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ABSTRACT
Bilinear maps are used as an essential cryptographic building block
in many of the advanced encryption algorithms today, such as
searchable encryption, identity-based encryption, group signatures,
etc. Numerous data and application privacy techniques make use
of such primitives. However, the performance overhead of bilinear
map encryption, and in particular that of the pairing operation,
which is the predominant operation on bilinear maps, is still quite
high. In this paper, we investigate in-depth the sequence of steps
required to compute bilinear map pairings, and we identify the
performance footprint of each step. We devise an implementation
based on FPGA which reduces the overhead of bilinear pairings, in
terms of both execution time and resource utilization (i.e., lookup
tables and flip-flop units required). Our extensive performance eval-
uation shows that the proposed approach significantly outperforms
benchmarks, and represents an important step towards the wide-
scale deployment of bilinear map-based encryption protocol for
large-scale applications.

CCS CONCEPTS
• Security and privacy→ Public key encryption; • Hardware
→ PCB design and layout.
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1 INTRODUCTION
The last two decades witnessed an impressive number of novel
cryptographic building blocks supporting advanced functionality [4,
7, 10] such as search on encrypted data, identity-based encryption,
group signatures, etc. Many of these techniques make use of bilinear
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maps, a mathematical construction that has been popularized by the
seminal work of Boneh et al [4]. Typically, a symmetrical bilinear
map of composite order is employed, which is a function 𝑒 : G×G→
G𝑇 such that ∀𝑎, 𝑏 ∈ 𝐺 and ∀𝑢, 𝑣 ∈ Z it holds that 𝑒 (𝑎𝑢 , 𝑏𝑣) =
𝑒 (𝑎, 𝑏)𝑢𝑣 . G and G𝑇 are cyclic multiplicative groups of composite
order 𝑁 = 𝑃 · 𝑄 where 𝑃 and 𝑄 are large primes of equal bit
length. We denote by G𝑝 , G𝑞 the subgroups of G of orders 𝑃 and
𝑄 , respectively.

While bilinear maps are a very promising direction many appli-
cation domains that rely on advanced encryption primitives, there
are still barriers to large-scale adoption due to the significant perfor-
mance overhead incurred. The fundamental operation when using
bilinear maps is called bilinear pairing, and a single such opera-
tion can incur significant latency, in the order of milliseconds. For
large datasets consisting of millions of data objects, the cumulative
overhead can become prohibitive from a computational perspective.

Several research efforts focused on reducing the computational
overhead of bilinear pairings, using either a software approach [1]
or hardware-accelerated solutions [2, 3, 5, 6, 8, 9, 11]. Hardware ap-
proaches typically perform much faster than software approaches,
due to the fact that bilinear maps are defined over fields of large
bit-length, and general-purpose CPUs are not able to efficiently
handle long word operations, especially when modular arithmetic
on prime or composite fields is required. The advances in FPGA
technology from the last decade, particularly in the area of spe-
cialized hardware for cryptographic acceleration, stimulated the
development of several FPGA-based solutions for acceleration of bi-
linear pairings. However, existing approaches still have limitations
in terms of latency and resource utilization on the FPGA board,
leading to either approaches that are not sufficiently fast, or which
do not scale well in terms of large-scale deployment and parallelism
due to excessive hardware footprint.

The two essential metrics to quantify FPGA hardware resources
are the number of required lookup tables (LUT) and flip-flop units
(FF). In this paper, we explore in-depth several design choices to
efficiently implement bilinear pairings in hardware on FPGA de-
vices. We focus on obtaining a good trade-off between low latency
and reduced hardware footprint. We compare our approach with
several state-of-the-art hardware and software implementations,
and we show that we significantly outperform the benchmarks.
The rest of the paper is organized as follows: Section 2 provides
background information. We introduce our proposed approach for
basic operations like modular multiplications and inversions in
Sections 3 and 4 respectively, followed by an end-to-end illustration
of the complete bilinear pairing pipeline in Section 5. We present
experimental results in Section 6. We briefly overview related work
in Section 7 and conclude in Section 8.
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2 BACKGROUND
Our objective is to devise a hardware design to compute efficiently
elliptic curve pairing operations on bilinear maps. Specifically, we
focus on the Tate pairing [8, 9] which is a popular building block
used in cryptographic constructions such as searchable encryption,
identity-based encryption, group signatures, etc. The Tate pairing is
defined over a super-singular elliptic curve described by equation:

𝐸 : 𝑦2 + 𝑦 = 𝑥3 + 𝑥 + 1 (1)

where the curve parameters belong to a binary Galois Field GF(2𝑚),
and the value ofm is typically set to 283. Each Galois Field is defined
by a finite field polynomial with binary coefficients

𝑝 (𝑧) =
𝑚−1∑︁
𝑖=0

𝑝 i𝑧
𝑖 . (2)

The polynomial can also be represented as a large integer

𝑝 (𝑧) = 𝑝m - 1𝑝m - 2 ...𝑝0, (3)

where 𝑝𝑖 is the bit representing the coefficient of 𝑧𝑖 .
Computing Tate pairings requires the implementation of poly-

nomial arithmetic operations in GF(2𝑚). Specifically, as detailed
in [8, 9], one needs to implement modular addition, modular squar-
ing and modular multiplication in GF(2𝑚), as well as modular
multiplication, modular exponentiation and modular inversion in
GF(24∗𝑚).

Among the Galois Field arithmetic operations required to com-
pute Tate pairings, we identify a trivial subset which can be easily
and efficiently implemented using existing algorithms, as well as
a more challenging subset that requires significant design efforts
and optimizations to obtain good performance.

Specifically, the set of trivial operations consists of the following:

• Modular Addition in GF(2𝑚),
• Modular Squaring in GF(2𝑚),
• Modular Exponentiation in GF(24∗𝑚).

The set of challenging operations that represent the focus of our
work, and for which we design customized hardware units, consists
of the following:

• Modular Multiplication in GF(2𝑚) and GF(24∗𝑚),
• Modular Inversion in GF(2𝑚) and GF(24∗𝑚).

In the rest of this section, we provide a brief overview of the
operations in the trivial set, and we also identify existing solutions
from the literature that efficiently implement them. We present
the details of our proposed solution for modular multiplication
in Section 3, and for modular inversion in Section 4. In Section 5,
we present the complete algorithm for Tate pairing computation,
which includes both trivial and non-trivial operations.

2.1 Modular Addition in GF(2𝑚)
Starting from Eq. (2), it can be observed that the addition of two
polynomials in GF(2𝑚) can be reduced to a single XOR operation be-
tween the binary representations of the two polynomials, where the
𝑖𝑡ℎ bit of the result is determined by computing the XOR between
the 𝑖𝑡ℎ bits of the operand polynomials.

2.2 Modular Squaring in GF(2𝑚)
As detailed in [5], the squaring operation of a GF polynomial con-
sists of expanding the binary representation of the polynomial from
𝑚-bits to 2∗𝑚-bits, and inserting zeros at odd indices. Furthermore,
the 𝑖𝑡ℎ index bit is moved to the (2 × 𝑖)𝑡ℎ index in the result. This
approach also requires a reduction step to bring the result back to
GF(2𝑚).

Given the reduction polynomial commonly used for Tate pairings
𝑓 (𝑥) = 𝑥283 + 𝑥12 + 𝑥7 + 𝑥5 + 1, the coefficients of the squaring
result can be recombined using XOR gates after a factorization step
for every power greater than 283. Each term in the result with an
exponent 𝑒𝑥𝑝 greater than 283 is treated as 283 ∗ (𝑒𝑥𝑝 − 283) and
𝑥283 is replaced with 𝑥12 + 𝑥7 + 𝑥5 + 1.

2.3 Modular Exponentiation in GF(24∗𝑚)
Themodular exponentiation in GF(24∗𝑚) is required in the final step
of the Tate Pairing algorithm (see Section 5 for details) and it is based
upon the equivalences derived in [9, 11]. Specifically, by using the
Frobeniusmap, the exponentiation of 𝑐 (𝑥) = 𝑐3∗𝑥3+𝑐2∗𝑥2+𝑐1∗𝑥+𝑐0
∈ GF(24∗𝑚) defined over polynomial 𝑓 (𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 1 can
be reduced to a series of XOR operations and recombinations of
coefficients. Thus, the resulting value of 𝑐 (𝑥)2𝑚 is given by the
following equation:

𝑐 (𝑥)2
𝑚

= 𝑐3 ∗ 𝑥3 + 𝑐1 ∗ 𝑥2 + (𝑐2 + 𝑐3) ∗ 𝑥 + (𝑐0 + 𝑐1) (4)

3 MODULAR MULTIPLICATION IN GALOIS
FIELDS

We design specialized hardware units for modular multiplication
operations in GF(2𝑚) and GF(24∗𝑚), and we encapsulate them in
a separate Chisel3 [3] package imported in the hardware module
that implements the Tate pairing algorithm. The Galois Field arith-
metic operations are implemented starting from the multiplication
algorithms presented in [5, 8].

3.1 Modular Multiplication in GF(2𝑚)
The hardware unit for GF(2𝑚) multiplication is the most important
module in our design, and it is used as a building block in the other
algorithms for multiplication in GF(2𝑚) and modular inversion. As
a result, the GF(2𝑚) multiplication module directly impacts overall
pairing performance, so it is essential to devise a hardware unit
that achieves low latency and reduced resource consumption.

To highlight the challenges of efficiently implementing GF(2𝑚)
multiplication, and to capture the benefit of each design choice in
our solution, we present a sequence of candidate implementations,
each one improving incrementally on the limitations of its prede-
cessor. Table 1 summarizes each of these candidates, and briefly
highlights its characteristics.
Algorithm𝑀0 (Baseline). The first implementation, referred to as
M0, or Baseline, follows the Algorithm 2.33 in [5]. As seen in Alg. 1,
in this first naive implementation the computation of the result
takes a number of cycles equal to 𝑚, the bit width of the Galois
field elements. This is due to the fact that at the 𝑖𝑡ℎ iteration of
the algorithm, the product 𝑎i ∗ 𝑏 (𝑧) is XOR’d into the intermediate
result. Even if the number of clock cycles needed for this approach
is high, it still presents a series of advantages. First, the hardware
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Table 1: Candidate Implementations of Modular Multiplication in GF(2𝑚)

Identifier Method Description

𝑀0
This is a baseline approach that directly implements the algorithm from [5]. Each bit of the result is computed
one-at-a-time in one clock cycle using in-place reduction.

𝑀1
This approach computes batches of the results in groups of ten bits at a time in a single clock cycle
using in-place reduction.

𝑀2
This approach uses a digital serial multiplier which computes in a single clock cycle the product of two 32-bit
words from the two operands and uses a separate reduction module.

𝑀3

This approach uses a digit-serial multiplier that divides the first operand into three (almost) equal-sized
chunks, and multiplies each of these chunks with a 32-bit word from the second operand; the entire operation
requires four different clock cycles.

𝑀4
This approach uses the same concept as𝑀3 but takes advantage of pre-computation techniques to reduce the
total number of cycles.

𝑀5

In this approach, a digit-serial multiplier divides the first operand into four (almost) equal chunks and
multiplies these chunks with a 32-bit word from the second operand, using four clock cycles. It also takes
advantage of the pre-computation techniques to reduce the total number of cycles.

implementation of this approach is simple, and the resulting cir-
cuit consumes a small number of hardware resources. Second, the
implementation executes the reduction step in-place, using only
a series of XOR operations that can be derived from the rules of
polynomial division. Thus, if the most significant bit of the binary
representation of 𝑏 (𝑧) (i.e., 𝑏𝑚−1) is set to one in the 𝑖𝑡ℎ iteration
of the algorithm, the reduction can be done by performing a XOR
of the coefficients for 𝑧12, 𝑧7 and 𝑧5, and by setting the least signif-
icant bit to 𝑏𝑚−1. However, these advantages come at the cost of
increased latency. As explained above, the total number of clock
cycles needed for the entire computation is𝑚, and one extra clock
cycle is required for performing the instantiations.

Algorithm 1 M0 - Baseline multiplication

Require: 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0], 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0]
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0] ∗ 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0])
𝑖𝑡𝑒𝑟 ← 0;
while 𝑖𝑡𝑒𝑟 < 𝑚 do

if 𝑖𝑡𝑒𝑟 = 0 then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑝𝑜𝑙𝑦1[0] ∗ 𝑝𝑜𝑙𝑦2

else
𝑝𝑜𝑙𝑦2← 𝑝𝑜𝑙𝑦2 << 1
𝑝𝑜𝑙𝑦2← 𝑝𝑜𝑙𝑦2 ⊕ (𝑝𝑜𝑙𝑦2[𝑚 − 1] ∗ 𝑓 (𝑥))
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ⊕ (𝑝𝑜𝑙𝑦1[𝑖𝑡𝑒𝑟 ] ∗ 𝑝𝑜𝑙𝑦2)

end if
𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

end while

Algorithm𝑀1 (Operand Bit Batching). Starting from the high-
latency implementation of the baseline approach, we devise a sec-
ond implementation, referred to as𝑀1. Instead of multiplying only
one bit from the first operand with the second operand in the same
clock cycle, ten bits of the first operand are multiplied with the
second operand. This approach reduces the number of clock cy-
cles needed for the entire computation from the bitwidth of the

operands (𝑚) to𝑚/10. However, the manipulation of multiple bits
in each clock cycle increases the complexity of the circuit. Equa-
tion (5) illustrates how the multiplication is performed in the 𝑖𝑡ℎ
iteration of𝑀1:

𝑎i (𝑧) ∗ 𝑏 (𝑧) = 𝑎j ∗ 𝑏 (𝑧) + 𝑎j+1 ∗ 𝑏 (𝑧) + . . . + 𝑎j+9 ∗ 𝑏 (𝑧), (5)

where ai(z) describes the chunk from the first operand equal to
𝑎i*10 ∗ 𝑧𝑖∗10 + 𝑎i*10+1 ∗ 𝑧𝑖∗10+1 + ... + 𝑎i*10+9 ∗ 𝑧𝑖∗10+9 and 𝑗 = 𝑖 ∗ 10.
When translated to hardware, this computation consists of XOR
operations between a series of multiplexers (MUX). The MUXs are
tasked to manage the multiplication between 𝑎 𝑗 and 𝑏 (𝑧). Thereby,
based on the value of 𝑎 𝑗 as selection signal, each MUX unit returns
either 0 or 𝑏 (𝑧) ∗ 𝑧 𝑗 . The computation of 𝑏 (𝑧) ∗ 𝑧 𝑗 consists of left
shifting the binary representation of 𝑏 (𝑧) by 𝑗 positions. Next, this
intermediate result needs to be reduced to the Galois field space.
As in the previous implementation of 𝑀0, the reduction step is
done in-place. In this manner, all the powers of the intermediate
result that are greater than the width of the Galois field can be
decomposed into 𝑧283 * 𝑧𝑝𝑜𝑤𝑒𝑟−283. Using this factorization and
the fact that 𝑧283 can be written as 𝑧12 + 𝑧7 + 𝑧5 + 1, the reduction
step consists of only a series of XOR gates and recombination of
the coefficients. Even if this approach reduces the latency for the
multiplication in the GF(2𝑚) hardware unit, it requires ten left
shift operations in the same clock cycle together with the usage of
MUXs to check if the shifts are necessary. It also requires the use of
XOR gates in the coefficients’ recombination in the reduction step,
thus further increasing the circuit complexity and the number of
hardware resources consumed by this approach. Although faster,
𝑀1 consumes three times more hardware resources than𝑀0.
Algorithm 𝑀2 (Digit-Serial Multiplier). The third candidate
implementation for Galois field modular multiplication builds upon
the digit-serial multiplier approach introduced in [5, 8].

The digit-serial multiplier increases the size of the chunk from
the second operand that is processed in a single clock cycle, thus
improving the latency of the entire circuit. Specifically, a 32-bit
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Algorithm 2 M1: Operand Bit Batching

Require: 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0], 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0], 𝑓 (𝑥)
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0] ∗ 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0])
𝑖𝑡𝑒𝑟 ← 0;
while 𝑖𝑡𝑒𝑟 < 𝑚 do

if 𝑖𝑡𝑒𝑟 = 0 then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑝𝑜𝑙𝑦1[0] ∗ 𝑝𝑜𝑙𝑦2
𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

else
𝑝𝑜𝑙𝑦2← 𝑝𝑜𝑙𝑦2 ∗ 𝑝𝑜𝑙𝑦1[𝑖𝑡𝑒𝑟 + 9 : 𝑖𝑡𝑒𝑟 ]
𝑝𝑜𝑙𝑦2← 𝑝𝑜𝑙𝑦2 mod 𝑓 (𝑥)
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ⊕ 𝑝𝑜𝑙𝑦2
𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 10

end if
end while

Algorithm 3 M2: Digital Serial Multiplier

Require: 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0], 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0], 𝑓 (𝑥),𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0] ∗ 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0])

for 𝑖 ← 0 to
⌈

𝑚
𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒

⌉
do

𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ⊕ (𝑝𝑜𝑙𝑦1 ∗ 𝑝𝑜𝑙𝑦2[(𝑖 + 1) ∗ 𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 1 :
𝑖 ∗𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒])
𝑝𝑜𝑙𝑦1← (𝑝𝑜𝑙𝑦1 << 𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒) mod 𝑓 (𝑥)

end for
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 mod 𝑓 (𝑥)

word from the second operand is multiplied with the first operand
in each clock cycle. As a result, the number of clock cycles is re-
duced to only

⌈
𝑤𝑖𝑑𝑡ℎ
32

⌉
if the multiplication of the word 𝐵𝑖 (𝑧) with

𝑎(𝑧) can be done in a single clock cycle. Compared to the two pre-
vious approaches, the use of the digit-serial multiplier enforces the
necessity to implement a separate reduction module that follows
NIST standards for GF(2283) with 𝑓 (𝑥) = 𝑥283 + 𝑥12 + 𝑥7 + 𝑥5 + 1
as the reduction polynomial. The reduction module follows the
pseudocode given as Algorithm 2 in [9] and Algorithm 2.43 in [5].
Thus, by following the reduction algorithm, we are able to reduce
a 566-bit polynomial to a 283-bit polynomial in GF(2283), requiring
a single clock cycle for processing each 32-bit word that contains
the coefficients for the powers greater than 283 in the polynomial
to be reduced. As illustrated in Algorithm 3, the polynomial that
we need to reduce back to GF(2283) has at most 315 bits, because
we multiply a 32-bit operand with a 283-bit operand. The reduction
module can be reduced to only one clock cycle compared to the
reduction module proposed in [8], which takes four clock cycles
to reduce the polynomial resulting after multiplication. Compared
to the implementation from [8], our reduction module processes
only the word containing the powers up to 313, thus decreasing
the total latency brought by the reduction module, and also the
hardware resources consumed by our design, because it can be im-
plemented as a combinational logic circuit. Algorithm 4 illustrates
the reduction module implemented in our work to be used within
the GF(2𝑚) modular multiplication hardware unit.

Algorithm 4 Algorithm for polynomial reduction

Require: 𝑝𝑜𝑙𝑦 [𝑚 − 1 : 0], 𝑓 (𝑥),𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒
𝑡 ← 𝑝𝑜𝑙𝑦 [10 ∗𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 1 : 9 ∗𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒]
𝑐0 ← 𝑝𝑜𝑙𝑦 ⊕ (𝑡 << 5) ⊕ (𝑡 << 10) ⊕ (𝑡 << 12) ⊕ (𝑡 << 17)
𝑐1 ← 𝑝𝑜𝑙𝑦 ⊕ (𝑡 >> 27) ⊕ (𝑡 >> 10) ⊕ (𝑡 >> 12) ⊕ (𝑡 >> 17)
𝑡 ← (𝑝𝑜𝑙𝑦 [9 ∗𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 1 : 8 ∗𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒] >> 27)
𝑟𝑒𝑠𝑢𝑙𝑡 ← (𝑡&0𝑥7𝐹𝐹𝐹𝐹𝐹𝐹, 𝑝𝑜𝑙𝑦 [8 ∗ 𝑤𝑜𝑟𝑑𝑠𝑖𝑧𝑒 − 1 : 2 ∗
𝑤𝑜𝑟𝑑𝑠𝑖𝑧𝑒], 𝑐1, 𝑐0 ⊕ 𝑡 ⊕ (𝑡 << 5) ⊕ (𝑡 << 7) ⊕ (𝑡 << 12))

By using the digit-serial multiplier approach,𝑀2 requires a single
clock cycle to compute the coefficient for each power of the inter-
mediate result, thus decreasing the latency of the bilinear pairing
computation, However, it introduces an increase in the number of
hardware resources consumed, caused by the calculation of all the
coefficients in the same clock cycle, as illustrated in Algorithm 3.
Algorithms 𝑀3, 𝑀4 (Digit-Serial Multiplier with Batching).
To address the increased hardware resource consumption of 𝑀2,
we propose an improved approach called 𝑀3. Illustrated in Algo-
rithm 5,𝑀3 performs multiplication between 𝐵𝑖 (𝑧) and 𝑎(𝑧) in four
clock cycles only. It implements a finite state machine with four
different states, whereby 𝐵𝑖 (𝑧) is multiplied with a different chunk
of a(z) with size equal to

⌈
𝑚
3
⌉
in the first three states, while the last

state outputs the final result. The multiplication in each different
state of this approach is done by using the rules of polynomial
multiplication, and by taking into account which powers of the
result are affected at each step. This way, we obtain a significant
reduction in the number of LUTs (Look-Up Tables) required for the
entire system. However, the latency of the entire system is slightly
increased, due to the introduction of additional states in the compu-
tation of 𝐵𝑖 (𝑧) ∗ 𝑎(𝑧). The total amount of clock cycles required for
the entire modular multiplication in GF(2𝑚) is similar to the one
in [8].

Algorithm 5 M3 and M4 Algorithms

Require: 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0], 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0], 𝑓 (𝑥),𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0] ∗ 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0])

Separate 𝑝𝑜𝑙𝑦 into three equal chunks
𝑎𝑢𝑥_𝑟𝑒𝑠 [𝑚 +𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 1 : 0] ← 0
for 𝑖 ← 0 to

⌈
𝑚

𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒

⌉
do

1. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘1 ∗ 𝑝𝑜𝑙𝑦2
2. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘2 ∗ 𝑝𝑜𝑙𝑦2
3. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘3 ∗ 𝑝𝑜𝑙𝑦2
{Multiplications 1-3 are sequential}
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ⊕ 𝑎𝑢𝑥_𝑟𝑒𝑠
𝑝𝑜𝑙𝑦1← (𝑝𝑜𝑙𝑦1 << 𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒) mod 𝑓 (𝑥)

end for
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 mod 𝑓 (𝑥)

Algorithm𝑀4 operates the same way as𝑀3, with the only differ-
ence that𝑀4 employs pre-computation techniques described later
in Algorithm 10.
Algorithm𝑀5 (Digit-SerialMultiplierwithfine-grainedBatch-
ing). The last variant we consider, referred to as𝑀5, implements
the multiplication 𝐵𝑖 (𝑧) ∗ 𝑎(𝑧) using a finite state machine with
six states, and separates 𝑎(𝑧) into four chunks of size equal to

⌈
𝑚
4
⌉
.

106



Accelerating Performance of Bilinear Map Cryptography using FPGA CODASPY ’24, June 19–21, 2024, Porto, Portugal

The approach is illustrated in Algorithm 6. The first four states im-
plement the multiplication of each equal chunk of a(z) with 𝐵𝑖 (𝑧),
while the fifth state multiplies the most significant bits of 𝑎(𝑧) that
were not part of any of the initial chunks with 𝐵𝑖 (𝑧). The final state
outputs the result together with an additional signal outputValid
which indicates that the output of the module is the final result.
Even though this approach increases slightly the latency of the
entire system, it reduces the number of LUTs required by our de-
sign, while the number of Flip-Flop units (FF) remains similar to
the previous variants 𝑀3 and 𝑀4. We found that this implemen-
tation has the best overall performance when combined with the
pre-computing techniques described in Algorithm 10.

Algorithm 6 Algorithm for M5

Require: 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0], 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0], 𝑓 (𝑥),𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦1[𝑚 − 1 : 0] ∗ 𝑝𝑜𝑙𝑦2[𝑚 − 1 : 0])

Separate 𝑝𝑜𝑙𝑦1 into four equal chunks
𝑎𝑢𝑥_𝑟𝑒𝑠 [𝑚 +𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 1 : 0] ← 0
for 𝑖 ← 0 to

⌈
𝑚

𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒

⌉
do

1. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘1 ∗ 𝑝𝑜𝑙𝑦2
2. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘2 ∗ 𝑝𝑜𝑙𝑦2
3. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘3 ∗ 𝑝𝑜𝑙𝑦2
4. 𝑎𝑢𝑥_𝑟𝑒𝑠 ← 𝑐ℎ𝑢𝑛𝑘4 ∗ 𝑝𝑜𝑙𝑦2
{The multiplications between the chunks and poly2 are done
sequentially}
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ⊕ 𝑎𝑢𝑥_𝑟𝑒𝑠
𝑝𝑜𝑙𝑦1← (𝑝𝑜𝑙𝑦1 << 𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒) mod 𝑓 (𝑥)

end for
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 mod 𝑓 (𝑥)

3.2 Modular Multiplication in GF(24∗𝑚)
Our proposed implementation for this hardware unit follows the
Karatsubamultiplier idea proposed in [6] using the circuit schematic
provided in [8] and depicted in Fig. 1.

Starting from this architecture of the GF(24∗𝑚) modular multi-
plier defined over 𝑓 (𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 1, we consider two distinct
approaches. The first approach aims to improve the latency of the
entire pairing operation by computing all of the multiplications in
Fig. 1 in parallel, using nine different multipliers in GF(2𝑚), thus
increasing the amount of hardware resources that the design con-
sumes. The block diagram of this low-latency solution is illustrated
in Fig. 2. The second approach aims to reduce the amount of LUTs
and FFs utilized by the FPGA, at the expense of higher latency, by
using only one multiplier in GF(2𝑚) reused for each of the mul-
tiplications shown in Fig. 1. Thus, the two approaches provide a
trade-off between latency and resource consumption.

The low-latency implementation for the schematic in Fig. 1 uses
a 2-state finite-state machine (FSM). The first state computes the
XOR operations in Fig. 1 and the nine parallel multiplications. Then,
based upon the validity signal that indicates whether the results
of the multiplications can be used in further computations, the
FSM moves to the second state where the final XOR operations
are computed and the final result is output, marking the validity
of the result with a signal. To store the results from the first state
computations and reuse them in the second state, we use nine

registers with a size equal to m. The use of the two-state FSM
delays with one clock cycle the output of the final result. However,
since the split in two different states is not mandatory, the circuit
can be reduced to only one state in which all of the computations
are performed, by taking advantage of the fact that XOR operations
are independent of the clock. Using this observation, there is no
need for the intermediate result registers, and hence the design is
simplified, and the amount of FFs used by the system is significantly
reduced. Latency is also decreased, as the validity signal from this
module becomes true one clock cycle before the equivalent 2-state
FSM would.

4 MODULAR INVERSION IN GALOIS FIELDS
4.1 Modular Inversion in GF(2𝑚)

Algorithm 7 Algorithm for Modular Inversion in GF(2𝑚)

Require: 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 [𝑚 − 1 : 0]
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙−1 [𝑚 − 1 : 0]
𝑎 ← 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙2, 𝑏 ← 1, 𝑥 ← 𝑚−1

2
while 𝑥 ≠ 0 do
𝑎 ← 𝑎 ∗ 𝑎2𝑥

if 𝑥%2 then
𝑏 ← 𝑎 ∗ 𝑏
𝑎 ← 𝑎2

𝑥 ← 𝑥−1
2

else
𝑥 ← 𝑥

2
end if

end while
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑏

Our implementation of the inversion operation in GF(2𝑚) is
illustrated in Algorithm 7 and Fig. 3. This hardware unit uses a
Modular Multiplier in GF(2𝑚) and a Modular Squarer in GF(2𝑚)
that are re-utilized during the different steps of the algorithm. To
translate Algorithm 7 in hardware, we employ a 5-state FSM, as
follows. The first state is an initialization step, whereas the second
state is tasked with computing 𝐴2𝑥 by using the Modular Squarer
in GF(2𝑚) integrated in this unit. The third state uses the Modular
Multiplier in GF(2𝑚) to compute 𝐴 ∗𝐴2𝑥 . The fourth state updates
either variable x or the result of 𝐵 ∗ 𝐴, depending on the parity
of x. The final state is activated only if 𝑥 is odd, and it updates
the value of A with 𝐴2. The implementation cycles through these
states until x becomes 0, signaling that the computation is complete.
For𝑚 = 283, a total of 283 squaring operations in GF(2𝑚) and 12
multiplications in GF(2𝑚) are required.

4.2 Modular Inverter in GF(24∗𝑚)
The modular inversion in GF(24∗𝑚) needed in the final steps of
the bilinear pairing operation is implemented by using a modular
multiplier in GF(24∗𝑚), a modular inverter in GF(2𝑚) and a modular
exponentiator in GF(24∗𝑚), as shown in Fig. 3. This hardware unit
is the most complex among all Galois field operations implemented
in our package, and also the most hardware-demanding, consuming
the most LUTs and FFs. The implementation in our work follows
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Concat Result

a[(m-1):0]

a[(2*m-1):m]

a[(3*m-1):(2*m)]

a[(4*m-1):(3*m)]

b[(m-1):0]

b[(2*m-1):m]

b[(3*m-1):(2*m)]

b[(4*m-1):(3*m)]

b[(m-1):0]
b[(3*m-1):(2*m)]

a[(m-1):0]
a[(3*m-1):(2*m)]

b[(3*m-1):(2*m)]
b[(4*m-1):(3*m)]

b[(m-1):0]

b[(2*m-1):m]

a[(m-1):0]

a[(2*m-1):m]

a[(4*m-1):(3*m)]

a[(3*m-1):(2*m)]

b[(2*m-1):m]

b[(4*m-1):(3*m)]

a[(4*m-1):3*m]

a[(2*m-1):m] Modular Addition in GF(2𝑚)

Modular Multiplication in GF(2𝑚)

Figure 1: Data flow of Karatsuba Multiplier implemented for Modular Multiplication in GF(24∗𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (2𝑚)

MM in GF (24∗𝑚)

Operand1[1131:0]

Operand2[1131:0]

Start

Res[1131:0]

OutputValid

Figure 2: Block diagram of Modular Multiplier in GF(24𝑚)

MSq in GF (2𝑚)

MM in GF (2𝑚)

...

Operand[1132:0]

Start

Res[1131:0]

OutputValid

Figure 3: Block diagram of Modular Inverter in GF(2𝑚)

Algorithm 3 in [8], and relies on the following formulae derived in
[8]:

𝑝 (𝑥)−1 = 𝑝 (𝑥)2
4∗𝑚−2 = (𝑝 (𝑥)𝑟 )−1 ∗ 𝑝 (𝑥)𝑟−1, (6)

where 𝑟 = 24∗𝑚−2
2𝑚−1 .

𝑝 (𝑥)𝑟−1 = ((𝑝 (𝑥)2
𝑚

∗ 𝑝 (𝑥))2
𝑚

∗ 𝑝 (𝑥))2
𝑚

(7)

To implement the algorithm, we used a FSM with eight states.
The first stage focuses on the computation of 𝑝 (𝑥)2283∗𝑝 (𝑥) by using
themodular exponentiator in GF(24∗𝑚) for 𝑝 (𝑥)2283 and themodular
multiplier in GF(24∗𝑚). These two operations are performed in the
same stage to save a clock cycle and hardware resources that would
have been needed to propagate the results from one operation to
another. By taking advantage of the nature of exponentiation in
GF(24∗𝑚), we perform only a recombination of coefficients which
we implement within a combinational circuit. The transition to
the next state is done when the outputValid signal of the modular
multiplier is set to true. The second state is used to reset the internals
of the modular multiplier and takes only one clock cycle. The third
state computes the value (𝑝 (𝑥)2283 ∗ 𝑝 (𝑥))2283 ∗ 𝑝 (𝑥) based on the
result of 𝑝 (𝑥)2283 ∗ 𝑝 (𝑥) which has already been computed in the
first state and stored in a register. The fourth state of the FSM
computes the final exponentiation from the formula above, resets
the multiplier in GF(24∗𝑚) and stores the result in a register. The
fifth state calculates 𝑝 (𝑥)𝑟 and transitions to the sixth state where
the inversion in GF(2𝑚) is computed. The seventh state computes
the final multiplication by using the results from the sixth state
and the fourth state. It propagates the final result and sets the
outputValid signal to true marking that the result can be used in
further computations downstream.
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MM in GF (24∗𝑚)

MI in GF (2𝑚)

ME in GF (24∗𝑚)

...

Operand[1132:0]

Start

Res[1131:0]

OutputValid

Figure 4: Block diagram of Modular Inverter in GF(24𝑚)

Algorithm 8 Algorithm for Modular Inversion in GF(24∗𝑚)

Require: 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 [4 ∗𝑚 − 1 : 0]
Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡 [4 ∗𝑚 − 1 : 0] = 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙−1 [4 ∗𝑚 − 1 : 0]
𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ← 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙2

𝑚

𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ∗ 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦2
𝑚

𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ∗ 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦2
𝑚

𝑎𝑢𝑥𝑃𝑜𝑙𝑦2← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ∗ 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑎𝑢𝑥𝑃𝑜𝑙𝑦2← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦2−1
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑎𝑢𝑥𝑃𝑜𝑙𝑦 ∗ 𝑎𝑢𝑥𝑃𝑜𝑙𝑦2

5 COMPLETE BILINEAR PAIRING
ALGORITHM

In this section, we provide the complete algorithm for bilinear
pairing implementation, which combines all techniques proposed
in the previous sections. We use a modular multiplier in GF(24∗𝑚), a
modular exponentiator in GF(24∗𝑚), a modular inverter in GF(24∗𝑚),
two modular squarers in GF(2𝑚) and six modular multipliers in
GF(2𝑚).

The algorithm shown in Algorithm 9 is divided into two sec-
tions. First section includes the initialization step and the loop step,
represented by the first two states of the diagram in Fig. 5. The
second section includes the calculation of 𝐶 (𝑥)22∗𝑚−1 and consists
of the final two states in Fig. 5. For the first section we use a FSM
with eight different states. In the second section, the computation
of 𝐶 (𝑥)22∗𝑚−1 is translated to 𝐶 (𝑥)22∗𝑚 ∗𝐶 (𝑥)−1.

The states of the FSM tasked with the first section of Algorithm 9
are presented in Fig. 6. The first state of the FSM is used for the
initialization step, taking only one clock cycle and moving the FSM
to its second state. In the second state xp and yp are squared using
the modular squarers in GF(2𝑚) taking one clock cycle. Then the
FSM moves to its third state where z and m1 are computed based
upon on the values of xp and yp from the previous state. When
the multiplication between xp and yp is complete, the FSM enters
the fourth state, tasked with the computation of w and the reset of
the multipliers that will be used in the next state. In the fifth state
in which the values of m2, m3, m4, m5, m6 and m7 are computed
there are two possible approaches: one oriented to reduced latency
in which all of the multiplications needed are done in parallel
and therefore six different multipliers in GF(2𝑚) are used; and

initio.start is True

Loop

Inv

Exp and Mul

𝑙𝑜𝑜𝑝_𝑐𝑛𝑡 <=𝑚

inv.outputValid

io.start is False

Figure 5: State diagram of the Tate Pairing Unit

a second approach oriented to reduce the hardware area of the
design in which only one multiplier in GF(2𝑚) is used but all of the
multiplications are done sequentially. We prefer the first approach
due to its improved latency. When all the multiplications in this
stage are completed, the FSM moves to its sixth state tasked with
the calculation of the new values for c0, c1, c2 and c3 and with the
reset of the multipliers. The transition to the seventh state is done
after one clock cycle. The seventh state loops for m - 1 times in
order to compute 𝑥q2

𝑚−1
and 𝑦q2

𝑚−1
taking thus m - 1 clock cycles

and representing the bottleneck of this implementation. After m
- 1 clock cycles the FSM gets to its final state where the counter
denoting the current step of the loop is incremented and the FSM
moves back to the second state repeating this until the counter is
greater than m. When this internal counter becomes greater than
m the algorithm moves to the second section.

In the second section the computation of 𝐶 (𝑥)22∗𝑚 ∗𝐶 (𝑥)−1 is
separated in two different stages as seen in Fig. 7. The first phase
computes𝐶 (𝑥)−1 using the modular inverter in GF(24∗𝑚) while the
second phase computes 𝐶 (𝑥)22∗𝑚 using the modular exponentiator
in GF(24∗𝑚) and then multiplies it with the result of the inversion
from the previous phase using the modular multiplier in GF(24∗𝑚).
When this multiplication is over the final result is output and the
outputValid signal of the pairing unit is set to true.

As mentioned above, the bottleneck in terms of latency of this
design is represented by the computation of 𝑥q2

𝑚−1
and 𝑦q

2𝑚−1

which takes m - 1 clock cycles in each loop. A closer examination
shows that these computations can be moved outside of the loop,
which reduces the number of states of the FSM to just six, thus
reducing the latency of the entire system. Algorithm 10 illustrates
how this pre-computation step consists of calculating the values
of xq and yq needed into each loop, and storing them into LUTs
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before starting the computation of the bilinear pairing. By perform-
ing the pre-computation, the implementation reduces the latency
considerably. To reduce hardware resource consumption due to pre-
computation, we employ the M5 version of the modular multiplier
in GF(2𝑚).

Algorithm 9 Algorithm for Bilinear Pairing without pre-
computation

Require: 𝑃 (𝑥p, 𝑦p), 𝑄 (𝑥q, 𝑦q), 𝑥p, 𝑦p, 𝑥q, 𝑦q ∈ 𝐺𝐹 (2𝑚)
Ensure: 𝑐 (𝑥) = 𝑒 (𝑃,𝑄), 𝑐 (𝑥) ∈ 𝐺𝐹 (24∗𝑚)
𝑐 (𝑥) = 𝑐3 ∗ 𝑥3 + 𝑐2 ∗ 𝑥2 + 𝑐1 ∗ 𝑥 + 𝑐0 = 1
for 𝑖 ← 0 to𝑚 do
𝑥p ← 𝑥p2, 𝑦p ← 𝑦p2

𝑧 ← 𝑥p ⊕ 𝑦p,𝑚1 ← 𝑥p ∗ 𝑥q
𝑤 ← 𝑧 ⊕𝑚1 ⊕ 𝑦p ⊕ 𝑦q ⊕ 1
𝑚2 ← 𝑐0 ∗𝑤 ,
𝑚3 ← (𝑐2 ⊕ 𝑐3) ∗ (𝑧 ⊕ 1),
𝑚4 ← (𝑐1 ⊕ 𝑐2 ⊕ 𝑐3) ∗𝑤 ,
𝑚5 ← (𝑐0 ⊕ 𝑐2 ⊕ 𝑐3) ∗ (𝑤 ⊕ 𝑧 ⊕ 1),
𝑚6 ← 𝑐3 ∗ (𝑧 ⊕ 1),
𝑚7 ← (𝑐1 ⊕ 𝑐2) ∗ (𝑤 ⊕ 𝑧 ⊕ 1)
𝑐0 ←𝑚2 ⊕𝑚3 ⊕ 𝑐3,
𝑐1 ←𝑚2 ⊕𝑚4 ⊕𝑚5 ⊕𝑚6 ⊕ 𝑐0 ⊕ 𝑐3,
𝑐2 ←𝑚2 ⊕𝑚4 ⊕𝑚5 ⊕𝑚7 ⊕ 𝑐1,
𝑐3 ←𝑚4 ⊕𝑚7 ⊕ 𝑐2
𝑥q ← 𝑥q2

𝑚−1
, 𝑦q ← 𝑦q2

𝑚−1

end for
𝑐 (𝑥) ← 𝑐 (𝑥)22∗𝑚 ∗ 𝑐 (𝑥)−1

Algorithm10Algorithm for Bilinear Pairingwith pre-computation

Require: 𝑃 (𝑥p, 𝑦p), 𝑄 (𝑥q, 𝑦q), 𝑥p, 𝑦p, 𝑥q, 𝑦q ∈ 𝐺𝐹 (2𝑚)
Ensure: 𝑐 (𝑥) = 𝑒 (𝑃,𝑄), 𝑐 (𝑥) ∈ 𝐺𝐹 (24∗𝑚)
𝑐 (𝑥) = 𝑐3 ∗ 𝑥3 + 𝑐2 ∗ 𝑥2 + 𝑐1 ∗ 𝑥 + 𝑐0 = 1
Load data for values calculated for 𝑥q2

𝑚−1
and𝑦q2

𝑚−1
into arrays

with size𝑚 − 1 named xq_values and yq_values
for 𝑖 ← 1 to𝑚 do
𝑥p ← 𝑥p2, 𝑦p ← 𝑦p2

𝑧 ← 𝑥p ⊕ 𝑦p,𝑚1 ← 𝑥p ∗ 𝑥q_𝑣𝑎𝑙𝑢𝑒𝑠 [𝑖 − 1]
𝑤 ← 𝑧 ⊕𝑚1 ⊕ 𝑦p ⊕ 𝑦q_𝑣𝑎𝑙𝑢𝑒𝑠 [𝑖 − 1] ⊕ 1
𝑚2 ← 𝑐0 ∗𝑤 ,
𝑚3 ← (𝑐2 ⊕ 𝑐3) ∗ (𝑧 ⊕ 1),
𝑚4 ← (𝑐1 ⊕ 𝑐2 ⊕ 𝑐3) ∗𝑤 ,
𝑚5 ← (𝑐0 ⊕ 𝑐2 ⊕ 𝑐3) ∗ (𝑤 ⊕ 𝑧 ⊕ 1),
𝑚6 ← 𝑐3 ∗ (𝑧 ⊕ 1),
𝑚7 ← (𝑐1 ⊕ 𝑐2) ∗ (𝑤 ⊕ 𝑧 ⊕ 1)
𝑐0 ←𝑚2 ⊕𝑚3 ⊕ 𝑐3,
𝑐1 ←𝑚2 ⊕𝑚4 ⊕𝑚5 ⊕𝑚6 ⊕ 𝑐0 ⊕ 𝑐3,
𝑐2 ←𝑚2 ⊕𝑚4 ⊕𝑚5 ⊕𝑚7 ⊕ 𝑐1,
𝑐3 ←𝑚4 ⊕𝑚7 ⊕ 𝑐2

end for
𝑐 (𝑥) ← 𝑐 (𝑥)22∗𝑚 ∗ 𝑐 (𝑥)−1

6 EXPERIMENTAL EVALUATION
All hardware units were synthesized using Vivado 2023.1, target
board Virtex-7 VC709 Evaluation Platform XC7VX690TFFG1761-2.
Algorithms were implemented using Chisel3 [3], and subsequently
each unit was translated into Verilog using Scala sbt. The synthesis
directive set in our evaluation was LogicCompaction while using
a “full flatten” hierarchy and out-of-context mode. Table 2 shows
the hardware area occupied by our modules after the synthesis
step, while Table 3 compares our implementations for the modular
arithmetic operations with the ones proposed in [8]. Table 4 shows
the hardware area occupied by our complete bilinear pairing system
(using the Tate pairing). The metrics used are number of LUTs
(Look-Up Tables) and FFs (Flip-Flops) needed for each unit.

To measure the latency of our implementation, (i.e., the total
time needed for the pairing computation) we use the Vivado 2023.1
Synthesis Report Timing Summary and the Verilator [2] simulator.
The total latency is presented in Table 5, compared to the benchmark
system proposed in [8].

Table 2: Performance of Modular Multiplication in GF(2𝑚)

Multiplier Variant Hardware Resources
LUTs FFs

M0 - Baseline 1054 579
M1 3268 292
M2 5363 861
M3, M4 3200 871
M5 2440 864

Table 3: All GF(2𝑚) operations vs Benchmark

Hardware Module
Hardware Resources

Our implementation Li et al. [8]
LUTs FFs LUTs FFs

Modular Squaring in GF(2283) 273 0 567 317
Modular Multiplier in GF(2283) - M5 2440 864 3367 2156
Modular Reduction in GF(2283) 54 0 1439 825
Modular Inversion in GF(2283) 3972 1723 13944 6999
Modular Multiplier in GF(24∗283) 23560 7776 48591 32578
Modular Inversion in GF(24∗283) 31820 13212 54988 43746

The M0 baseline consumes the least amount of hardware re-
sources compared to the other variants, both for a single multi-
plication operation (as shown in Table 2), as well as the complete
pairing computation pipeline (Table 4). The main disadvantage of
𝑀0 is increased latency, as shown in Table 5. When compared to
the implementation from [8], the complete pairing operation using
M0 incurs a latency three times greater than competitors. The M1
approach brings an improvement in terms of latency compared to
M0 but the hardware area occupied by the entire system increases
considerably as a consequence of the left shifts needed and auxiliary
MUX units used in the reduction in-place step. When using M2,
the latency decreases to half that of M0, but the number of LUTs
needed is approximately three times greater and the number of FFs
increases by 15%. This increase in terms of hardware resources is
caused by the computation of 𝐵i (𝑧) ∗ 𝑎 in a single clock cycle. The
other variants for modular multiplication in GF(2𝑚), M3/M4 andM5,
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bring an improvement in terms of hardware resources consumed as
shown in Tables 2 and Table 4, mainly due to performing multipli-
cation 𝐵i (𝑧) ∗𝑎 in multiple clock cycles. As presented in Table 5, the
complete bilinear pairing operation using M3 shows an increase in
latency because more clock cycles are needed to compute 𝐵i (𝑧) ∗ 𝑎.
However, in terms of hardware area, the number of LUTs used
drops by approximately 39% and the number of FFs by approxi-
mately 15% compared. When compared to [8] the LUTs consumed
are 7% less, while the FFs consumed are 47% less, but the latency is
still higher. A pairing operation that uses M4 or M5 has a smaller
latency compared to [8] as a consequence of the pre-computation
mechanism that is used in these implementations, and the usage of
the reduction module that needs only one clock cycle to reduce the
polynomials resulted after multiplication back to GF(2𝑚). Among
these two implementations, we prefer M5 (shown bold in Table 4
and Table 5). This variant present a latency approximately three
times smaller compared to [8] while the number of LUTs it uses
is approximately 32%, and the number of FFs needed to operate
correctly is approximately 47%.

Table 4: Performance of complete bilinear pairing

Bilinear Pairing Operation Hardware Resources
LUTs FFs

M0 - Baseline 50380 30574
M1 111815 23300
M2 160052 35465
M3 97605 30956
M4 107985 30909
M5 71014 30742
Li et al [8] 104860 57753

Table 3 compares our implementations in terms of hardware
resources to the hardware modules proposed in [8]. Our hardware
modules consume fewer resources mainly because our Modular
Multiplier in GF(2𝑚) uses less LUTs and less FFs to operate cor-
rectly. This is possible due to the separation of 𝐵i (𝑧) ∗ 𝑎 opera-
tion in multiple stages compared to [8] in which this operation
is done in only one clock cycle. The smaller amount of LUTs and
FFs consumed by the Modular Squaring in GF(2𝑚) unit makes the
Modular Inversion in GF(2𝑚) and Modular Inversion in GF(24∗𝑚)
less resource-consuming when compared to the implementation in
[8]. Furthermore, our implementations do not incur any DSP (Digi-
tal Signal Processor) slices. This is due to the multiplication rules
in binary Galois Fields. In GF(2𝑚) the multiplication is translated
to AND operations between the bits from the binary sequences
denoting the operands.

Finally, we compare our hardware approach with the existing
state-of-the-art software approaches implemented in the MIRACL
library [1]. The software implementation from the MIRACL library
was run on a desktop computer withWindows Subsystem for Linux
2 on Windows 10, a 2.4 GHz Intel Core i5 9300H processor and 16
GB of memory, g++ compiler version 9.4.0. The speedup obtained
by our implementations is presented in Table 6. The slowest of our
implementations still yields a considerable 8.6 speedup over the
software approach, while the M4 method achieves a speedup of 127.
The variant that uses M5 and pre-computation, which has a low

Table 5: Latency of the complete pairing operation

Variant Latency (ms)
M0 - Baseline 1.77
M1 1.10
M2 0.80
M3 0.89
M4 0.12
M5 0.19
Li et al [8] 0.59

Table 6: Speedup over software benchmark

Variant Speedup over software
M0 - Baseline 8.6
M1 13.9
M2 19.1
M3 17.2
M4 127.5
M5 80.5

hardware footprint on the FPGA chip, achieves a significant 80.5
speedup over the software implementation in the MIRACL library,
proving that the hardware approach using specialized FPGAs is a
powerful method to compute bilinear pairings.

Table 7: Maximum operating frequency

Variant Maximum operating frequency (MHz)
M0 - Baseline 172.56
M1 151.37
M2 189.61
M3 182.31
M4 173.31
M5 161.66
Li et al [8] 159.76

7 RELATED WORK
Most existing approaches for computing bilinear map pairings start
from implementing units specialized in Galois Fields arithmetic
primitives. These include Modular Squaring, Modular Multiplica-
tion, Modular Exponentiation and Modular Inversion, which are
used as building blocks in the bilinear map pairing unit design.
The Modular Multiplication in GF(2𝑚) unit impacts the most the
computation overhead of the pairing.

McCusker et al. [9] present an approach in which Galois Fields
arithmetic is implemented in hardware using a bit-serial multipli-
cation module. They achieve a reduction in terms of hardware re-
sources consumed by multiplication, but at the cost of an increased
latency of the circuit.

Hankerson et al. [5] show how Galois Finite Field arithmetic can
be implemented in software and in hardware. Their book presents
standard algorithms offered by NIST for the Modular Reduction
needed in the context of Modular Multiplication. These algorithms
are specific for the Galois Field width intended to be used. In terms
of Modular Multiplication in GF(2𝑚) they present multiple possible
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approaches starting from a bit-serial multiplier to a digit-serial
multiplier.

Li et al. [8] implement a digit-serial multiplier alongside a fast
modular reduction module. Their approach consists of separating
one of the operands of the Modular Multiplication in GF(2𝑚) in
multiple chunks with a size equal to 32. Together with that they
design a Modular Squarer that does not increase in size with the
operand, followed by a reduction step. Their squaring unit only
needs a coefficients recombination step for the resulting polynomial
based upon the characteristics of the reduction polynomial. The
authors also implement the Tate pairing algorithm proposed in
[9]. Their hardware synthesis shows that the design requires a
considerable amount of hardware resources in terms of LUTs and
FFs.

All of the solutions discussed above use the Karatsuba multi-
plier described in [6] to implement the Modular Multiplication in
GF(24∗𝑚) while their Modular Exponentiation operation is based
upon observations and proofs shown in [11].

8 CONCLUSIONS
We proposed a hardware unit for accelerated computation of bi-
linear map pairings on FPGAs which achieves a superior trade-off
between latency on the one hand, and resource consumption in the
form of LUT and FF on the other. Our proof-of-concept implemen-
tation shows significant improvements compared to benchmarks.
In future work, we plan to investigate hardware designs that use
multiple FPGAs to parallelize the execution of bilinear pairings
and scale to massive datasets. We will also explore cross-operation
computation reuse to further decrease latency and reduce resource
consumption.
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Research. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not
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APPENDIX: BLOCK DIAGRAMS OF TATE
PAIRING HARDWARE UNIT
Figures 6 and 7 present the complete hardware schematics for the
proposed Tate bilinear map pairing implementation.
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Figure 6: Schematic for the first section of Tate Pairing circuit
Computation of 𝐶 (𝑥)22∗𝑚−1 section in Tate Pairing circuit
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