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Abstract—Wetlands are important to communities, offering
benefits ranging from water purification, and flood protection
to recreation and tourism. Therefore, identifying and prioritizing
potential wetland areas is a critical decision problem. While data-
driven solutions are feasible, this is complicated by significant
data sparsity due to the low proportion of wetlands (3-6%) in
many areas of interest in the southwestern US. This makes it
hard to develop data-driven models that can help guide the
identification of additional wetland areas. To solve this limitation,
we propose two strategies: (1) knowledge transfer from regions
with rich wetlands (such as the Eastern US) to regions with
sparser wetlands (such as the Southwestern area). , and (2) spatial
data enrichment strategy that relies on an adaptive propagation
mechanism. This mechanism differentiates between node pairs
that have positive and negative impacts on each other for Graph
Neural Networks (GNNs). We conduct rigorous experiments to
substantiate our proposed method’s effectiveness, robustness, and
scalability compared to state-of-the-art baselines. Additionally,
an ablation study demonstrates that each module is essential in
prioritizing potential wetlands.

Index Terms—Wetland identification, Transfer learning, Do-
main disentanglement, Adaptive propagation, Data sparsity

I. INTRODUCTION

Wetlands, characterized by water at or near the soil sur-
face for most of the year, play several crucial roles within
an ecosystem. Specifically, they provide habitat for various
plant and animal species, improving water quality by filtering
pollutants and storing carbon that mitigates climate change
[2]. Furthermore, wetlands are also important to communi-
ties for improving water quality by filtering pollutants and
flood protection [3]. Despite their value to the ecosystem,
wetlands face challenges from competition with agriculture,
urban development, and climate change. These highlight the
need for both the conservation of existing wetlands and the
identification of potential new wetland areas.
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INLCD Land Cover Classification Legend
I 11 Open Water

12 Perennial Ice/ Snow

21 Developed, Open Space
|27 22 Developed, Low Intensity
I 23 Developed, Medium Intensity
| 24 Developed, High Intensity

31 Barren Land (Rock/Sand/Clay)
I 41 Deciduous Forest
/N 42 Evergreen Forest

43 Mixed Forest
[ 51 Dwarf Scrub*

152 Shrub/Scrub

71 Grassland/Herbaceous

zzzzzz

72 Sedge/Herbaceous*
73 Lichens*
|74 Moss*

81 Pasture/Hay
B 82 Cultivated Crops
90 Woody Wetlands
[ 95 Emergent Herbaceous Wetlands

* Alaska only

Fig. 1: Natural Land Cover Dataset (NLCD [1] provides 20
categories of land use, including wetlands (types 90 and 95).
The data reveals that only 6% of the land in the US is wetland
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A. Challenges and Solutions

A major challenge in developing new wetlands, particularly
in areas where they are essential for water conservation, is the
arid climate and local soil features that make water retention
difficult. As shown in Figure 1, wetlands only account for
6% of land cover in the US and the share of wetlands gets
even lower in dryer regions. The sparsity of wetlands makes
it hard to develop data-driven models that can help guide
the identification of new wetland areas. In particular, given
the large imbalance between the wetland and non-wetland
regions, naively developed models can suffer from overfitting
and bias issues. This issue is further complicated considering
that regions with few wetlands are not necessarily suitable
for wetland development, making it particularly challenging
to develop data-driven models with sparse positive samples.

In this paper, we argue that this data sparsity challenge can
be addressed by relying on two complementary techniques:



o Region-to-region knowledge transfer: We can transfer
knowledge from regions with rich wetlands (such as the
Eastern US) to regions where wetlands are sparse (such
as the Southwestern US with few wetlands). However,
this solution suffers from global context incompatibility
challenge — since the source and target regions are likely to
differ significantly in climate, soil characteristics, population
distribution, and land use. Moreover, the expected outcomes
like water storage and flood prevention from the wetlands
make it difficult to transfer knowledge from the source
context to the target.

o Adaptive knowledge transfer within local regions: We com-
plement this with a spatial data enrichment strategy that
transfers useful information among the spatial cells, with
different characteristics, in the same vicinity. This solution
also encounters a form of local context incompatibility,
where information from nearby cells should be considered
differently: while some cell pairs positively affect each other,
others have a negative impact. Hence, it’s crucial to identify
and consider this aspect when implementing knowledge
transfer between local regions.

In summary, we propose a novel method of identifying
Potential wetlands via Transfer learning and Adaptive propa-
gation (PoTA) to tackle the data sparsity challenge in wetland
prioritization problem, which is equipped with two comple-
mentary knowledge transfer techniques:

o We suggest a long-range, region-to-region knowledge
transfer from locations rich in wetlands to sparser ones
using domain disentanglement

o Coupled with adaptive feature propagation within indi-
vidual regions, we employ an enhanced message-passing
scheme between heterophilic neighbors.

« We provide theoretical analyses of the effectiveness of
the proposed components in solving data sparsity issues.

ITI. RELATED WORK
A. Wetland Identification

Wetlands are known to occur due to reasons such as
permanent or seasonal inundation or soil saturation [4]. Due
to the value of their resources, prioritizing potential wetlands
has become an important topic [2]. Generally, the formation
of wetlands is known to be closely related to soil charac-
teristics [S]. Therefore, various methods have been proposed
for wetland identification, such as collecting geographic data
based on sensing [6] or finding indicators [7] necessary for
wetland formation. Based on these associations, the most
recent approach presented is solving the problem using deep
learning techniques on the physically-informed data [8].

B. Knowledge Transfer

Knowledge transfer (a.k.a transfer learning) refers to using
additional data (from the source domain) to solve data sparsity
when training data is lacking in the target domain. Generally,
this method utilizes the common contexts that exist in both
domains, which is widely used in text classification [9],
digit recognition [10], and recommender systems [11]. The
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common context means some information like images, digits,
ratings, and so on. In our case, the natural features like soil
and drainage features from different regions could be used
for transfer learning. Here, we focus on the cross-domain
recommendation schemes [12], [13], which suggest capturing
common knowledge from both domains. The foundational
concept called domain adaptation [14], [15] has been pro-
posed, which captures domain-shareable features (common
knowledge) through adversarial training. However, several
recent studies have revealed that the common features without
specific guidance may not always be helpful to the target do-
main [16], [17]. This becomes more severe as the discrepancy
between domains (e.g., different categories) increases, leading
to the proposal of domain disentanglement techniques [18],
[19] to address this issue.

C. Adaptive Propagation

Information propagation [20] is a widely used technique
in graph theory. In detail, the mechanism of Graph Neural
Networks (GNNs) is node embedding and message-passing
(propagation) [21], which has the advantage of using the
adjacent nodes for the prediction. However, message-passing
algorithms may fail to perform well under heterophilic graphs
[22], where most edges connect two nodes with different
labels. To conquer this problem, several studies suggested
finding these connections [23] by measuring the difference of
nodes (e.g., attention) or by utilizing remote nodes with high
similarity (non-local aggregation). In addition, [24] proposes
ego-neighbor separation for message-passing, [25] generates a
compatibility matrix, [26] further utilizes neighbors (non-local
propagation), and [27] figures out the path-level pattern. As
another branch, the mechanism of adaptive propagation [28],
and choosing appropriate architectures [29] have been recently
proposed. The core concept of adaptive propagation is that
they determine the sign of edges [30], [31] before applying
a message-passing scheme, which can be either positive or
negative.

III. PRELIMINARIES

In this section, we present the preliminaries, including use-
ful notations that will be used in this paper. We first introduce
the natural features available for wetland prioritization. Then,
we formulate the wetland prioritization problem.

A. Land Cover and Surface Features

In this paper, we primarily rely on the Natural Land Cover
Dataset (NLCD 2021') visualized in Figure 1. The data set
includes the land cover type (20 categories, at 30m x 30m
resolution) from 2001 to 2021. This data set is complemented
with soil type information, from SSURGO? data set, and
drainage information from Height Above the Nearest Drainage
(HAND) data set®. As described in Table I, the SSURGO

Uhttps://www.indianamap.org/maps/INMap::nlcd-land-cover-2021/about

Zhttps://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-
geographic-gssurgo-database

3https://registry.opendata.aws/glo-30-hand/



TABLE I: Surface features collected from the SSURGO and
HAND data sets

Data Description Notation
Soil characteristic S1
Slope gradient (min, max) S92, 83
Water table depth S4
Flood frequency (min, max) S5, S6
SSURGO .
Available water storage s7 — 810
Drainage class S11
Hydrologic group S12 — 815
Others (position, SOC, and etc) S16 — S34
HAND Height above the nearest drainage | s35
NLCD Wetland label S36

feature consists of soil characteristics, slope gradient, water
table depth, available water storage, and so on. Note that these
two data sets have different resolutions from the NLCD data
set — for instance, the SSURGO data set has a finer 10m x 10m
resolution. Therefore, we integrated the three data sets by
matching the nearest coordinates. The final aligned data sets
have 30m x 30m (9 grids) resolution.

B. Problem Formulation

The wetland prioritization task can be formulated as follows.
As mentioned above, for each target region (R;), we have land
cover (NLCD), soil (SSURGO), and drainage (HAND) data.
Specifically, for each cell ¢ in the range, we have a wetland
label w. € {0,1} (wetland if w. = 1), multi-dimensional soil
feature vector s., and drainage flag value h. € (0, 1). Coupled
with these, we further assume an adjacency matrix G, which
describes the neighborhood relationship among the cells in
the region. Given these, we define the wetland classification
problem as follows:

(Wetland Classification) Given the set of tuples D, =
{(¢,G¢, ¢, he) | ¢ € R}, the wetland classification problem
aims to find a mapping function f,(c, G, sc, he) = We.

The careful reader would note that the wetland classification
problem, in and of itself, will not enable wetland identification
and prioritization tasks as the only thing a perfect model with
100% accuracy would provide is an explanation of the current
wetlands in the given region, rather than recommending new
wetlands. Therefore, we seek models with high recalls (i.e.,
accurately explaining existing wetlands in the region), while
not necessarily having perfect Accuracy. For instance, a cell
c in the target region R, where the model predicts a wetland,
despite the absence of one currently, may serve as a candidate
for new wetland development.

As discussed before, our goal is to improve the wetland
identification and prioritization task for target regions with
sparse wetlands by relying on information obtained from
source regions with denser wetlands. Therefore, we present
a slightly modified version of the problem as follows:

(Wetland Classification with Knowledge Transfer) Given
a source region, R and a target region R, and the associated
sets of tuples Dy and D., the wetland classification with
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knowledge transfer problem aims to find a mapping function
fs.7(¢,Ge, 8¢y he) = we, where ¢ € R..

As before we seek models with high recalls for the target
region. High Accuracy is preferred, with the understanding that
a cell ¢ € R; for which w, = 0 and f; (¢, Ge¢, S¢, he) = 1
may be a candidate for new wetland development.

IV. METHODOLOGY

In this section, we describe our Potential wetlands via
Transfer learning and Adaptive propagation (PoTA) algo-
rithm, designed to tackle the data sparsity challenge in wetland
prioritization. Figure 2 provides an overview of the overall
architecture, where we introduce the key components of the
model below:

o (Feature Processing — Section IV-A) Input features (for
both source and target regions) are vectorized through
discretization or normalization based on their types.

o (Transfer Learning — Section IV-B) Three latent feature
extractors (LFEs) are applied to these features to capture
domain-aware knowledge. Specifically, a domain discrimi-
nator aids the extraction of two sets of (source and target)
domain-specific latent features along with one set of shared
latent features. The shared latent features serve as the bridge
that enables knowledge transfer from the (wetland-rich)
source region to the target region.

« (Adaptive Propagation — Section IV-C) In the next step,
we apply adaptive propagation on top of the extracted latent
features. In particular, the proposed algorithm learns whether
information propagation between the two cells should be
positive or whether the information impact of one cell on
another should be negative.

A. Feature Processing and Extraction

1) Soil Data: This dataset includes discrete classes like
flood frequency and elements with continuous values, like
available water storage. We encode these features as follows:

« Discrete features are one-hot encoded. Note that, some

discrete features, like flood frequency, are ordinal rather
than categorical. In this implementation, we ignore the
distinction between these two types of discrete values and
use one-hot encoding for both.

« Continuous features, such as water storage, are normal-

ized to the range [0, 1] by dividing to the maximum value
among all the cells in the source and target regions.

2) HAND Data: The HAND dataset is binarized using a
2m threshold. Specifically, for any cell where the height above
the nearest drainage is greater than or equal to 2m, the value
of h. is set to 1; otherwise, h, is set to 0.

B. Transfer Learning

In this section, we introduce the transfer learning techniques
we developed to effectively bring information learned from
the wetland-rich source region to the target region with few
wetlands. In particular, the encoded input feature vectors for
both source and target regions are fed into the two layers
of neural networks, referred to as latent feature extractors
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Fig. 2: Overview of the proposed Potential wetlands via Transfer learning and Adaptive propagation (PoTA)

(LFEs). As shown in Figure 2, these three LFEs generate four
outputs; source-domain specific latent features of the source
(I5pe), target-domain specific latent features of the target (lgpe),
shared-domain (or common-domain) latent features of the
source ([3,,,), and shared-domain latent features of the target
(I%,,)- In this subsection, we present detailed strategies to
guide this process for effectively extracting domain-specific

and shared-domain latent features.

Domain Adaptation [32] aims to reduce the differences
in latent features extracted from two domains. While such
an approach may help find domain shareable features, we
also need to identify the unique characteristics of regions
for wetlands (e.g., Arizona is extremely dry due to its desert
climate) [33]. Many approaches have been proposed recently
[16], [17], [19], [34], but in PoTA, we develop a domain
disentanglement strategy, as in [11], to capture domain-specific
knowledge along with shareable information. To achieve this,
a Gradient Reversal Layer (GRL), which applies a negative
multiplier on the back-propagated weights during training,
is used before the extracted latent features are fed into a
domain discriminator to increase the entropy between the
learned latent features. The key is that by applying GRL
only to shared-domain features, the domain discriminator is
trained to distinguish between the specific characteristics of
the two domains effectively. PoTA leverages two layers of
fully connected neural networks as the domain discriminator.
As can be seen in Figure 2, for each cell in the source or
target region, two features, [7,,, and [}, (Where * € {s,t})
are passed separately as inputs to the domain discriminator:

com

= FdichZom)? = Fdisc(l:pe)' (D

~

d* represents the predicted domain probability. Then, the loss
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is calculated through binary cross-entropy as,

N.
* 1 . T
Ecom = _ﬁ Zlog(l - dcom)?
* s=1
1 N, =R (2)
Lipe = s Zlog(l — d:pe),
* s=1

where N; and N; are the training batches for the source and
target regions respectively (we omit the true label in the above
equation that is binary for the source and target domain, d €
{0,1}). Given this, we define the overall domain loss as,

+ ‘Czpe) + (1 - p)(‘ciom

Here, the ratio p = N%Nt of the batch sizes serve as the

weight for the training of the discriminator concerning the
importance of the source domain [35]. During training, the
domain discriminator is updated using Equation 3.

»Cdom = p(ﬁzom + ’C’Zpe)ﬂ (3)

C. Adaptive Propagation

The knowledge transfer between local regions is facilitated
by a graph neural network (GNN). Let G* = (V*,£*, X*) be
a graph with |V*| = n nodes, |£*| = m edges, and feature
matrix X*. As before, when considering the source region,
* = s, and when considering the target region, we have * = t.

The label matrix corresponding to the given region is de-
noted as Y* € R"*C, where C(= 2) stands for the number of
classes. A* € {0,1}™*™ denotes the adjacency matrix for the
undirected graph G*, where the degree of node ¢ is represented
as 0; = 2?21 A;?‘j. The feature matrix, X* € R"*" where
h is the number of dimensions of the latent space. Given the
above, the representation of V* is updated through message-
passing between neighboring nodes.



GNNs have the advantage of addressing data sparsity by
incorporating the characteristics of neighboring nodes into
their predictions. However, if neighboring cells have very
different characteristics, this can lead to performance degra-
dation as the propagated information may serve as noise,
rather than enrichment. Therefore, here we propose an adaptive
propagation technique to address this issue. This is achieved
by varying the edge weights considering the features of the two
neighboring cells corresponding to the edge. We first average
the domain-specific and shared-domain features for all nodes
in the given region (i.e., v; € V*):

Uei T Uomi
l;k _ spet 5 com,z, (4)

Next, given an edge between ¢ <> j, we determine the

corresponding edge weight through an attention mechanism:

w;; = tanh ((lf + l;)ﬁ*) , (5)

where @, is a learnable attention vector; tanh helps ensure that
edge weights satisfy the constraint —1 < wj; < 1. Given these
edge coefficients, following [30], we update node features as

follows:

wr .
lﬁ"a(’Y) _ l’_"v(o) + Z tj l*_‘v(’Yfl)
(2 K3 Y J ?
g /030
where, N; denotes the set of neighbors of node i with
incoming edges into i. As defined earlier, 6 and () denote
the degree of a node and hidden layer, respectively.

(6)

D. Classification

Assuming L layers of propagation, the final output of the
adaptive propagation is an enriched latent representation l: (E)
for v; € V*. This is fed into a fully connected network,
W* € Rh*C, with input dimensionality %, and output dimen-
sion of C'(= 2), corresponding to ”wetland” and no-wetland”,
respectively.

Given the final output, f w(L) ¢ RN«xC (where N, and
Ny are the training batches for the source and target regions
respectively), the wetland probability is given by:

f*,(L) _ l*’(L)W*,

where we can define the prediction loss using the negative
log-likelihood function as follows:

1 N, C
DD sk log(f5;).

s=1k=1
E. Optimization and Inference

* Pp—
pred —

(7

(Optimization) We optimize the model using domain loss,
Liom (Eq. 3), and prediction loss, Lyrcq (Eq. 7) as below:
L=L5 e+ Lhred + Maom. ®)
Here, A adjusts the weight of domain loss to help stable
convergence. During optimization, we employ the Adam op-
timizer with early stopping based on the validation score.
(Inference) After convergence, we forward the features of

each cell in a target domain to the common and target LFEs,
followed by the adaptive GNN for wetland prioritization.
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F. Theoretical Analysis

This section provides theoretical background on why do-
main disentanglement and adaptive propagation are necessary
for this task.

Theorem 4.1 (Domain disentanglement): Let us assume
a domain identifier D € {S,7}. Regardless of a specific
domain D, the mutual information (/) between the domain-
common feature [}, and domain-specific one [7 _ [36] can

com spe
be decomposed as below:

I(l:pe; lzom) = —I(D; l:pea l:om) + 1(D; l:pe) + 1(D; lzowég)
Then, we get 1(D; 13, 1%y,) = 1(Di1,.) + I(D:l,,,) —
I(l%,e; 1iom) with a slight modification. Since I(D;l%,,,) is
maximized by a domain discriminator and I(I3,.;(7,,,) is
minimized through the objective function (wetland identifica-
tion), we can infer I(D;13,,l%,,,) > I(D;l3,.) that is more
informative for training.

Theorem 4.2 (Adaptive propagation): Adaptive propagation
determines the weight and sign of edges based on features.
While a positive signed edge has the effect of smoothing
between connected nodes, the negative edges increase the
separability. Let us assume two nodes 7,; connected with a
positive edge, where the label of node 7 is k. Given the neg-
ative likelihood loss L,,;;(Y;, ;) = - log(¥i k), the gradient
of node i is defined as 0L, (Y;,Y:)r/0Y; . Similarly, the
gradient of neighboring node j follows:
ony

ony)  on%)

_OLnu(Ys, Yi)k i k

VLY, V)i = i (10)

Since Bhi(? /[“)hj(i) > (0 with positive connection, we can
infer that node 7 will get closer to node ¢ proportional to
the |n8hi(i) / 8hﬁ)| Vice versa, the gradient has the opposite

sign but the same scale.

G. Computational Complexity

Our model consists of two main components; feature extrac-
tion with domain disentanglement and adaptive propagation.
The first module can be approximated as O((A + B) - N -e),
where A and B refer to the time of forward passing in
feature extraction and domain discriminator. N is the input
size and e is the number of training epochs. The cost of
the second module is dominated by the cost of the GNN,
O(|€l0cann), which is proportional to the number, |£|, of
edges in the considered graphs and the number, 65y, of
trainable parameters. Since our method further employs edge
weight retrieval using the coordinates, the complexity becomes
O(|€10aNN + €10 Adapt)- Thus, the cost of the entire module
can be O ((A + B) -N-e+ ‘5‘(9GNN + HAdapt))'

V. EXPERIMENTS

In this section, we investigate three key questions that char-
acterize the proposed method and provide a comprehensive
analysis:



TABLE II: (RQ1) Accuracy (Acc. %) and Recall (%) for 3 target regions — bold with underline indicate best Accuracy and
recall. A symbol * indicates a significance level (p-value< 0.05)

Texas (sparse)

Oregon (moderate) Louisiana (dense)

Type | Method | Metric |/ =ga= g1, | AZ WA FL | AZ WA FL
MLP Acc. 82.0 85.9 89.3
= (2 layers) | Recall 62.6 94.6 99.0
g GCN Acc. 82.8 91.0 91.3
8 [37] Recall 63.1 92.0 99.1
) GAT Acc. 80.7 84.7 90.4
2 [38] Recall 68.3 77.8 98.8
“? [ FAGCN Acc. 825 91.8 91.5
[30] Recall 62.9 86.7 99.5
DAREC Acc. 81.2 81.3 84.0 84.4 86.5 86.2 88.4 89.4 89.4
- [14] Recall | 62.0 62.3 68.9 79.3 82.1 96.2 96.6 97.3 96.8
g MMT Acc. 82.0 83.0 83.1 86.2 86.6 86.0 89.1 91.3 91.3
2 [39] Recall | 63.7 66.0 67.7 92.3 93.6 90.5 98.5 99.1 99.4
& SER Acc. 83.5 84.0 84.3 87.2 86.4 86.8 91.0 90.1 89.0
g [11] Recall | 66.6 67.2 67.5 91.2 91.4 92.8 99.3 98.3 97.1
© DH-GAT Acc. 83.4 85.1 86.5 88.8 90.7 90.2 90.6 91.5 91.4
[40] Recall | 70.4 74.0 74.9 95.8 92.0 97.3 99.1 99.7 99.6
4 PoTA Acc. 84.1 854 87.2° | 92.17 93.0* 92.6" | 92.2* 923" 92.5*
o Recall | 70.8* 742" 77.0* | 96.0* 97.8 981" | 99.5° 99.6* 99.8"
TABLE III: Details of the benchmark datasets TABLE IV: (RQ1) Accuracy gains due to knowledge transfer:
gains are higher when the knowledge is transferred from
Domain | Region # wotland colls  # cells denser regions (LA and FL) to sparser regions (TX and AZ)
Arizona (AZ, sparse) 6.05 K (0.6 %) 1.05 M Target
Source Washington (WA, moderate)  23.2 K (2.2 %) 1.05 M TX:0.1% AZ:0.6% OR:15% WA:2.2% LA:83% FL:12% | AVG
Florida (FL, dense) 012M 2% 104M Azoew | o6%  o0%  os%  oox 034 03% |04
Texas (TX, sparse) 121 K (0.1 %) 1.12M 2| OR:15% | 21% 2.1% 0.0% 0.6% 0.3% 06% | 1.1%
Target Oregon (OR, moderate) 156 K(15%) 105M 2 | WA22% 1.9% 2.6% 1.6% 0.0% 0.4% 0.5% | 14%
Louisiana (LA, dense) 009M 83 % 105M ‘Wi | A% wsawen 26 oow 06w oow | 23
AVG 2.8% 2.8% 1.0% 0.6% 0.4% 0.5%

« RQ1: Does the proposed model achieve good performance
compared to state-of-the-art baselines?

« RQ2: How much do domain disentanglement and adaptive
propagation contribute to the overall performance? Does the
shareable knowledge help to solve the sparsity issue?

¢ RQ3: Does domain disentanglement effectively distinguish
between domain-specific and domain-shareable features?

A. Datasets, Baselines, and Setup

(Datasets) In Section III-A, we introduced the details of
three datasets; NLCD, Soil, and HAND. In this section, we
consider 6 regions of the US with varying wetland character-
istics Table III.

(Baselines) We consider 8 state-of-the-art methods, both
single-domain and cross-domain, listed in Table II. As a
hyperparameter, we set A = 0.2 in Eq. 8 for our model.
In addition, the learning ratio is set as le=3 with the early
stopping of 300 epochs for all baselines.

(Experimental setup) Training/validation/testing sets are split
10%/40%/50% for all methods. We utilized PyTorch, torch-
geometric, and a single GPU (Nvidia Titan Xp) for evaluation.
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B. Comparison with Baselines (RQ1)

In Table II, we present accuracy and recall results to com-
pare PoTA to the baselines. Firstly, we see that PoTA provides
the best accuracy and recall. We see that, as expected, for
the sparse target (Texas), cross-domain methods achieve better
results, while the performance gap is smaller in dense domains
(Oregon and Louisiana). In particular, knowledge transfer from
the dense (Florida) to the sparse (Texas) domain significantly
improves the quality of prediction. Along with knowledge
transfer, we claim that adaptive propagation also plays an
important role in performance improvement. This can be
observed when using Arizona as the source domain (sparse).
Despite our model gaining almost no benefit from knowledge
transfer, significant performance improvements can be seen
compared to GCN [37] and GAT [38] across three datasets.
The high-level overview of the need for knowledge transfer
in wetland prioritization can be summarized as follows. These
results are confirmed in Table IV: while knowledge transfer
always provides positive gains in accuracy, sparser regions
benefit most from being the target, whereas denser regions
are best used as the source.



TABLE V: (RQ2) Accuracy and recall to show the impact
of excluding domain disentanglement (w/o DD) and adaptive
propagation (w/o AP) from the original model PoTA

(a) w/o domain disentanglement

TX (from FL) OR (from WA) LA (from FL)
Methods Accuracy Recall Accuracy Recall Accuracy Recall
w/o DD 84.4 73.6 88.3 92.1 91.4 99.4
w/o AP 84.9 76.1 87.6 90.5 90.9 99.0
PoTA 87.2 77.0 93.0 97.8 925 99.8
100
(1) PoTA w shared-dom
95] mm (2) PoTA w dom-spec.
= 90| === (3) PoTA
X
T 85
>
3 80
3 75
S
< 70
65
OTH @ 6 o @ 6 o @ 6
Texas Oregon  Louisiana
(a) feature ablation
100
= (1) w/ GCN
95| == (2) wi GAT
—~ 90{ =3 (3) PoTA
xX
— 85
>
§ 80
3 75
5
< 70
65
O e e O @ 6 D ® 6
Texas Oregon  Louisiana

(b) propagation ablation
Fig. 3: (RQ2) We measure the accuracy to show the impact of
(a) using domain-specific vs. domain-shareable features and
(b) adaptive propagation

C. Impact of Disentanglement, Sharing, and Adaptive Propa-
gation (RQ2)

One exception in Table II is for the target OR, for which
the nearby region, WA, with moderate wetlands, has a greater
impact as a source than the wetland-rich region, FL. This
makes sense as WA is likely to share more with OR, which can
help boost predictions in OR even though it has fewer wetlands
than FL. This illustrates the importance of the shared-domain
knowledge.

In Table V, we present an ablation study to test the efficacy
of domain disentanglement and adaptive propagation. Specif-
ically, we either remove the domain loss in Eq. 3 for PoTA
(w/o DD) or propagation in Eq. 6 for PoTA (w/o AP). For
each of the three targets, we select the source domain that
achieved the best performance in Table II. From the result,
we see that excluding domain loss, which hampers region-to-
region knowledge transfer, leads to the lowest performance
for the sparse domain (Texas). However, it can be found that
adaptive propagation plays a more crucial role for denser
regions (Oregon and Louisiana) by enabling within-region
knowledge transfer.

In Figure 3, we further investigate the impacts of the
selected latent features (upper) or the propagation scheme
(lower). As seen in the upper chart, as expected, (2) domain-
specific training yields better performance than training only

1962

LA specific
LA shared 10
TX shared

* e Txspeciic

-100 -75 -50 -25 00 25 50 75 100 -10 s
x

Fig. 4: (RQ3) t-distributed Stochastic Neighbor Embedding (t-
SNE) based visualization of the latent features on Texas (TX).
Louisiana (LA) is the source domain

with (1) shared-domain features. However, (3) PoTA effec-
tively combines advantages of the both features for superior
performance (Theorem 4.1).

For the lower chart of Figure 3, we replace adaptive prop-
agation with GCN [37] and GAT [38] style propagation: as
we see in the chart, adaptive propagation provides the highest
accuracy, emphasizing the necessity of distinguishing between
the like and unlike neighbors during information exchange
(Theorem 4.2).

D. Impact of Feature Disentanglement (RQ3)

To demonstrate the contribution of domain disentanglement
to the separation of extracted features, we sampled 500 cells
from each domain. Then, we visualized the latent vectors
from feature extractors in Figure 4. Specifically, these vectors
comprise source-specific (I5,.), source-shared (Ig;,.), target-
specific (I%,.), and target-shared (I%;,) features. Referring to
Figure 4a, it is evident that the shared features (I, and %, )
do not properly overlap. Additionally, some source-specific
features (I5,.) overlap with the target-specific ones (lipe), indi-
cating a lack of effective disentanglement. Conversely, Figure
4b demonstrates that shared domain features overlap with each
other, while domain-specific features are well separated from

the domain-shared information.

VI. CONCLUSIONS

Wetlands are essential, yet they are insufficient in many re-
gions. Existing approaches to prioritizing potential future wet-
land locations rely heavily on expert knowledge. While data-
driven techniques show promise to help guide experts, most
U.S. wetlands account for only about 6% of the land cover,
making data sparsity a major challenge. In this paper, we
propose addressing this through region-to-region and within-
region knowledge transfer through domain dis-entanglement
and adaptive propagation. This led to a 6.1% improvement
in accuracy where wetlands are sparse. We believe this could
significantly benefit dry regions, like the southwestern US.
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