needed by our work, see Section 2.2.

To prove our lower bound, we construct a challenge distribution that is a uniform distribution on an
affine subspace of 𝔽 𝑛

2 = {0, 1}𝑛 , and we show that it is hard to even output anything in its support in
fewer than ˜︁Ω(𝑛1/3) rounds. We group the coordinates in [𝑛] into roughly ˜︁Ω(𝑛1/3) randomly chosen
buckets and put varying numbers of affine constraints on each bucket. We prove that with high
probability the buckets can only be discovered one at a time, from the most constrained bucket to
the least. This is because queries pinning too many coordinates will not be useful at all, as they
will violate the constraints of the most constrained bucket. On the other hand, if the number of
pinnings is just right for the most-constrained undiscovered bucket, no information is gained about
less-constrained buckets; with high probability all of the marginals in the less-constrained buckets
remain uniform.

1.3 Organization

In Section 2 we discuss and further develop two of the main tools we use for parallelization: pinning
lemmas and universal coupling. In Section 3, we describe our parallel sampling algorithm and
prove our main result Theorem 2. In Section 4, we provide an application of Theorem 2 to the
problem of sampling planar perfect matchings. In Section 5, we prove a lower bound against all
algorithms, i.e., Theorem 4. In Section 6, we prove that our analysis of the algorithm presented in
Section 3 is tight, and 𝑛2/3 cannot be improved for this particular algorithm.

Acknowledgments

Nima Anari was supported by NSF CAREER Award CCF-2045354. Ruiquan Gao was supported by
NSF CCF-1954927, and a Stanford Graduate Fellowship. Aviad Rubinstein was supported by NSF
CCF-1954927, and a David and Lucile Packard Fellowship.

5

2 Preliminaries

We use [𝑛] to denote the set {1, 2, · · · , 𝑛}. For any vector 𝑥 and set 𝑆, we use 𝑥𝑆 to denote 𝑥 restricted
to 𝑆. We use ±𝑥 to indicate the interval [−𝑥, 𝑥]. We use 𝒮𝑛 to denote the set of permutations on
𝑛 elements. For any two sets 𝐴, 𝐵, we use 𝐴 × 𝐵 to denote the Cartesian product of 𝐴 and 𝐵, i.e.,
𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
For a distribution 𝜇, we use 𝑥 ∼ 𝜇 to denote that 𝑥 is sampled from 𝜇. Similarly, for a set 𝑆, we use
𝑥 ∼ 𝑆 to indicate that 𝑥 is sampled uniformly at random from 𝑆.

2.1 Pinning Lemmas

The pinning lemma formalizes an intuition that randomly pinning coordinates of an arbitrary
distribution should in an average sense lower the correlation between remaining coordinates.
Intuitively, this should make parallel sampling easier; for example, if all coordinates become fully
independent, one can in parallel sample from the marginals. We do not directly use the classical
statement of the pinning lemma, mentioned below for comparison, but rather prove a statement in
the same vein and using the same proof strategy.
Lemma 5 (pinning lemma [RT12; Mon08]). Let 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 be random variables, each supported on
{0, 1}. For any ℓ ∈ [𝑛], there exists a set 𝑆 such that |𝑆| ≤ ℓ and

𝔼𝑋𝑆

[︂
𝔼
𝑢,𝑣∼([𝑛]2)

[︁
Cov(𝑋𝑢 , 𝑋𝑣 | 𝑋𝑆)2

]︁]︂
≤ 𝑂(1)

ℓ
.

We now define and state well-known statements about entropy, building up to state and prove our
new variant of the pinning lemma.
Definition 6 (entropy). Let 𝑋,𝑌 be random variables on [𝑞]. The entropy of random variable 𝑋 is
defined to be

ℋ(𝑋) = −
∑︂
𝑖∈[𝑞]

ℙ[𝑋 = 𝑖] · logℙ[𝑋 = 𝑖] .

The conditional entropy of 𝑋 conditioned on 𝑌 is defined to be

ℋ(𝑋 | 𝑌) =
∑︂
𝑖∈[𝑞]
ℋ(𝑋 | 𝑌 = 𝑖) · ℙ[𝑌 = 𝑖].

Definition 7 (KL divergence). For a pair of distributions 𝜈, 𝜇, we let

𝒟KL(𝜈 ∥ 𝜇) = 𝔼𝑥∼𝜈

[︃
log 𝜈(𝑥)

𝜇(𝑥)

]︃
.

Abusing notation, we extend the definition to random variables. If𝑋 ∼ 𝜈, 𝑌 ∼ 𝜇, we use𝒟KL(𝑋 ∥ 𝑌)
to denote𝒟KL(𝜈 ∥ 𝜇).
Lemma 8. For any two random variables 𝑋,𝑌,

𝔼𝑌[𝒟KL((𝑋 | 𝑌) ∥ 𝑋)] = ℋ(𝑋) − ℋ(𝑋 | 𝑌).

Lemma 9 (Pinsker’s inequality). For any two random variables 𝑋,𝑌,

𝑑TV(𝑋,𝑌) ≤
√︃

1
2𝒟KL(𝑋 ∥ 𝑌)

6

We prove and use the following variant of the pinning lemma.
Lemma 10. For any integer 𝜃 > 0 and any collection of random variables 𝑋 = (𝑋1 , . . . , 𝑋𝑛) with support
[𝑞],

𝔼𝑋,𝜎∼𝒮𝑛

[︄
𝑛∑︂

𝑖=𝜃

𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−𝜃] , 𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−1]

)︂2
]︄
≤ (𝜃 − 1) log 𝑞

2 .

Proof. For any permutation 𝜎 ∈ 𝒮𝑛 and any 𝑖 ∈ {𝜃, 𝜃 + 1, · · · , 𝑛},

𝔼𝑋

[︃
𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑖−𝜃] , 𝑋𝜎(𝑖)
|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑖−1]

)︂2
]︃
≤

𝔼𝑋

[︂
𝒟KL

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑖−𝜃]
∥︁∥︁ 𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑖−1]
)︂]︂

2 ≤

ℋ
(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑖−𝜃]
)︂
−ℋ

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑖−1]
)︂

2 =

𝑖−2∑︂
𝑘=𝑖−𝜃

ℋ
(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘]
)︂
−ℋ

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘+1]
)︂

2 .

Summing over all possible 𝑖 and taking expectation over all permutations, we have

𝑛∑︂
𝑖=𝜃

𝔼

[︃
𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−𝜃] , 𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−1]

)︂2
]︃
≤

1
2 ·

𝑛∑︂
𝑖=𝜃

𝑖−2∑︂
𝑘=𝑖−𝜃

𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘]
)︂]︂
− 𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘+1]
)︂]︂
≤

1
2 ·

𝑛∑︂
𝑖=𝜃

𝑖−2∑︂
𝑘=𝑖−𝜃

𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︂
𝑋𝜎(𝑛)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘]
)︂]︂
− 𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︂
𝑋𝜎(𝑛)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘+1]
)︂]︂
≤

𝜃 − 1
2 ·

𝑛−2∑︂
𝑘=0

𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︂
𝑋𝜎(𝑛)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘]
)︂]︂
− 𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︂
𝑋𝜎(𝑛)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑘+1]
)︂]︂

=

𝜃 − 1
2 · 𝔼𝜎∼𝒮𝑛

[︂
ℋ

(︁
𝑋𝜎(𝑛)

)︁
−ℋ

(︂
𝑋𝜎(𝑛)

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑛−1]
)︂]︂
≤ (𝜃 − 1) log 𝑞

2 .

2.2 Universal Coupling

For any integer 𝑞 > 0, let Δ𝑞 be the probability simplex on [𝑞], i.e., Δ𝑞 = {𝜇 ∈ [0, 1]𝑞 |
∑︁𝑞

𝑖=1 𝜇(𝑖) = 1}.
In our main algorithm, we use a “universal coupler” as a subroutine. Informally, this is an algorithm
that maps a distribution 𝑢 ∈ Δ𝑞 and a random source 𝑟 to a sample from 𝑢, with the property that
the output is unlikely to change if 𝑢 is perturbed slightly (while keeping 𝑟 fixed). Such an algorithm
naturally induces a coupling between any two distributions 𝜇, 𝜇′. In any coupling, there must be at
least 𝑑TV(𝜇, 𝜇′) chance that the samples for 𝜇, 𝜇′ are unequal; and this lower bound can be achieved
if we design a tailor-made coupling knowing both 𝜇 and 𝜇′. Surprisingly, one can achieve the same
bound within constant factors without knowing both distributions in advance.

The existence of these robust universal couplers appears to have been discovered and rediscovered
many times. The earliest works that we are aware of are theMinHash algorithm of Broder [Bro97] for

7

uniform distributions, and a rejection-sampling-based strategy of Kleinberg and Tardos [KT02] and
Holenstein [Hol07] for general distributions. See [Bav+20] for more on the history and optimality
of these strategies. Recently, in the context of parallel sampling algorithms, the work of Liu and Yin
[LY22] has rediscovered the same rejection-sampling-based algorithm; we borrowed the terminology
of “universal coupling” from the latter work.

A universal coupler is defined as follows:
Definition 11 (universal coupling, [LY22]). A deterministic function 𝑓 : Δ𝑞 × [0, 1] → [𝑞] is a
universal coupling on [𝑞] if, when 𝑟 ∈ [0, 1] is chosen uniformly at random, for any distribution
𝜇 ∈ Δ𝑞 and 𝑥 ∈ [𝑞],

ℙ𝑟∼[0,1][𝑓 (𝜇, 𝑟) = 𝑥] = 𝜇(𝑥).

Note that instead of 𝑟 ∼ [0, 1], one can use other sources of randomness with infinite entropy, such
as an infinite sequence of random bits, etc. Since it is easy to translate between these sources, we pick
the notationally most convenient form of random source when describing each universal coupler.

The main characteristic we would like for universal couplers is that on “close” distributions 𝜇, 𝜇′,
the chance that 𝑓 (𝜇, 𝑟) ≠ 𝑓 (𝜇′, 𝑟) is small. A lower bound on this chance is ℙ𝑟[𝑓 (𝜇, 𝑟) ≠ 𝑓 (𝜇′, 𝑟)] ≥
𝑑TV(𝜇, 𝜇′). Surprisingly, this can be matched up to a factor of 2; in fact the optimal 𝑓 has been
shown [KT02; Hol07; Bav+20; LY22] to satisfy

ℙ𝑟[𝑓 (𝜇, 𝑟) ≠ 𝑓 (𝜇′, 𝑟)] ≤ 2 𝑑TV(𝜇, 𝜇′)
1 + 𝑑TV(𝜇, 𝜇′)

≤ 2 𝑑TV(𝜇, 𝜇′).

In our algorithm, we need a slightly stronger guarantee that holds for not just two, but an arbitrary
number of distributions.
Definition 12 (robust universal coupler). We call a universal coupler 𝑓 robust if for any number of
distributions 𝜇1 , . . . , 𝜇𝑚 it satisfies

ℙ𝑟

[︁
∃𝑖 , 𝑗 ∈ [𝑚] : 𝑓 (𝜇𝑖 , 𝑟) ≠ 𝑓 (𝜇𝑗 , 𝑟)

]︁
≤

∑︁
𝑥∈[𝑞](max𝑖∈[𝑚] 𝜇𝑖(𝑥) −min𝑖∈[𝑚] 𝜇𝑖(𝑥))∑︁

𝑥∈[𝑞]max𝑖∈[𝑚] 𝜇𝑖(𝑥)

Note that for𝑚 = 2, the numerator on the r.h.s. becomes 2 𝑑TV(𝜇1 , 𝜇2), and the denominator becomes
1 + 𝑑TV(𝜇1 , 𝜇2). Thus, this matches the same optimal bound derived by prior works. We show
that the rejection-sampling-based algorithm used in prior works, which we call the MinCoupler,
satisfies this more general robustness guarantee. Additionally, we show that another widely used
algorithm called the “Gumbel trick” also satisfies the same robustness guarantee.

Universal coupler of Kleinberg and Tardos [KT02] and Holenstein [Hol07], rediscovered by Liu
and Yin [LY22]. Interpret the uniformly random 𝑟 as a sequence of i.i.d. pairs (𝑥1 , 𝑝1), (𝑥2 , 𝑝2), · · · ∈
[𝑞] × [0, 1], distributed uniformly at random. Given the distribution 𝜇, the algorithm 𝑓 picks the
smallest index 𝑖 ≥ 1 such that 𝑝𝑖 ≤ 𝜇(𝑥𝑖) and outputs 𝑥𝑖 . See Algorithm 1.

Correctness and efficiency. Algorithm 1 is a universal coupler and can be implemented with
high probability by choosing only a sequence of 𝐿 = 𝑂(𝑞 log 𝑛) pairs (𝑥1 , 𝑝1), · · · , (𝑥𝐿 , 𝑝𝐿) [see, e.g.,
LY22].
Lemma 13 ([see, e.g., Lemma 4.3, LY22]). Suppose MinCoupler is constructed in Algorithm 1 and 𝑖∗ is
the smallest index chosen by MinCoupler. Then, for any distribution 𝜇 ∈ Δ𝑞 ,

8

Algorithm 1: Universal coupler MinCoupler [KT02; Hol07; LY22]
Input: Distribution 𝜇 ∈ Δ𝑞 , randomness 𝑟 ∈ [0, 1]
Output: A sample from 𝜇
Interpret 𝑟 as uniform i.i.d. pairs (𝑥1 , 𝑝1), (𝑥2 , 𝑝2), · · · ∈ [𝑞] × [0, 1], e.g., by

• using bits of 𝑟 at odd indices for 𝑥1 , 𝑥2 , · · · , and
• using bits of 𝑟 at even indices for 𝑝1 , 𝑝2 , · · · in a zig-zag order.

𝑖∗ ← min{𝑖 | 𝑝𝑖 ≤ 𝜇(𝑥𝑖)}
return 𝑥𝑖∗

1. MinCoupler is a universal coupler: ∀𝑥 ∈ [𝑞],

ℙ[MinCoupler(𝜇, 𝑟) = 𝑥] = 𝜇(𝑥),

2. 𝑖∗ follows the geometric distribution with success probability 1/𝑞.

Performance. For any two distributions 𝜇, 𝜐 ∈ Δ𝑞 , the samples produced by Algorithm 1 for the
two distributions (using a shared random number 𝑟) are different with probability at most 2 𝑑TV(𝜇,𝜐)

1+𝑑TV(𝜇,𝜐) ,
which is also tight in the worst case [see KT02; Hol07; Bav+20; LY22].

We generalize the performance guarantee to a multi-distribution setting.
Lemma 14 (robustness of MinCoupler). Consider any 𝑚, 𝑞 > 0. Suppose 𝑟 ∈ [0, 1] is uniformly
random. For any distributions 𝜇1 , · · · , 𝜇𝑚 ∈ Δ𝑞 , the probability that there exist 𝑖 , 𝑗 ∈ [𝑚] such that
MinCoupler(𝜇𝑖 , 𝑟) ≠ MinCoupler(𝜇𝑗 , 𝑟) is at most∑︁

𝑥∈[𝑞](max𝑖∈[𝑚] 𝜇𝑖(𝑥) −min𝑖∈[𝑚] 𝜇𝑖(𝑥))∑︁
𝑥∈[𝑞]max𝑖∈[𝑚] 𝜇𝑖(𝑥)

.

Proof. For each 𝑗 ∈ [𝑚], let 𝑖∗
𝑗
be the smallest index the universal coupler chooses for 𝜇𝑗 , i.e.,

𝑖∗𝑗 := min
{︁
𝑖
|︁|︁ 𝑝𝑖 ≤ 𝜇𝑗(𝑥𝑖)

}︁
.

If all 𝑖∗
𝑗
are identical, the coupler’s outputs on 𝜇1 , . . . , 𝜇𝑚 are the same. Therefore,

ℙ𝑟

[︁
∃𝑖 , 𝑗 ∈ [𝑚]MinCoupler(𝜇𝑖 , 𝑟) ≠ MinCoupler(𝜇𝑗 , 𝑟)

]︁
≤

1 − ℙ
[︁
𝑖∗1 = 𝑖∗2 = · · · = 𝑖∗𝑚

]︁
= ℙ

[︃
min
𝑗∈[𝑚]

𝑖∗𝑗 ≠ max
𝑗∈[𝑚]

𝑖∗𝑗

]︃
.

Observe that

min
𝑗∈[𝑚]

𝑖∗𝑗 = min
{︃
𝑖

|︁|︁|︁|︁ 𝑝𝑖 ≤ max
𝑗∈[𝑚]

𝜇𝑗(𝑥𝑖)
}︃

and max
𝑗∈[𝑚]

𝑖∗𝑗 = min
{︃
𝑖

|︁|︁|︁|︁ 𝑝𝑖 ≤ min
𝑗∈[𝑚]

𝜇𝑗(𝑥𝑖)
}︃
.

9

We can thus upper bound

ℙ

[︃
max
𝑗∈[𝑚]

𝑖∗𝑗 ≠ min
𝑗∈[𝑚]

𝑖∗𝑗

]︃
=

∑︂
𝑖≥1

ℙ

[︃
min
𝑗∈[𝑚]

𝑖∗𝑗 = 𝑖

]︃
· ℙ

[︃
𝑝𝑖 > min

𝑗∈[𝑚]
𝜇𝑗(𝑥𝑖)

|︁|︁|︁|︁ 𝑝𝑖≤max 𝑗∈[𝑚] 𝜇𝑗(𝑥𝑖),
∀𝑖′<𝑖, 𝑝𝑖′>max 𝑗∈[𝑚] 𝜇𝑗(𝑥𝑖′)

]︃
=∑︂

𝑖≥1
ℙ

[︃
min
𝑗∈[𝑚]

𝑖∗𝑗 = 𝑖

]︃
· ℙ

[︃
𝑝𝑖 > min

𝑗∈[𝑚]
𝜇𝑗(𝑥𝑖)

|︁|︁|︁|︁ 𝑝𝑖 ≤ max
𝑗∈[𝑚]

𝜇𝑗(𝑥𝑖)
]︃
=

∑︂
𝑖≥1

ℙ

[︃
min
𝑗∈[𝑚]

𝑖∗𝑗 = 𝑖

]︃
·
ℙ

[︁
min𝑗∈[𝑚] 𝜇𝑗(𝑥𝑖) < 𝑝𝑖 ≤ max 𝑗∈[𝑚] 𝜇𝑗(𝑥𝑖)

]︁
ℙ

[︁
𝑝𝑖 ≤ max 𝑗∈[𝑚] 𝜇𝑗(𝑥𝑖)

]︁ =

∑︂
𝑖≥1

ℙ

[︃
min
𝑗∈[𝑚]

𝑖∗𝑗 = 𝑖

]︃
·
𝑞−1 ·∑︁𝑥∈[𝑞](max 𝑗∈[𝑚] 𝜇𝑗(𝑥) −min𝑗∈[𝑚] 𝜇𝑗(𝑥))

𝑞−1 ·∑︁𝑥∈[𝑞]max 𝑗∈[𝑚] 𝜇𝑗(𝑥)
=∑︁

𝑥∈[𝑞](max 𝑗∈[𝑚] 𝜇𝑗(𝑥) −min𝑗∈[𝑚] 𝜇𝑗(𝑥))∑︁
𝑥∈[𝑞]max 𝑗∈[𝑚] 𝜇𝑗(𝑥)

.

We additionally show that a popular sampling strategy called the “Gumbel trick”, used widely in
machine learning and in particular in the context of autoregressivemodels [see, e.g., JGP16], is robust
and satisfies the same bound as Lemma 14; thus it can be used as an alternative to MinCoupler. The
algorithm, described in Algorithm 2, is based on the well-known property of exponential random
variables that if 𝑋1 ∼ Exp(𝑚1), . . . , 𝑋𝑞 ∼ Exp(𝑚𝑞) are independent, then the probability that 𝑋𝑖 is
the smallest among 𝑋1 , . . . , 𝑋𝑞 is exactly 𝑚𝑖/(𝑚1 + · · · + 𝑚𝑞).

Algorithm 2: Universal coupler GumbelTrick [see, e.g., JGP16]
Input: Distribution 𝜇 ∈ Δ𝑞 , randomness 𝑟
Output: A sample from 𝜇
Interpret 𝑟 as 𝑞 i.i.d. exponential random variables 𝑟1 , . . . , 𝑟𝑞 ∼ Exp(1)
return arg min{𝑟𝑥/𝜇(𝑥) | 𝑥 ∈ [𝑞]}

Remark 15. The Gumbel trick is often presented in a syntactically different form. Most often in
practice, the distribution 𝜇 is given as input by the log-likelihoods log(𝜇). Instead of using 𝑟1 , . . . , 𝑟𝑞 ,
one uses random variables 𝛾1 , . . . , 𝛾𝑛 that follow the Gumbel distribution. The algorithm returns
the 𝑥 that maximizes log(𝜇(𝑥)) + 𝛾𝑥 . The Gumbel distribution can be most simply defined as the
distribution of − log(𝑋) for 𝑋 ∼ Exp(1). The equivalence of Algorithm 2 immediately follows.
Lemma 16 (robustness of GumbelTrick). Consider any 𝑚, 𝑞 > 0. Suppose 𝑟 = (𝑟1 , . . . , 𝑟𝑞) is chosen by
independently sampling each 𝑟𝑖 ∼ Exp(1). For any distributions 𝜇1 , · · · , 𝜇𝑚 ∈ Δ𝑞 , the probability that there
exist 𝑖 , 𝑗 ∈ [𝑚] such that GumbelTrick(𝜇𝑖 , 𝑟) ≠ GumbelTrick(𝜇𝑗 , 𝑟) is at most∑︁

𝑥∈[𝑞](max𝑖∈[𝑚] 𝜇𝑖(𝑥) −min𝑖∈[𝑚] 𝜇𝑖(𝑥))∑︁
𝑥∈[𝑞]max𝑖∈[𝑚] 𝜇𝑖(𝑥)

.

Proof. Define 𝜇min(𝑥) = min{𝜇𝑖(𝑥) | 𝑥 ∈ [𝑞]} and 𝜇max(𝑥) = max{𝜇𝑖(𝑥) | 𝑥 ∈ [𝑞]}. For each 𝑦 ∈ [𝑞],
let ℰ𝑦 be the event that 𝑟𝑦/𝜇min(𝑦) < 𝑟𝑥/𝜇max(𝑥) for all 𝑥 ∈ [𝑞] − {𝑦}. Conditioned on ℰ𝑦 , it is easy
to see that GumbelTrick(𝜇𝑖 , 𝑟) = 𝑦 for all 𝑖. This is because for any 𝑥 ∈ [𝑞] − {𝑦}

𝑟𝑦/𝜇𝑖(𝑦) ≤ 𝑟𝑦/𝜇min(𝑦) < 𝑟𝑥/𝜇max(𝑥) ≤ 𝑟𝑥/𝜇𝑖(𝑥),

which means 𝑦 = arg min{𝑟𝑥/𝜇(𝑥) | 𝑥 ∈ [𝑞]}. Note also that this implies the events ℰ𝑦 are disjoint
for 𝑦 ∈ [𝑞]. So we can upper bound the probability that there is a pair 𝑖 , 𝑗 with GumbelTrick(𝜇𝑖 , 𝑟) ≠

10

GumbelTrick(𝜇𝑗 , 𝑟) by

1 − ℙ
⎡⎢⎢⎢⎢⎣
⋃︂
𝑦∈[𝑞]
ℰ𝑦

⎤⎥⎥⎥⎥⎦ = 1 −
∑︂
𝑦∈[𝑞]

ℙ[ℰ𝑦].

Now notice that 𝑟𝑥/𝜇max(𝑥) ∼ Exp(𝜇max(𝑥)) and 𝑟𝑦/𝜇min(𝑦) ∼ Exp(𝜇min(𝑦)). Soℰ𝑦 is the probability
that one exponential random variable is the smallest among several independent ones (with different
rates), which is proportional to the rate of the exponential random variable:

ℙ[ℰ𝑦] =
𝜇min(𝑦)

𝜇min(𝑦) +
∑︁

𝑥∈[𝑞]−{𝑦} 𝜇max(𝑥)
≥ 𝜇min(𝑦)∑︁

𝑥∈[𝑞] 𝜇max(𝑥)
.

We conclude by calculating

1 −
∑︂
𝑦∈[𝑞]

𝜇min(𝑦)∑︁
𝑥∈[𝑞] 𝜇max(𝑥)

=

∑︁
𝑥∈[𝑞](max𝑖∈[𝑚] 𝜇𝑖(𝑥) −min𝑖∈[𝑚] 𝜇𝑖(𝑥))∑︁

𝑥∈[𝑞]max𝑖∈[𝑚] 𝜇𝑖(𝑥)
.

Finally, we characterize the performance of a robust universal coupler on randomly constructed
distributions 𝜇1 , · · · , 𝜇𝑚 where {𝜇𝑖(𝑥)}𝑖∈[𝑚] is a martingale for each 𝑥 ∈ [𝑞]. For these distributions,
we can bound the chance of not-all-equal samples by an expression that is only related to the
expected ℓ1 or ℓ2 distances between the first distribution 𝑝1 and the last distribution 𝑝𝑚 , with some
𝑂(log 𝑛𝑞) or 𝑂(√𝑞) factor blowup and some small additive terms.
Lemma 17. Consider any 𝑚, 𝑞 > 0 and randomly constructed distributions 𝜇1 , · · · , 𝜇𝑚 ∈ Δ𝑞 . Suppose
for any 𝑖 ∈ [𝑚], 𝑥 ∈ [𝑞], 𝜇𝑖(𝑥) is a random variable such that

∑︁
𝑥∈[𝑞] 𝜇𝑖(𝑥) = 1 for any 𝑖 ∈ [𝑚]. If for each

𝑥 ∈ [𝑞], {𝜇𝑖(𝑥)}𝑖∈[𝑚] forms a martingale, then for any 𝑛 > 0,
∑︁

𝑥∈[𝑞] 𝔼[max𝑖∈[𝑚] 𝜇𝑖(𝑥) −min𝑖∈[𝑚] 𝜇𝑖(𝑥)] is
at most

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑂(log 𝑛𝑞) · 𝔼[𝑑TV(𝜇1 , 𝜇𝑚)] +
1
𝑛
, 𝑂(√𝑞) · 𝔼

⎡⎢⎢⎢⎢⎣
∑︂
𝑥∈[𝑞]
(𝜇𝑚(𝑥) − 𝜇1(𝑥))2

⎤⎥⎥⎥⎥⎦
1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭

The proof of this lemma follows Doob’s maximal inequality on ℓ1 and ℓ2 norms. For any martinagle
𝑌0 , 𝑌1 , · · · , 𝑌𝑚 , Doob’s maximal inequality gives upper bound for the expectedmaximumdifferences
between any 𝑌𝑖 and 𝑌0 simply by the expected differences between 𝑌𝑚 and 𝑌0.
Lemma 18 (Doob’s maximal inequality, [see, e.g., RY13]). For any martingales 𝑌0 , 𝑌1 , · · · , 𝑌𝑚 and any
𝑝 ≥ 1, 𝐶 > 0, the complementary cumulative distribution function of max𝑖∈[𝑚]|𝑌𝑖 − 𝑌0| satisfies

ℙ

[︃
max
𝑖∈[𝑚]
|𝑌𝑖 − 𝑌0| ≥ 𝐶

]︃
≤ 𝔼[|𝑌𝑚 − 𝑌0|𝑝]

𝐶𝑝
,

and for any 𝑝 > 1,

𝔼

[︃
max
𝑖∈[𝑚]
|𝑌𝑖 − 𝑌0|𝑝

]︃
≤

(︃
𝑝

𝑝 − 1

)︃𝑝
· 𝔼[|𝑌𝑚 − 𝑌0|𝑝] .

Corollary 19. For any martingales 𝑌0 , 𝑌1 , · · · , 𝑌𝑚 on support [0, 1] and any 𝑁 > 0,

𝔼

[︃
max
𝑖∈[𝑚]
|𝑌𝑖 − 𝑌0|

]︃
≤ 𝑂(log 𝑁) · 𝔼[|𝑌𝑚 − 𝑌0|] +

1
𝑁
.

11

Proof. Taking 𝑝 = 1 in Lemma 18, we have ℙ[max𝑖∈[𝑚] |𝑌𝑖 − 𝑌0| ≥ 𝐶] ≤ 𝔼[|𝑌𝑚 −𝑌0|]/𝐶 for any 𝐶 > 0.
Therefore, for any 𝑁 > 0,

𝔼

[︃
max
𝑖∈[𝑚]
|𝑌𝑖 − 𝑌0|

]︃
=

∫ 1

0
ℙ

[︃
max
𝑖∈[𝑚]
|𝑌𝑖 − 𝑌0| ≥ 𝐶

]︃
𝑑𝐶 ≤ 1

𝑁
+

∫ 1

1/𝑁
ℙ

[︃
max
𝑖∈[𝑚]
|𝑌𝑖 − 𝑌0| ≥ 𝐶

]︃
𝑑𝐶 ≤

1
𝑁
+

∫ 1

1/𝑁

𝔼[|𝑌𝑚 − 𝑌0|]
𝐶

𝑑𝐶 = 𝑂(log 𝑁) · 𝔼[|𝑌𝑚 − 𝑌0|] +
1
𝑁
.

Proof of Lemma 17. Using the linearity of expectation, we get∑︂
𝑥∈[𝑞]

𝔼

[︃
max
𝑖∈[𝑚]

𝜇𝑖(𝑥) − min
𝑖∈[𝑚]

𝜇𝑖(𝑥)
]︃
=

∑︂
𝑥∈[𝑞]

𝔼

[︃
max
𝑖∈[𝑚]

𝜇𝑖(𝑥) − 𝜇1(𝑥)
]︃
+ 𝔼

[︃
𝜇1(𝑥) − min

𝑖∈[𝑚]
𝜇𝑖(𝑥)

]︃
≤

2
∑︂
𝑥∈[𝑞]

𝔼

[︃
max
𝑖∈[𝑚]
|𝜇𝑖(𝑥) − 𝜇1(𝑥)|

]︃
(1)

Using Corollary 19, we can obtain the first upper bound for
∑︁

𝑥∈[𝑞] 𝔼[max𝑖∈[𝑚] 𝜇𝑖(𝑥)−min𝑖∈[𝑚] 𝜇𝑖(𝑥)]:

𝐸𝑞. (1) ≤
∑︂
𝑥∈[𝑞]

𝑂(log 𝑛𝑞) · 𝔼
[︁
|𝜇𝑚(𝑥) − 𝜇1(𝑥)|

]︁
+ 1

𝑛𝑞
= 𝑂(log 𝑛𝑞) · 𝔼

[︁
𝑑TV(𝜇1(𝑥), 𝜇𝑚(𝑥))

]︁
+ 1

𝑛
.

Using Cauchy-Schwarz inequality and Doob’s maximal inequality for ℓ2 norm, we can obtain the
second upper bound for

∑︁
𝑥∈[𝑞] 𝔼[max𝑖∈[𝑚] 𝜇𝑖(𝑥) −min𝑖∈[𝑚] 𝜇𝑖(𝑥)]:

𝐸𝑞. (1) = 2𝔼
⎡⎢⎢⎢⎢⎣
∑︂
𝑥∈[𝑞]

max
𝑖∈[𝑚]
(𝜇𝑖(𝑥) − 𝜇1(𝑥))

⎤⎥⎥⎥⎥⎦ ≤ 2𝔼
⎡⎢⎢⎢⎢⎣⎛⎜⎝

∑︂
𝑥∈[𝑞]

max
𝑖∈[𝑚]
(𝜇𝑖(𝑥) − 𝜇1(𝑥))⎞⎟⎠

2⎤⎥⎥⎥⎥⎦
1/2

≤

2𝔼
⎡⎢⎢⎢⎢⎣𝑞

∑︂
𝑥∈[𝑞]

max
𝑖∈[𝑚]
(𝜇𝑖(𝑥) − 𝜇1(𝑥))2

⎤⎥⎥⎥⎥⎦
1/2

≤ 𝑂(√𝑞) · 𝔼
⎡⎢⎢⎢⎢⎣
∑︂
𝑥∈[𝑞]
(𝜇𝑚(𝑥) − 𝜇1(𝑥))2

⎤⎥⎥⎥⎥⎦
1/2

.

3 Sublinear Parallel Sampling via Counting Oracles

In this section, we show ourmain Theorem 2 that we can (approximately) sample from a distribution
after a sublinear number of rounds (in terms of the number of variables) of querying a polynomial
number of the distribution’s counting oracles.

3.1 Algorithm

We present our algorithm in Algorithm 3. Let 𝑢1 , . . . , 𝑢𝑛 be the random seeds of the algorithm. The
algorithm also shuffles the coordinates with a uniformly random permutation that we ignore in
this description for simplicity.

As a subroutine, we use a universal coupler UniversalCoupler that is robust, see Definition 12. For
instance, this can be either the MinCoupler (Algorithm 1), or the GumbelTrick (Algorithm 2).

12

We let 𝑥 ∈ [𝑞]𝑛 denote a sample from the target distribution generated using the naive sequential
algorithm that iteratively samples the 𝑖-th entry conditioning on all previous entries:

𝑥𝑖 ← UniversalCoupler
(︂
𝑋𝑖

|︁|︁|︁ {︁𝑋𝑗 = 𝑥 𝑗
}︁
𝑗∈[𝑖−1] , 𝑢𝑖

)︂
.

The goal of the algorithm is to sample faster than one coordinate per iteration. The algorithm
maintains an index 𝑎 where the 𝑎-th and earlier entries are all correctly sampled. At the 𝑡-th
iteration, the algorithm attempts to resample all entries after 𝑎 by conditioning on the 𝑎-th and
earlier entries:

𝑥𝑡𝑖 ← UniversalCoupler
(︃
𝑋𝑖

|︁|︁|︁|︁ {︂𝑋𝑗 = 𝑥𝑡−1
𝑗

}︂
𝑗∈[𝑎]

, 𝑢

)︃
.

Then, the algorithm uses 𝑥𝑡 to find the earliest entry 𝑎′ where sampling conditioning on 𝑥𝑡
𝑗∈[𝑎′−1]

differs from sampling conditioning on 𝑥𝑡−1
𝑗∈[𝑎] and immediately fixes the entry 𝑎′: then 𝑎′ is a new

index where the 𝑎′-th and earlier entries are all correctly sampled.

Algorithm 3: Parallel sampling on product spaces
Input: Counting oracle 𝜇, robust universal coupler UniversalCoupler on [𝑞]
Output: A sample in [𝑞]𝑛
Sample a permutation 𝜎← uniform(𝒮𝑛)
Sample i.i.d. random sources 𝑢1 , 𝑢2 , · · · , 𝑢𝑛 ← uniform([0, 1])
Initialize 𝑎 ← 0, 𝑡 ← 0, 𝑥0 ← null
while true do

𝑡 ← 𝑡 + 1
for 𝑖 ∈ [𝑛] in parallel do

𝑦𝑡
𝜎(𝑖) ← UniversalCoupler

(︃
𝑋𝜎(𝑖)

|︁|︁|︁|︁ {︂𝑋𝜎(𝑗) = 𝑥𝑡−1
𝜎(𝑗)

}︂
𝑗∈[𝑎]

, 𝑢𝑖

)︃
for 𝑖 ∈ [𝑛] in parallel do

𝑥𝑡
𝜎(𝑖) ← UniversalCoupler

(︃
𝑋𝜎(𝑖)

|︁|︁|︁|︁ {︂𝑋𝜎(𝑗) = 𝑦𝑡
𝜎(𝑗)

}︂
𝑗∈[𝑖−1]

, 𝑢𝑖

)︃
if 𝑥𝑡 = 𝑦𝑡 then

return 𝑥𝑡

𝑎 ← min
{︂
𝑖 ∈ [𝑛]

|︁|︁|︁ 𝑦𝑡𝜎(𝑖) ≠ 𝑥𝑡
𝜎(𝑖)

}︂
if 𝑎 = 𝑛 then

return 𝑥𝑡

3.2 Correctness

We consider a function 𝑥̃ : 𝒮𝑛 × [0, 1]𝑛 → [𝑞]𝑛 defined iteratively as follows:

𝑥̃ 𝑖(𝜎, 𝑢) = UniversalCoupler
(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)
}︁
𝑗∈[𝑖−1] , 𝑢𝑖

)︂
. (2)

For each 𝑖 ∈ [𝑛], because UniversalCoupler is a universal coupler, 𝑥̃ 𝑖(𝜎, 𝑢) follows the marginal
distribution of 𝑋𝜎(𝑖) conditioning on 𝑋𝜎(1) = 𝑥̃1(𝜎, 𝑢), 𝑋𝜎(2) = 𝑥̃2(𝜎, 𝑢), · · · , 𝑋𝜎(𝑖−1) = 𝑥̃ 𝑖−1(𝜎, 𝑢)

13

(considering only the randomness of 𝑢𝑖). Therefore, this function can serve as an objective output
of the algorithm when we have fixed the randomness 𝜎 and 𝑢.
Lemma 20. If Algorithm 3 always outputs 𝑥𝑡

𝜎(𝑖) = 𝑥̃ 𝑖(𝜎, 𝑢), it samples perfectly from the distribution of 𝑋.

Let 𝑎𝑡 be the value of 𝑎 at the end of round 𝑡 (if the algorithm does not terminate with 𝑥𝑡 = 𝑦𝑡

before updating the value of 𝑎 in round 𝑡). For simplicity, we suppose 𝑎0 = 0. Next, we show that
the vector 𝑥𝑡 produced by the algorithm in each round matches this objective vector in the first 𝑎𝑡
entries.
Lemma 21. For any 𝜎, 𝑢, after each round 𝑡 of Algorithm 3,

∀𝑖 ∈ [𝑎𝑡], 𝑥𝑡𝜎(𝑖) = 𝑥̃ 𝑖(𝜎, 𝑢).

Proof. According to the definition of 𝑎𝑡 , we have ∀𝑖 ∈ [𝑎𝑡 − 1], 𝑥𝑡
𝜎(𝑖) = 𝑦𝑡

𝜎(𝑖). Therefore, according to
the definition of 𝑥𝑡 , we have for any 𝑖 ∈ [𝑎𝑡],

𝑥𝑡𝜎(𝑖) = UniversalCoupler
(︃
𝑋𝜎(𝑖)

|︁|︁|︁|︁ {︂𝑋𝜎(𝑗) = 𝑥𝑡𝜎(𝑗)

}︂
𝑗∈[𝑖−1]

, 𝑢𝑖

)︃
. (3)

Note that this recursion matches the recursion Eq. (2) used in the definition of 𝑥̃ 𝑖(𝜎, 𝑢) for any
𝑖 ∈ [𝑎𝑡]. Therefore, ∀𝑖 ∈ [𝑎𝑡], 𝑥𝑡

𝜎(𝑖) = 𝑥̃ 𝑖(𝜎, 𝑢).

To show that Algorithm 3 is making progress every iteration, we prove 𝑎𝑡 is (strictly) monotone in
terms of 𝑡.
Lemma 22. 𝑎𝑡 is strictly increasing with 𝑡.

Proof. According to the definition of 𝑦𝑡 , for any 𝑖 ∈ [𝑎𝑡−1], 𝑦𝑡
𝜎(𝑖) = 𝑥𝑡−1

𝜎(𝑖) = 𝑥̃ 𝑖(𝜎, 𝑢). Therefore,
according to the definition of 𝑥𝑡 , for any 𝑖 ∈ [𝑎𝑡−1 + 1],

𝑥𝑡𝜎(𝑖) = UniversalCoupler
(︃
𝑋𝜎(𝑖)

|︁|︁|︁|︁ {︂𝑋𝜎(𝑗) = 𝑥𝑡−1
𝜎(𝑗)

}︂
𝑗∈[𝑖−1]

)︃
= UniversalCoupler

(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)
}︁
𝑗∈[𝑖−1]

)︂
(definition of 𝑎𝑡−1)

= 𝑥̃ 𝑖(𝜎, 𝑢) = 𝑦𝑡𝜎(𝑖). (definition of 𝑥̃ 𝑖(𝜎, 𝑢))

By the definition of 𝑎𝑡 , if 𝑥𝑡 ≠ 𝑦𝑡 , we get 𝑎𝑡 > 𝑎𝑡−1 + 1.

Note that the algorithm terminates when either of the following two conditions is satisfied in some
round 𝑡: 𝑎𝑡 = 𝑛 or 𝑥𝑡 = 𝑦𝑡 . Due to Lemma 22, the algorithm always terminates. If it terminates
because of the first condition 𝑎𝑡 = 𝑛, due to Lemma 21, the output of the algorithm matches the
objective in Lemma 20. Otherwise, because of the definition of 𝑥𝑡 and the fact that 𝑥𝑡 = 𝑦𝑡 , the
output satisfies Eq. (3), which matches the recursion Eq. (2) used in the definition of 𝑥̃ 𝑖(𝜎, 𝑢), and
thus matches the objective in Lemma 20. As a conclusion, we obtain the correctness of our algorithm.
Lemma 23. Algorithm 3 returns a sample 𝑥 ∼ 𝜇.

14

3.3 Round Complexity

We establish our sublinear round complexity via two steps. First, we ignore the randomness of
𝜎 and 𝑢, and establish a worst-case round complexity, which can be linear with some choices of
𝜎, 𝑢. Second, we show that the expectation of this round complexity is actually ˜︁𝑂(𝑛2/3 log 𝑞)with
the random choices of 𝜎, 𝑢. This bound is established by the robustness of the universal coupler
on randomly constructed distributions that satisfy the martingale property (Definition 12 and
Lemma 17) and a pinning lemma (Lemma 10).

To use this algorithm to nontrivially speed up sampling of planar perfect matchings, we also need a
tail bound for the round complexity. Because of Markov’s inequality, the expected round complexity
implies a simple tail bound – the round complexity is less than 𝑐 · 𝑛2/3 log 𝑞 with probability ˜︁Ω(1/𝑐).
At the end of this subsection, we boost this tail bound to 2−˜︁Ω(𝑐) via the simple observation that
running several rounds of the algorithm is equivalent to reinitiating the algorithm with a smaller
instance.

Worst-case round complexity. First, we consider the randomness 𝜎, 𝑢 used in the algorithm as
part of the input, and give an upper bound for the round complexity. For each 𝜎 ∈ 𝒮𝑛 , 𝑢 ∈ [0, 1]𝑛
and 𝑖 ∈ [𝑛], let 𝑎 𝑖(𝜎, 𝑢) be the maximum 𝑎 such that Algorithm 3 will not correctly sample 𝑋𝜎(𝑖)
to 𝑥̃ 𝑖(𝜎, 𝑢), the value of 𝑋𝜎(𝑖) in the final output, under the correct conditioning of 𝑋𝜎(1) , . . . , 𝑋𝜎(𝑎).
Formally, 𝑎̃ 𝑖(𝜎, 𝑢) is defined as follows:

𝑎 𝑖(𝜎, 𝑢) = max
{︂
𝑎 ≥ 0

|︁|︁|︁ 𝑥̃ 𝑖(𝜎, 𝑢) ≠ UniversalCoupler
(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)
}︁
𝑗∈[𝑎] , 𝑢𝑖

)︂}︂
,

where we define the maximum of an empty set to be 0 for simplicity. Using this definition, we can
establish a worst-case round complexity of Algorithm 3.
Lemma 24. For any integer 𝜃 ≥ 1 and randomness 𝜎 ∈ 𝒮𝑛 , 𝑢 ∈ [0, 1]𝑛 , the round complexity of Algorithm 3
is at most

|{𝑖 ∈ [𝑛] | 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃}| + 1 + 𝑛

𝜃
.

Proof. Recall that we define 𝑎𝑡 as the value of 𝑎 after round 𝑡, and we define 𝑎0 as 0. The algorithm
has at most one round 𝑡 without computing 𝑎𝑡 , when it terminates with 𝑥𝑡 = 𝑦𝑡 . Suppose that the
step size of any round 𝑡, where the algorithm computes 𝑎𝑡 , is the increment 𝑎𝑡 − 𝑎𝑡−1. Based on the
step sizes, we divide the rounds into two classes: small-progress rounds that have step sizes < 𝜃,
and large-progress rounds that have step sizes ≥ 𝜃. Note that the number of large-progress rounds
is at most 𝑛/𝜃 because otherwise 𝑎 will exceed 𝑛 in some round. It suffices to upper bound the
number of small-progress rounds by |{𝑖 ∈ [𝑛] : 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃}| to finish the proof.

Consider any round 𝑡 such that 𝑎𝑡 − 𝑎𝑡−1 < 𝜃. Due to the definition of the algorithm and Lemma 21,
the algorithm finds 𝑦𝑡

𝜎(𝑖) = 𝑥𝑡
𝜎(𝑖) = 𝑥̃ 𝑖(𝜎, 𝑢) for any 𝑖 < 𝑎𝑡 . The algorithm also finds 𝑥𝑡

𝜎(𝑎𝑡) ≠ 𝑦𝑡
𝜎(𝑎𝑡).

According to the definition of 𝑥𝑡 and 𝑦𝑡 and Lemma 21, 𝑦𝑡
𝜎(𝑎𝑡) =

UniversalCoupler
(︂
𝑋𝜎(𝑎𝑡+1)

|︁|︁|︁ {︁𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)
}︁
𝑗∈[𝑎𝑡−1] , 𝑢𝑎𝑡

)︂
,

and 𝑥𝑡
𝜎(𝑎𝑡) =

UniversalCoupler
(︂
𝑋𝜎(𝑎𝑡+1)

|︁|︁|︁ {︁𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)
}︁
𝑗∈[𝑎𝑡−1] , 𝑢𝑎𝑡

)︂
= 𝑥̃𝑎𝑡 (𝜎, 𝑢).

15

This implies 𝑎𝑎𝑡 (𝜎, 𝑢) ≥ 𝑎𝑡−1 > 𝑎𝑡 − 𝜃. Therefore, 𝑎𝑡 ∈ {𝑖 ∈ [𝑛] | 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃}. Since 𝑎𝑡 are
strictly increasing (Lemma 22), the number of such small-progress rounds can be upper bounded
by |{𝑖 ∈ [𝑛] | 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃}|.

We note that the cardinality of the set {𝑖 ∈ [𝑛] | 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖−𝜃} can beΩ(𝑛), even under expectation
over 𝑢. Suppose that 𝑋1 , 𝑋3 , . . . , 𝑋𝑛−1 are sampled independently and uniformly at random, and
𝑋2 = 𝑋1 , 𝑋4 = 𝑋3 , · · · , 𝑋𝑛 = 𝑋𝑛−1. For 𝜃 ≥ 2 and the permutation 𝜎(𝑖) = 𝑖, this set will involve each
2𝑖 with probability 1/2 independently.
Remark 25. Because our analysis only needs the large-progress rounds to increase 𝑎 by ≥ 𝜃, we
could still enjoy the same upper bound if we only resample the first 𝜃 entries after 𝑎 in each iteration.
This suggests a more query-efficient implementation Algorithm 4.

Algorithm 4: Query-efficient implementation for each iteration of Algorithm 3
while true do

𝑡 ← 𝑡 + 1
𝑦𝑡 ← 𝑥𝑡−1

for 𝑖 ∈ {𝑎 + 1, . . . ,min{𝑎 + 𝜃, 𝑛}} in parallel do

𝑦𝑡
𝜎(𝑖) ← UniversalCoupler

(︃
𝑋𝜎(𝑖)

|︁|︁|︁|︁ {︂𝑋𝜎(𝑗) = 𝑥𝑡−1
𝜎(𝑗)

}︂
𝑗∈[𝑎]

, 𝑢𝑖

)︃
for 𝑖 ∈ {𝑎 + 1, . . . ,min{𝑎 + 𝜃, 𝑛}} in parallel do

𝑥𝑡
𝜎(𝑖) ← UniversalCoupler

(︃
𝑋𝜎(𝑖)

|︁|︁|︁|︁ {︂𝑋𝜎(𝑗) = 𝑦𝑡
𝜎(𝑗)

}︂
𝑗∈[𝑖−1]

, 𝑢𝑖

)︃
𝑎 ← min

{︂
𝑖 ∈ {𝑎 + 1, . . . ,min{𝑎 + 𝜃, 𝑛}} : 𝑦𝑡

𝜎(𝑖) ≠ 𝑥𝑡
𝜎(𝑖)

}︂
∪ {min{𝑎 + 𝜃, 𝑛} + 1}

if 𝑎 ≥ 𝑛 then
return 𝑥𝑡

Expected round complexity. Next, we consider the randomness 𝜎, 𝑢 and show an improved
expected round complexity for the algorithm. Based on the worst-case analysis, we give a better
bound for the expected cardinality of {𝑖 ∈ [𝑛] | 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃} for some sophisticated choice of 𝜃.
Due to the linearity of expectation, we can separately upper bound the probability of 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖−𝜃
for each 𝑖 ∈ [𝑛]. Only considering the randomness of 𝑢, we can obtain the following lemma, which
upper bounds the probability by the total variation distance between the conditional distributions
of 𝑋𝜎(𝑖) under fully conditioning of all previous variables (𝑋𝜎(1) to 𝑋𝜎(𝑖−1)) and partial conditioning
of some previous variables (𝑋𝜎(1) to 𝑋𝜎(𝑖−𝜃)).
Lemma 26. For any 𝑖 ≥ 𝜃 and any permutation 𝜎 ∈ 𝒮𝑛 , the probability of 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃 is at most

𝑂(min
{︁
log 𝑛𝑞,

√
𝑞
}︁
) · 𝔼𝑋

[︃
𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−1] , 𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−𝜃]

)︂2
]︃1/2
+ 1

𝑛
,

where the probability is taken only over the randomness of 𝑢1 , · · · , 𝑢𝑛 .

Proof. According to the definition of 𝑎 𝑖(𝜎, 𝑢), 𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 −𝜃 when there exists 𝑎 ∈ [𝑖 −𝜃, 𝑖 − 1] such
that UniversalCoupler(𝑋𝜎(𝑖) | {𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑖−1] , 𝑢𝑖) ≠ UniversalCoupler(𝑋𝜎(𝑖) | {𝑋𝜎(𝑗) =
𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑎] , 𝑢𝑖). Equivalently, when we apply the universal coupler on all variables 𝑋𝑖|{𝑋𝜎(𝑗)}𝑗∈[𝑎],
where 𝑎 can be any integer in [𝑖 − 𝜃, 𝑖 − 1], the coupler produces different outcomes for two of

16

them. Let {𝜇𝑎(𝑥)}𝑥∈[𝑞] denote the variables characterizing the randomly constructed distribution of
𝑋𝜎(𝑖)|{𝑋𝜎(𝑗)}𝑗∈[𝑎], where the randomness is taken over the random conditioning of {𝑋𝜎(𝑗)}𝑗∈[𝑎], i.e.,

∀𝑥 ∈ [𝑞], 𝜇𝑎(𝑥) = ℙ
[︁
𝑋𝜎(𝑖) = 𝑥

|︁|︁ {𝑋𝜎(𝑗)}𝑗∈[𝑎]
]︁

We have that ℙ𝑢[𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃] = ℙ𝑢[∃𝑎, 𝑎′ ∈ [𝑖 − 𝜃, 𝑖 − 1],UniversalCoupler(𝜇𝑎 , 𝑢𝑖) ≠

UniversalCoupler(𝜇𝑎′ , 𝑢𝑖)]. Further, note that {𝜇𝑎(𝑥)}𝑎∈[𝑖−𝜃,𝑖−1] forms a martingale, where ran-
domness is taken over 𝑢1 , · · · , 𝑢𝑖−1. Because of the robustness of UniversalCoupler, Definition 12,
and Lemma 17, we can upper bound ℙ𝑢[𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃] by the following terms:

𝔼

⎡⎢⎢⎢⎢⎣
∑︂
𝑥∈[𝑞]

max
𝑎∈[𝑖−𝜃,𝑖−1]

𝜇𝑎(𝑥) − min
𝑎∈[𝑖−𝜃,𝑖−1]

𝜇𝑎(𝑥)
⎤⎥⎥⎥⎥⎦ ≤

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑂(log 𝑛𝑞) · 𝔼[𝑑TV(𝜇𝑖−𝜃 , 𝜇𝑖−1)] +
1
𝑛
, 𝑂(√𝑞) · 𝔼

⎡⎢⎢⎢⎢⎣
∑︂
𝑥∈[𝑞]
(𝜇𝑖−1(𝑥) − 𝜇𝑖−𝜃(𝑥))2

⎤⎥⎥⎥⎥⎦
1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤

𝑂(min
{︁
log 𝑛𝑞,

√
𝑞
}︁
) · 𝔼𝑋

[︂
𝑑TV

(︁
𝜇𝑖−1 , 𝜇𝑖−𝜃

)︁2
]︂1/2
+ 1

𝑛
.

Then, applying the pinning lemma (Lemma 10), we can obtain a better average round complexity
for Algorithm 3.

Proof of Theorem 2. We show that the expected number of rounds of Algorithm 3 is

𝑂(𝑛2/3 ·min{log2/3 𝑛 log 𝑞, 𝑞1/3 log1/3 𝑞})

Consider 𝜃 = 𝑂(𝑛1/2). According to Lemma 24, the expected number of rounds that Algorithm 3
needs is at most

𝑛

𝜃
+ 𝜃 + 1 +

∑︂
𝑖≥𝜃

ℙ𝜎,𝑢[𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃] (4)

By Lemma 26, we can upper bound∑︂
𝑖≥𝜃

ℙ𝜎,𝑢[𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃] ≤ 1 + 𝑂(min
{︁
log 𝑛𝑞,

√
𝑞
}︁
)·

∑︂
𝑖≥𝜃

𝔼

[︃
𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−1] , 𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−𝜃]

)︂2
]︃1/2

⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞,
where we can further upper bound the underbraced term by

≤ 𝑂(
√
𝑛)·

𝔼

[︄∑︂
𝑖≥𝜃

𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−1] , 𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗)
}︁
𝑗∈[𝑖−𝜃]

)︂]︄
≤

𝑂(
√
𝑛) ·

(︃ (𝜃 − 1) log 𝑞

2

)︃1/2
≤ 𝑂(

√︁
𝑛𝜃 log 𝑞)

17

Therefore, if we take 𝜃 = 𝑛1/3

log1/3 𝑞(min{log 𝑛𝑞,
√
𝑞})2/3 , the expected round complexity of Algorithm 3 can

be upper bounded by
𝑛

𝜃
+ 𝑂(

√︁
𝑛𝜃 log 𝑞 min{log 𝑛𝑞,

√
𝑞}) ≤ 𝑂(𝑛2/3 ·min{log2/3 𝑛 log 𝑞, 𝑞1/3 log1/3 𝑞}).

Note that our choice of 𝜃 guarantees that
∑︁

𝑖≥𝜃 ℙ𝜎,𝑢[𝑎 𝑖(𝜎, 𝑢) ≥ 𝑖 − 𝜃] = 𝑂(𝑛/𝜃). The expected
round complexity can also be upper bounded by𝑂(𝑛/𝜃). Using our query-efficient implementation,
Algorithm 4, the expected total number of queries we make is 𝑂(𝑛).

Tail bounds for the round complexity. Because ofMarkov’s inequality, we can obtain the following
corollary:
Corollary 27. For any input 𝑋1 , 𝑋2 , · · · , 𝑋𝑛 , with probability at least 1/2, Algorithm 3 terminates in˜︁𝑂(𝑛2/3 log 𝑞) rounds.
Next, we establish a tail bound for the number of rounds used by the algorithm.
Theorem 28. There exists a constant 𝑀 > 0 such that for any integer 𝑐 ≥ 1, Algorithm 3 terminates in
𝑐𝑀 · (𝑛 log 𝑛)2/3 log 𝑞 rounds with probability at least 1 − 2−𝑐 .

Proof. Let 𝑀 be a constant such that Algorithm 3 terminates in 𝑀 · (𝑛 log 𝑛)2/3 log 𝑞 with probability
at least 1/2. The existence of such 𝑀 follows Corollary 27. Let 𝑅 be the variable that denotes the
number of rounds Algorithm 3 uses. Next, we prove by induction that for any integer 𝑐 ≥ 1, we
have

ℙ
[︁
𝑅 > 𝑐𝑀 · (𝑛 log 𝑛)2/3 log 𝑞

]︁
≤ 2−𝑐 .

The cases where 𝑛 = 1 or 𝑐 = 1 are trivial.

Suppose that we have proved the theorem for any 𝑛 < 𝑁 . Consider an instance with 𝑛 = 𝑁 .
For any 𝑖 ≤ 𝑛 − 1, let 𝒜𝑖 be the event that Algorithm 3 does not terminate and has 𝑎 = 𝑖 after
running it for 𝑀 · (𝑛 log 𝑛)2/3 log 𝑞 rounds. This definition immediately gives us

∑︁
𝑖≤𝑛−1 ℙ[𝒜𝑖] ≤ 1

2 .
Because of Lemma 22, after running the algorithm for 𝑀 · (𝑛 log 𝑛)2/3 log 𝑞 rounds, we have 𝑎 ≥
𝑀 · (𝑛 log 𝑛)2/3 log 𝑞. Therefore, ℙ[𝒜0] = 0 and for any 𝑐 ≥ 2,

ℙ
[︁
𝑅 > 𝑐𝑀 · (𝑛 log 𝑛)2/3 log 𝑞

]︁
=∑︂

𝑖∈[𝑛−1]
ℙ

[︁
𝑅 > 𝑐𝑀 · (𝑛 log 𝑛)2/3 log 𝑞

|︁|︁𝒜𝑖

]︁
ℙ[𝒜𝑖] ≤

1
2 · max

𝑖∈[𝑛−1]
ℙ

[︁
𝑅 > 𝑐𝑀 · (𝑛 log 𝑛)2/3 log 𝑞

|︁|︁𝒜𝑖

]︁
.

Next, we show ℙ[𝑅 > 𝑐𝑀 · (𝑛 log 𝑛)2/3 log 𝑞 | 𝒜𝑖] ≤ 2−𝑐+1 for any 𝑖 ∈ [𝑛−1] to finish the proof. Note
that for any 𝑖 ∈ [𝑛−1], whether the event𝒜𝑖 happens is determined by 𝜎(1), · · · , 𝜎(𝑖) and 𝑢1 , · · · , 𝑢𝑖 .
Therefore,𝒜𝑖 is independent of the random permutation in [𝑛] \ {𝜎(𝑗)}𝑗∈[𝑖] and the randomness of
𝑢𝑖+1 , · · · , 𝑢𝑛 . Further, if𝒜𝑖 happens after running the algorithm for 𝑀 · (𝑛 log 𝑛)2/3 log 𝑞 rounds, the
algorithm fixes the values of the first 𝑖 variables and continues with 𝑎 = 𝑖. Therefore, conditioning
on any 𝜎(1), · · · , 𝜎(𝑖) ∈

(︁[𝑛]
𝑖

)︁
and 𝑢1 , · · · , 𝑢𝑖 ∈ [0, 1] that cause𝒜𝑖 to happen, the remaining iterations

of the algorithm are equivalent to those in a fresh run of the algorithm on the remaining variables
{𝑋𝑗}𝑗∈[𝑛] \ {𝑋𝜎(𝑗)}𝑗∈[𝑖] conditioning on {𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑖]. According to our induction hypothesis,
the number of remaining rounds of the algorithm is (strictly) greater than (𝑐 − 1)𝑀 · ((𝑛 − 𝑖) log(𝑛 −
𝑖))2/3 log 𝑞 with probability at most 2−𝑐+1. Therefore, ℙ[𝑅 > 𝑐𝑀 · (𝑛 log 𝑛)2/3 | 𝒜𝑖] is at most
2−𝑐+1.

18

3.4 Sampling via Approximate Counting Oracles

We show that our algorithm can also work with approximate counting oracles. Suppose 𝜇̂ is an
oracle such that for any 𝑆 ⊆ [𝑛] and 𝑦 ∈ [𝑞]𝑆, with probability at least 1 − 𝛿,

𝜇̂(𝑆, 𝑦) ∈ (1 ± 𝜖)ℙ𝑋∼𝜇[𝑋𝑆 = 𝑦]. (5)

At each round of the algorithm, we shall consider an approximate version of the conditional
probability distribution. For any permutation 𝜎, indices 0 ≤ 𝑎 < 𝑖 ≤ 𝑛 and any 𝑦 ∈ [𝑞]{𝜎(𝑗)}𝑗∈[𝑎] ,
we consider the following distribution 𝜐 for 𝑋𝜎(𝑖)|{𝑋𝜎(𝑗) = 𝑦𝜎(𝑗)}𝑗∈[𝑎]: for any 𝑥 ∈ [𝑞], let 𝑦′(𝑥) ∈
[𝑞]{𝜎(𝑗)}𝑗∈[𝑎]∪{𝜎(𝑖)} be the vector such that 𝑦′

𝜎(𝑖)(𝑥) = 𝑥 and 𝑦′
𝜎(𝑗)(𝑥) = 𝑦𝜎(𝑗) for any 𝑗 ∈ [𝑎], then we have

∀𝑥 ∈ [𝑞], 𝜐(𝑥) ∝ 𝜇̂
(︂
{𝜎(𝑗)}𝑗∈[𝑎] ∪ {𝜎(𝑖)}, 𝑦′(𝑥)

)︂
.

In particular, we use 𝜐𝑖|𝑎(𝜎, 𝑢) to denote this approximate version of the distribution for𝑋𝜎(𝑖)|{𝑋𝜎(𝑗) =
𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑎]. We say that a pair of randomness (𝜎, 𝑢) is good if for any 0 ≤ 𝑎 < 𝑖 ≤ 𝑛,

UniversalCoupler
(︂
𝑋𝜎(𝑖)

|︁|︁|︁ {︁𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)
}︁
𝑗∈[𝑎] , 𝑢𝑖

)︂
= UniversalCoupler

(︁
𝜐𝑖|𝑎(𝜎, 𝑢), 𝑢𝑖

)︁
.

We show the following two key lemmas on good randomness. The first states that the approximate
counting oracles do not influence the output of the algorithm as long as the randomness is good.
The second upper bounds the probability that the randomness is not good. We defer the proofs to
Appendix A.1 and Appendix A.2.
Lemma 29. If the pair of randomness (𝜎, 𝑢) is good, Algorithm 3 with the approximate counting oracle
outputs the same vectors as Algorithm 3 with the exact counting oracle in the same number of rounds.
Lemma 30. For any pair of randomness (𝜎, 𝑢), it is good with probability at least 1 − 𝑂(𝑛2𝜖 + 𝑛2𝑞𝛿).
Suppose the parameters of the approximate counting oracle satisfy 𝛿, 𝜖 = 𝑂(𝑛−3𝑞−1). Putting
Theorem 28 together with these two lemmas, we can easily obtain the guarantee: if we terminate
Algorithm 3 in 𝑂(𝑛2/3poly log(𝑛, 𝑞)) rounds, the output distribution is within a total variation
distance 𝑂(𝑛−1) of 𝜇.

4 Applications

In this section, we show an example application of Theorem 2, to the problem of sampling uniformly
random perfect matchings in planar graphs. The famous FKT algorithm allows parallel counting of
the number of perfect matchings [see, e.g., Ana+23a]. The previous best parallel runtime for this
problem is ˜︁𝑂(𝑛1/2) for planar graphs of size 𝑛 [Ana+23a].
Remark 31. Two key techniques for deterministic (approximate) counting, namely the tree recur-
sion/correlation decay method [Wei06] and the polynomial interpolation method [Bar16] can often
be trivially parallelized. The former involves solving a recursion on a tree of logarithmic depth, and
the latter involves enumerating structures of logarithmic size in a host object (e.g., a graph). As
such, our results automatically provide a parallel speedup wherever these methods apply.
Theorem 32. Let 𝐺 = (𝑉, 𝐸) be a planar graph. There exists an algorithm that samples a uniformly random
perfect matching in 𝐺 with a parallel runtime of ˜︁𝑂(𝑛1/3) and poly(𝑛) work.

Proof. Similar to [Ana+23a], we use the planar separator theorem to find a separator of size 𝑂(
√
𝑛),

sample the portion of the perfect matching incident to the separator, and then recursively sample

19

the rest of the perfect matching in the now-disjoint halves of the graph, in parallel. Our modification
is that, while naïvely sampling the separator edges takes ˜︁𝑂(√𝑛) time, using Theorem 2, we can
speed it up to ˜︁𝑂(𝑛1/3).
To bemore specific, given the input graph𝐺 = (𝑉, 𝐸), we find a planar separator 𝑆 ⊆ 𝑉 of size𝑂(

√
𝑛),

such that 𝐺 − 𝑆 is composed of two smaller graphs, on vertex sets 𝐴, 𝐵, each of size ≤ (1 −Ω(1))𝑛.
This can be done in parallel [GM87].

Next, we consider the distribution 𝜇 on 𝐸𝑆, where 𝜇(𝑥) is proportional to the number of perfect
matchings that have edge 𝑥𝑣 incident to 𝑣 for all 𝑣 ∈ 𝑆. Note that many configurations 𝑥 ∈ 𝐸𝑆 are
invalid, for example, those where 𝑣 is not even an endpoint of 𝑥𝑣 , or those with clashing edges for
two vertices in 𝑆. All of these invalid configurations are assigned a measure of 0 under 𝜇. We claim
that there is a parallel (NC) counting oracle for 𝜇. Indeed, given a partial pinning, we can check
if it is valid, and if so, remove the edges in the pinning from the graph, and simply count perfect
matchings in the resulting subgraph. The number of perfect matchings in planar graphs can be
efficiently computed in parallel by the FKT algorithm [see, e.g., Ana+23a].

Now we use Algorithm 3 to sample from 𝜇. Once the sample is produced, we remove all the
endpoints of this partial matching from 𝐺 (in particular, this removes all of 𝑆), and now we have
two disjoint subgraphs of geometrically smaller size. In parallel, we recurse on each.

Note that the total number of calls to Algorithm 3 is ≤ poly(𝑛). By using the tail bounds for our
algorithm, Theorem 28, each call finishes in at most ˜︁𝑂(√𝑛2/3) = ˜︁𝑂(𝑛1/3) time, with probability at
least 1 − 1/poly(𝑛). Taking a union bound, and using the fact that recursively the subgraphs shrink
geometrically, we get that the overall parallel runtime is ˜︁𝑂(𝑛1/3)with high probability.

5 Hardness

In this section, we prove that any algorithm cannot approximately sample within a constant total
variation distance of arbitrary distribution 𝜇 with 𝑛1/3−Ω(1) round complexity and a polynomial
number of queries in each round to the exact counting oracle. More generally, we shall prove the
following hardness result on parallel search via counting oracles for 𝑞 = 2.
Theorem 33. For any constant 𝛿 ∈ (0, 1], any 𝑐 ∈ (0, 𝑛1−𝛿) and any (randomized) algorithm ALG making
at most 𝑛𝑐 queries to the counting oracle in each round, there exists an instance 𝜇 : {0, 1}𝑛 → {0, 1} such
that ALG can only find a solution 𝑥 (such that 𝜇(𝑥) = 1) with probability at most 0.01 after (strictly) less
than 1

4 · (𝑛
(𝑐+2) log 𝑛

)1/3 rounds of queries.

In the rest of this section, we use 𝐻 = (𝑆, 𝑦), where 𝑆 ⊆ [𝑛] and 𝑦 ∈ [𝑞]𝑆, to denote a hypercube by
𝐻 = {𝑥 ∈ [𝑞]𝑛 | 𝑥𝑆 = 𝑦}. For the abuse of notation, for any function 𝜇 : {0, 1}𝑘 → {0, 1} and any
hypercube 𝐻, we define 𝜇(𝐻) :=

∑︁
𝑥∈𝐻 𝜇(𝑥) as the output of the counting oracle.

The (random) hard instances. We consider deterministic algorithms that make at most 𝑛𝑐 queries
in each round, where 𝑐 < 𝑛1−𝛿 for some constant 𝛿 ∈ (0, 1]. We randomly partition the 𝑛 variables
into 𝑟 = 1

4 (𝑛
(𝑐+2) log 𝑛

)1/3 equal blocks 𝑆1 , 𝑆2 , · · · , 𝑆𝑟 , each with 𝑚 = 𝑛/𝑟 = 4𝑛2/3((𝑐 + 2) log 𝑛)1/3

variables. For each block 𝑆𝑖 , we choose 𝑎𝑖 = 𝑖 · 12𝑛1/3((𝑐 + 2) log 𝑛)2/3 and define the set of true
strings in this block using a random linear code with constraints 𝑚 − 𝑎𝑖 : first we independently
and uniformly choose a matrix 𝐵𝑖 ∈ {0, 1}(𝑚−𝑎𝑖)×𝑚 and a vector 𝑣𝑖 ∈ {0, 1}𝑚−𝑎𝑖 at random for each

20

𝑗 ∈ [𝑚]; and then we define the boolean function 𝜇𝑖 as follows:

∀𝑥 ∈ {0, 1}𝑆𝑖 , 𝜇𝑖(𝑥) = 𝟙[𝐵𝑖𝑥 = 𝑣𝑖],

where all the operations are under 𝔽2. Then, the true strings of the entire function are defined as
those projections in each of the blocks are all true, i.e., the entire function 𝜇 is then defined as the
product of all 𝜇𝑖 :

∀𝑥 ∈ {0, 1}𝑛 , 𝜇(𝑥) =
∏︂
𝑖∈[𝑟]

𝜇𝑖(𝑥𝑆𝑖).

For any sub-hypercube 𝐻, parameterized by 𝑆 and 𝑦, we define 𝐻 restricted to 𝑆𝑖 as 𝐻𝑆𝑖 := {𝑥 ∈
{0, 1}𝑆𝑖 | 𝑥𝑆∩𝑆𝑖 = 𝑦𝑆∩𝑆𝑖}. Since 𝑆1 , · · · , 𝑆𝑟 is a partition of the 𝑛 variables, we have 𝐻 = 𝐻𝑆1 × 𝐻𝑆2 ×
· · · × 𝐻𝑆𝑟 according to the definition of 𝐻. With this fact, we can obtain the following lemma.
Lemma 34. For any sub-hypercube 𝐻 of {0, 1}𝑛 , we have

𝜇(𝐻) =
∏︂
𝑖∈[𝑟]

𝜇𝑖(𝐻𝑆𝑖).

Proof. According to the definition of the function 𝜇 and the definition of the counting oracles,

𝜇(𝐻) =
∑︂
𝑥∈𝐻

𝜇(𝑥) =
∑︂
𝑥∈𝐻

∏︂
𝑖∈[𝑟]

𝜇𝑖(𝑥𝑆𝑖)

=

∑︂
𝑥∈𝐻𝑆1×···×𝐻𝑆𝑟

∏︂
𝑖∈[𝑟]

𝜇𝑖(𝑥𝑆𝑖)

=

∏︂
𝑖∈[𝑟]

∑︂
𝑥∈𝐻𝑆𝑖

𝜇𝑖(𝑥) =
∏︂
𝑖∈[𝑟]

𝜇𝑖(𝐻𝑆𝑖).

For any sub-hypercube 𝐻 parameterized by 𝑆 and 𝑦, we define its codimension co-dim(𝐻) as |𝑆|,
i.e., the number of variables whose values are fixed in the sub-hypercube. For any function 𝜇𝑖 , we
can show that if the codimension of a query 𝐻𝑆𝑖 is Ω(log 𝑛) greater or less than 𝑎𝑖 , the query does
not give any information about the randomness of 𝐵𝑖 , 𝑣𝑖 in the construction with high probability.
In addition, the proof only uses the randomness of 𝐵1 , 𝑣1 , · · · , 𝐵𝑟 , 𝑣𝑟 .
Lemma 35. For any sub-hypercube 𝐻𝑆𝑖 of {0, 1}𝑆𝑖 , if co-dim(𝐻𝑆𝑖) = 𝑑, for any constant 𝑐1 > 0, we have

• if 𝑑 < 𝑎𝑖 − 𝑐1 log 𝑛, 𝜇𝑖(𝐻𝑆𝑖) = 2𝑎𝑖−𝑑 with probability at least 1 − 𝑛−𝑐1 , and

• if 𝑑 > 𝑎𝑖 + 𝑐1 log 𝑛, 𝜇𝑖(𝐻𝑆𝑖) = 0 with probability at least 1 − 𝑛−𝑐1 ,

where the probability is taken over the randomness of 𝐵𝑖 and 𝑣𝑖 .

Proof. For any 𝑥 ∈ {0, 1}𝑆𝑖 and any 𝐵𝑖 ∈ {0, 1}(𝑚−𝑎𝑖)×𝑚 , ℙ𝑣𝑖∼{0,1}𝑚−𝑎𝑖 [𝐵𝑖𝑥 = 𝑣𝑖] = 2−(𝑚−𝑎𝑖). Therefore,
we can upper bound the probability of 𝜇𝑖(𝐻𝑆𝑖) ≠ 0 as follows.

ℙ𝐵𝑖 ,𝑣𝑖 [𝜇𝑖(𝐻𝑆𝑖) ≠ 0] = ℙ𝐵𝑖 ,𝑣𝑖 [∃𝑥 ∈ 𝐻𝑆𝑖 , 𝜇𝑖(𝑥) = 1]
≤

∑︂
𝑥∈𝐻𝑆𝑖

𝔼𝐵𝑖 ,𝑣𝑖 [𝐵𝑖𝑥 = 𝑣𝑖] = 2−(𝑚−𝑎𝑖) · |𝐻𝑆𝑖 |

Since co-dim(𝐻𝑆𝑖) = 𝑑, |𝐻𝑆𝑖 | = 2𝑚−𝑑. We have ℙ𝐵𝑖 ,𝑣𝑖 [𝜇𝑖(𝐻𝑆𝑖) ≠ 0] ≤ 2𝑚−𝑑−(𝑚−𝑎𝑖) = 2𝑎𝑖−𝑑. If 𝑑 >
𝑎𝑖 + 𝑐1 log 𝑛, we have 𝜇𝑖(𝐻𝑆𝑖) ≠ 0 with probability at most 𝑛−𝑐1 .

21

On the other hand, we consider the number of solutions 𝑥 ∈ {0, 1}𝑆𝑖 for 𝐵𝑖𝑥 = 𝑣𝑖 when 𝑑 ≤ 𝑎𝑖 . For
any sub-hypercube 𝐻𝑆𝑖 which is parameterized by 𝑆 ⊆ 𝑆𝑖 and 𝑦 ∈ {0, 1}𝑆 (i.e., 𝐻𝑆𝑖 = {𝑥 ∈ {0, 1}𝑆𝑖
| 𝑥𝑆 = 𝑦𝑆}) and has codimension 𝑑 (i.e., |𝑆| = 𝑑), we can characterize 𝐻𝑆𝑖 by 𝑑 linear equations:
∀𝑗 ∈ 𝑆, 𝑒𝑇

𝑗
𝑥 = 𝑦 𝑗 , where 𝑒 𝑗 denotes the indicator vector having value 1 in the 𝑗-th entry and having

value 0 in all other entries. Therefore, the set {𝑥 ∈ {0, 1}𝑆𝑖 | 𝑥 ∈ 𝐻𝑆𝑖 , 𝐵𝑖𝑥 = 𝑣𝑖} can be characterized
by 𝑑 + 𝑚 − 𝑎𝑖 linear equations: ∀𝑗 ∈ 𝑆, 𝑒𝑇𝑗 𝑥 = 𝑦 𝑗 and 𝐵𝑖𝑥 = 𝑣𝑖 .

Lemma 36. For any 𝑚 ≤ 𝑛, 𝐴 ∈ {0, 1}𝑚×𝑛 and 𝑏 ∈ {0, 1}𝑚 , if rank(𝐴) = 𝑚, then there are 2𝑛−𝑚 solutions
𝑥 ∈ {0, 1}𝑛 for the linear equation 𝐴𝑥 = 𝑏 (under 𝔽2).

According to the above Lemma 36, if vectors in {𝑒 𝑗 | 𝑗 ∈ 𝑆} and in rows of 𝐵𝑖 are linearly independent
under 𝔽2, 𝜇𝑖(𝐻𝑆𝑖) = |{𝑥 ∈ {0, 1}𝑆𝑖 | 𝑥 ∈ 𝐻𝑆𝑖 , 𝐵𝑖𝑥 = 𝑣𝑖}| = 2𝑎𝑖−𝑑. It is clear that vectors in {𝑒 𝑗 | 𝑗 ∈ 𝑆}
are linearly independent. Consider we start with𝑉 = {𝑒 𝑗 | 𝑗 ∈ 𝑆} and insert rows in 𝐵𝑖 into𝑉 one by
one. When the vectors in 𝑉 are linearly independent and we insert one row of 𝐵𝑖 into 𝑉 , 𝑉 becomes
linearly dependent only when the row is a linear combination of the vectors in 𝑉 . Since there are at
most 2|𝑉| such linear combinations under 𝔽2, the probability that 𝑉 remains linearly independent
after inserting the row is 1 − 2|𝑉|−𝑚 . After inserting all the 𝑚 − 𝑎𝑖 rows into 𝑉 , 𝑉 remains linearly
independent with probability

𝑑+𝑚−𝑎𝑖−1∏︂
𝑘=𝑑

1 − 2𝑘−𝑚 ≥ 1 −
𝑑+𝑚−𝑎𝑖−1∑︂

𝑘=𝑑

2𝑘−𝑚 ≥ 1 − 2𝑑−𝑎𝑖 .

Therefore, we have 𝜇𝑖(𝐻𝑆𝑖) = 2𝑎𝑖−𝑑 with probability at least 1−2𝑑−𝑎𝑖 . In particular, if 𝑑 < 𝑎𝑖 − 𝑐1 log 𝑛,
we have 𝜇𝑖(𝐻𝑆𝑖) = 2𝑎𝑖−𝑑 with probability at least 1 − 𝑛−𝑐1 .

On the other hand, the random partition 𝑆1 , 𝑆2 , · · · , 𝑆𝑟 guarantees that any hypercube has approxi-
mately equal codimension in each block with high probability.
Lemma 37. For any 1 ≤ 𝑘 < 𝑖 ≤ 𝑛, any 𝑐2 > 0, and any sub-hypercube 𝐻, the probability that co-dim(𝐻𝑆𝑖)
is in the range co-dim(𝐻𝑆𝑘∪···∪𝑆𝑟)/(𝑟 − 𝑘 + 1) ±

√
3𝑐2𝑚 log 𝑛 is at least 1 − 2𝑛−𝑐2 , where the randomness is

taken over the random partition of 𝑆𝑘 ∪ 𝑆𝑘+1 ∪ · · · ∪ 𝑆𝑟 .

Proof. For convenience, let 𝑇 = 𝑆𝑘 ∪ · · · ∪ 𝑆𝑟 and 𝑑′ = co-dim(𝐻𝑇). Suppose the hypercube 𝐻𝑇

is parameterized by 𝑆𝑇 ⊆ 𝑇 and 𝑦𝑇 ∈ {0, 1}𝑇 , i.e., 𝐻𝑇 = {𝑥 ∈ {0, 1}𝑇 | 𝑥𝑇 = 𝑦𝑇}. Because
co-dim(𝐻𝑇) = |𝑆𝑇 | ≤ |𝑇|, we have 𝑑′ ≤ 𝑚(𝑟 − 𝑘 + 1). For each ℓ ∈ 𝑇, let 𝑍ℓ denote the indicator
whether the variable ℓ is in 𝑆𝑖 . Because |𝑇| = 𝑚(𝑟 − 𝑘 + 1) and 𝑆𝑘 , 𝑆𝑘+1 , · · · , 𝑆𝑟 is a uniform partition
of 𝑇, for any ℓ ∈ 𝑇, the probability that 𝑍ℓ = 1 is 1

𝑟−𝑘+1 . In addition, variables in {𝑍ℓ}ℓ∈𝑇 follow a
permutation distribution and are thus negatively associated.

Let 𝑍 =
∑︁

ℓ∈𝑆𝑇 𝑍ℓ denote the number of variables in 𝑆𝑖 ∩ 𝑆𝑇 . It is clear that 𝔼[𝑍] = 𝑑′
𝑟−𝑘+1 . According

to the definition of codimension, we have 𝑍 = co-dim(𝐻𝑆𝑖). Because of the Chernoff bound and
𝑑′ ≤ 𝑚(𝑟 − 𝑘 + 1), for any 𝑐2 > 0,

ℙ

[︃|︁|︁|︁|︁𝑍 − 𝑑′

𝑟 − 𝑘 + 1

|︁|︁|︁|︁ > √︁
3𝑐2𝑚 log 𝑛

]︃
≤ 2 exp

(︃
− 3𝑐2𝑚 log 𝑛

3𝑑′/(𝑟 − 𝑘 + 1)

)︃
≤ 2 exp(−𝑐2 log 𝑛) = 2𝑛−𝑐2 .

Therefore, the probability of co-dim(𝐻𝑆𝑖) being 𝑑′/(𝑟 − 𝑘 + 1) ±
√

3𝑐2𝑚 log 𝑛 is at least 1 − 2𝑛−𝑐2 .

Putting the previous lemmas together, we obtain the following key lemma for the hardness of parallel
search via counting. If we only reveal the information about the first blocks 𝑘 − 1 (i.e., the partition

22

𝑆1 , · · · , 𝑆𝑘−1 and the parameters to define the true strings 𝐵1 , 𝑣1 , · · · , 𝐵𝑘−1 , 𝑣𝑘−1), the return value
of any query is determined solely by the information about the first 𝑘 blocks with high probability.
This lemma implies that without any information about the 𝑘-th block and its subsequent blocks,
any algorithm that uses one round of queries can only learn about the information in the 𝑘-th block
(with high probability).
Lemma 38. Fix any 𝑘 ∈ [𝑟 − 1], any hypercube 𝐻 and any realization of 𝑆1 , 𝐵1 , 𝑣1 , · · · , 𝑆𝑘−1 , 𝐵𝑘−1 , 𝑣𝑘−1.
With probability at least 1 − 3𝑛−(𝑐+5/3),

𝜇(𝐻) = ⎛⎜⎝
∏︂
𝑖∈[𝑘]

𝜇𝑖(𝐻𝑆𝑖)
⎞⎟⎠ · 2− co-dim(𝐻)+co-dim(𝐻𝑆1∪𝑆2∪···∪𝑆𝑘)+

∑︁
𝑖>𝑘 𝑎𝑖 . (6)

where the probability is taken over the random partition of 𝑆𝑘 ∪ 𝑆𝑘+1 ∪ · · · ∪ 𝑆𝑟 and the randomness of
𝐵𝑘 , 𝑣𝑘 , 𝐵𝑘+1 , 𝑣𝑘+1 , · · · , 𝐵𝑟 , 𝑣𝑟 .

Proof. According to Lemma 34, it suffices to show that with probability 1 − 𝑛−(𝑐+5/3), we have

𝑟∏︂
𝑖=𝑘

𝜇𝑖(𝐻𝑆𝑖) = 𝜇𝑘(𝐻𝑆𝑘
) · 2− co-dim(𝐻)+co-dim(𝐻𝑆1∪𝑆2∪···∪𝑆𝑘)+

∑︁
𝑖>𝑘 𝑎𝑖 . (7)

Let 𝑑′ = co-dim(𝐻𝑆𝑘∪𝑆𝑘+1∪···∪𝑆𝑟). Next, we prove the lemma by discussing two cases: 𝑑′/(𝑟 − 𝑘 + 1) ≥
𝑎𝑘−1+𝑎𝑘

2 and 𝑑′/(𝑟 − 𝑘 + 1) < 𝑎𝑘−1+𝑎𝑘
2 . Before the discussion, recall that we define 𝑚 = 4𝑛2/3((𝑐 +

2) log 𝑛)1/3 and 𝑎𝑖 = 𝑖 · 12𝑛1/3((𝑐 + 2) log 𝑛)2/3 for each 𝑖 ∈ [𝑟].

Case #1: when 𝑑′/(𝑟 − 𝑘 + 1) ≥ 𝑎𝑘+𝑎𝑘+1
2 . According to the definition of 𝑎𝑘 and 𝑎𝑘+1, 𝑑′/(𝑟 − 𝑘 + 1) ≥

𝑎𝑘 + 6𝑛1/3((𝑐 + 2) log 𝑛)2/3. Because of Lemma 37, with probability at least 1 − 2𝑛−(𝑐+2),

co-dim(𝐻𝑆𝑘
) ≥ 𝑑′

𝑟 − 𝑘 + 1 −
√︁

3(𝑐 + 2)𝑚 log 𝑛 ≥

𝑎𝑘 + 6𝑛1/3((𝑐 + 2) log 𝑛)2/3 − 2
√

3𝑛1/3((𝑐 + 2) log 𝑛)2/3 >
𝑎𝑘 + 𝑛1/3((𝑐 + 2) log 𝑛)2/3 > 𝑎𝑘 + (𝑐 + 2) log 𝑛.

Because of Lemma 35, supposing co-dim(𝐻𝑆𝑘
) > 𝑎𝑘 + (𝑐 + 2) log 𝑛, we have 𝜇𝑘(𝐻𝑆𝑘

) = 0 with
probability at least 1 − 𝑛−(𝑐+2). Therefore, with probability at least 1 − 3𝑛−(𝑐+2), both the LHS and
RHS of Eq. (7) equal 0.

Case #2: when 𝑑′/(𝑟 − 𝑘 + 1) < 𝑎𝑘+𝑎𝑘+1
2 . According to the definition of 𝑎𝑘 and 𝑎𝑘+1, 𝑑′/(𝑟 − 𝑘 + 1) <

𝑎𝑘+1 − 6𝑛1/3((𝑐 + 2) log 𝑛)2/3. Because of Lemma 37 and the union bound, with probability at least
1 − 2𝑛−(𝑐+5/3), for all 𝑗 > 𝑘,

co-dim(𝐻𝑆𝑗
) ≤ 𝑑′

𝑟 − 𝑘 + 1 +
√︁

3(𝑐 + 2)𝑚 log 𝑛 ≤

𝑎𝑘 − 6𝑛1/3((𝑐 + 2) log 𝑛)2/3 + 2
√

3𝑛1/3((𝑐 + 2) log 𝑛)2/3 <
𝑎 𝑗 − 𝑛1/3((𝑐 + 2) log 𝑛)2/3 < 𝑎 𝑗 − (𝑐 + 2) log 𝑛.

Because of Lemma 35, supposing co-dim(𝐻𝑆𝑗
) < 𝑎 𝑗 − (𝑐 + 2) log 𝑛 for any 𝑗 > 𝑘, we have 𝜇𝑗(𝐻𝑆𝑗

) =
2𝑎 𝑗−co-dim(𝐻𝑆𝑗

) for any 𝑗 > 𝑘 with probability at least 1 − 𝑛−(𝑐+2). Therefore, with probability at least

23

1 − 3𝑛−(𝑐+5/3), we have

𝑟∏︂
𝑖=𝑘

𝜇𝑖(𝐻𝑆𝑖) = 𝜇𝑘(𝐻𝑆𝑘
) ·

𝑟∏︂
𝑗=𝑘+1

2𝑎 𝑗−co-dim(𝐻𝑆𝑗
)
=

𝜇𝑘(𝐻𝑆𝑘
) · 2

∑︁
𝑗>𝑘 𝑎 𝑗−

∑︁
𝑗>𝑘 co-dim(𝐻𝑆𝑗

)
.

Since 𝑆1 , 𝑆2 , · · · , 𝑆𝑟 is a partition, we have
∑︁

𝑗>𝑘 co-dim(𝐻𝑆𝑗
) = co-dim(𝐻𝑆𝑘+1∪···∪𝑆𝑟) = co-dim(𝐻) −

co-dim(𝐻𝑆1∪···∪𝑆𝑘
). Hence, we obtain Eq. (7) for this case.

Finally, we can establish the main theorem of this section.

Proof of Theorem 33. We show the following statement by induction: for any 𝑖 ∈ [𝑟], given the sets
𝑆1 , 𝑆2 , · · · , 𝑆𝑖−1 and information 𝐵1 , 𝑣1 , · · · , 𝐵𝑖−1 , 𝑣𝑖−1, any deterministic algorithm can only find
a solution 𝑥 with probability at most 3(𝑟 − 𝑖 + 1)𝑛−5/3 after 𝑟 − 𝑖 rounds. Note that given sets
𝑆1 , 𝑆2 , · · · , 𝑆𝑖−1 and 𝐵1 , 𝑣1 , · · · , 𝐵𝑖−1 , 𝑣𝑖−1, the remaining sets 𝑆𝑖 , · · · , 𝑆𝑟 form a uniform random
partition of [𝑛] \ (𝑆1 ∪ · · · ∪ 𝑆𝑖−1) and the remaining randomness 𝐵𝑖 , 𝑣𝑖 , · · · , 𝐵𝑟 , 𝑣𝑟 are uniformly
at random. When 𝑖 = 1, the statement is equivalent to any deterministic algorithm cannot find a
solution with probability 𝑛−4/3 after 𝑟 rounds of queries. According to Yao’s minimax principle,
this implies that, for any randomized algorithm, there exists an instance such that the algorithm
can only find a solution with probability at most 𝑛−4/3 after 𝑟 − 1 rounds of queries. Next, we prove
these statements to finish our proof.

The base case is 𝑖 = 𝑟. With no queries, any deterministic algorithm returns a fixed 𝑥∗. Since
𝑣𝑟 ∈ 𝔽

𝑚−𝑎𝑟
2 is uniformly random, 𝑚 = 4𝑛2/3((𝑐 + 2) log 𝑛)1/3 and 𝑎𝑟 = 3𝑛2/3((𝑐 + 2) log 𝑛)1/3, the

probability that 𝑥∗ is a solution is ℙ[𝐵𝑟𝑥
∗ = 𝑣𝑟] < 2𝑎𝑖−𝑚 < 𝑛−5/3.

Suppose we have shown for 𝑖 = 𝑘 + 1 (where 1 ≤ 𝑘 ≤ 𝑟 − 1). Consider any deterministic algorithm
ALG. Given 𝑆1 , 𝑆2 , · · · , 𝑆𝑘−1 and 𝐵1 , 𝑣1 , · · · , 𝐵𝑘−1 , 𝑣𝑘−1, when ALG finds a solution 𝑥∗ in 𝑟−𝑘 rounds,
at least one of the following events occurs.

• There exists an ALG’s first-round query such that its return value does not follow Eq. (6).

• Given 𝑆1 , 𝑆2 , · · · , 𝑆𝑘 and 𝐵1 , 𝑣1 , · · · , 𝐵𝑘 , 𝑣𝑘 , simulating the round 1 queries of ALG by Eq. (6)
and running ALG from round 2, we can find a solution 𝑥∗ in 𝑟 − 𝑘 − 1 rounds.

In the first round of the algorithm, according to Lemma 38, with probability at least 1 − 3𝑛−5/3, the
return values of all the 𝑛𝑐 queries follow Eq. (6). Therefore, the probability that the first event occurs
is at most 3𝑛−5/3. Also, note that Eq. (6) is fully determined by the the information in the first 𝑘
blocks – 𝑆1 , 𝑆2 , · · · , 𝑆𝑘 in the partition and the bits 𝐵1 , 𝑣1 , · · · , 𝐵𝑘 , 𝑣𝑘 used in the construction of the
first 𝑘 random linear codes. We can correctly simulate the first-round queries in the second event.
Due to the induction hypothesis, the second event occurs with probability at most 3(𝑟 − 𝑘)𝑛−5/3.
Because of the union bound, ALG can find a solution with probability at most 3(𝑟 − 𝑘 + 1)𝑛5/3 using
𝑟 − 𝑘 rounds of queries.

6 Lower bound of Algorithm 3

In this section, we show that our analysis of Algorithm 3 is tight up to polylogarithmic factors. For
concreteness, we assume the UniversalCoupler used is MinCoupler.

24

Theorem 39. There exists an instance such that Algorithm 3 terminates in Ω(𝑛2/3
log 𝑛) rounds with probability

at least 0.99.

The proof of this lower bound uses the explicit construction of the universal coupler used in the
algorithm (MinCoupler), but we expect it to also hold with small modifications for GumbelTrick.
We are unaware whether this lower bound holds for an arbitrary universal coupler.

Errors of the universal coupler. Given a distribution 𝜇, we identify a set of randomness 𝑟 where
MinCoupler produces different samples with constant probability for 𝜇 and 𝜐 when the second
distribution 𝜐 is very different from 𝜇. Here, we say 𝜐 is very different from 𝜇, if we sample 𝑥 from
𝜇, there is a constant probability of having 𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥) for some reasonably large 𝛿. Recall
the construction of MinCoupler – we encode 𝑟 as pairs (𝑥1 , 𝑝1), (𝑥2 , 𝑝2), · · · ∈ [𝑞] × [0, 1], choose
the minimum index 𝑖∗ such that 𝑝𝑖∗ ≤ 𝜇(𝑥𝑖∗) and let 𝑥𝑖∗ be the output of the universal coupler. The
output 𝑥𝑖∗ follows the distribution 𝜇. If we consider the restricted set of 𝑟 such that 𝑝𝑖∗ ≥ (1−𝛿)𝜇(𝑥𝑖∗),
for any distribution 𝜐 that is very different from 𝜇, MinCoupler will produce different samples
for 𝜇 and 𝜐 with constant probability. We formalize the above argument as the following lemma,
whose proof is deferred to Appendix A.3.
Lemma 40 (Sure mistakes made by MinCoupler). Consider any distribution 𝜇 ∈ Δ𝑞 and any 𝛿 > 0.
Suppose ℛ(𝜇, 𝛿) is the set of randomness 𝑟 = ((𝑥1 , 𝑝1), (𝑥2 , 𝑝2), · · ·) used by MinCoupler such that
𝑝𝑖∗ ≥ (1 − 𝛿)𝜇(𝑥𝑖∗), where 𝑖∗ = min{𝑖 : 𝑝𝑖 ≤ 𝜇(𝑥𝑖)} is the index chosen by MinCoupler.

Then, for any distribution 𝜐 ∈ Δ𝑞 , we have

ℙ𝑟∼ℛ(𝜇,𝛿)
[︁
MinCoupler(𝜇, 𝑟) ≠ MinCoupler(𝜐, 𝑟)

]︁
≥ 1 − 𝜐max

2 · ℙ𝑥∼𝜇[𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥)],

where 𝜐max is the maximum mass max𝑥∈[𝑞] 𝜐(𝑥) of the distribution 𝜐.

The (random) hard instances. Suppose 𝑚 = 20𝑛. Consider parameters 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 ∈ ℝ𝑚 ,
which are randomly constructed in symmetry and will be stated later. Let 𝑧 ∼ 𝑁(0, 𝐼𝑚) be a random
vector. For each 𝑖 ∈ [𝑛], let the variable 𝑋𝑖 = round(⟨𝑦𝑖 , 𝑧⟩), where the rounding function round(𝑥) is
constructed as follows.

round(𝑥) = min
{︁
𝑛4 log 𝑛,max

{︁
−𝑛4 log 𝑛,

⌊︁
𝑛4𝑥

⌋︁}︁}︁
.

To prove the lower bound, we consider the parameters 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 as i.i.d.s following the distri-
bution 𝑁(0, 1

𝑚 𝐼𝑚) and use 𝑉𝑖 = ⟨𝑦𝑖 , 𝑧⟩ to denote the variables before rounding. It can be shown that,
with high probability, 𝑋𝑖 equals the floor of 𝑛4𝑉𝑖 for any 𝑖 ∈ [𝑛].
Lemma 41. For any 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 , with probability at least 1 − 𝑛−Ω(log 𝑛), ∀𝑖 ∈ [𝑛], 𝑋𝑖 =

⌊︁
𝑛4𝑉𝑖

⌋︁
.

In addition, ∥𝑦𝑖∥2 follows the 𝜒2
𝑚 distribution (with a 1

𝑚 factor). We can use the following to show
that ∥𝑦𝑖∥2 is concentrated within 1 ± 𝜖 with probability at least 1 − 2−𝑛Ω(1) for any constant 𝜖 > 0.
Lemma 42 (Laurent-Massart bound [Lemma 1, LM00]). Let 𝑦 ∼ 𝑁(0, 𝐼𝑚) and 𝑎 ∈ ℝ𝑚

≥0. Let 𝑍 =∑︁
𝑖∈[𝑚] 𝑎𝑖(𝑦2

𝑖
− 1). Then, for any 𝑥 ≥ 0,

ℙ
[︁
|𝑍| > 2∥𝑎∥2

√
𝑥 + 2∥𝑎∥∞𝑥

]︁
≤ 2 exp(−𝑥).

Suppose 𝑦′1 , · · · , 𝑦′𝑛 are the vectors generated by the Gram-Schmidt orthogonalization procedure
on 𝑦1 , · · · , 𝑦𝑛 . With this lemma and the fact that 𝑦1 , · · · , 𝑦𝑛 are i.i.d. Gaussians, if we write each 𝑦′

𝑖
as a linear expression of 𝑦1 , · · · , 𝑦𝑛 , the coefficients can be bounded polynomially in 𝑛. The proof is
deferred to Appendix A.4.

25

Lemma 43. Suppose 𝑛 ≤ 𝑚/20 and 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 are i.i.d. vectors following the distribution 𝑁(0, 1
𝑚 𝐼𝑚).

Consider 𝑦′1 , 𝑦
′
2 , · · · , 𝑦′𝑛 as the vectors generated by the Gram-Schmidt orthogonalization procedure on

𝑦1 , 𝑦2 , · · · , 𝑦𝑛 . Suppose ∀𝑗 ∈ [𝑛], 𝑦′𝑗 =
∑︁𝑗

𝑘=1 𝑐 𝑗𝑘𝑦𝑘 . With probability at least 1 − 𝑂(𝑛−3), for any ℓ ∈ [𝑛],∑︁𝑛
𝑗=1 𝑐

2
𝑗ℓ
≤ 2𝑛.

Next, we show that if 𝑖 − 𝑎 = Ω(𝑛1/3), the conditional distribution of 𝑋𝑖|{𝑋𝑗}𝑗∈[𝑎] and 𝑋𝑖|{𝑋𝑗}𝑗∈[𝑖−1]
can be very different under random conditioning of 𝑋1 , · · · , 𝑋𝑖−1 for 𝛿 = Ω(𝑛−1/3). We formalize it
in Lemma 44. Its proof can be summarized by the following 3 key ingredients:

1. 𝑉𝑖|{𝑉𝑗}𝑗∈[𝑎] and 𝑉𝑖|{𝑉𝑗}𝑗∈[𝑖−1] can be neatly expressed as (randomly constructed) normal dis-
tributions whose means have a difference Ω(𝑛−1/3) with a constant probability and whose
variances are both Ω(1)with a high probability.

2. Rounding two normal distributions that satisfy the above two properties gives two very
different discrete distributions for 𝛿 = Ω(𝑛−1/3), implying that 𝑋𝑖|{𝑉𝑗}𝑗∈[𝑎] and 𝑋𝑖|{𝑉𝑗}𝑗∈[𝑖−1]
are very different.

3. Using Lemma 43 to handle random noise produced by conditioning on {𝑋𝑗} instead of {𝑉𝑗}.
The full proof is deferred to Appendix A.5.
Lemma 44. Consider any 𝑎, 𝑖 ∈ [𝑛] such that 𝑖 − 𝑎 > 40𝑛1/3. Suppose 𝜇, 𝜐 are the (randomly constructed)
distributions of 𝑋𝑖|{𝑋𝑗}𝑗∈[𝑎] and 𝑋𝑖|{𝑋𝑗}𝑗∈[𝑖−1]. There exist constants 𝑐1 > 0, 𝑐2 ∈ (0, 1) such that

𝔼𝑦1 ,··· ,𝑦𝑛 𝔼𝑋1 ,𝑋2 ,··· ,𝑋𝑖−1

[︃
(1 − 𝜐max) · ℙ𝑘∼𝜇

[︃
𝜐(𝑘)
𝜇(𝑘) ≤ 1 − 𝑐1 · 𝑛−1/3

]︃]︃
≥ 𝑐2.

˜︁Ω(𝑛2/3) lower bound of Algorithm 3. In the rest of this section, we suppose 𝑐1 , 𝑐2 are the constants
stated in Lemma 44. We can show in Lemma 45, the algorithm only makes small progress (i.e., 𝑎
increases by 𝑂(𝑛1/3)) with probability at least Ω(1) in each round before termination.
Lemma 45. Suppose ∀𝑖 ∈ [𝑛], 𝜎(𝑖) = 𝑖. For any 𝑎0 ∈ [𝑛 − 1] ∪ {0}, if we initiate Algorithm 3 with 𝑎 = 𝑎0
and ∀𝑖 ∈ [𝑎0], 𝑥0

𝑖
= 𝑥̃ 𝑖(𝜎, 𝑢), the probability that the algorithmwill have 𝑎 ≤ 𝑎0+(40+𝑐−1

1 ·⌈log(4𝑐−1
2)⌉)𝑛1/3

after one round is at least 𝑐2
4 , where the probability is taken over the randomness 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 used in the

constructions of the instances and the randomness 𝑢1 , · · · , 𝑢𝑛 used by the algorithm.

Proof. Let 𝑜𝑏 𝑗 = 𝑎0 + (40+ 𝑐−1
1 · ⌈log(4𝑐−1

2)⌉)𝑛1/3 be the objective value of 𝑎 after one round. Let ℐ be
the set of integers in [𝑎0 + 40𝑛1/3 , 𝑜𝑏 𝑗]. For each 𝑖 > 𝑎, let 𝜇𝑖 be the distribution of 𝑋𝑖 conditioning
on {𝑋𝑗 = 𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑎] and let 𝜐𝑖 be the distribution of 𝑋𝑖 conditioning on {𝑋𝑗 = 𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑖−1].
Let𝒜𝑖 be the event that ∀𝑖 < 𝑗 ∈ ℐ , 𝑢𝑗 ∉ ℛ(𝜇𝑗 , 𝑐1 · 𝑛−1/3) and 𝑢𝑖 ∈ ℛ(𝜇𝑗 , 𝑐1 · 𝑛−1/3). It is clear that
𝒜𝑖 are disjoint events. Note that we have 𝑎 > 𝑜𝑏 𝑗 only if for any 𝑖 ∈ ℐ , MinCoupler(𝜇𝑖 , 𝑢𝑖) =
MinCoupler(𝜐𝑖 , 𝑢𝑖). Therefore, we have

ℙ[𝑎 > 𝑜𝑏 𝑗] ≤ ℙ[∀𝑖 ∈ ℐ ,MinCoupler(𝜇𝑖 , 𝑢𝑖) = MinCoupler(𝜐𝑖 , 𝑢𝑖)]
= 1 − ℙ[∃𝑖 ∈ ℐ ,MinCoupler(𝜇𝑖 , 𝑢𝑖) ≠ MinCoupler(𝜐𝑖 , 𝑢𝑖)]
≤ 1 − ℙ[∃𝑖 ∈ ℐ , 𝑢𝑖 ∈ ℛ(𝜇𝑖 , 𝑐1 · 𝑛−1/3) and MinCoupler(𝜇𝑖 , 𝑢𝑖) ≠ MinCoupler(𝜐𝑖 , 𝑢𝑖)]
≤ 1 −

∑︂
𝑖∈ℐ

ℙ[𝒜𝑖] · ℙ
[︁
MinCoupler(𝜇𝑖 , 𝑢𝑖) ≠ MinCoupler(𝜐𝑖 , 𝑢𝑖)

|︁|︁𝒜𝑖

]︁
≤ 1 −

(︄∑︂
𝑖∈ℐ

ℙ[𝒜𝑖]
)︄
·min
𝑖∈ℐ

ℙ
[︁
MinCoupler(𝜇𝑖 , 𝑢𝑖) ≠ MinCoupler(𝜐𝑖 , 𝑢𝑖)

|︁|︁𝒜𝑖

]︁
.

26

Since 𝒜𝑖 are disjoint events,
∑︁

𝑖∈ℐ ℙ[𝒜𝑖] equals the probability that there exists 𝑖 ∈ ℐ such that
𝑢𝑖 ∈ ℛ(𝜇𝑖 , 𝑐1 · 𝑛−1/3). Because 𝑢𝑖 , 𝑖 ∈ ℐ are i.i.d.s in [0, 1] and |ℐ | = 𝑐−1

1 ⌈log(4𝑐−1
2)⌉𝑛1/3, this sum of

probabilities be lower bounded as follows:∑︂
𝑖∈ℐ

ℙ[𝒜𝑖] = ℙ
[︂
∃𝑖 ∈ ℐ , 𝑢𝑖 ∈ ℛ

(︂
𝜇𝑖 , 𝑐1 · 𝑛−1/3

)︂]︂
≥ 1 −

(︂
1 − 𝑐1 · 𝑛−1/3

)︂ 𝑐−1
1 log(4𝑐−1

2)𝑛1/3

≥ 1 − 𝑐2
4 .

On the other hand, for any 𝑖 ∈ ℐ , conditioning on the event 𝒜𝑖 , we have 𝑢𝑖 ∼ ℛ(𝜇𝑖 , 𝑐1 · 𝑛−1/3)
and 𝑢1 , · · · , 𝑢𝑖−1 are uniform i.i.d.s in [0, 1]. Therefore, 𝑥̃1(𝜎, 𝑢), · · · , 𝑥̃ 𝑖−1(𝜎, 𝑢) follows its original
marginal distribution of 𝑋1 , · · · , 𝑋𝑖−1 after conditioning on𝒜𝑖 . For any choice of 𝑖 ∈ ℐ , we have
the following lower bound:

ℙ
[︁
MinCoupler(𝜇𝑖 , 𝑢𝑖) ≠ MinCoupler(𝜐𝑖 , 𝑢𝑖)

|︁|︁𝒜𝑖

]︁
=𝔼𝑦1 ,···𝑦𝑛 𝔼𝑢1 ,··· ,𝑢𝑖−1

[︂
ℙ𝑢𝑖∼ℛ(𝜇𝑖 ,𝑐1·𝑛−1/3)

[︁
MinCoupler(𝜇𝑖 , 𝑢𝑖) ≠ MinCoupler(𝜐𝑖 , 𝑢𝑖)

]︁]︂
≥𝔼𝑦1 ,···𝑦𝑛 𝔼𝑢1 ,··· ,𝑢𝑖−1

[︃
1 − (𝜐𝑖)max

2 · ℙ𝑥∼𝜇𝑖

[︁
𝜐𝑖(𝑥) ≤ (1 − 𝑐1 · 𝑛−1/3)𝜇𝑖(𝑥)

]︁]︃
≥ 𝑐2

2 .

Therefore, ℙ[𝑎 > 𝑜𝑏 𝑗] ≥ 1 − (1 − 𝑐2
4) ·

𝑐2
2 ≥ 1 − 𝑐2

4 .

However, this constant probability does not suffice to show the ˜︁Ω(𝑛2/3) lower bound. This is because
we have not eliminated the possibility that the algorithm can terminate with a constant probability
in each round. Next, we boost this probability of small progress to 1 − 𝑛−Ω(1) by constructing a new
instance with poly log(𝑛) i.i.d. such instances. More specifically, let 𝑔 = 20𝑐−1

2 log 𝑛 be the number
of groups. The parameters of a new instance are the vectors 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 ∈ ℝ𝑚 and the group
numbers ℎ(1), ℎ(2), · · · , ℎ(𝑛) ∈ [𝑔]. Let 𝑧1 , 𝑧2 , · · · , 𝑧𝑔 ∼ 𝑁(0, 𝐼𝑚) be i.i.d. random Gaussian vectors.
Then, the variables 𝑋1 , · · · , 𝑋𝑛 in the new instance are defined as follows:

𝑋𝑖 = round
(︁
⟨𝑦𝑖 , 𝑧ℎ(𝑖)⟩

)︁
.

With this new construction, we can show that the algorithm will have small progress in each round
with high probability.
Lemma 46. Suppose ∀𝑖 ∈ [𝑛], 𝜎(𝑖) = 𝑖. For any 𝑎0 ∈ [𝑛 − 1] ∪ {0}, if we initiate Algorithm 3 with
𝑎 = 𝑎0 and ∀𝑖 ∈ [𝑎0], 𝑥0

𝑖
= 𝑥̃ 𝑖(𝜎, 𝑢), the probability that the algorithm will have 𝑎 ≥ 𝑎0 + 2(40 + 𝑐−1

1 ·
⌈log(4𝑐−1

2)⌉)𝑛1/3𝑔 after one round is at most (1+𝑜(1))𝑛−5, where the probability is taken over the randomness
𝑦1 , 𝑦2 , · · · , 𝑦𝑛 , ℎ(1), · · · , ℎ(𝑛) used in constructions of the instances and the randomness 𝑢1 , · · · , 𝑢𝑛 used
by the algorithm.

Proof. For convenience, we use 𝑜𝑏 𝑗 = 𝑎0 + 2(40 + 𝑐−1
1 · ⌈log(4𝑐−1

2)⌉)𝑛1/3𝑔 to denote the objective
position for the algorithm to reach after one round. Let ℐ be the set of integers in [𝑎0 + 1, 𝑜𝑏 𝑗].
For any ℎ ∈ [𝑔], let ℐ ′

ℎ
be the set of 𝑖 ∈ [𝑜𝑏 𝑗] such that ℎ(𝑖) = ℎ. With probability 1 − 2−𝑛Ω(1) over

the choices of {ℎ(𝑖) | 𝑖 ∈ ℐ }, for any ℎ ∈ [𝑔], the size of {𝑖 ∈ ℐ | ℎ(𝑖) = ℎ} (i.e., ℐ ∩ ℐ ′
ℎ
) is at least

(40 + 𝑐−1
1 · ⌈log(4𝑐−1

2)⌉)𝑛1/3. If 𝑎 ≥ 𝑜𝑏 𝑗 after one round of Algorithm 3, there should be

∀𝑖 ∈ ℐ , MinCoupler
(︂(︂
𝑋𝑖

|︁|︁|︁ {︁𝑋𝑗

}︁
𝑗∈[𝑎0]

)︂
, 𝑢𝑖

)︂
= MinCoupler

(︂(︂
𝑋𝑖

|︁|︁|︁ {︁𝑋𝑗

}︁
𝑗∈[𝑖−1]

)︂
, 𝑢𝑖

)︂
(8)

Note that for any 𝑖 , 𝑗 ∈ [𝑜𝑏 𝑗] such that ℎ(𝑖) ≠ ℎ(𝑗), 𝑋𝑖 , 𝑋𝑗 are independent. Eq. (8) is equivalent to
∀ℎ ∈ [𝑔],

∀𝑖 ∈ ℐ ∩ ℐ ′ℎ , MinCoupler
(︂(︂
𝑋𝑖

|︁|︁|︁ {︁𝑋𝑗

}︁
𝑗∈[𝑎0]∩ℐ ′ℎ

)︂
, 𝑢𝑖

)︂
= MinCoupler

(︂(︂
𝑋𝑖

|︁|︁|︁ {︁𝑋𝑗

}︁
𝑗∈[𝑖−1]∩ℐ ′

ℎ

)︂
, 𝑢𝑖

)︂
27

Because of Lemma 45, for each ℎ ∈ [𝑔], it happens with probability at most 1 − 𝑐2
4 . Since 𝑢1 , · · · , 𝑢𝑛

are i.i.d.s, under these choices of {ℎ(𝑖) | 𝑖 ∈ ℐ }, the probability that 𝑎 ≥ 𝑜𝑏 𝑗 after one round is at
most (︂

1 − 𝑐2
4

)︂ 𝑔
= 𝑛−5.

According to the union bound, we complete the proof.

Finally, we establish the main theorem of this section.

proof of Theorem 39. Let 𝑅(𝑋, 𝜎, 𝑢) be the number of rounds of Algorithm 3 on variables 𝑋, using
randomness 𝜎, 𝑢. It suffices to show that

ℙ𝜎,𝑢,𝑦,ℎ

[︃
𝑅(𝑋, 𝜎, 𝑢) ≥ 𝑛2/3

40𝑐−1
2 (40 + 𝑐−1

1 · ⌈log(4𝑐−1
2)⌉) log 𝑛

]︃
≥ 0.99. (9)

Since 𝑦1 , ℎ(1), · · · , 𝑦𝑛 , ℎ(𝑛) are constructed in symmetry, for anypermutation 𝜎 ∈ 𝒮𝑛 ,𝑋𝜎(1) , · · · , 𝑋𝜎(𝑛)
are identically distributed as 𝑋1 , · · · , 𝑋𝑛 . Therefore, it suffices to show Eq. (9) assuming 𝜎(𝑖) = 𝑖

for any 𝑖 ∈ [𝑛]. According to Lemma 46 and the union bound, with probability at least 1 − 𝑛−4

over the choice of 𝑦, ℎ, 𝑢, for any initialization of 𝑎, we can increase 𝑎 by at most 40𝑐−1
2 (40 + 𝑐−1

1 ·
⌈log(4𝑐−1

2)⌉)𝑛1/3 log 𝑛. In this case, the round complexity ofAlgorithm3 is at least 𝑛2/3

40𝑐−1
2 (40+𝑐−1

1 ·⌈log(4𝑐−1
2)⌉) log 𝑛

,
and thus we obtain Eq. (9).

References
[Ana+20] Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild. “Sampling arborescences in

parallel”. In: arXiv preprint arXiv:2012.09502 (2020).
[Ana+23a] NimaAnari, CallumBurgess, Kevin Tian, andThuy-DuongVuong. “Quadratic Speedups

in Parallel Sampling from Determinantal Distributions”. In: Proceedings of the 35th ACM
Symposium on Parallelism in Algorithms and Architectures. 2023, pp. 367–377.

[Ana+23b] Nima Anari, Yizhi Huang, Tianyu Liu, Thuy-Duong Vuong, Brian Xu, and Katherine
Yu. “Parallel Discrete Sampling via Continuous Walks”. In: Proceedings of the 55th
Annual ACM Symposium on Theory of Computing. 2023, pp. 103–116.

[Bar16] Alexander Barvinok. Combinatorics and complexity of partition functions. Vol. 30. Springer,
2016.

[Bav+20] Mohammad Bavarian, Badih Ghazi, Elad Haramaty, Pritish Kamath, Ronald L Rivest,
and Madhu Sudan. “Optimality of correlated sampling strategies”. In: Theory of Com-
puting 16.1 (2020).

[Bro+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
“Language models are few-shot learners”. In: Advances in neural information processing
systems 33 (2020), pp. 1877–1901.

[Bro97] Andrei Z Broder. “On the resemblance and containment of documents”. In: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171). IEEE. 1997,
pp. 21–29.

[BRS19] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. “An exponential speedup in
parallel running time for submodular maximization without loss in approximation”.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM. 2019, pp. 283–302.

28

[BS20] Eric Balkanski and Yaron Singer. “A lower bound for parallel submodular minimiza-
tion”. In: Proccedings of the 52nd Annual ACMSIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM, 2020, pp. 130–139.

[CCK21] Deeparnab Chakrabarty, Yu Chen, and Sanjeev Khanna. “A Polynomial Lower Bound
on the Number of Rounds for Parallel Submodular Function Minimization”. In: 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022. IEEE, 2021, pp. 37–48.

[Cha+22] Deeparnab Chakrabarty, Andrei Graur, Haotian Jiang, and Aaron Sidford. “Improved
lower bounds for submodular function minimization”. In: 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 245–254.

[Che+23] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent
Sifre, and John Jumper. “Accelerating large language model decoding with speculative
sampling”. In: arXiv preprint arXiv:2302.01318 (2023).

[Dev+18] JacobDevlin,Ming-Wei Chang, Kenton Lee, andKristina Toutanova. “Bert: Pre-training
of deep bidirectional transformers for language understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[DFK91] Martin Dyer, Alan Frieze, and Ravi Kannan. “A random polynomial-time algorithm
for approximating the volume of convex bodies”. In: Journal of the ACM (JACM) 38.1
(1991), pp. 1–17.

[FHY21] Weiming Feng, Thomas P Hayes, and Yitong Yin. “Distributed metropolis sampler
with optimal parallelism”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM. 2021, pp. 2121–2140.

[GM87] Hillel Gazit and Gary L Miller. “A parallel algorithm for finding a separator in planar
graphs”. In: 28th Annual Symposium on Foundations of Computer Science (sfcs 1987). IEEE.
1987, pp. 238–248.

[Hol07] Thomas Holenstein. “Parallel repetition: simplifications and the no-signaling case”.
In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. 2007,
pp. 411–419.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with gumbel-
softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. “A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries”. In: Journal of the
ACM (JACM) 51.4 (2004), pp. 671–697.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. “Random generation of com-
binatorial structures from a uniform distribution”. In: Theoretical computer science 43
(1986), pp. 169–188.

[KT02] Jon Kleinberg and Eva Tardos. “Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov random fields”. In: Journal of
the ACM (JACM) 49.5 (2002), pp. 616–639.

[KUW88] Richard M. Karp, Eli Upfal, and Avi Wigderson. “The Complexity of Parallel Search”.
In: J. Comput. Syst. Sci. 36.2 (1988), pp. 225–253.

[Lee23] Holden Lee. “Parallelising Glauber dynamics”. In: arXiv preprint arXiv:2307.07131
(2023).

[LKM23] Yaniv Leviathan, Matan Kalman, and Yossi Matias. “Fast inference from transformers
via speculative decoding”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 19274–19286.

[LLV20] Wenzheng Li, Paul Liu, and Jan Vondrák. “A polynomial lower bound on adaptive
complexity of submodular maximization”. In: Proccedings of the 52nd Annual ACM

29

SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020. ACM, 2020, pp. 140–152.

[LM00] Beatrice Laurent and Pascal Massart. “Adaptive estimation of a quadratic functional
by model selection”. In: Annals of statistics (2000), pp. 1302–1338.

[LM11] Hugo Larochelle and Iain Murray. “The neural autoregressive distribution estimator”.
In: Proceedings of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 29–37.

[LY22] Hongyang Liu and Yitong Yin. “Simple parallel algorithms for single-site dynamics”.
In: STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022. ACM, 2022, pp. 1431–1444.

[Mon08] Andrea Montanari. “Estimating random variables from random sparse observations”.
In: European Transactions on Telecommunications 19.4 (2008), pp. 385–403.

[MVV87] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. “Matching is as easy as
matrix inversion”. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing. 1987, pp. 345–354.

[RT12] Prasad Raghavendra and Ning Tan. “Approximating CSPs with global cardinality
constraints using SDP hierarchies”. In: Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012.
SIAM, 2012, pp. 373–387.

[RY13] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion. Vol. 293.
Springer Science & Business Media, 2013.

[Shi+23] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. “Parallel
Sampling of Diffusion Models”. In: arXiv preprint arXiv:2305.16317 (2023).

[Son+21] Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. “Accelerating feedforward
computation via parallel nonlinear equation solving”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 9791–9800.

[SSE22] Andy Shih, Dorsa Sadigh, and Stefano Ermon. “Training and Inference on Any-Order
Autoregressive Models the Right Way”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 2762–2775.

[ŠVV09] Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. “Adaptive simulated annealing:
A near-optimal connection between sampling and counting”. In: Journal of the ACM
(JACM) 56.3 (2009), pp. 1–36.

[Ten95] Shang-Hua Teng. “Independent sets versus perfect matchings”. In: Theoretical Computer
Science 145.1-2 (1995), pp. 381–390.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances
in neural information processing systems 30 (2017).

[VKK16] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent
neural networks”. In: International conference on machine learning. PMLR. 2016, pp. 1747–
1756.

[Wei06] Dror Weitz. “Counting independent sets up to the tree threshold”. In: Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing. 2006, pp. 140–149.

[WH20] Auke Wiggers and Emiel Hoogeboom. “Predictive sampling with forecasting au-
toregressive models”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 10260–10269.

[Yan+19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. “Xlnet: Generalized autoregressive pretraining for language understand-
ing”. In: Advances in neural information processing systems 32 (2019).

30

A Deferred Proofs

A.1 Proof of Lemma 29

We use 𝑥𝑡 , 𝑦𝑡 , 𝑎𝑡 to denote the intermediate variables used in the algorithm with the exact count-
ing oracle, and use 𝑥̂𝑡 , 𝑦̂𝑡 , 𝑎̂𝑡 to denote the intermediate variables used in the algorithm with the
approximate counting oracle. We prove the claim that 𝑎𝑡 = 𝑎̂𝑡 and 𝑥𝑡

𝜎(𝑗) = 𝑥̂𝑡𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢) for any
𝑗 ∈ [𝑎𝑡] after each round 𝑡 we compute 𝑎𝑡 .

When 𝑡 = 0, 𝑎𝑡 = 𝑎̂𝑡 = 0 and this claim is clearly true. Consider 𝑡 ≥ 1. Suppose we have proved
the claim for 𝑡 − 1. Because of the induction hypothesis and the fact that (𝜎, 𝑢) is good, 𝑦𝑡 = 𝑦̂𝑡 .
Because of the definition of 𝑎𝑡 and Lemma 21, we have 𝑦𝑡

𝜎(𝑗) = 𝑥𝑡
𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢) for any 𝑗 ∈ [𝑎𝑡 − 1]

and we have 𝑦𝑡
𝜎(𝑎𝑡) ≠ 𝑥𝑡

𝜎(𝑎𝑡) = 𝑥̃𝑎𝑡 (𝜎, 𝑢). Because of 𝑦̂𝑡 = 𝑦𝑡 and the induction hypothesis, we have
𝑥̂𝑡𝜎(𝑗) = 𝑥𝑡

𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢) for any 𝑗 ∈ [𝑎𝑡]. Therefore, according to the definition of 𝑎̂𝑡 , 𝑎̂𝑡 = 𝑎𝑡 .

Finally, we show how to obtain the lemma using this claim. If the algorithm with the exact counting
oracle terminates with 𝑎𝑡 = 𝑛 in some round, the claim directly implies that the algorithm with
the approximate counting oracle terminates in the same round and outputs the vector. Otherwise,
suppose 𝑡 is the round in which the algorithm with the exact counting oracle terminates. There
is 𝑦𝑡 = 𝑥𝑡 . As discussed above, the claim gives 𝑦̂𝑡 = 𝑦𝑡 . Therefore, 𝑦̂𝑡𝜎(𝑖) = 𝑥𝑡

𝜎(𝑖) = 𝑥̃ 𝑖(𝜎, 𝑢) for any
𝑖 ∈ [𝑛]. Since (𝜎, 𝑢) is good, the algorithm with the approximate counting oracle will generate
𝑥̂𝑡 = 𝑦̂𝑡 and terminate in this round. The output 𝑥̂𝑡 is thus the same as 𝑥𝑡 .

A.2 Proof of Lemma 30

Note that we use 𝑞 queries of 𝜇̂ to compute each 𝜐𝑖|𝑎(𝜎, 𝑢). With probability at least 1 − 𝑛2𝑞𝛿, all
queries 𝜇̂ we use while computing 𝜐𝑖|𝑎(𝜎, 𝑢)s satisfy Eq. (5). Under these circumstances, for any
0 ≤ 𝑎 < 𝑖 ≤ 𝑛 and any 𝑥 ∈ [𝑞],(︁

𝜐𝑖|𝑎(𝜎, 𝑢)
)︁
(𝑥) ≥ 1 − 𝜖

1 + 𝜖 · ℙ
[︁
𝑋𝜎(𝑖) = 𝑥

|︁|︁ {𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑎]
]︁
.

Therefore, 𝑑TV

(︂
𝑋𝜎(𝑖)

|︁|︁ {𝑋𝜎(𝑗) = 𝑥̃ 𝑗(𝜎, 𝑢)}𝑗∈[𝑎] , 𝜐𝑖|𝑎(𝜎, 𝑢)
)︂
≤ 1 − 1−𝜖

1+𝜖 ≤ 2𝜖. Recall that the universal
coupler guarantees ℙ[UniversalCoupler(𝜇, 𝑢) ≠ UniversalCoupler(𝜐, 𝑢)] ≤ 2 𝑑TV(𝜇, 𝜐) for any
two distributions 𝜇, 𝜐. Under these circumstances, due to the union bound, (𝜎, 𝑢) is good with
probability at least 1 − 4𝑛2𝜖. Putting things together, any (𝜎, 𝑢) is good with probability at least
(1 − 𝑛2𝑞𝛿) · (1 − 4𝑛2𝜖) ≥ 1 − 𝑂(𝑛2𝜖 + 𝑛2𝑞𝛿).

A.3 Proof of Lemma 40

Let 𝑖∗𝜇 = min{𝑖 | 𝑝𝑖 ≤ 𝜇(𝑥𝑖)} and 𝑖∗𝜐 = min{𝑖 | 𝑝𝑖 ≤ 𝜐(𝑥𝑖)}. According to the definition ofMinCoupler,
MinCoupler(𝜇, 𝑟) ≠ MinCoupler(𝜐, 𝑟) if and only if 𝑥𝑖∗𝜇 ≠ 𝑥𝑖∗𝜐 . Observe that

ℙ𝑟∼ℛ(𝜇,𝛿)
[︂
𝑥𝑖∗𝜇 ≠ 𝑥𝑖∗𝜐

]︂
=

ℙ𝑟∼[0,1]
[︂
𝑖∗𝜇 < 𝑖∗𝜐 , 𝑟 ∈ ℛ(𝜇, 𝛿)

]︂
· ℙ

[︂
𝑥𝑖∗𝜇 ≠ 𝑥𝑖∗𝜐

|︁|︁|︁ 𝑖∗𝜇 < 𝑖∗𝜐 , 𝑟 ∈ ℛ(𝜇, 𝛿)
]︂

ℙ𝑟∼[0,1]
[︁
𝑟 ∈ ℛ(𝜇, 𝛿)

]︁ .

31

On the denominator, we have,

ℙ𝑟∼[0,1]
[︁
𝑟 ∈ ℛ(𝜇, 𝛿)

]︁
=

∑︂
𝑖≥1

ℙ𝑟∼[0,1]
[︂
𝑖∗𝜇 = 𝑖

]︂
· ℙ𝑟∼[0,1]

[︁
𝑝𝑖 ≥ (1 − 𝛿)𝜇(𝑥𝑖)

|︁|︁ 𝑝𝑖 ≤ 𝜇(𝑥𝑖)
]︁

=

∑︂
𝑖≥1

ℙ𝑟∼[0,1]
[︂
𝑖∗𝜇 = 𝑖

]︂
· 𝛿 = 𝛿. (𝑝𝑖 ∼ [0, 1])

On the other hand, let 𝑖∗min = min{𝑖∗𝜇 , 𝑖∗𝜐}. As discussed in the preliminary, we have 𝑖∗min = min{𝑖 |
𝑝𝑖 ≤ max{𝜇(𝑥𝑖), 𝜐(𝑥𝑖)}}. For any 𝑖 ≥ 1,

ℙ𝑟∼[0,1]
[︂
𝑖∗𝜇 < 𝑖∗𝜐 , 𝑟 ∈ ℛ(𝜇, 𝛿)

|︁|︁|︁ 𝑖∗min = 𝑖
]︂

=ℙ𝑟∼[0,1]
[︁
𝑝𝑖 > 𝜐(𝑥𝑖), 𝑝𝑖 ∈

[︁
(1 − 𝛿)𝜇(𝑥𝑖), 𝜇(𝑥𝑖)

]︁ |︁|︁ 𝑖∗min = 𝑖
]︁

≥ℙ𝑟∼[0,1]
[︁
𝜐(𝑥𝑖) < (1 − 𝛿)𝜇(𝑥𝑖), 𝑝𝑖 ∈

[︁
(1 − 𝛿)𝜇(𝑥𝑖), 𝜇(𝑥𝑖)

]︁ |︁|︁ 𝑖∗min = 𝑖
]︁

=ℙ𝑟∼[0,1]
[︁
𝜐(𝑥𝑖) < (1 − 𝛿)𝜇(𝑥𝑖), 𝑝𝑖 ∈

[︁
(1 − 𝛿)𝜇(𝑥𝑖), 𝜇(𝑥𝑖)

]︁ |︁|︁ 𝑝𝑖 ≤ max{𝜇(𝑥𝑖), 𝜐(𝑥𝑖)}
]︁

((𝑥𝑖 , 𝑝𝑖)s are drawn independently)

=
ℙ𝑟∼[0,1]

[︁
𝜐(𝑥𝑖) < (1 − 𝛿)𝜇(𝑥𝑖), 𝑝𝑖 ∈

[︁
(1 − 𝛿)𝜇(𝑥𝑖), 𝜇(𝑥𝑖)

]︁]︁
ℙ

[︁
𝑝𝑖 ≤ max{𝜇(𝑥𝑖), 𝜐(𝑥𝑖)}

]︁
=

𝑞−1𝛿
∑︁

𝑥∈[𝑞] 𝜇(𝑥)
𝑞−1 ∑︁

𝑥∈[𝑞]max{𝜇(𝑥), 𝜐(𝑥)} · ℙ𝑟∼[0,1]
[︁
𝜐(𝑥𝑖) < (1 − 𝛿)𝜇(𝑥𝑖)

|︁|︁ 𝑝𝑖 ∈ [︁
(1 − 𝛿)𝜇(𝑥𝑖), 𝜇(𝑥𝑖)

]︁]︁
(𝑥𝑖 ∼ [𝑞], 𝑝𝑖 ∼ [0, 1])

=
𝛿

1 + 𝑑TV(𝜇, 𝜐)
· ℙ𝑥∼𝜇

[︁
𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥)

]︁
≥ 𝛿

2 · ℙ𝑥∼𝜇
[︁
𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥)

]︁
.

Therefore, we have

ℙ𝑟∼[0,1][𝑖∗𝜇 < 𝑖∗𝜐 , 𝑟 ∈ ℛ(𝜇, 𝛿)] ≥
𝛿
2 · ℙ𝑥∼𝜇[𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥)].

In addition, for any 𝑖 ≥ 1, the event that 𝑖 = 𝑖∗𝜇 < 𝑖∗𝜐 and 𝑟 ∈ ℛ(𝜇, 𝛿) is independent of the value of
any 𝑥 𝑗 for 𝑗 > 𝑖. Since for any 𝑗 ≥ 1 and any (possibly random) 𝑥 ∈ [𝑞], ℙ[𝑥 𝑗 ≠ 𝑥] ≥ 1 − 𝜐max, we
have

ℙ[𝑥𝑖∗𝜇 ≠ 𝑥𝑖∗𝜐 | 𝑖∗𝜇 < 𝑖∗𝜐 , 𝑟 ∈ ℛ(𝜇, 𝛿)] ≥ 1 − 𝜐max.

Therefore, on the numerator, we have,

ℙ𝑟∼ℛ(𝜇,𝛿)
[︂
𝑥𝑖∗𝜇 ≠ 𝑥𝑖∗𝜐

]︂
≥ 𝛿(1 − 𝜐max)

2 · ℙ𝑥∼𝜇
[︁
𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥)

]︁
.

Putting things together, we obtain that ℙ𝑟∼ℛ(𝜇,𝛿)[𝑥𝑖∗𝜇 ≠ 𝑥𝑖∗𝜐] ≥
1−𝜐max

2 · ℙ𝑥∼𝜇
[︁
𝜐(𝑥) < (1 − 𝛿)𝜇(𝑥)

]︁
and

thus the lemma.

A.4 Proof of Lemma 43

We shall prove this lemma by induction on 𝑖 of the following statements: with probability at least
1 − 𝑖 · 𝑂(𝑛−4), we have

∀ℓ ∈ [𝑖],
𝑖∑︂

𝑗=1
𝑐2
𝑗ℓ ≤ 2 ·

(︃
1 + 12 log 𝑛

𝑚

)︃ 𝑖
(10)

32

When 𝑖 = 1, Gram-Schmidt procedure gives 𝑦′1 = 𝑦1/∥𝑦1∥2. Because of the Laurent-Massart bound,
∥𝑦1∥22 ∈ 1 ± 0.1 with probability at least 1 − 2−𝑛Ω(1) . Therefore, 𝑐2

11 ≤ 1.2 with probability 1 − 2−𝑛Ω(1) .

Suppose 𝑘 > 1 and we have shown the statements for any 𝑖 < 𝑘. Next, we show the statements
for 𝑖 = 𝑘. We only consider the randomness of 𝑦𝑘 and consider the cases where Eq. (10) holds
and 𝑐2

𝑗 𝑗
≤ 1.2 holds for any 𝑗 ∈ [𝑖]. According to the Gram-Schmidt procedure, 𝑦′

𝑘
is obtained as

follows: 𝑦′′
𝑘
= 𝑦𝑘 −

∑︁
𝑗∈[𝑘−1]⟨𝑦𝑘 , 𝑦′𝑗⟩𝑦′𝑗 and 𝑦′

𝑘
= 𝑦′′

𝑘
/∥𝑦′′

𝑘
∥2. Since 𝑦𝑘 ∼ 𝑁(0, 1

𝑚 𝐼𝑚) and {𝑦′𝑗}𝑗∈[𝑘−1] are
orthonormal, ⟨𝑦𝑘 , 𝑦′𝑗⟩ are i.i.d.s following 𝑁(0, 1

𝑚). Suppose 𝑦′′
𝑘
= 𝑦𝑘 +

∑︁
𝑗∈[𝑘−1] 𝑐

′
𝑘 𝑗
𝑦 𝑗 . Because we

have
𝑘−1∑︂
𝑗=1
⟨𝑦𝑘 , 𝑦′𝑗⟩𝑦′𝑗 =

𝑘−1∑︂
𝑗=1
⟨𝑦𝑘 , 𝑦′𝑗⟩ ·

𝑗∑︂
ℓ=1

𝑐 𝑗ℓ 𝑦ℓ =

𝑘−1∑︂
ℓ=1

𝑘−1∑︂
𝑗=ℓ

𝑐 𝑗ℓ ⟨𝑦𝑘 , 𝑦′𝑗⟩𝑦ℓ ,

we have 𝑐′
𝑘𝑘

= 1 and 𝑐′
𝑘ℓ
∼ 𝑁

(︁
0, 1

𝑚

∑︁𝑘−1
𝑗=ℓ 𝑐2

𝑗ℓ

)︁
for any ℓ < 𝑘. Therefore, for any ℓ ∈ [𝑘 − 1], with

probability at least 1 − 𝑂(𝑛−5),

𝑐′2𝑘ℓ ≤
10 log 𝑛

𝑚
·
𝑘−1∑︂
𝑗=ℓ

𝑐2
𝑗ℓ ≤

10 log 𝑛

𝑚
· 2

(︃
1 + 12 log 𝑛

𝑚

)︃ 𝑘−1

Then, according to the second step of obtaining 𝑦′
𝑘
, we have 𝑐2

𝑘ℓ
= 𝑐′2

𝑘ℓ
/∥𝑦′′

𝑘
∥22 and 𝑐2

𝑘𝑘
= 1/∥𝑦′′

𝑘
∥22.

Note that ∥𝑦′′
𝑘
∥22 = ∥𝑦𝑘∥22 −

∑︁
𝑗∈[𝑘−1](⟨𝑦𝑘 , 𝑦′𝑗⟩)2. Since ⟨𝑦𝑘 , 𝑦′𝑗⟩ ∼ 𝑁(0, 1

𝑚) and 𝑘 < 𝑚/20, we have
∥𝑦′′

𝑘
∥22 ≥ 0.9 with probability at least 1 − 2−𝑛Ω(1) . Therefore, with probability at least 1 − 2−𝑛Ω(1) ,

𝑐2
𝑘𝑘
≤ 2, and with probability at least 1 − 𝑂(𝑛−4), for any ℓ ∈ [𝑘 − 1], we have

𝑐2
𝑘ℓ ≤ 𝑐′2𝑘ℓ/0.9 ≤

12 log 𝑛

𝑚
· 2

(︃
1 + 12 log 𝑛

𝑚

)︃ 𝑘−1

.

Since Eq. (10) for 𝑖 = 𝑘 − 1 holds with probability at least 1 − (𝑘 − 1)𝑂(𝑛−4), we obtain the proof for
𝑖 = 𝑘.

Finally, because 𝑛 ≤ 𝑚/20, for any ℓ ∈ [𝑛], we have∑︂
𝑗∈[𝑛]

𝑐2
𝑗ℓ ≤ 2 ·

(︃
1 + 12 log 𝑛

𝑚

)︃𝑛
≤ 2 ·

(︃
1 + 12 log 𝑛

𝑚

)︃𝑚/20

≤ 2𝑛.

A.5 Proof of Lemma 44

Suppose 𝑦′1 , 𝑦
′
2 , · · · , 𝑦′𝑛 are the vectors generated by the Gram-Schmidt orthogonalization procedure

on 𝑦1 , 𝑦2 , · · · , 𝑦𝑛 . We assume that the conditions in Lemma 41 and Lemma 43 hold, which happens
with probability 1 − 𝑂(𝑛−3).
Consider we expand these vectors to an orthonormal basis 𝑦′1 , 𝑦

′
2 , · · · , 𝑦′𝑛 , 𝑦′𝑛+1 , · · · , 𝑦′𝑚 of ℝ𝑚 . For

any 𝑖 ∈ [𝑛] and 0 ≤ 𝑗 < 𝑖, suppose 𝑦𝑖|𝑗 is the projection of 𝑦𝑖 on the linear span of 𝑦1 , · · · , 𝑦 𝑗
and let 𝑦⊥

𝑖|𝑗 = 𝑦𝑖 − 𝑦𝑖|𝑗 . We have 𝑦𝑖|𝑗 =
∑︁𝑗

𝑘=1⟨𝑦𝑖 , 𝑦
′
𝑗
⟩𝑦′

𝑗
and 𝑦⊥

𝑖|𝑗 =
∑︁𝑚

𝑘=𝑗+1⟨𝑦𝑖 , 𝑦′𝑗⟩𝑦′𝑗 . We can rewrite
𝑉𝑖 = ⟨𝑦𝑖|𝑗 , 𝑧⟩ + ⟨𝑦⊥𝑖|𝑗 , 𝑧⟩ for any 𝑗 < 𝑖. Therefore, for any 𝑎 < 𝑖, we can rewrite(︂

𝑉𝑖

|︁|︁ {𝑋𝑗}𝑗∈[𝑖−1]
)︂
=

(︂
⟨𝑦𝑖|𝑎 , 𝑧⟩

|︁|︁ {𝑋𝑗}𝑗∈[𝑎]
)︂
+

(︂
⟨𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎 , 𝑧⟩

|︁|︁ {𝑋𝑗}𝑗∈[𝑖−1]
)︂
+ ⟨𝑦⊥

𝑖|𝑖−1 , 𝑧⟩,(︂
𝑉𝑖

|︁|︁ {𝑋𝑗}𝑗∈[𝑎]
)︂
=

(︂
⟨𝑦𝑖|𝑎 , 𝑧⟩

|︁|︁ {𝑋𝑗}𝑗∈[𝑎]
)︂
+ ⟨𝑦⊥

𝑖|𝑎 , 𝑧⟩.

33

Note that ∥𝑦𝑖|𝑖−1−𝑦𝑖|𝑎∥2 =
∑︁𝑖−1

𝑘=𝑎+1(⟨𝑦𝑖 , 𝑦′𝑗⟩)2. Because 𝑦𝑖 ∼ 𝑁(0, 1
𝑚 𝐼𝑚), 𝑦′𝑗 are orthonormal, and 𝑦′

𝑗
(𝑗 <

𝑖)s are independent with 𝑦𝑖 , ⟨𝑦𝑖 , 𝑦′𝑗⟩ are i.i.d. variables following 𝑁(0, 1
𝑚). Therefore, according to

the Laurent-Massart bound, ∥𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎∥2 ∈ (1 ± 0.01)2 · 𝑖−𝑎−1
𝑚 with probability at least 1 − 2−𝑛Ω(1) .

This implies ∥𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎∥ ≥ 1.5𝑛−1/3 with probability at least 1 − 2−𝑛Ω(1) . Since 𝑛 ≤ 𝑚/20, we
similarly have ∥𝑦𝑖|𝑖−1∥2 , ∥𝑦𝑖|𝑎∥2 ≤ 0.1 and ∥𝑦⊥

𝑖|𝑖−1∥
2 , ∥𝑦⊥

𝑖|𝑎∥
2 ∈ [0.9, 1.1] with probability at least

1 − 2−𝑛Ω(1) . We shall assume these conditions in the rest of the proof.

Because of our assumption (where the condition in Lemma 41 holds), ∀𝑖 ∈ [𝑛], 𝑉𝑖 − 𝑋𝑖 ∈ [0, 𝑛−4].
Observe that

⟨𝑦𝑖|𝑎 , 𝑧⟩ =
∑︂
𝑗∈[𝑎]
⟨𝑦𝑖 , 𝑦′𝑗⟩⟨𝑦′𝑗 , 𝑧⟩

=

∑︂
𝑗∈[𝑎]
⟨𝑦𝑖 , 𝑦′𝑗⟩

∑︂
𝑘∈[𝑗]

𝑐 𝑗𝑘⟨𝑦𝑘 , 𝑧⟩

=

∑︂
𝑗∈[𝑎]
⟨𝑦𝑖 , 𝑦′𝑗⟩

∑︂
𝑘∈[𝑗]

𝑐 𝑗𝑘(𝑋𝑘 + (𝑉𝑘 − 𝑋𝑘)) (𝑉𝑘 = ⟨𝑦𝑘 , 𝑧⟩)

=

∑︂
𝑘∈[𝑎]

⎛⎜⎝
𝑎∑︂

𝑗=𝑘

𝑐 𝑗𝑘⟨𝑦𝑖 , 𝑦′𝑗⟩
⎞⎟⎠ · (𝑋𝑘 + (𝑉𝑘 − 𝑋𝑘))

def
= ℰ1 +

∑︂
𝑘∈[𝑎]

⎛⎜⎝
𝑎∑︂

𝑗=𝑘

𝑐 𝑗𝑘⟨𝑦𝑖 , 𝑦′𝑗⟩
⎞⎟⎠ · 𝑋𝑘⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝐵

According to the Cauchy-Schwarz inequality and Lemma 43, all the coefficients (∑︁𝑎
𝑗=𝑘 𝑐 𝑗𝑘⟨𝑦𝑖 , 𝑦′𝑗⟩)2 ≤

(∑︁𝑛
𝑗=1 𝑐

2
𝑗𝑘
)(∑︁𝑎

𝑗=1(⟨𝑦𝑖 , 𝑦′𝑗⟩)2) ≤ 2𝑛2∥𝑦𝑖|𝑎∥2. According to our assumption of ∥𝑦𝑖|𝑎∥2 ≤ 0.1, ℰ1 ∈ ±2𝑛−2.

On the other hand, we similarly have

⟨𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎 , 𝑧⟩ =
∑︂

𝑘∈[𝑖−1]

⎛⎜⎝
𝑖−1∑︂

𝑗=max{𝑘,𝑎+1}
𝑐 𝑗𝑘⟨𝑦𝑖 , 𝑦′𝑗⟩

⎞⎟⎠ · (𝑋𝑘 + (𝑉𝑘 − 𝑋𝑘))

def
= ℰ2 +

∑︂
𝑘∈[𝑖−1]

⎛⎜⎝
𝑖−1∑︂

𝑗=max{𝑘,𝑎+1}
𝑐 𝑗𝑘⟨𝑦𝑖 , 𝑦′𝑗⟩

⎞⎟⎠ · 𝑋𝑘⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝐶

,

and ℰ2 ∈ ±2𝑛−2. Because 𝑧 ∼ 𝑁(0, 𝐼𝑚), ⟨𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎 , 𝑧⟩ ∼ 𝑁(0, ∥𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎∥2), and we have
ℙ[⟨𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎 , 𝑧⟩ ≤ −∥𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎∥] ≥ 0.15. Since ℰ2 ∈ ±2𝑛−2 and ∥𝑦𝑖|𝑖−1 − 𝑦𝑖|𝑎∥ ≤ −1.5𝑛−1/3, we
have ℙ[𝐶 ≤ −𝑛−1/3] ≥ 0.15.

Note that conditioning on {𝑋𝑗}𝑗∈[𝑖−1], 𝐵 and 𝐶 are fixed. Consider the cases where 𝐶 ≤ −𝑛−1/3.
Since 𝑧 ∼ 𝑁(0, 𝐼𝑚), for any valid choice of 𝑋1 , · · · , 𝑋𝑖−1, the distributions 𝜇 ∼ (𝑋𝑖 | {𝑋𝑗}𝑗∈[𝑎]) and
𝜐 ∼ (𝑋𝑖 | {𝑋𝑗}𝑗∈[𝑎]) can be concluded as follows:

1. 𝜇 is the value applying round on the sum of the fixed value 𝐵, random Gaussian 𝑁(0, ∥𝑦⊥
𝑖|𝑎∥

2)
and random variables (ℰ1 | {𝑋𝑗}𝑗∈[𝑎]) ∈ ±2𝑛−2.

34

2. 𝜐 is the value applying round on the sumof the fixed values 𝐵, 𝐶, randomGaussian𝑁(0, ∥𝑦⊥
𝑖|𝑖−1∥

2)
and random variables (ℰ1 | {𝑋𝑗}𝑗∈[𝑎]), (ℰ2 | {𝑋𝑗}𝑗∈[𝑖−1]) ∈ ±2𝑛−2.

Suppose 𝑓1 , 𝑓2 are the density functions of (ℰ1 | {𝑋𝑗}𝑗∈[𝑎]) and (ℰ2 | {𝑋𝑗}𝑗∈[𝑖−1]). We have for any
integer 𝑘 ∈ [−𝑛4 log 𝑛, 𝑛4 log 𝑛],

𝜇(𝑘) =
∫ (𝑘+1)𝑛−4

𝑥=𝑘𝑛−4

∫
𝑒1

𝑓1(𝑒1) ·
exp(−(𝑥 − 𝑒1 − 𝐵)2/2∥𝑦⊥

𝑖|𝑎∥
2)√︂

2𝜋∥𝑦⊥
𝑖|𝑎∥2

𝑑𝑒1𝑑𝑥

𝜐(𝑘) =
∫ (𝑘+1)𝑛−4

𝑥=𝑘𝑛−4

∫
𝑒1 ,𝑒2

𝑓1(𝑒1) 𝑓2(𝑒2) ·
exp(−(𝑥 − 𝑒1 − 𝑒2 − 𝐵 − 𝐶)2/2∥𝑦⊥

𝑖|𝑖−1∥
2)√︂

2𝜋∥𝑦⊥
𝑖|𝑖−1∥2

𝑑𝑒1𝑑𝑒2𝑑𝑥

If 𝐶 < 0, for any integer 𝑘 ∈ {𝑘 ∈ ℤ | 𝑘𝑛−4 ∈ (4𝑛−2 + 𝐵 + 0.1, 4𝑛−2 + 𝐵 + 0.2)} := 𝒦 ,

𝜇(𝑘) ≥
exp(−(𝑘𝑛−4 − 𝐵 + 7𝑛−2)2/2∥𝑦⊥

𝑖|𝑎∥
2)

√
2𝜋∥𝑦⊥

𝑖|𝑎∥
· 𝑛−4

𝜐(𝑘) ≤
exp(−(𝑘𝑛−4 − 𝐵 + |𝐶|)2/2∥𝑦⊥

𝑖|𝑖−1∥
2)

√
2𝜋∥𝑦⊥

𝑖|𝑖−1∥
· 𝑛−4

In this case, 𝜐(𝑘)/𝜇(𝑘) is at most

∥𝑦⊥
𝑖|𝑖−1∥
∥𝑦⊥

𝑖|𝑎∥
· exp

(︄
1
2

(︄
𝑘𝑛−4 − 𝐵 + 7𝑛−2

∥𝑦⊥
𝑖|𝑎∥

− 𝑘𝑛−4 − 𝐵 + |𝐶|
∥𝑦⊥

𝑖|𝑖−1∥

)︄ (︄
𝑘𝑛−4 − 𝐵 + 7𝑛−2

∥𝑦⊥
𝑖|𝑎∥

+ 𝑘𝑛−4 − 𝐵 + |𝐶|
∥𝑦⊥

𝑖|𝑖−1∥

)︄)︄
=
∥𝑦⊥

𝑖|𝑖−1∥
∥𝑦⊥

𝑖|𝑎∥
· exp

(︄
Θ(1) ·

(︄
𝑘𝑛−4 − 𝐵 + 7𝑛−2

∥𝑦⊥
𝑖|𝑎∥

− 𝑘𝑛−4 − 𝐵 + 7𝑛−2

∥𝑦⊥
𝑖|𝑖−1∥

− |𝐶| − 7𝑛−2

∥𝑦⊥
𝑖|𝑖−1∥

)︄)︄
≤ exp

(︁
Θ(−|𝐶| + 7𝑛−2)

)︁
= 1 −Ω(𝑛−1/3) (∥𝑦⊥

𝑖|𝑎∥ ≥ ∥𝑦
⊥
𝑖|𝑖−1∥)

In addition, we have

∑︂
𝑘∈𝒦

𝜇(𝑘) ≥
∫ 0.2−7𝑛−2

0.1+7𝑛−2

exp
(︂
−𝑥2/2∥𝑦⊥

𝑖|𝑎∥
)︂

√
2𝜋∥𝑦⊥

𝑖|𝑎∥
𝑑𝑥 = Ω(1).

Therefore, we conclude that ℙ𝑣∼𝜇
[︂
𝜐(𝑘)
𝜇(𝑘) ≤ 1 −Ω(𝑛−1/3)

]︂
≥ Ω(1) if 𝐶 ≤ −𝑛−1/3. In addition, it is clear

that 𝜐max = 𝑂(𝑛−4). Because 𝐶 ≤ −𝑛−1/3 happens with a constant probability, we complete the
proof.

35

	Introduction
	Related Work
	Techniques
	Organization

	Preliminaries
	Pinning Lemmas
	Universal Coupling

	Sublinear Parallel Sampling via Counting Oracles
	Algorithm
	Correctness
	Round Complexity
	Sampling via Approximate Counting Oracles

	Applications
	Hardness
	Lower bound of alg:sample-on-hypergrid2
	Deferred Proofs
	Proof of lem:approx-counting-equiv-under-good
	Proof of lem:approx-counting-good-prob
	Proof of lem:sure-mistakes-coupler
	Proof of lem:coef-of-gramschmidt
	Proof of lem:ub-diff-between-conditionings

