
Causally Informed Factorization Machines

ABSTRACT
Factorization machines (FMs) are a class of general predictors for
sparse data. One major benefit from FMs is their ability to capture
the interactions across features when making recommendations. In
this paper, we note that the interactions captured by existing FMs
generally represent correlations in the data and we argue that such
correlations, unless informed by the true causality structures under-
lying the data, may be spurious and may result in unwanted bias. To
tackle this challenge, we propose a Causally-Informed Factorization
Machine (CIFM) model that introduces a novel causal injection
mechanism. CIFM leverages a priori causal knowledge, described
in the form of a causal graph, to boost the representational ability of
FMs and achieve better predictions. Specifically, given a (potentially
learned) causal graph which describes the causal relationships among
features, CIFM distills this structural information into a pairwise
causal impact matrix and guides the learning process to ensure that
the learned representations capture those relationships that are con-
sistent with the causal relationships. Extensive evaluations of CIFM,
along with its integrations with NeuralFM and DeepFM, conducted
with synthetic and real-world data sets, demonstrate effectiveness of
causal injection in generating better recommendations.
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1 INTRODUCTION
Supervised learning is a fundamental tasks in understanding key
patterns in data, constrained by user provided labels. The goal is
to infer a function that predicts a target label, given data features
as input. When the target labels are continuous, this is referred to
as a regression task and when they are categorical, this is known
as a classification task. Supervised learning has widespread appli-
cations in data-driven decision making, including recommendation
systems [5] and online advertising [13].
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Factorization machine [25] is a supervised learning method that
has been shown to be effective in handling the sparse data: Each fea-
ture is represented as a 𝑘-dimensional feature vector and the learned
function takes into account contributions of the features as well as
their pairwise interactions. Several FMs variants have been proposed
to enhance the expressive power of the function being learned: neural
FM (NFM [9]) utilizes multi-layer perceptron (MLP) to capture non-
linear correlations among features; convolutional FM (CFM [35])
introduces an interaction cube by stacking outer product results
from feature embeddings to capture such correlations; attentional
FM (AFM [34]) leverages an attention mechanism to discriminate
the importance of different feature interactions; while W2FM [15]
abstracts interactions as additional affine transformations.

1.1 Shortcomings of Existing FM Models –
Spurious Interactions

While different FM variants use different approaches to extract fea-
ture interactions, in all these cases, the learned interactions represent
some form of correlation across features. Correlation, however, is
not causation and the literature is full of examples (such as Simp-
son’s Paradox [11]), where decision making purely based on cor-
relations, without accounting for the underlying causal structures,
can result in faulty outcomes. Therefore, in this paper, we argue
that this correlation-centric approach of existing FM models is a
weakness: unless informed by causal structures underlying the data,
correlations may be spurious and may result in unwanted bias.

1.2 Causality to the Rescue – Causally-Informed
Factorization Machine (CIFM)

Causality (which can better answer the question why? than correla-
tion can), may not only be needed to better explain the recommenda-
tions made by FMs based on available data, but also to ensure that
these recommendations are not based on faulty (spurious) statistics.
Based on this premise, in this paper, we propose the concept of
Causally-Informed Factorization Machine (CIFM) model, which
introduces a novel causal injection mechanism. CIFM leverages a
priori causal knowledge, described in the form of a causal graph, to
boost the representational ability of FMs and achieve better predic-
tions. Specifically, given a causal graph which describes the known
causal relationships across features, CIFM distills this information
into a pairwise causal impact matrix and guides the FM process to as-
sure that the learned representations include those that are consistent
with the underlying causal relationships.

1.3 Summary of Contributions
The main contributions of proposed Causal Informed factorization
machine (CIFM) are as follows:

• To the best of our knowledge, this work is the first to disclose
the causal interpretation of factorization machines (FMs) – in
particular, in Section 4, we show that FMs can be interpreted as
inherently discovering and taking into account hidden confounders
while generating their recommendations.
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• Based on this causal interpretation, we propose Causally-Informed
Factorization Machine (CIFM) model to augment the expressive-
ness of FMs with the help of a causal graph – in this paper, we
causally augment vanilla FM [25]; neural FM (NFM [9]) and deep
FM (DFM [8]). Given a causal graph, CIFM measures pairwise
causal relationships between features taking into account two
pivotal considerations: a) causal distance, and b) causal reinforce-
ment. Building upon these fundamental principles, we introduce a
novel metric called causal graph implied causal impact (CI for
short) to assess the pairwise causal interactions among variables
implied by a given causal graph. CI accounts for not only the
causal distance and causal reinforcement between pairs of vari-
ables, but it also takes into account the existence of certain causal
structures (such as causal colliders) that might impose certain
statistical anomalies unless they are properly accounted for.

• We propose indirect (Section 6.1) and direct (Section 6.2) causal
injection mechanisms, which leverage the concept of pairwise
causal graph implied causal impact information (introduced in
Section 5) in different ways: (a) indirect causal injection incor-
porates causal knowledge by weighting the causal interactions
learned by the FM in a post-operative fashion, while (b) direct
causal injection modifies the constraints and objective functions
underlying the FM training process that takes into account causal
graph implied causal impact among pairs of variables.

By employing these and other causality-aware mechanisms, CIFM
ensures that only meaningful interactions among variables have been
accounted for, thus significantly enhancing predictive capabilities of
the factorization machine. Empirical results, presented in Section 71,
on synthetic and real world data sets show the effectiveness of CIFM.

2 RELATED WORK
2.1 Factorization Machines
Factorization machines (FMs) [25] were proposed as a way to take
into account feature interactions to better handle sparse data; they
consolidate advantages of support vector machines (SVMs) with
factorization models. FMs are general predictors, widely used in
recommendation systems. Various variants enhance FMs’ expressive-
ness; these include Deep FM (DFM[8]) and Neural FM (NFM [9]),
which deepen FMs under the neural framework to learn high-order
feature interactions. Field-aware FM (FFM [13]) associates multiple
embedding vectors for each feature to differentiate its interaction
with other features for different fields. PNFM [3] recovers polyno-
mial networks [18] and helps obtain higher order feature interactions.
Attentional FM (AFM [34]) method utilizes a neural attention net-
work to learn the importance of each feature interaction. Input-aware
factorization machine (IFM [36]) enhances FMs by refining the
weight and embedding vector of each feature taking into account
different instances and, consequently, enhances nonlinearity.

For efficient training of high-order FMs, HOFM [2] leverages a
dynamic programming algorithm for evaluating the ANOVA kernel
and computing gradients. The recent Holographic FM (HFM [29])
approach replaces the inner product in FMs with a holographic
reduced representation, whereas the convolutional FM (CFM [35])

1Implementations and datasets: https://anonymous.4open.science/r/cifm-
DD5A/README.md

introduces an interaction cube by stacking outer products of feature
embeddings to capture correlations.

Note that, despite their various differences, all these models rely
on correlation-based interactions among features and, as we argue
and illustrate in this paper, this potentially has a negative impact on
the prediction results as "correlation is not causation."

2.2 Causality
Causality is the relationship between the cause (treatment) and an
effect (outcome) that gives rise to it [24] and, as such, is a topic of in-
creasing interest in big data analysis [7], machine learning [12] [19],
and reinforcement learning [1], among others. Most of the recent
research on causality focuses on finding causation within data. Gen-
erally speaking, causal inference is the process of identifying the
cause of a phenomenon, by establishing covariation of cause and
effect [27] [4]. Causal discovery is finding causal structure (causal
graph) by analyzing statistical properties of purely observational
data [28] [30] [20]. Pearl has shown that a priori knowledge causal
graphs or causal structures is critical in analyzing data[23], which
capture such causal knowledge, can be used to avoid statistical pit-
falls that correlation based techniques would face. Although we
expect causal graphs depict causal relations within observed fea-
tures in the data set, unobserved confounder(s) still might exist. An
unobserved confounder is a variable that both affects the causal
variables and outcome variables in the causal graph. Most of causal
inference methods have strong assumption that we observe all con-
founders, but this assumption is untestable[10]. Deconfounder[32]
is proposed to resolve the unobserved confounder(s) issue – it com-
bines unsupervised learning and predictive model checking to use
the dependencies among multiple causes as indirect evidence for
some of the unobserved confounders.

2.3 Causal Recommender Systems
Recently, several researchers aimed to pose the recommendation task
from a causal perspective, posing the recommendation problem as a
causal inference problem. [6], for example, considered item exposure
as treatment and user ratings as outcomes. Deconfounder [32, 33]
extended this exposure-rating concept by modelling the exposure and
using it as a substitute for unobserved confounders. In [16], user’s
social relations are leveraged to estimate the exposure along with
propensity score to estimate exposure and reduce selection bias. [37]
proposed an approach to leverage the good aspects of popularity bias
and deconfound the bad aspects for improving recommendations.
CASTLE [14] regularize recommendation process jointly learning
the causal structure among variables.

One orthogonal work [17] proposes a personalized causal FM to
address i.i.d. assumption violation in real world data and provide
a robust recommendation by using confounder balancing regular-
ization. But the work adopts the unconfounderness assumption [26]
that there are no unobserved confounders in the data. Most of the
above works concentrate on, and therefore, qre designed specifically
for user-item relationships; in contrast, in this paper, we propose a
general FM-based model to leverage arbitrary causal relationship
graphs for the recommendation task. Secondly, most of them focus
on causal discovery (as they formulate the recommendation task as a
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discovery task), while our aim to bring in a priori causal knowledge,
whether discovered or expert provided, into the FM learning process.

3 PRELIMINARIES AND KEY NOTATIONS
In this section, we present the preliminary knowledge necessary
for the development of causally-informed factorization machines
(CIFM) and introduce key notations.

3.1 Factorization Machines
Factorization Machines (FMs [25]) enhance a linear prediction
model learning by capturing pairwise interactions among features2.
In this respect, they are similar to polynomial kernels (PKs):

𝐹𝑃𝐾 (𝑋 ) = ®𝜌0 + ®𝑤𝑋𝑇︸      ︷︷      ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+ 𝑑𝑖𝑎𝑔(𝑋𝐴𝑋𝑇 )︸          ︷︷          ︸
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

, (1)

where𝑋 ∈ R𝑛×𝑚 is a data matrix where the 𝑛 rows are the (transpose
of)𝑚-dimensional data vectors, ®𝜌0 ∈ R𝑛 is a vector where all entries
have the same value 𝑤0 ∈ R, ®𝑤 ∈ R𝑚 is a weight vector, and
𝐴 ∈ R𝑚×𝑚 is a (symmetric) matrix that describes the degree of
feature interaction, and 𝑑𝑖𝑎𝑔(𝑋 ) represent the diagonal elements in
matrix 𝑋 :

• the first half of the model represents a linear predictor, con-
sisting of a global bias and a linear transformation applied on
the input data; whereas

• the second term shifts the prediction for each individual data
point by an amount representing the interactions between its
features – the effective result is that the boundary gets warped
in a non-linear manner.

Note that, when considering each data vector individually, the above
model can be written as

𝐹𝑃𝐾 ( ®𝑥) = 𝑤0 +
𝑚∑︁
𝑖=1

𝑤𝑖𝑥𝑖︸           ︷︷           ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

𝐴(𝑖, 𝑗 )𝑥𝑖𝑥 𝑗︸                  ︷︷                  ︸
𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑡𝑒𝑟𝑚

. (2)

Here 𝑥𝑖 are the individual components of a real-valued input vector,
®𝑥 ∈ R𝑚 ; 𝑥𝑖 = 0 when the 𝑖-th feature does not exist in the observation.
The output of 𝐹𝑃𝐾 ( ®𝑥) is a scalar, representing the estimated target.

Unfortunately, the number of model parameters in Equation 2
is quadratic in the number of dimensions of the feature space and,
consequently, PK models may be ineffective when the data is sparse
– in particular, when the data is sparse, only few cross feature ob-
servations may exist in the data. To address this sparsity issue, FMs
assume that the 𝑚 ×𝑚 feature interaction matrix 𝐴 is low-rank and
can be decomposed into 𝐴 ≃ 𝑉𝑉𝑇 , where 𝑉 ∈ R𝑚×𝑘 . Relying on
this assumption, FMs factorize pair-wise feature interaction matrix
to capture hidden interactions within features. This means that in-
stead of representing the feature interactions as a single monolithic
𝑚 ×𝑚 matrix, FMs associate a 𝑘-dimensional vector ®𝑣𝑖 ∈ R𝑘 (where

2Note that FMs can be generalized to higher degrees of feature interactions. In this
paper, without loss of generality, we focus on pairwise FMs, which have been shown to
be generally effective and, thus, make up the most commonly used approach for FMs –
details can be found in [25].
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Figure 1: (a) Simpson’s paradox is a statistical fluke that (b)
disappears when we account for the underlying causal struc-
ture: an apparent positive correlation between vaccine taking
and deaths are explained away, when considering confounding
variable age which simultaneously affects both vaccine taking
and death processes

𝑘 ≪𝑚) to each component 𝑖, such that 𝐴(𝑖, 𝑗 ) ≃ ⟨®𝑣𝑖 , ®𝑣 𝑗 ⟩.

𝐹𝐹𝑀 (𝑥) = 𝑤0 +
𝑚∑︁
𝑖=1

𝑤𝑖𝑥𝑖︸           ︷︷           ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

⟨®𝑣𝑖 , ®𝑣 𝑗 ⟩𝑥𝑖𝑥 𝑗︸                   ︷︷                   ︸
𝑙𝑜𝑤 𝑟𝑎𝑛𝑘 𝑤𝑎𝑟𝑝𝑖𝑛𝑔

, (3)

or, also considering that 𝑦𝐹𝑀 ( ®𝑥) = 𝐹𝐹𝑀 (𝑥) and that ⟨®𝑣𝑖 , ®𝑣 𝑗 ⟩ = 𝑣𝑇
𝑖
𝑣 𝑗 ,

we can also rewrite this as

𝑦𝐹𝑀 ( ®𝑥) = 𝑤0 +
𝑚∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

𝑣𝑇𝑖 𝑣 𝑗 · 𝑥𝑖𝑥 𝑗 (4)

= 𝑤0 + ®𝑤𝑇 ®𝑥 + ®𝑥𝑇 𝑉 𝑉𝑇 ®𝑥 . (5)

Note that the feature interaction term in Equation 4 can be reformu-
lated [25] as:

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

𝑣𝑇𝑖 𝑣 𝑗𝑥𝑖𝑥 𝑗 =
1
2

𝑘∑︁
𝑓 =1

((
𝑚∑︁
𝑗=1

𝑣 𝑗,𝑓 𝑥 𝑗 )2 −
𝑚∑︁
𝑗=1

𝑣2
𝑗,𝑓

𝑥2𝑗 ), (6)

where 𝑣 𝑗,𝑓 denotes the 𝑓 -th element in 𝑣 𝑗 . As we see here, this
significantly reduces the number of model parameters from quadratic
to linear in the number of dimensions of the feature space and,
thus, supports more effective learning when the data is sparse. In
particular, while the time complexity of Equation 4 is 𝑂 (𝑘𝑚2), with
the reformulation the time complexity drops to 𝑂 (𝑘𝑚).

3.2 Statistical Flukes, Causal Paradoxes, and
Causal Graphs

3.2.1 Statistical Problems and Causal Paradoxes. As we see
above, factorization machines seek to leverage statistical patterns un-
derlying the given data to discover mappings from the inputs to the
output variables, while also accounting for the interactions among
the input variables. Unfortunately, though, decision making purely
based on (data-driven) statistics may lead to poor outcomes due to
potential flukes. A well-known example of this is the Simpson’s para-
dox, illustrated in Figure 1: in this example, (possibly unobserved)
confounders causally impact multiple variables in the data in such
a way that the statistics learned from the data may be misleading:
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(a) chain (b) fork c) collider

Figure 2: Basic causal structures

in this example, "age" simultaneously increases the likelihood of
"vaccine taking" and "death", giving the illusion that deaths increase
with vaccine taking.

3.2.2 Causal Graphs. To avoid the negative impact of such sta-
tistical flukes, we need to account for the causal structure underlying
the data. As we mentioned in the related work section and discussed
in the above example (see Figure 1(b)), causal relationships among
variables are commonly represented using a directed acyclic causal
graph, 𝐺 = (V, E), which describes the causal effects between vari-
ables. Here, V is the node set and E is the edge set. In a causal
graph, each node represents a random variable that could be the
treatment, the outcome, or some other variables. A directed edge
𝑋 → 𝑌 denotes a direct causal effect of variable 𝑋 on variable 𝑌 .
Figure 9 presents two causal graph examples.

As we discussed in the the related work section, discovering
causal graphs is an active research area, refered to as causal discov-
ery [28]. Our work’s primary objective and contribution is to leverage
causal graphs to guide the learning process in the FMs. So, without
loss of generality, we assume that a causal graph is already available
– either provided by the domain expert [21] or pre-extracted from the
data using existing causal discovery techniques [20, 28, 30].

3.2.3 Confounders, and other Causal Structures. In addition
to confounders, which played a crucial role in Simspon’s paradox
(Figure1), we are interested in three other basic causal structures [23]
as they can also contribute to statistical flukes (Figure 2):

• In the chain structure, 𝑎 causally affects 𝑐 through its influence
on 𝑏. Note that in a chain structure, if one fixes the value of 𝑏,
the variables 𝑎 and 𝑐 appear to be independent.

• In the fork structure, 𝑏 is a common cause of both 𝑎 and 𝑐 –
note that, in this case, 𝑎 and 𝑐 are causally related but there
is no causation between them. If one fixes the value of 𝑏, the
variables 𝑎 and 𝑐 are render independent.

• In the collider, both 𝑎 and 𝑐 independently cause 𝑏; once
again, 𝑎 and 𝑐 are causally related through 𝑏, but there is no
causation between them. If one fixes the value of 𝑏, 𝑎 and 𝑐

appear to be negatively correlated.

In the confounder structure, as in the fork, 𝑏 is the common cause
of both 𝑎 and 𝑐; but, in this case, 𝑎 is also a direct cause of 𝑐. As
we have seen in Figure 1, confounders lead to statistical paradoxes,
such as the Simpson’s paradox, unless they are accounted for. In
short, causal structures impact the statistical relationships among
the variates and therefore they need to be considered during data
analysis to make sure that the learned recommendations are not
based on poor statistics.

4 CAUSAL INTERPRETATION OF
FACTORIZATION MACHINES

In this section, we show that factorization machines can be re-
interpreted as engines that inherently discover and take into account

hidden confounders in the recommendation process. More specif-
ically, we argue that the component of the factorization machines
that seeks interactions between pairs of variables can be interpreted
as seeking hidden confounders in the underlying causal graph.

Let us remember from Section 3.1, the Equation 6 underlying
FMs can be written as:

𝑦𝐹𝑀 ( ®𝑥) = 𝑤0 + ®𝑤𝑇 ®𝑥 + ®𝑥𝑇 𝑉 𝑉𝑇 ®𝑥,
where ®𝑤 ∈ R𝑚 = {𝑤1, · · · ,𝑤𝑚} and 𝑉 ∈ R𝑚×𝑘 = { ®𝑣1; · · · ; ®𝑣𝑚}.
and ®𝑣𝑖 ∈ R𝑘 . As we have discussed in Section 3.1, the third term in
Equation 4.2 shifts the prediction for each data point by an amount
representing the interactions between its features (in the terminol-
ogy of [15], it warps the space to account for feature interactions).
In the rest of the section, we show that this last term can be inter-
preted as accounting for unobserved confounders in the data. This
interpretation will enable us to develop our proposed Causally In-
formed Factorization Machine (CIFM) formalism; but first we need
to introduce the concept/theory of deconfounders.

4.1 Deconfounders
As we discussed in Section 2.3, a common assumption in causally-
based inference is unconfoundedness, where we assume that there
are no unobserved confounders in the data; i.e., there are no external
variables that have a causal impact on the variables at hand. However,
this assumption is generally untestable and may not always hold [26].
[32] proposed a methodology to deconfound a given data set under
certain specific conditions. As before, let 𝑋 ∈ R𝑛×𝑚 be a data
matrix where the 𝑛 rows are the (transpose of)𝑚-dimensional data
vectors, where each of the 1 ≤ 𝑗 ≤ 𝑚 dimensions corresponds to a
possible cause 𝑎 𝑗 for a target variable 𝑦; i.e., ®𝑦 [ 𝑗] = 𝑌 ( ®𝑥 𝑗 ) or equally
®𝑦 = 𝑌 (𝑋 ). [32] has shown that, under the assumption that there is no
unobserved single-cause confounder that impacts the target variable
𝑦 along with one of the𝑚 individual causes, the 𝑘 latent features (𝑧ℎ
for 1 ≤ ℎ ≤ 𝑘) learned from the factorization of 𝑋 can be used as
substitutes for the unobserved (multi-cause) confounders in the data.
Intuitively, multiple-cause confounders create dependencies among
the causes and if the factor model represents the causes’ distribution,
it can help us extract a latent variable that captures the unobserved
multiple-cause confounders. More specifically, [32] has shown that
one can use a simple linear function as the outcome model in the
presence of a multidimensional latent variable ®𝑧. :

𝑦 = 𝑓 ( ®𝑥, ®𝑧) = 𝛼 + 𝛽𝑇 ®𝑥 + 𝛾𝑇 ®𝑧.

4.2 FMs as Implicit Deconfounders
Note that the above equation shows significant similarities to the key
FM formulation (i.e., Equation 6),

𝑦𝐹𝑀 ( ®𝑥) = 𝑤0 + ®𝑤𝑇 ®𝑥 + (®𝑥𝑇 𝑉 ) (𝑉𝑇 ®𝑥),
with several rewrites and constraints:
• 𝛼 is replaced with 𝑤0 and ®𝛽 is replaced with ®𝑤 ,
• the latent vector ®𝑧 is obtained through the transformation 𝑉𝑇 ®𝑥 ,

and
• the weight vector 𝛾 is further constrained to take the value 𝑉𝑇 ®𝑥 .
Above, two constraints are significant:
• The first constraint, ®𝑧 = 𝑉𝑇 ®𝑥 , implies that the transformation 𝑉𝑇

should help discover 𝑘 latent variables that together render the
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Figure 3: (a) A causal graph with 4 observed variables (features),
𝑥1, 𝑥2, 𝑥3 and 𝑥4 and a target variable 𝑦 (in red color), (b) substi-
tute confounder discovered through FM process.

causes conditionally independent from each other. While there is
no guarantee that this will be true (unless additional constraints
are imposed on 𝑉 in the FM formulation), since 𝑉 encodes the
interactions among the variables in the data, we conjecture that,
in practice, the discovered latent variables should be decorrelated
(under the common FM assumption that the data is spectrally
sparse) – this is because we expect that the learned model captures
the unconditional distribution of the causes and thus should render
the causes conditionally independent given the (per individual)
latent variables.

• The second constraint, 𝛾 = ®𝑥𝑇 𝑉 , is not necessary from a causal
perspective, but does not violate the causal interpretation presented
in this paper either – it only helps the FMs to reduce the number
of model parameters that need to be learned.
Based on the above, we argue that the FM process can be thought

of disclosing the effects of unobserved confounders within features.
Figure 3 visualizes this: Figure 3(a) presents a causal graph, with
5 variables (𝑦, 𝑥1, 𝑥2, · · · , 𝑥5), where 𝑦 is the target variable and the
rest are observed features in the data set. Figure 3(b), then, depicts
the two latent factors (𝑘 = 2 for 𝑉 ) discovered in the FMs process
that serve as a substitute confounder.

5 STRUCTURAL CAUSAL ATTENTION
There are multiple ways one can measure the causal relationships
among variables. Many of these are purely data-driven; examples in-
clude average treatment effect (ATE), which quantifies the difference
in the outcomes between units assigned to the treatment and units
assigned to the control [23]. Since our goal is to take into account
causal information which may be provided by the user (rather than
being data-driven), in this paper, without loss of generality, we seek
non-data-driven measures.

5.1 Desiderata
As we discussed earlier, existing research such as [23] has shown
that a priori knowledge, in the form of causal graphs can help avoid
statistical pitfalls that correlation based techniques would face. In
particular, existing work has focused on identifying conditions under
which variables are conditionally independent from each other. For
instance, [24] introduced the concept of d-separation, which helps
determine whether a subset, 𝑋 , of variables would be statistically
independent from another subset, 𝑌 , of variables under conditioning
of a given subset of variables. A related results is that every variable

 





(a) A forward RW graph

 





(b) A backward RW graph

Figure 4: Forward and backward random walk (RW) graphs -
black solid lines depict the direct causation, black dotted lines
depict the inverse direct causation, red dashed lines depict extra
edges inserted to complete the random walk graph.

is statistically independent of its graphical non-descendants condi-
tional on its parents [22] and, more generally, the parents, children,
and spouses of a variable (also referred to as the Markov blanket
of a variable) store information about that variable that cannot be
obtained from any other variable and, consequently, the Markov
blanket is the set of all variables that are dependent on the variable,
conditioned on all other variables [22].

While these and other existing results have been shown to be
useful in causal discovery tasks, our goal in this paper is different.
In particular, we are not seeking to identify the conditions under
which variables are independent from each other; rather, we aim
to use the given causal graph 𝐺 to measure a degree of structural
causal dependency between pairs of variables, to be leveraged as an
attention mechanism when analyzing the data:

• Desiteratum #1 - Causal Distance: The closer the two variables
are on the causal graph, the stronger the intensity of their causal
relationship is. This is because each variable on a causal path
may be subject to other causal variables or random noise, which
diminishes the overall structural causal dependency on a long
chain of variables (Figure 5(a)).

• Desiteratum #2 - Causal Reinforcement: The larger the number
of causal paths between two variables, the stronger is the intensity
of their causal relationships. This is because multiple causal paths
from a variable to another may help offset some of the loss due to
the pair’s causal distance (Figure 5(b)).

5.2 Random Walks with Causal Graphs
In this section, we argue that the desiderata listed above can be
achieved through a random walk on the random walk graphs, care-
fully constructed from the provided causal graph.

5.2.1 Causal Random Walk Graphs. Remember from Figure 2
that a fork variable distributes causal information, whereas a collider
variable gathers causality from multiple sources. To account for
these, we create random walk graphs that capture the behaviors of
the fork and colliders (Figure 4).

Let𝐺 = (V, E) be a causal graph, where V is the set of variables
and E is the set of pairwise causations. Let 𝐶 ∈ R |V |× |V | be a
causal adjacency matrix that encodes this graph:

𝐶 (𝑖, 𝑗 ) =

{
1, if 𝑣𝑖 directly causes 𝑣 𝑗
0, otherwise

, (7)
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 
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Figure 5: Properties of structural causal dependency on a causal
graph - (a) structural causal dependency of pair ⟨𝑎, 𝑏⟩ is higher
than the pair ⟨𝑎, 𝑐⟩, which is higher than the pair ⟨𝑎, 𝑑⟩. (b) struc-
tural causal dependency of pair ⟨𝑎, 𝑑⟩ is higher than the struc-
tural causal dependency ⟨𝑎, 𝑓 ⟩.

where 𝑣𝑖 , 𝑣 𝑗 ∈ V. Given this matrix, we define both a forward
adjacency matrix, which captures the cause-to-effect dependencies
and accounts for the forks, and a backward adjacency matrix, which
captures effect-to-cause dependencies and accounts for the colliders:
in the input graph 𝐺 : (Figure 4):

𝑀
𝑓 𝑜𝑟𝑤𝑎𝑟𝑑

(𝑖, 𝑗 ) =


𝐶 (𝑖,𝑗 )

|𝑉 𝑖
𝑜𝑢𝑡 |+1

, if 𝑉 𝑖𝑜𝑢𝑡 > 0,
1

|V | otherwise,
(8)

𝑀𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
(𝑖, 𝑗 ) =


𝐶𝑇

(𝑖,𝑗 )
|𝑉 𝑖

𝑖𝑛
|+1 , if 𝑉 𝑖

𝑖𝑛
> 0,

1
|V | , otherwise.

(9)

Here 𝑉 𝑖
𝑜𝑢𝑡/𝑖𝑛 is the set of variables for which there are outgo-

ing/incoming edges from 𝑣𝑖 and 𝐶𝑇 is the transpose of 𝐶. Note
that since the forward graph takes into account forks and backward
graph takes into account colliders, we can quantify their relative
contributions as to obtain a combined causally-informed adjacency
matrix underlying the causal random walk graph as

𝑀
𝑓 𝑏

(𝑖, 𝑗 ) = 𝜙 ×𝑀
𝑓 𝑜𝑟𝑤𝑎𝑟𝑑

(𝑖, 𝑗 ) + (1 − 𝜙) ×𝑀𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
(𝑖, 𝑗 ) , (10)

where 𝜙 measures the relative impacts of the forward (cause-to-
effect) and backward (effect-to-cause) transitions, here we use num-
ber of fork nodes (denoted as F (𝐺)) and number of collider nodes
(denoted as C(𝐺)) in graph 𝐺 to compute:

𝜙 =
F (𝐺)

F (𝐺) + C(𝐺) , (11)

With the above, we can measure the the structural causal dependency
between two variables, taking into account Desideratum 1 and 2,
using a random walk with adjacency matrix 𝑀

𝑓 𝑏

(𝑖, 𝑗 ) as detailed next.

5.2.2 Causally Informed Random Walks. Given a causal ran-
dom walk adjacency matrix 𝑀 𝑓 𝑏 ∈ R |V |× |V | constructed using the
causal graph 𝐺 = (V, E), where V is a set of variables and E is
the direct causal edges, we define the pairwise causal relationships
described by the adjacency matrix 𝑀 𝑓 𝑏 relying on a random-walk
with restart approach [31]. Intuitively, for each source node 𝑣𝑖 , the
corresponding causal impact on the rest of the nodes in the graph,
measured through a random walk seeded at vertex 𝑣𝑖 is described as

®Π[𝑖 ] = 𝛼 (𝑀 𝑓 𝑏 )𝑇 ®Π[𝑖 ] + (1 − 𝛼)®𝑠 [𝑖 ] , (12)

where 1 − 𝛼 is the teleportation rate, 0 < 𝛼 < 1 and ®𝑠 is a re-seeding
vector:

®𝑠 [𝑖 ] [ 𝑗 ] =
{
1 𝑗 = 𝑖

0 otherwise
(13)

Here, the first component describes the direct transitions from one
node to a neighbor following the edges on the graph as described
by the transition probabilities in matrix 𝑀 𝑓 𝑏 ; whereas the second
component describes a random jump back to the seed nodes 𝑣𝑖 . The
parameter 𝛼 regulates the frequency of the edge transitions vs. seed
jumps. Intuitively, the vector ®Π[𝑖 ] describes the ratio of the time a
random walker following the above transition/jump process spends
on each graph node in the steady state. Consequently, the scores can
be said to capture the topological significance of the graph nodes
with respect to the given seed node – more specifically, the scores
get smaller as one gets further away from the node 𝑣𝑖 and a node
reachable from multiple random walk paths tend to have a higher
score due to the resulting reinforcement. In other words, the matrix,

Π = (𝐼 − 𝛼 (𝑀 𝑓 𝑏 )𝑇 )−1 (1 − 𝛼)𝐼 . (14)

encodes the structural causal dependencies between all pairs of nodes
in the input causal graph, 𝐺 , according to our two desiderata. More
specifically, the value of Π (𝑖, 𝑗 ) describes the forward causal flow
implied by the causal graph, 𝐺 , from the cause 𝑣𝑖 to the effect 𝑣 𝑗 ,
whereas the value of Π𝑇(𝑖, 𝑗 ) describes the backward causal flow from
the effect node 𝑣𝑖 to the cause node 𝑣 𝑗 .

5.3 Graph Structural Causal Attention
Finally, we are ready to define causal attention implied by the causal
graph, 𝐺 , between two nodes 𝑣𝑖 and 𝑣 𝑗 :

𝔄(𝐺) (𝑖, 𝑗 ) = Π (𝑖, 𝑗 ) + Π𝑇(𝑖, 𝑗 ) , (15)

where Π is the structural causal dependencies encoded by the causal
graph 𝐺 . We combine the forward causal flow and the backward
causal flow to obtain bi-directional causal attention matrix.

6 CAUSALLY-INFORMED FACTORIZATION
MACHINES

In this section, we propose alternative causally-informed factor-
ization machines models to boost the performance of FMs (and
its variants) via causal information provided in the form of causal
graphs. (a) The first model, CIFM-I, involves enriching FMs through
indirect causal injection; in CIFM-I, causal attention is applied to
the results of the FM model in a post-hoc manner. (b) In the second
model, CIFM-D, on the other hand, we are enriching FMs through
direct causal injection; here causal attention is applied directly on
the constraints and objective functions that define the FM model.
We discuss these two models next. (c) The hybrid model, CIFM-D,
combines these two models.

6.1 FMs with Indirect Causal Injection (CIFM-I)
Let 𝑋 ∈ R𝑛×𝑚 be a data matrix where the 𝑛 rows are the (trans-
pose of) 𝑚-dimensional feature vectors, where the 𝑖𝑡ℎ dimension
corresponds to variable 𝑣𝑖 . Let ®𝑦 be an 𝑛-dimensional vector corre-
sponding to the target variable 𝑣𝑚+1. As we discussed earlier, the
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Figure 6: Architecture of the causally informed factorization
machine with indirect causal injection (CIFM-I).

basic form of FM can be written as

𝑦𝐹𝑀 = ®𝜌0 + ®𝑤𝑋𝑇︸      ︷︷      ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+ 𝑑𝑖𝑎𝑔(𝑋𝐴𝑋𝑇 )︸          ︷︷          ︸
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

,

such that 𝐴 = 𝑉𝑉𝑇 and the term

𝐿𝑝𝑟𝑒𝑑 = ∥ ®𝑦 − 𝑦𝐹𝑀 ∥
is minimized. The factorization machine model with indirect causal
injection (CIFM-I), is similarly defined, but taking into account
pairwise causal interactions described by the given causal graph, 𝐺 :

𝑦𝐶𝐼𝐹𝑀−𝐼 (𝐺) = ®𝜌0 + ®𝑤𝑋𝑇︸      ︷︷      ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+𝑑𝑖𝑎𝑔(𝑋 (ℭ ⊙ 𝐴)𝑋𝑇 )︸                   ︷︷                   ︸
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

, (16)

where ℭ = 𝔄(𝐺) is the causal attention function as defined in Equa-
tion 15 and ⊙ is the Hadamart (or element-wise) product operation.

Intuitively, the CIFM-I model assumes that a matrix, 𝐴 = 𝑉𝑉𝑇 ,
that describes the feature interactions does exist, but it further posits
that this matrix needs to be causally attentioned, by multiplying
it with the causal attention matrix 𝔄(𝐺) to causally regulate its
contribution on the inferred recommendation (Figure 6).

6.2 FMs with Direct Causal Injection (CIFM-D)
Unlike the CIFM-I model described above, in the direct causal
injection model, CIFM-D, we apply the causal attention directly on
the constraints and objective functions underlying the FM model.

Let 𝑋 ∈ R𝑛×𝑚 be a data matrix where the 𝑛 rows are the (trans-
pose of) 𝑚-dimensional feature vectors, where the 𝑖𝑡ℎ dimension
corresponds to variable 𝑣𝑖 . Let ®𝑦 be an 𝑛-dimensional vector corre-
sponding to the target variable 𝑣𝑚+1. As we discussed earlier, the
basic form of FM can be written as

𝑦𝐹𝑀 = ®𝜌0 + ®𝑤𝑋𝑇︸      ︷︷      ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+𝑑𝑖𝑎𝑔(𝑋𝑉𝑉𝑇𝑋𝑇 )︸              ︷︷              ︸
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

,
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Figure 7: Architecture of the causally informed factorization
machine with direct causal injection (CIFM-D)

such that the term

𝐿𝑝𝑟𝑒𝑑 = ∥ ®𝑦 − 𝑦𝐹𝑀 ∥

is minimized. But we can also rewrite this as

𝑞:,𝑚+1 = ®𝜌0 + ®𝑤𝑚+1𝑄𝑇:,{𝑚+1}︸                  ︷︷                  ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+𝑑𝑖𝑎𝑔(𝑄:,{𝑚+1}𝑉𝑚+1𝑉𝑇𝑚+1𝑄
𝑇
:,{𝑚+1} )︸                                       ︷︷                                       ︸

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

,

(17)
subject to the prediction loss function

𝐿𝑝𝑟𝑒𝑑 = ∥ ®𝑞:,𝑚+1 − 𝑞:,𝑚+1∥,

where

• ®𝑤𝑚+1 ∈ R𝑚+1 denotes the connectivity for feature𝑚+1 in a graph
(incoming nodes point to node𝑚 + 1, includes itself).

• 𝑄 ∈ R𝑛×𝑚+1 data matrix where the 𝑛 rows are the (transpose
of) 𝑚 + 1-dimensional feature vectors, where the 𝑖𝑡ℎ dimension
corresponds to variable 𝑣𝑖 and 𝑚 + 1 dimensions corresponds to
the target variable, 𝑣𝑚+1;

• 𝑉𝑚+1 ∈ R𝑚×𝑘 denotes the interaction matrix for feature 𝑚 + 1
(excludes itself)

• ®𝑞:,𝑖 denotes the vector obtained by taking the 𝑖𝑡ℎ column of the
data matrix, 𝑄; and

• 𝑄:,{𝑖 } denotes the matrix obtained by dropping the 𝑖 column of
the matrix 𝑄 .

The above formulation provides us a view of the FM formulation
where the target variable and the other variables are represented in
one unified data structure, 𝑄 .

The CIFM-D model generalizes the FM formulation presented in
Equation 17, where the predictive formulation is applied only to the
target variable, by applying the predictive formulation to each and
every variable in the causal graph:

∀1≤𝑖≤𝑚+1 𝑞:,𝑖 = ®𝜌𝑖 + ®𝑤𝑖𝑄𝑇:,{𝑖 }︸         ︷︷         ︸
𝑙𝑖𝑛. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

+𝑑𝑖𝑎𝑔(𝑄:,{𝑖 }𝑉𝑖𝑉
𝑇
𝑖 𝑄

𝑇
:,{𝑖 } )︸                       ︷︷                       ︸

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

, (18)
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Figure 8: Hybrid causal injection (CIFM-H) modifies the CIFM-
D architecture, by applying the causal attention matrix, ℭ, also
in the inference process

subject to the loss functions

𝐿𝑝𝑟𝑒𝑑 = ∥ ®𝑞:,𝑚+1 − 𝑞:,𝑚+1∥, (19)

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡 =
∑︁

1≤𝑖≤𝑚+1
∥ ®𝑞:,𝑖 − 𝑞:,𝑖 ∥, . (20)

Note that, in this generalized formulation of FM, we not only con-
sider the prediction of the target variable 𝑣𝑚+1 (Equation 19), but
also reconstructions of all variables in the data from the remaining
variables, excluding themselves (Equation 20).

We further extend the loss function by adding an alignment loss

𝐿𝑎𝑙𝑖𝑔𝑛 = Δ(𝑊,ℭ), (21)

where Δ(∗, ∗) is a function that measures the misalignment between
two matrices, ℭ = 𝔄(𝐺) is a matrix that describes pairwise causal
attentions between variables, and𝑊 ∈ R(𝑚+1)×(𝑚+1) is an matrix
obtained by stacking the ®𝑤𝑖 vectors to represent the connectivity of
hidden causal structure. Here we use cosine distance between ℭ and
𝑊 as Δ function. The motivation of this alignment loss function is
that since ℭ leverages prior knowledge about causal structure, we
want to utilize it to guide the training process to align𝑊 with ℭ.

Finally, total loss is defined as the sum of the three loss compo-
nents:

𝐿𝑡𝑜𝑡 = 𝐿𝑝𝑟𝑒𝑑 + 𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡 + 𝐿𝑎𝑙𝑖𝑔𝑛 .

Figure 7 depicts the architecture of the CIFM-D model.

6.3 FMs with Hybrid Causal Injection (CIFM-H)
In Section 6.1, we described CIFM-I, with indirect causal injection
to leverage causal attention matrix to adjust interaction weights.
Above, we described CIFM-D, which directly injects causal attention
matrix directly into the loss function. A hybrid solution, CIFM-H,
largely follows the CIFM-D architecture, but also leverages causally
adjusted weight matrix,

𝑊𝑐𝑎𝑢𝑠𝑎𝑙 =𝑊 ⊙ ℭ, (22)

in Equation 18, instead of𝑊 = { ®𝑤1, ®𝑤2, . . . , ®𝑤𝑚+1} ( Figure 8).
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Figure 9: Causal graphs for two benchmark datasets [21]: while
(a) the AutoMPG data set has a rich and discriminating causal
structure, (b) the Concrete data set has a causal structure that
does not provide much useful information (as each and every
variable has a direct causal relationship with the target variable
and there are no other causal relationships in the system)

Hence, in CIFM-H, we not only use alignment loss function to
guide the causally-informed training of𝑊 , but also adopt indirect
causal injection to further causally adjust the weight matrix.

7 EXPERIMENTS
In this section, we conduct experiments to evaluate the proposed
CIFM method with synthetic and real-world datasets.

7.1 Datasets
7.1.1 Synthetic Datasets. In order to understand the behavior of
the CIFM in diverse, but controlled, scenarios, we generated two syn-
thetic data sets. In particular, each of these data sets are constructed
taking a specific (randomly generated) feature interaction as its blue-
print – intuitively, each graph corresponds to a causal structure.
For these experiments, we randomly generated causal interactions
graphs with varying dependency densities (i.e., the number of edges
as percentage of maximum number of edges that would be allowed
by a directed acyclic graph). Given a causal interaction graph, we
then generated non-linear causal data [14], where each variable is
equal to the sum of the sigmoid of its parents plus additive Gaussian
noise with a mean of 0 and variance of 1. For each causal density
(25%, 50%, 75%, 100%), we randomly generated causal interaction
graphs for 10 variables (9 feature variables and 1 target variable) and
for each graph, we have generated 100 sets of 1000 instances.

7.1.2 Real-World Datasets. In this paper, we con-
sider two real-world data sets, adapted from [21], with
causal structures with varying degrees of discrimination
(Figure 9): (a – discriminating causal structure) AutoMPG
(4 data features, 1 target feature, 392 instances) and
(b – non-discriminating causal structure) Concrete (8 data fea-
tures, 1 target feature, 1030 instances). As we see in Figure 9, in
the Concrete data set, all features have the same causal relationship
with the target variable and, consequently, the causal-structure is
non-discriminating for prediction/recommendation purposes and we
do not expect much useful information from this causal structure.
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Table 1: Median MSE (synthetic data sets - varying causal densities; each density is separately colored; rank=5)

Causal Density (%) 25 50 75 100
Non-causal Model FM NFM DFM FM NFM DFM FM NFM DFM FM NFM DFM

0.726 0.567 0.675 0.844 0.536 0.773 0.796 0.404 0.686 0.772 0.349 0.581
CI Model CIFM CINFM CIDFM CIFM CINFM CIDFM CIFM CINFM CIDFM CIFM CINFM CIDFM
Indirect (I) 0.578 0.551 0.528 0.544 0.533 0.453 0.347 0.395 0.288 0.290 0.311 0.249
Direct (D) 0.538 0.547 0.577 0.538 0.457 0.586 0.414 0.348 0.410 0.322 0.298 0.319
Hybrid (H) 0.511 0.531 0.561 0.523 0.459 0.566 0.335 0.328 0.410 0.281 0.300 0.294

Table 2: Median MSE, rank=5 AutoMPG with a discriminating
causal structure and Concrete with a non-discriminating causal
structure

Dataset AutoMPG Concrete
Non-causal Model FM NFM DFM FM NFM DFM

0.325 0.299 0.330 0.305 0.332 0.208
CI Model CIFM CINFM CIDFM CIFM CINFM CIDFM
Indirect (I) 0.273 0.295 0.278 0.328 0.323 0.188
Direct (D) 0.289 0.342 0.290 0.414 0.405 0.194
Hybrid (H) 0.285 0.299 0.303 0.417 0.405 0.199

7.2 Baselines
For CIFM, we consider the following three variants:
• CIFM-I: CIFM with indirect causal injection – Section 6.1.
• CIFM-D: CIFM with direct causal injection – Section 6.2.
• CIFM-H: CIFM with hybrid causal injection – Section 6.3.
We compare CIFM with the following FM-based models:
• FM [25]: The original factorization machine implementation.
• NeuralFM (NFM) [9]: Serial coupling of an MLP with vanilla FM.

We use the original implementation of NeuralFM, with two-layer
MLP with layer sizes set to 16, and dropout rate is set to 0.2.

• DeepFM (DFM) [8]: Parallel coupling of an MLP with vanilla FM.
Similar to NFM, a two-layer MLP with layer size 16 and dropout
rate 0.2 is used. Unlike NFM, DFM is using an expanded feature
representation which has double the number of parameters.

• CINFM and CIDFM: We also consider FM-variants extended
with the CIFM model; i.e., replacing FM model in NFM and DFM
with the CIFM, to see whether CIFM brings any benefits to these
variants. We denote these extended model as CINFM and CIDFM.

7.3 Setup
For FM, we consider interaction rank of 5. 𝛼 is set to 0.1 as default to
compute causal impact matrix in Equation 12. For each dataset, we
run each model 100 times and compute the median of mean squared
error (MSE). Each model is trained using the Adam optimizer with a
learning rate of 10−3 for up to 300 epochs. An early stopping regime
halts training with a patience of 5 epochs to avoid overfitting. 80%
data for training purposes and adopt 10-fold cross validation to select
the best model parameters, while allocating the remaining portion
for testing. Batch size 64 and 𝜆 in 𝐿2 regularization is set to 10−5.

7.4 Results with Synthetic Datasets
Table 1 presents the median MSE values for various baselines and
CIFM variants for synthetic data generated with random causal
graphs with varying causal densities (as described in Section 7.1.1):
• We see first that, causal injection generally improves accuracies

over non-causal models for all causal densities considered.

• Among the non-causal baselines, NMF performs the best; however,
even NFM can get a boost from causal injection; hybrid causal
injection provides the largest boost for the NFM based models.

• For relatively low causal densities (25%), the best performance
is obtained using CIFM variants; in particular, hybrid-injection
(CIFM-H) provides the best overall accuracy (even though non-
causal FM is the worst overall baseline for this scenario).

• As the causal densities increase, NFM and DFM, receive some
boost relative to vanilla FM, indicating that these models are
able to implicitly leverage causality to some degree. However,
the best accuracies are obtained when we directly inject causal
information into the models. In particular, as the causal density
increases, the CIDFM variant with indirect injection (CIDFM-I)
becomes increasingly advantageous and provides the best overall
performance, with a clear difference to its competitors.

7.5 Results with Real-World Datasets
As we see in Tables 2, we consider two real-world data sets, with
varying degrees of discriminating power in their causal graphs.
• Once again, causal injection generally improves accuracies over

non-causal models.
• For AutoMPG, with a discriminating causal graph, both CIFM and

CIDFM provide gains over non-causal baselines and we receive
the best overall accuracies with indirect causal injection (CIFM-I).

• As we would expect, for Concrete, with non-discriminating causal
graph, causal injection does not work well for FM and NFM
models. Interestingly, for this data set, DFM (which has a larger
number of parameters than FM and NFM) performs significantly
better than FM and NFM and also is able to benefit from causal
injection; indeed, the best overall accuracies are obtained with
indirect causal injection to the DFM model (CIDFM-I).

8 CONCLUSIONS
In this paper, we argued that FM models, especially neural ver-
sions DFM and NFM, can be thought as applying implicit de-
counfounding on the data during recommendation computation. We
further argued that the performance of the FM model (and its vari-
ants) can be improved by enriching the computation with an ex-
plicitely provided causal graph. Based on this premise, we have
provided alternative (indirect, direct, and hybrid) methods to inject
causal information into FMs. Experiments on synthetic and real data
sets have shown that causal injection provides significant accuracy
gains, especially when the causal graph is rich and discriminating.
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