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Abstract—Long read technologies are continuing to evolve at
a rapid pace, with the latest of the high fidelity technologies de-
livering reads over 10Kbp with high accuracy (99.9%). Classical
long read assemblers produce assemblies directly from long reads.
Hybrid assembly workflows provide a way to combine partially
constructed assemblies (or contigs) with newly sequenced long
reads in order to generate improved and near-complete genomic
scaffolds. Under either setting, the main computational bottleneck
is the step of mapping the long reads—against other long reads
or pre-constructed contigs. While many tools implement the
mapping step through alignments and overlap computations,
alignment-free approaches have the benefit of scaling in perfor-
mance. Designing a scalable alignment-free mapping tool while
maintaining the accuracy of mapping (precision and recall) is a
significant challenge. In this paper, we visit the generic problem
of mapping long reads to a database of subject sequences,
in a fast and accurate manner. More specifically, we present
an efficient parallel algorithmic workflow, called JEM-mapper,
that uses a new minimizer-based Jaccard estimator (or JEM)
sketch to perform alignment-free mapping of long reads. For
implementation and evaluation, we consider two application
settings: (i) the hybrid scaffolding setting, where the goal is to
map a large collection of long reads to a large collection of
partially constructed assemblies or contigs; and (ii) the classical
long read assembly setting, where the goal is to map long
reads to one another to identify overlapping long reads. Our
algorithms and implementations are designed for execution on
distributed memory parallel machines. We also implemented an
MPI+OpenMP version of JEM-mapper to enable parallelism
at both distributed- and shared-memory layers. Experimental
evaluation shows that our parallel algorithm is highly effective
in producing high-quality mapping while significantly improving
the time to solution compared to state-of-the-art mapping tools.
For instance, in the hybrid setting for a large genome Betta
splendens (=350Mbp genome) with 429K HiFi long reads and
93K contigs, JEM-mapper produces a mapping with 99.41%
precision and 97.91% recall, while yielding 6.9x speedup over a
state-of-the-art mapper.

Index Terms—hybrid assembly, long read mapping, sketching,
MinHashing, parallel algorithms, alignment-free

I. INTRODUCTION

Over the last two decades, numerous genomes have been
assembled using short read sequencing technologies. These
technologies continue to present a cost-effective and high-
throughput solution to sequencing. While short reads are
accurate (< 1% error) the challenge is in their lengths (100
to 250 bp), which causes fragmented assemblies of contigs
(= 10® — 10* bp) that are several orders of magnitude shorter
than their target genomes (~ 10° — 10%). Recent emergence
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in long read sequencing technologies represents a significant
advance in addressing this challenge. The first generation of
long read technologies (e.g., PacBio SMRT [1] or Oxford
Nanopore ONT [2]) produce reads that are over 10 Kbp but
also have a larger error rate (between 11%—14% [3]). The
more recent generation of technologies such as PacBio HiFi
(High Fidelity) [4] have highly improved accuracy (99.9%).
There are also several long read error correction tools [5].
Given these, the prospect of assembling long contiguous
portions of the genome has dramatically improved [6].

Broadly speaking, two classes of approaches exist for using
long reads—standalone and hybrid. Standalone long read as-
semblers [6]-[8] produce a de novo assembly from long reads
using the Overlap-Layout-Consensus (OLC) paradigm [9].
HiFi long reads significantly facilitate the task of standalone
assemblers and with higher accuracy in the reads, the overlap
graph becomes smaller as compared to the overlap graphs
generated from error-prone long reads. However, the OLC
paradigm requires pairwise alignments of long reads which is
the major computational bottleneck of standalone assemblers.
The computational burden is exacerbated by the fact that
more sequencing coverage is needed for de novo sequencing.
For instance, this step took about 95% of the time while
assembling D. melanogaster using [10].

Hybrid assemblers [11], [12], on the other hand, offer the
benefit of combining long and short reads, or alternatively,
combining long reads with prior constructed assemblies from
short reads (i.e., contigs). The use of prior constructed contigs
(in lieu of short reads) can improve scalability since the num-
ber of contigs tends to be orders of magnitude fewer than the
number of short reads. By combining long reads with contigs
we aim to extend the contigs into longer scaffolds through
contig-to-contig linking information that may be available in
the long reads. Depending on the genomic fraction covered by
the contigs, this may also imply that it is possible to produce
long scaffolds with a decreased sequencing coverage (and cost)
in long read sequencing (compared to a de novo pipeline). In
order to implement this hybrid strategy, however, we need a
way to efficiently map the long reads to the contigs.

These two cases of mapping long reads motivate the devel-
opment of the mapping strategy proposed in this paper. Fig. 1
illustrates these two mapping cases. Fig. 1(a) shows the case of
mapping long reads for the hybrid setting, where the goal is to
map long reads (shown as queries Q) to partially constructed
assemblies or contigs (considered subjects S). The information
computed by mapping can be used by a downstream scaffolder
to fill in the assembly gaps between adjacent contigs and
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Fig. 1: Our target use-cases: a) L2C mapping use-case: Subjects are a set of contigs and queries are a set of long reads. Each
end of a long read can be expected to map to a single contig (assuming a non-redundant contig set). b) L2L mapping use-case:
Subjects and queries are a set of long reads. For each long read [, the goal is to find its set of overlapping long reads. The
reference genome (G) is assumed to be unknown, and is only shown to display the mapping coordinates.

generate longer scaffolds. Fig. 1(b) shows the case of mapping
long reads for the de novo long read assembly setting, where
the goal is to map the long reads against themselves so as
to detect overlapping long reads. Note that in both cases
the reference genome G is assumed to be unknown. As a
convention henceforth, we refer to the mapping application
for the hybrid setting as L2C and the mapping application for
the de novo assembly setting as L2L.

While there are a number of sequence mapping approaches
(as reviewed in §II), scalability of these tools and in addi-
tion their ability to work with different types of sequences
(contigs, long reads) are limitations. The key to performance
scalability is to reduce alignment computations between long
reads and the corresponding subjects. However, alignment-free
approaches could suffer low precision and/or recall (see §II).

Contributions: In this paper, we present a new parallel
algorithmic workflow for fast and accurate mapping of long
reads, under both L2C and L2L use-cases. More generically,
the inputs are a set of queries Q and a set of subjects S. The
output is a mapping for each ¢ €Q (as formally defined in
§III). The main contributions of the paper are as follows.

o Methods: We present a new sketching-based method
for alignment-free mapping of long reads. As part of
our approach, we propose a minimizer-based Jaccard
estimator (or JEM) sketch, that is a variant of the classical
MinHashing (§1II-B).

o Algorithmic workflow: We present an efficient and scal-
able parallel algorithmic workflow that uses the JEM
sketch to perform mapping of long reads on distributed
memory parallel machines. We adapt this workflow to
provide two parallel implementations, one for L2C and
another for L2L.

« Evaluation: We conduct a thorough empirical evaluation
of the proposed sketching-based implementations for both
of the use-cases. Results show that our method is able to
match the mapping quality of a state-of-the-art mapping
tool, while providing significant speedups over the state-
of-the-art. In particular, for the L2C use-case, our dis-
tributed memory implementation running on 64 processes
achieves speedups between 6.9x to 13x compared to
the state-of-the-art multithreaded execution on 64 threads.
Similarly, for the L21 use-case, for the complex genomes,
our implementation running on 64 processes achieves
speedups between 7.6x to 15x compared to the state-
of-the-art multithreaded execution on 64 threads.

We refer to the newly proposed algorithmic workflow as
JEM-mapper, and the source code is available as open source
in https://github.com/TazinRahman1105050/JEM-Mapper for
testing and application. A preliminary version of our paper
appeared in [13].

With mapping applications increasingly becoming more
heterogeneous in their data sources, including in hybrid
scaffolding/assembly workflows or reference-guided assembly
workflows [14], the techniques described in this paper have
broad applicability. In what follows, we provide a review of
the relevant sequence mapping literature (§1I), our parallel ap-
proach and algorithmic workflow (§1II), and the experimental
results and evaluation (§1V).

II. RELATED WORK

Sequence mapping is a classical problem in bioinformatics.
It can be abstracted as one of mapping a set of query se-
quences (e.g., reads) to a set of subject sequences. Traditional
sequencing mapping tools (e.g., [15], [16]) focus on aligning
short reads (queries) against a reference genome (subject). The
hybrid setting differs from this classical setting in a couple of
different ways. First, in lieu of the reference (which is typically
a handful of very long subject sequences), the input subjects
consist of a set of contigs which represent a highly fragmented
view of the reference genome. Consequently, the contig sets
can have tens to hundreds of thousands of sequences, and may
also widely vary in their sequence lengths (103-10° bp).

As for the query set, long reads are significantly longer than
the short reads used in conventional reference mapping. In the
absence of more scalable tools, the current batch of hybrid
assemblers [11], [12], [17] rely on a classical mapping tool
to implement their mapping step. For instance, Haslr [12] first
assembles the short reads using Minia [18], and then maps the
contigs to the set of long reads using Minimap?2 [16]. Similarly,
SAMBA [17] maps the long reads to the set of contigs using
Minimap?2 [16]. We show in the results section (§IV) that using
a generic mapping tool such as Minimap2 for L2C or L2L
applications results could result in a loss in precision for larger
inputs.

The step to compute overlapping pairs of long reads within
long read assemblers can also be considered another form
of mapping. State-of-the-art long read assemblers depend on
either alignment tools (e.g., DALIGNER [20], BLASR [11],
MECAT [8]) or overlap candidate detection (alignment-free)
tools (for example, Minimap2 [16], or MHAP [6]).
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Mapping tool Problem scope Approach
Supports reads to ) Slfpports r'eads to Supporjtslong read Alignment-based | Sketching-based Type Qf
reference genome mapping | contig mapping (L2C) mapping (L2L) parallelism
BLASR [11] v v v X shared-memory
MHAP [6] x X v x v shared-memory
MECAT [8] v X v v %X shared-memory
Mashmap [19] v v E3 X v shared-memory
Minimap2 [16] v v v E3 v shared-memory
JEM-mapper (this paper) X v v x « | distributed-memory

TABLE I: State-of-the-art comparison of relevant sequence mapping tools. The first three columns indicate the type of mapping
targeted with the long reads (i.e., the problem scope). The remaining columns on the right refer to the type of approach used.

To improve scalability of mapping, there has been a growing
interest in alignment-free approaches [21]-[25], and in partic-
ular sketching—e.g., minimizers [25], [26] and MinHashing
[27]. Sketching is a class of techniques that use samples
derived from the input sets (or sequences) to be compared
in order to approximate similarity. Introduced originally for
document clustering [27], sketching and its relatives like
minimizers [26] have found extensive use in bioinformatics.
Minimizer sketch forms the basis of the widely used mapping
tool Minimap2 [16], [28]. While these techniques have shown
significant promise for mapping in the classical setting, they
have not yet been fully demonstrated for the use-cases targeted
in this paper (L2C and L2L). Among the alignment-free
approaches for overlap detection in standalone assemblers,
MHAP [6] uses Jaccard similarity between long reads to
estimate overlap between sequences. However, this approach
achieves a very low FI1 score [9]. So, the balance between
precision and recall is not maintained for complex genomes.
Mashmap [19], [29] uses another sketching technique named
the minimizer Jaccard estimate.

Table I provides a high-level summary of the different
mapping tools that can handle long reads. The mapping tool
presented in this paper (JEM-mapper) is shown as the last
row. It can be used for both L2C and L2L use-cases, and is
the only tool with support for distributed memory parallelism.

III. METHODS

In this paper, we consider two closely related mapping
problem abstractions, motivated by two specific use-cases,
as described below. Figure 1 illustrates the two use-cases.
Let Q denote a set of query sequences, and S denote a
set of subject sequences. The sequences use an alphabet X
(DNA: ¥ = {a,c,g,t}); therefore, QC ¥* and SC ¥*. Let
P+ ¥ x ¥* — R>( be a mapping function to map a query ¢
to a subject s.

Definition 1. The L2C mapping use-case: Given Q and S,
find for each query q € Q a best mapping subject s; € S,
given by,
s, = arg max (g, s)
Setting Q to a set of input long reads and S to a set of

input contigs (hence the term, L2C) would make the results
of mapping useful in a hybrid scaffolding workflow.

Definition 2. The L2L mapping use-case: Given Q and S,
and given a mapping quality threshold T, find for each query
q € Q the set of subject sequences Aq C S such that:

Aq:{S|S€S,1/}(q,S) ZT}

Setting Q@ and S, both to a set of input long reads (hence
the term, L2L), would help identify overlapping pairs of reads
for a long read assembler.

While the function v can be implemented as a sequence
alignment, computing alignments at scale can be expensive.
Therefore, alignment-free approaches are more desirable in
practice. Our approach uses an alignment-free sketch to reduce
the search space as described below.

A. Preliminaries and notation

a) MinHash preliminaries: The MinHash sketching
scheme was introduced by Broder in 1997 [27], originally
to compute resemblance or Jaccard similarity between docu-
ments. Given two sets A and B, the Jaccard similarity between
the sets is given by: J(A,B) = %. In this seminal
work, Broder showed that there exists a family of permutations
(7 : [n] — [n]) called the minwise independent permutations,
which can be used to generate fixed size sketches from the
sets A and B. It then suffices to compare the sketches instead

of explicitly computing the J (A, B), i.e.,
Pr(min{r(A)} = min{r(B)}) = J(4, B)

In other words, higher the Jaccard similarity, higher the
probability that the sketches obtained A and B will match.
To improve the chance that a random sketch is found, a fixed
number of random trials (7") is executed. This is achieved
by choosing 7" random minwise independently permutations:
{m1, 72, ..., 77}, and using them to generate the MinHash
sketches for sets A and B, denoted by A and B respectively:

E = [min{m(A)},..., min{mrr(A)}];
B = [min{m(B)},..., min{rr(B)}]

Subsequently, if any of the trials produce the same minimum
between A and B then we conclude A is similar to B. In
practice, a value around 100 to 200 is used for T' [27]. We
refer to the MinHash sketches (e.g., A, B) sometimes as just
“MinHashes” for the underlying sets.

b) String notation: Let s denote an arbitrary string over
alphabet X, and let |s| denote its length. We use the terms
strings and sequences interchangeably. A k-mer is a (sub)string
of length k. Given ¥ and k, let K denote the set of all
k-mers that can be built using 3. Note that |C|=|3Z[*F. We
use the term canonical ordering of k-mers, denoted by II},
to refer to the lexicographical ordering of the k-mers in K.
For instance, if k=2, the canonical ordering of C is given
by: II} = [aa,ac,ag.at,ca,cc,cg,ct,ga,gc,gg.gt.ta,tc,tg,tt].
Given a string s € ¥* and a choice of k, the notation sy
is used to denote the set of all k-mers present in s.
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Fig. 2: JEM-mapper: Illustration of the major steps of our sketch-based mapping algorithm, JEM-mapper. The workflow

shown is generic to work for both L2C and L2L use-cases.

B. Computing mapping using a minimizer-based Jaccard
estimator sketch

In the mapping applications, we have two sets of strings—
@ containing queries, and S containing subjects. For a string
s, its MinHash sketch can be constructed from the set of all
k-mers (sg) in s—i.e., during trial ¢, apply a hash function
h¢(.) on each k-mer in sy and then select the k-mer with the
minimum value as part of the sketch.

Using this idea, a simple way to apply the MinHashing
scheme for mapping is as follows. First enumerate the
MinHashes (or the sketches) for each subject (one minimum
for each random trial ¢ € [1,77) and insert those into a sketch
data structure S. Subsequently, during querying time, sketches
are also generated from each query. The more sketches a query
generates in common with a subject, the higher the likelihood
that it shares a high sequence level similarity. Therefore, we
can simply track the frequency of the subjects that “hit” with
a given query, and report the set of top matching subjects
(if any) as the mapped output hit to that query. This simple
algorithmic workflow is illustrated in Fig. 2.

While this workflow can be efficiently implemented, we
make several changes, as there are a few key challenges with
a direct application of MinHashing as described above.

First, note that in the mapping applications targeted,
subjects and queries could have significantly differing lengths.
If a query ¢ is significantly longer (say 10Kbp) than a
corresponding mapped subject s (say 3K bp), then even if s has
significant identity within ¢, MinHashing may select k-mers
that may lie outside the region of the overlap. This could mean
missing out on a true mapped (affects recall). Similarly, if a
subject s is significantly longer (say, 20K bp) compared to a
query g (say 10Kbp), recall could again be affected as the
sketches from s could lie outside the region of true overlap.
Either way, the qualitative efficacy of MinHash for mapping
could be negatively impacted.

To overcome this limitation, we use two ideas: a) to map
only segments of queries; and b) to compute a minimizer-based
Jaccard estimator (instead of the classical MinHash form).

1) Using the segments of a query q: Instead of extracting
sketches from the entire length of a query g, our approach uses
only several regions (aka. “segments”) of g. Specifically, we

define a fixed segment length ¢. We then map only \ segments
of query ¢ to subjects and report respective subjects with hits.
The main idea is to focus on regions of high overlaps between
the query and subject. This not only improves quality, but
also reduces work, making the algorithm faster. In both of our
applications (L2C and L2L), we found a value of A = 2 to
be sufficient in our experiments. Henceforth, we revise the set
of queries Q to include the two segments of each query—
i.e., if there are m queries, then Q consists of 2m sequences
of length ¢ each. The heuristic to pick segments for L2C or
L2L is described in (§III-C).Fig. 1 shows the end segments of
queries mapped to subjects.

2) Sketching using minimizer Jaccard estimate: Segments
help constrain the regions where sketches are extracted from
the queries. However, subjects can be very long and it is
possible that the region of overlap between a query and a
subject can span anywhere in its length. Therefore, we follow
a two-pronged idea by: a) reducing the base set of k-mers
for Jaccard similarity computation to a set of minimizers [26]
obtained from subjects, and b) then using a sliding interval
of length ¢ bp over the list of those minimizers to select one
MinHash per interval for a trial ¢. The list of minhashes so
extracted becomes our version of the minimizer-based Jaccard
estimator sketch (abbreviated as “JEM” henceforth) of the
subject for that trial ¢ € [1,T]. Fig. 3 illustrates this procedure
using a conceptual example. The detailed algorithm is as
follows.

The minimizer-based Jaccard estimate calculates the Jaccard
similarity between two sequences using the minimizer sketches
between them. Given a sequence s, a window size w, and a
pre-defined total ordering of all k-mers m, a minimizer is the
smallest k-mer of the window. Typical choices for ordering
k-mers include lexicographical order, frequency-based order,
random order, and others [30]. We use the lexicographically
smallest k-mer as our hash function, consistent with previous
works [31], [32]. The minimizer sketch of s (denoted by
M (s,w)) is the set of all such minimizers in s. Hence the
minimizer Jaccard estimate between sequences A and B is:

Im(4, Byw) = J(M(A,w), M(B,w))

In other words, the minimizer Jaccard estimate allows us to
collect and compare sketches from the list of minimizers of a
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Fig. 3: An example to illustrate the way JEM-mapper works. At the subject processing time, the list of minimizer tuples
M, (s, w) is generated for each subject (shown as blue circles). We then slide an interval of length ¢ over the set of minimizers

based on their positions. On s1, this is shown as the list [my. ..

mg]. For each such interval, we generate T minhashes for T

trials. The black concentric circle shows the minhash that was randomly selected for trial ¢ in that interval (i.e., the sketch). At
query processing time, for long read segment, we generate a similar set of minimizers (denoted by the red circles). We then
pick T' JEM sketches in a similar fashion and look for hits in the sketch table before detecting the number of hits between a

subject and a query.

sequence (rather than all the k-mers). This reduces work and
also provides a certain degree of qualitative robustness against
noisy k-mers.

Another type of a minimizer based Jaccard estimate has
been used prior in the mapping tool Mashmap [21], [29]. Our
algorithm is different in the way these sketches are computed.
In Mashmap, for each minimizer, a list of all positions it is
present in the subject is maintained. Later, during mapping
time, if a query shares a minimizer with multiple positions,
then the region where the query has maximal local intersection
on the subject is detected and reported at query time. This
approach entails at first, short-listing positional candidates and
then eliminating those that do not have sufficient concentration
of query minimizers in their vicinity.

By contrast, our approach directly applies the segment
length ¢ of the query as the interval length over the subject, and
tracks the MinHash for each such interval of the subject—
as shown in Fig. 3. This guarantees that the sketches are
generated at the resolution of the segment length, both for the
subjects and queries, thereby obviating the need to check for
any distance constraints later.

More specifically, let M,(s,w) represent the set of all
minimizers and their corresponding positions from a string
s. This is maintained as a set of tuples of the form (k;,p;),
where k; denotes the minimizer at position p; on s. The
set M,(s,w) is kept sorted based on the minimizer posi-
tions. For a given interval length ¢, let us define M; to
be the set of consecutive minimizers in M, (s, w) such that
M; = {{kj,p;) : pi < pj < p; + ¢}. In other words,
starting from each minimizer (i) in M,(s,w), we select that
subset of minimizers that originate within the ¢-characters
that follow ¢. This is shown in the example of Fig. 3 for
subject s1 and for the /-window starting at minimizer md4,
the following minimizers [m4, m5, m6, m7, m8| are selected
as that window’s ground set M. Subsequently, 7' minhashes
are computed from each such M; to yield the window’s JEM
sketch. Fig. 4 shows a specific example of how to generate the
JEM sketch corresponding to a specific /-window sequence.

Algorithm 1 shows how sketches are extracted using our
approach. Algorithm 2 shows the overall JEM-mapper al-

Algorithm 1: Sketch_byJEM
Input: s: input sequence
¢: segment length
‘H: set of T hash functions {hq, ho, .
Output: sketches generated by for s
1: Sketch + ||
2: Let s;, < the set of all k-mers in s
3. M,(s,w) < Generate_Minimizers(sy,w)
/+ returns a list of minimizer tuples

b}

(kiypi), sorted by position index p;

*/

4: for each tuple (k;,p;) € M,(s,w) do

5. M; + Generate_Interval(myg,i,f) /« returns
the set of minimizers {(kj,p;):pi <p;j < pite}

*/

6: for each trial t € [1,7] do

7: sketch + argminge p, he(x)

8: Sketchlt].insert(key: sketch, value: s)

9:  end for

10: end for

return Sketch

gorithm. The algorithm first generates sketches (using Algo-
rithm 1) for all the subjects, and populates them into a sketch
data structure S. Subsequently, each query is processed by
first generating its sketches and looking them up in S. The
hits are accumulated with every query minhash colliding with
a subject minhash, across the 7T trials. For L2C, the subject
that has the largest number of hits with a query is reported
as the mapped output. For L2L, the union of all subject
sequences that generated a hit with the query is reported. In
our implementation, we use a threshold 7 for filtering low hit
subjects (see the implementation remarks in Section III-D).
In our implementation, we have used lexicographic ordering
of k-mers to extract minimizers from window w. For a
substring s’ of length greater than k, a canonical minimizer is
the smallest k-mer of s’ and its reverse complement s’ based
on lexicographic ordering. To generate the 7' minhashes for
each interval, we assign each minimizer of that interval its
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1) Generate
minimizers

4
6

w-mers

minimizerlist: ™ Mz m3 my ms5 mg my mg Mg
AGCT CTGA AAAC AACC ATAC ACGC CAAA

2) Generate T minhashes

Hash values of the minhashes

Trial <A, B, P> my my; | mg| my | ms mg | my | mg mg

1 <797, 811, 3449 | 853 | 3328 | 1608 | 1347 | 2955 1925 42 84 | 3202

ty <373, 941, 3833> 156 | 3538 | 1314 | 2606 735 53 | 2600 [ 1815 2060

3 <141,129, 391> | 1717 | 1405 | 270 | 834 | 2949 3127 3654 [ 1331 552

| 3

JEM sketches for £-window :

mz | mg | m3

Fig. 4: An example to illustrate how a JEM sketch is generated
for a window ¢ using w = 6 and k = 4 as the minimizer
parameters, and 7" = 3 trials as the minhash parameter. The /-
window sequence is shown at the top. The first step shows how
to detect all minimizers that are k-mers from each window of
length w of the sequence. For this example, this step generates
a list of nine minimizers, labelled m through mg. The second
step uses these minimizers as the ground set, and computes
T = 3 minhashes over the three trials. The resulting set of
three of minhashes is the JEM sketch for this /-window.

k-mer rank x (i.e., as per its canonical ordering in ), and
then use 7' random hash functions of the linear congruential
form: hi(xz) = ((A¢ - © + By) mod P;). Subsequently, the
k-mer corresponding to the smallest hashed value becomes
the sketch for that string for trial ¢ € [1,T)]. Here the triplet
(A, By, P;) are randomly generated constants associated with
the trial t. We generate T triplets, one for each trial, a priori,
and use the same 7' triplets to sketch all sequences.

C. Additional implementation details

a) Masking of repeats in complex input genomes: For
complex genomes, particularly for eukaryotic organisms, a
significant portion of the whole genome is repetitive. For
instance, more than 50% of the human genome is repetitive,
with higher fractions for several plant genomes [33]-[37].
Although long-read sequencing technologies have improved
the ability to resolve repeats in genomes, presence of short
repetitive stretches can still confound the mapping process. For
numerous genomes, repeat information is already available.
To take advantage of such available information, we mask the
repetitive regions of the input sequences using the Repeat-

Algorithm 2: Mapping by JEM-mapper (Q,S)
Input: OQ: long read segments, S: contigs, 71": no. trials
Output: ®: 9 — S

1: Initialize sketch table: S[t] < ¢, where t € [1,T]

2: S.insert(Sketch_byJEM(s)), Vs € S

3: for each ¢ € Q do

4: g.lookup(Sketch_byJEM(q))

s. forte[l,T] do

6

7

8

9

Let Hits,[t] < {s|q and s collide in S[t]}

end for
if L2C then
®(q) = s*, where s* is the most frequent subject in
Hits,
10:  else if L2L then
11 ®(q) = U, Hitsqlt],
122 end if
13: end for

4: return P

—_

Masker tool [38]. Masked regions appear as ‘N’s. In both L2C
and L2L use-cases, we have used masked input genomes.

b) Segments selection: Since our mapping uses sketches
derived from segments, the selection of regions to extract
segments could impact the mapping quality. In the case of
L2C, long reads are mapped to contigs (prior constructed
assemblies). Therefore, our implementation extracts segments
from the ending regions of a long read—that way, the approach
is suited to provide linking information between contigs, i.e.,
the farthest separated pair of contigs linked by a query long
read (as illustrated in Fig. 3). This information can be used
by a hybrid scaffolder to increase the span of its scaffold. In
our L2C experiments, we used a value of ¢ = 1000 bp.

For the L2L mapping use-case, note that each long read
query can map to an arbitrary number of other long read
subjects, and the regions of overlap between query and subject
are not constrained to the ends of a long read. Therefore, our
segment selection scheme does not constrain the selection to
the ends of a long read. Instead, we select the top two non-
overlapping segments (each of length up to ¢ bp) that have the
least ‘N’ content. The rationale for choosing a segment with
the least ‘N’ content is to focus on non-repetitive portions that
overlap between the query and the subject. We use ¢ = 2000
bp as our segment length for L2L, based on prior works that
have suggested similar lengths [9], [28].

c) Frequency-based heuristics for unmasked inputs:
As mentioned earlier, our default scheme uses lexicographic
ordering of k-mers to extract minimizers from window w.
However, for genomes where repeat information is not avail-
able for masking a priori, we use an alternate scheme to pick
minimizers. More specifically, we count the frequency of k-
mers in the subjects, and subsequently use a frequency-based
heuristic that selects a least frequent k-mer as the minimizer.
This idea of frequency-based minimizer sampling was origi-
nally used in the DBGFM data structure [39]. The idea exploits
the simple expectation that k-mers from repetitive portions of
the genome are likely to be more frequent and by selecting

Authorized licensed use limited to: Washington State University. Downloaded on February 02,2025 at 19:26:46 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2024.3489478

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, UNDER REVIEW 7

a least frequent k-mer as a minimizer, we are preferring
a candidate that is likely to uniquely identify that genomic
region. For a substring s’ of length w, the least frequent k-
mer of s’ and its reverse complement s’ is considered as the
minimizer. Note that erroneous k-mers also tend to have a low
frequency and hence could become potential candidates for
minimizers in this frequency-based scheme. To alleviate this
issue, one can also use a minimum cutoff frequency. However,
for high-fidelity (HiFi) long reads, this is less likely to be an
issue—as corroborated in our experiments—because the HiFi
long reads have high accuracy (99.9%).

D. Parallelization

We now present a distributed memory parallel algorithm for
our JEM-mapper algorithm. The Algorithm 2 is well suited
for parallelization on a distributed memory as described below.
Fig. 5 illustrates the major steps of the parallel algorithm. Our
implementation is in C/C++ and MPI (for communication).
The beta version of this software is available on https://github.
com/TazinRahman1105050/JEM-Mapper.

We use the following notation: m = |Q|; M = E,colql;
n = |S|; N = X,cs|s|; and p to denote the number of
processes. The major parallel steps are as follows.

S1) (load input) The processes load the input Q and S in a
distributed manner, such that each process gets approxi-
mately O(%) query bases and (’)(%) subject bases. Let
Qlocal and Sjocq; denote the sets of local queries and
subjects respectively, held by any given process.
(sketch subjects) Each process generates the sketches from
Siocal, and inserts them into S;yeq;, Which holds all the
sketches generated from that process.
(gather sketch) In a global communication step that uses
the MPI_Allgatherv primitive, we perform a union
of all the Sj,.q; into a single Sglobal that is stored at each
process. Note that Sqlobal consists of T lists, one for each
trial, as shown in Fig. 5.
(map queries) Each process then processes its local query
set Qjocai- The mapping stage for each query q¢ € Qjocal
comprises of three steps:
Step a) slide window and generate its JEM sketches;
Step b) lookup the subject hits in Syjopar, as shown in
Fig. 5; and
Step ¢) report mapping for the (or a) best hit.
As shown in Fig. 2, hits are located within gglobal by
the corresponding trial numbers (step b). Subsequently,
a reporting step scans the bins (or the list of trials) to
generate the mapping output pairing queries to subjects
(step ¢).
Additional remarks on our parallel implementation:
The output for L2C mapping is the best hit as shown in
Fig. 2. For step (c) above, we implemented a lazy update
strategy to support a fast tracking of subjects and their hit
rates across queries. More specifically, we initialize an array
A[l,n] of tuples of the form (u,v), where u is an integer
counter initialized to 0, and v is the query id (initialized to
-1). Whenever a query j generates a hit with a subject i, we
check if Afi].v is equal to j. If it is, then we simply increment

S2)

S3)

S4)

counter Afi].u. But if it is not, then we first set Afi].v to j,
reset counter A[i].u to 0, and then increment that counter (to
1). This lazy strategy avoids the cost of resetting the counters
for all subjects whenever a new query is processed. Note that
at each process, queries in Qj,.q; are processed one by one.

For L2L, for a query long-read [,, all the mapped subject
reads with a certain frequency > 7 are reported. The parameter
7 is the minimum number of trials (out of 7T") during which
a query has to generate a hit with a given subject, for it to
be considered a successful map. Furthermore, note that for
L2L, we do not need to process the query set and subject set
separately. In the input loading step (S1), we just load the input
set of long-reads S once, in a distributed manner. Let Sjocq;
denote the set of local long-reads. When we sketch the subjects
(S2), we keep an additional boolean flag, a fag, to indicate if
the sketch has been generated from a segment (described in
§II-C) or not with each sketch. The gather sketch step (S3)
stays the same. In the map queries step (S4), Siocal 1 treated
as the local query set. The rag for each sketch in Sqlobal helps
to indicate sketches generated from a segment of a query long-
read [, (so duplicate work can be avoided). The reporting step
scans the bins (or the list of trials) to generate the mapping
output pairing long-reads.

E. Complexity analysis

The runtime complexity analysis of our parallel algorithm
is as follows. The input loading step (S1) costs O(Y+M)

time. Sketching the subjects (S2) can be achieved in O(MTsT)
time, where ¢, is the average length of a subject. Similarly,
sketching the queries (S4) can be achieved in O(mE“T) time,
where ¢, is the average length of a query. The gather step (S3)
involves communicating each Siocar to all processes, and can
be achieved in O(Alog p + unT) time, where A is the cost of
network latency and p is the reciprocal of network bandwidth
(i.e., number of seconds per byte transferred). The parameters
A and p are network constants in the Hockney model for
parallel performance [40], and they can be empirically de-
termined. While the worst-case size of S,iopa; is O(nlT), in
practice we expect significantly fewer minhashes because we
are selecting from the list of minimizers M, (s, w) (and not
all k-mers). Finally, the query mapping step (S4) is a local
step processing each query r €Qj,cq;. The initialization of
counters for the subjects takes O(n) time and after that each
query is mapped through a linear scan of its sequence with
T minhash computations at all its minimizers. Linear scan is
sufficient because of the lazy counter update strateagy described
above. Consequently, step S4 takes O(n + %) time. For
L2C, since the number of long reads (m) can be expected
to be significantly more than the number of contigs (n) due
to sequencing coverage, we expect # to dominate over n
in practice. For L2L, we are not loading queries or sliding
windows over queries seperately as subjects and queries are
both long reads. We expect the generating sketches for subjects
("[—‘IT) to be the time consuming step for L2L.

he space complexity of our approach is dominated by
the size of gglobal. Let ms denote the average number of
minimizers generated per subject. Since we enumerate fixed-
size intervals and store one minhash per interval, a subject

Authorized licensed use limited to: Washington State University. Downloaded on February 02,2025 at 19:26:46 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://github.com/TazinRahman1105050/JEM-Mapper
https://github.com/TazinRahman1105050/JEM-Mapper

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2024.3489478

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, UNDER REVIEW 8

1) Distribute subjects (3)

2) Distributed generation of
JEM sketch for subjects (5)

H

T trials

>
>

1
ﬁ—»q:z

4) Distribute queries (J)

A g ff--4-

-
>

t ta tn ; ts tn

T

3) Merge using
All_Gather

gqfﬂbal
5) Distributed generation of T trials >
JEM sketches for queries (0) ty 23 tn
Dl —e— = -] o™ -
_'._. _.',_'.' R _'_'i :|'> &) Map and generate hits m- "
: —*—5 ! + P for each local query

Fig. 5: Schematic illustration of all the major steps of our JEM—-mapper distributed memory parallel workflow: 1) The input
subjects (S) are loaded in a distributed manner. 2) Each process generates the JEM sketches from its local subjects. 3) The
global communication step merges the local sketches to generate gglobal. 4) Queries (Q) are loaded in a distributed manner. 5)
Each process generates the JEM sketches from its local queries. 6) Each process maps the JEM sketches of queries t0 S iopas
and generates the hits for each query. Note that in our parallel implementation, steps (2), (5), and (6) are also multi-threading

enabled.

s can be expected to contribute up to O(msT) minhashes
into the sketch. Therefore, the space complexity per process
is O(nm,T).

IV. EXPERIMENTAL RESULTS

In this section, we present a thorough experimental evalu-
ation of our sketch-based mapping algorithm, JEM-mapper
(§ II-B)). We study both L2C and L2L use-cases, analyzing
the method’s quality and performance and comparing against
respective state-of-the-art tools, and using both simulated and
real-world data sets.

A. Experimental setup

Test inputs: We used two sets of long read inputs in our
experiments (see Table II):

o PacBio HiFi simulated long reads: These are read gen-
erated using the PBSIM3 PacBio read simulator [41].
PBSIM3 generates SAM format data for CLR reads,
which is then converted to BAM files and, finally using
bioconda [42] pacakge pbccs, CCS (Circular Consensus
Sequencing) HiFi reads are generated. Simulations were
run with a low coverage of 10x and a long read median
length 10Kbp; and

PacBio HiFi real long reads: These is a collection of
real-world PacBio HiFi reads for Oryza sativa (chr 8),
downloaded from the PacBio repository [43].

The simulated read data sets allow us to evaluate using a
ground-truth (using the coordinate information from SAM
file), while the real-world data set is aimed at a real-world

application. Simulated reads were generated from real-world
whole genomes, downloaded from NCBI GenBank [44], for
eight different organisms ranging from bacterial to eukaryotic
species (listed in Table II). For a subset of these genomes
(with the exception of P. aeurginosa and B. splendens), repeat
information was available, and so we masked those inputs
using the RepeatMasker tool [38]. For the P. aeruginosa
and B. splendens genomes, since repeat information was not
available, we used unmasked inputs.

We used the following two steps to construct the contigs

for all the inputs: use the ART sequencing simulator [45] to
generate 100bp Illumina short reads; and assemble the short
reads using the Minia assembler [18] into contigs.
Test platform: All experiments were conducted on a dis-
tributed memory cluster with 9 compute nodes, each with 64
AMD Opteron™ (2.3GHz) cores and 128 GB DRAM. The
nodes are interconnected using 10Gbps Ethernet and share
190TB of ZFS storage. The cluster supports OpenMPI (for
distributed memory MPI codes) and OpenMP (for shared
memory multithreaded codes).

Software configuration: All runs of our software
JEM-mapper was performed using the following set
of parameters as default: £ = 16 bp; no. trials T = 30

(choice explained in Fig. S1 in supplementary section); and a
window size of w = 100 bp to generate minimizer sketches.
In other words, we select a k-mer (of size 16 bp) from a
consecutive stretch of w (100) k-mers to be the minimizer (as
explained in Section III-B). These minimizers are then added
to the corresponding set M, (s, w) only if they change or if
the current minimizer goes out of bounds. Subsequently, to
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Input genome S: Subject statistics (Minia contigs) Q: Query statistics (HiFi long reads)
Input Genome No. contigs Total subject Contig length No. long Total query Read length
pu length (in bp) (> 500bp) size in bp (M) (avg.tstd.dev) reads (n) size in bp (N) (avg.tstd.dev)
E. coli 4,641,652 375 4,510,510 | 12,398 £ 13,010 4,010 46,005,093 | 10,205 + 3,418
P aeruginosa (unmasked) 6,264,404 461 6,105,989 | 13,782 £+ 19,218 6,122 62,504,041 | 10,221 £ 3,363
C. elegans 100,286,401 32,940 76,721,376 2,330 £+ 2,962 97,103 1,000,011,602 | 10,205 + 3,400
D. busckii 118,492,362 39,352 106,278,105 2713 £ 3,174 103,781 1,058,889,285 | 10,168 + 3,412
Human chr 7 159,345,973 46,798 56,547,853 1,209 £ 834 136,357 1,393,462,533 9,612 + 2,988
Human chr 8 145,138,636 45,470 53,060,920 1,167 £ 876 141,102 1,440,205,836 | 10,200 + 3,402
B. splendens (unmasked) 339,050,970 98,160 339,804,114 3,462 £ 4,181 429,520 4,371,221,619 | 10,177 £ 3,403
0. sativa 373,878,990 111,788 175,228,307 1,568 £ 1,446 309,615 3,012,444,385 8,989 £ 62
Z. mays chr 1 307,014,717 32,411 50,255,597 1,550 £+ 1,332 301,607 2,703,145,070 8,995 £ 35
O. sativa chr 8 (real) | 28,443,022 ] 9,945 ] 18,416,389 | 1,851 £ 2,067 [[ 532,667 [ 10,458,872,536 | 19,642 + 4,246 |

TABLE II: Input data sets used in our experiments. All contigs were produced by running Minia assembler [18] on simulated

short reads. The long reads are either simulated (default) or real (O. sativa chr 8 (real)).

generate the JEM sketches (Algorithm 1), we set the interval
length same as the segment ¢ bp (for L2C 1,000 bp and
for L2L 2,000 bp) for long reads. The smaller ¢ length for
L2C is to help capture overlaps with shorter contigs. Setting
£ = 2,000 bp for the L2L is consistent with other long read
mappers [8], [16]. For L2L, the minimum number of trials
needed to generate a hit (i.e., 7) was set to 15 (out of 7" = 30
trials), to represent a 50% hit rate with the random trials.

B. Evaluation for L2C mapping

Once the long reads are generated, we pulled out the two

end segments (prefix and suffix) of length ¢ = 1,000 bp and
added them to the query set Q. For comparative evaluation,
the two state-of-the-art reference genome mappers that support
L2C (see Table I) are Mashmap [21] and Minimap2 [16].
Of these two, Mashmap tool [21] is a fast reference genome
mapper that also uses sketching, and from its implementation
we can easily extract the top hit for a query, making it
possible to directly compare it with JEM-mapper. As for
Minimap2 [16], it follows a more classical seed-and-extend
alignment-based approach, but it also benefits from the use
of minimizers internally for the seeding step. However, it
was not possible to make a direct comparison with its output
because it reports multiple hits for each query. Therefore, we
focus our comparative evaluation on Mashmap. In addition
to Mashmap, we also implemented the classical MinHash
scheme (Section III-AOa) by modifying JEM-mapper im-
plementation. This allowed us to compare the efficacy of
the Jaccard Estimator MinHash scheme over the classical
MinHash scheme. In all cases, the same inputs (Q,S) were
provided to both programs—i.e., mapping the end segments
of long reads to contigs.
Evaluation methodology: For quality evaluation, we con-
structed a benchmark for all simulated data sets using the
coordinate information of the contigs (S) and long reads
(Q) mapped back to the full-length reference genome (G).
This is illustrated in Fig. 6. More specifically, to determine
the (start,end) coordinates of each contig, we mapped the
set of contigs to the reference G using Minimap2 [16]. The
coordinates of the long reads are readily available from SAM
files (generated by PBSIM3). A given end segment of a long
read e € @ is said to map to a contig ¢ € S if and only if its
respective (startend) coordinates overlap over at least k base
pairs of the reference genome—as shown in Fig. 6.

Reference,
Genome

c3

cl

Fig. 6: L2C: Benchmark cases for when an ending segment
of a long read is said to successfully map (Cases A and B) or
not map (Case C) to a contig. In the figure, two long reads
are shown, one with end segments (el,e2) and another with
end segments (e3,e4).

Let Bench denote the set of all true (read end,contig)
mappings. Let Test denote the set of output (read end,contig)
mappings produced by one of the test implementations. Then,
we classify each (read end e,contig c) pair as:

o True Positive (TP): if (e, c) € Test and (e, c) € Bench
« False Positive (FP): if (e, c) € Test and (e, c) ¢ Bench
« False Negative (FN): if (e, c) ¢ Test and (e, c) € Bench
« True Negative (TN): if (e, c) ¢ Test and (e, ¢) ¢ Bench
Based on the above four measures, we calculate precision
as TFZ_% and recall as %. Note that if an output
mapping is a false positive, then by implication it is also a false
negative (since there is room for only one best hit in the L2C
case). But there can be additional false negatives. Therefore
the recall values are upper bounded by the precision values in
this evaluation scheme.

Qualitative evaluation: Fig. 7 shows the precision (left)
and recall (right) values for JEM-mapper and Mashmap.
These results are for the PacBio HiFi simulated long reads.
The results show that by and large, our sketch-based im-
plementation is competitive and show comparable quality
compared to Mashmap in all cases, with both tools pro-
ducing well over 98% precision for all inputs tested. For
the smaller/less complex genomes (E. coli, P. aeruginosa
(unmasked)) JEM-mapper produces similar precision values
as Mashmap. Our scheme produces slightly better precision
for all the larger (more complex) inputs. As mentioned earlier,
for B. splendens, we have used unmasked input and we can
see from the Fig. 7 (left), that JEM-mapper is outperforming
Mashmap. Eukaryotic inputs have more repetitive content that
may lead to reduced precision and the results show that the
strategy to select the best candidate from multiple random
trials makes our sketch-based scheme more precise for these
more complex inputs.
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Fig. 7: L2C: Comparative quality evaluation (precision and recall), comparing JEM-mapper and Mashmap, on various PacBio

HiFi simulated long reads inputs.

Input JEM-mapper Mashmap

p=4 | p=8 | p=16 | p=32 | p=64 t=64

C. elegans 125 54 41 27 24 227

D. busckii 155 85 57 36 33 251

Human chr 7 128 75 39 27 23 260

Human chr 8 119 63 39 25 22 257

B. splendens (unmasked) 519 280 180 145 127 876
0. sativa 557 | 216 130 83 69 677

Z. mays chr 1 283 164 99 54 44 528

0. sativa chr 8 (real) 420 | 218 122 91 69 605

TABLE III: L2C: Strong scaling results for JEM-mapper:
Shown are the parallel runtimes (in sec) for JEM-mapper
as function of the number of processes (p) on various inputs.
Also shown are the Mashmap runtimes, which was run on
64 threads (¢), as the tool supports only shared memory
parallelism.

For all the input datasets, JEM-mapper produces similar
recall as compared to Mashmap. The difference between the
two tools is marginal in all cases (except for B. splendens
(unmasked)). Again, both tools produce recall values that are
98% or more for most inputs. We also note that the recall
values are very close to the precision values, implying that
most of the loss in recall can be attributed to false positive
mapping in the top hit. Note that if we are to extend our
method to report a fixed number, say top x hits per read, then
several of the missing contig hits could possibly be recovered
and recall improved.

We also studied the effect of varying the number of trials T’
on quality results. The key observation from this study is that
JEM-mapper can achieve above 97% precision and recall,
using fewer number of trials compared to classical MinHash.
The results are shown in Supplementary Section A.
Performance evaluation: Next, we evaluate the runtime
and parallel performance of JEM-mapper and compare it
with state-of-the-art tools. First, we studied the strong scaling
behavior of our parallel implementation for JEM-mapper, by
varying p from 4 through 64. Table III shows the parallel run-
times for the larger inputs tested. Overall, the parallel runtime
reduces with increase in p, demonstrating improving speedups.
For instance, on B. splendens (unmasked), the relative speedup
(relative to p = 4) increases from 1.9x on p = §, to 2.9x on
p =16, 3.5x on p =32, and 4.1 x on p = 64. As the number
of processes increases, the work per process also reduces
leading to parallel overheads slowly starting to dominate. We

have compared our distributed memory implementation results
with Mashmap runtimes. Mashmap only supports shared
memory parallelism using multithreading. Table IIT shows the
Mashmap runtimes for where the number of threads is set
to 64. The results show that JEM-mapper is significantly
faster than the Mashmap implementations. In all the input
cases, JEM-mapper running in distributed memory mode
with p = 64 yields higher speedup (ranging from 5.6x to 13 %)
over MashMap running on the same number of processors
(no. threads = 64). Note that in parallel processing, distributed
memory setting is expected to have more overheads due to
network communication.

Fig. 8a (left) shows the parallel runtime broken down by the
individual steps of the JEM-mapper implementation for p =
16. It is evident that the dominant step is the query processing
time, which includes the time to sketch the queries and search
in the hash table and report the hits.

We also closely analyzed the query processing time from
the perspective of querying throughput, defined as the number
of queries processed per unit time (sec). To calculate this, we
included the times for sliding windows on the queries, sketch-
ing the queries, and search in Sy;,pq, and report step. Fig. 8b
(right) shows the querying throughput for our JEM-mapper
implementation, for the larger inputs tested. We observe that
this querying throughput scales almost linearly.

Fig. 9 shows the total computation versus communication
time for Human chr 7 and B. splendens (unmasked) varying
the number of processors from p = 4 to p = 64. The total
computation time includes the I/O time, subject processing
time, generating the S;opq; time, and the query processing and
search time. As expected, increasing the number of processors
increases the total communication overhead, but the overhead
stays well under 25% for up to p = 64.

Multi-threaded  version: The base version of
JEM-mapper presented so far uses only distributed
memory (MPI) parallelism. To generate further parallelism
at the process-level, we also implemented an MPI+OpenMP
version of JEM-mapper that uses a two-level parallelism:
MPI for distributed memory parallelism across processes, and
OpenMP multi-threading [46] for shared memory parallelism
within each process using multi-threading. More specifically,
we parallelize the steps of generating sketches from the
subjects, generating sketches from the queries, and mapping
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Fig. 9: L2C: The fractions of the total runtime spent in computation (blue) versus communication (orange) for (a) Human chr
7; and (b) B. splendens (unmasked). For a scalable parallel execution, computation time should dominate over communication.

them to the global sketch to generate the final hits in the
JEM-mapper algorithm (see Section III-D; and Fig. 5).

Table IV shows the run-time results comparing the MPI-
only version for 64 processes, against the MPI+OpenMP
multi-threaded version for varying number of threads. The
results show that the run-times improve with the introduction
of multi-threading. For most inputs, we see a strong scaling
trend where the parallel multi-threaded run-time keeps halving
from the ¢=1 thread setting to roughly up to 16 threads.
For instance, on O. sativa the parallel run-time reduces from
557 sec on 1 thread to 32 sec on 16 threads (i.e., roughly
corresponding to a 17x speedup). Linearity in speedup is
expected to stop beyond a certain number of threads due
to Amdahl’s law [47] as the sequential workload starts to
dominate. A second observation from the Table IV comes
from the columns MPI-only running using p=64 processes,
versus the column for (p=4, t=16) also using 64 cores. We
see that the multi-threading enabled MPI+OpenMP version
consistently outperforming the MPI-only version.

For a closer look at the effect of multi-threading, we
examined the total run-time broken down by the different
steps. We observed that the time to compute the two major
steps—namely, sliding window of subjects, and queries—are
significantly reduced in the MPI+OpenMP execution. These
results are presented in Supplementary Section B.

We also evaluated JEM-mapper on real-world PacBio HiFi
long read data (Oryza sativa chromosome 8) and observed that
the percent identity of long read ends and the corresponding
contigs falls between 95%-100% (more details are presented

in Supplementary Section C).

C. Evaluation for L2L mapping

In the 121 use-case, the input consists of only a set of long

reads. We have used the same synthetic and real-world data
as mentioned in (Section IV-A). For comparative evaluation,
we compared against two state-of-the-art long read overlap
detection tools, namely Minimap2 [16] and MECAT [8]—as
noted in Table I. As mentioned earlier for Minimap2 [16], it
follows a classical seed and extend-based approach, but it also
benefits from the use of minimizers internally for the seeding
step. MECAT [8] is an alignment-free approach that relies on
k-mers to detect overlapping candidates and uses a pseudo-
linear alignment scoring algorithm to discard false overlap
candidates. In all cases, the same inputs (S) were provided
to all the tools.
Evaluation methodology: For quality evaluation in the L2L
use-case, we constructed a benchmark using the genomic coor-
dinate information of the long reads. First, all the input long
reads (S) were positioned, using the coordinate information
from PBSIM3, along the reference genome G. A query long
read [, is said to map to a long read [ € S if and only if
their respective <start,end> coordinates overlap in at least 2
Kbp positions of the reference genome—as shown in Fig. 10.
This overlap cutoff is derived from the state-of-the-art tools
(91, [28].

Let Bench denote the set of all true mappings generated as
above. Let Test denote the set of all test mappings generated
by our implementation. Then, we can place each distinct <l,
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Input (MPI-only) JEM-mapper running in MPI + multi-threaded mode
p=64 | p=4,t=1 | p=4,t=2 | p=4, t=4 | p=4, t=8 | p=4, t=16 | p=4, t=32
C. elegans 24 125 50 28 21 14 13
D. busckii 33 168 73 53 32 20 15
Human chr 7 23 128 72 28 18 15 13
Human chr 8 22 119 53 27 22 14 13
B. splendens (unmasked) 127 519 301 178 101 83 73
0. sativa 69 557 210 120 75 32 30
Z. mays chr 1 44 283 152 89 5T 31 28

TABLE IV: L2C: Parallel runtimes (in seconds) for JEM-mapper running in MPI-only mode (with p=64 processes) versus
JEM-mapper running with both MPI and multithreading enabled. For the multi-threaded runs, we keep the number of MPI
processes fixed at p=4 and vary the number of threads ¢ per process from 1 through 32.

Reference
Genome ¢

Long
reads

>= 2000

Fig. 10: L2L: In our benchmark each query long read [, is
said to map to a subset of long reads in S ({l1,l2,!3}in the
example) if the overlap is more than 2 Kbp. Note that, based
on this criterion, [, does not map to l4 and 5.

[> pair into one of the following categories: TP, FP, FN,
and TN, and subsequently calculate precision and recall—
consistent with our definitions in Section IV-B. Note that since
this L2L allows each query long read to map to one or more
long reads, a false positive does not necessarily imply a false
negative (as it did for L2C).

Qualitative evaluation: Fig. 11 shows the precision (left)
and recall (right) values for JEM-mapper, with comparisons
to Minimap2 and MECAT. These results are for the PacBio
HiFi simulated long reads. The results indicate that, for
the most part, JEM-mapper exhibits comparable quality to
whichever tool is the best between Minimap2 and MECAT
for each input. From Fig. 11 (left) we observe that all
precision values are generally well above 88% for masked
inputs using JEM-mapper. For all the input data sets, the
recall values are between 85% to 99.9% using JEM-mapper.
For the smaller/less complex genomes (E. coli, P. aeruginosa
(unmasked)), JEM-mapper produces similar recall values as
MECAT.

As for recall, Fig. 11 (right) shows that all three tools
perform comparably, with MECAT yielding better recall values
for some of the inputs. However, its precision is also lower
than the other two tools for many of the inputs. In contrast,
JEM-mapper and Minimap?2 perform consistently (preci-
sion and recall-wise) for the masked inputs. Note that for
unmasked input B. splendens (unmasked), Minimap?2 attain
a very low precision (near 20%) since the repetitive regions of
the genome can possibly produce many false-positive overlaps.
JEM-mapper overcomes this issue by using the frequency-
based heuristic (described in (Section III-C)).

Performance Evaluation: We studied the strong scaling
behavior of our parallel implementation for JEM-mapper, by
varying p from 4 through 64. Table V shows the parallel run-
times for the larger inputs tested. As with our L2C study, the
results show good parallel scaling behavior for JEM-mapper.
As a concrete example, for the O. sativa input, the relative

speedup (relative to p = 4) increases from 1.9x on p = 8 to
6.3x on p = 64.

Table V also compares the parallel runtimes achieved
by JEM-mapper to the corresponding multithreaded par-
allel runtimes achieved by Minimap2 and MECAT. For
the smaller inputs, Minimap2 shows faster runtimes than
JEM-mapper. However, for the larger inputs, it is evident that
the runtimes for Minimap?2 significantly increases. Whereas
JEM-mapper outperforms both Minimap2 and MECAT on
these larger inputs. For instance, for O. sativa, JEM-mapper
running on distributed memory with p = 64 yields 9.9x and
7.2x speedups over Minimap2 and MECAT running on 64
threads, respectively.

Furthermore, comparing Tables III and V, we observe that
the L2L runtimes are larger than the L2C runtimes for the
corresponding inputs. This is to be expected because the entire
long read set is treated as both the subject set and query set
for L2L, implying more work.

Fig. 12 shows the parallel runtime broken down by the indi-
vidual steps of the JEM-mapper implementation for p = 16.
It is evident that the dominant step is the sliding window of the
subjects, which includes the time to sketch the subjects. Note
that the fraction of total runtime spent in query processing is
significantly smaller compared to the corresponding fractions
observed in the L2C case (Fig. 8 (left)). This is because our
parallel implementation is optimized to avoid duplicated effort
in the sketching of query processing, since S = Q for L2L
(as noted in Section III-D).

We also studied computation versus communication time
and as we have seen earlier for L2C, increasing the number
of processors increases the total communication overhead, but
the overhead stays well under 10% for even up to p = 64
(results summarized in Supplementary Section D).

V. CONCLUSIONS

In this paper, we presented a minimizer-based Jaccard
estimator sketch-based algorithm for mapping long reads to
different types of biological sequences. Our mapping algo-
rithm can be used to map long reads to either a set of partially
assembled contigs (from a previous short read assembly), or to
the set of long reads themselves. The former application can be
used to extend the reach of previously constructed short read
assemblies (using long reads), while the latter can be used in
de novo long read assembly workflows. All our results indicate
that we are able to meet the quality in both precision and
recall, compared to the corresponding state-of-the-art mapping
tools, while providing significant advantages in performance
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Fig. 11: L2L: Quality results (precision and recall) using PacBio HiFi simulated long reads for different long-read overlappers

Input JEM-mapper Minimap2 | MECAT

p=4 p=8 | p=16 | p=32 | p=64 t=64 t=64

C. elegans 485 264 154 101 79 73 498

D. busckii 589 318 218 160 102 74 595

Human chr 7 605 323 205 137 115 60 470

Human chr 8 707 295 178 119 103 71 439

B. splendens (unmasked) 2,521 1,378 760 494 388 2,886 2,931
0. sativa 1,902 | 1,030 579 376 302 3,008 2,184

Z. mays chr 1 1,894 945 528 350 281 4,123 2,670

O. sativa chr 8 (real) 3,171 | 1,659 947 608 494 7479 3,418

TABLE V: L2L: Strong scaling results for JEM-mapper: Shown are the parallel runtimes (in sec) for JEM-mapper as
function of the number of processes (p) on various inputs. Also Minimap2 and MECAT runtimes are shown. These tools were
run on 64 threads (t), as the tool supports only shared memory parallelism.
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Fig. 12: L2L: Normalized runtime breakdown by steps for
JEM-mapper implementation for p = 16

speedup. Our open source parallel implementations can be
executed on distributed memory platforms (i.e., clusters) which
make them suited to scale to large inputs.

This work has opened up multiple avenues for future re-
search, including (but not limited to): i) integration into end-to-
end hybrid assembly and scaffolding workflows; and ii) large-
scale studies targeting more complex eurakyotic genomes;
iii) extension to reference-guided assembly pipelines [14],
where either reads are mapped against the reference genome
or alternatively contigs or scaffolds are aligned against the
reference genome. These use-cases can further enhance the
utility of this standalone mapping tool, and help in better
harnessing the power of long read sequencing into existing
assembly and sequencing workflows.
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