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ABSTRACT: In this work, we report our implementation of several independent-trajectory
mixed-quantum-classical (ITMQC) nonadiabatic dynamics methods based on exact
factorization (XF) in the Libra package for nonadiabatic and excited-state dynamics. Namely,
the exact factorization surface hopping (SHXF), mixed quantum-classical dynamics
(MQCXF), and mean-field (MFXF) are introduced. Performance of these methods is
compared to that of several traditional surface hopping schemes, such as the fewest-switches
surface hopping (FSSH), branching-corrected surface hopping (BCSH), and the simplified
decay of mixing (SDM), as well as conventional Ehrenfest (mean-field, MF) method. Based
on a comprehensive set of 1D model Hamiltonians, we find the ranking SHXF ≈ MQCXF >
BCSH > SDM > FSSH ≫ MF, with the BCSH sometimes outperforming the XF methods in
terms of describing coherences. Although the MFXF method can yield reasonable populations
and coherences for some cases, it does not conserve the total energy and is therefore not
recommended. We also find that the branching correction for auxiliary trajectories is
important for the XF methods to yield accurate populations and coherences. However, the branching correction can worsen the
quality of the energy conservation in the MQCXF. Finally, we find that using the time-dependent Gaussian width approximation
used in the XF methods for computing decoherence correction can improve the quality of energy conservation in the MQCXF
dynamics. The parameter-free scheme of Subotnik for computing the Gaussian widths is found to deliver the best performance in
situations where such widths are not known a priori.

1. INTRODUCTION

With the rising demand for simulating and predicting a variety
of chemical reactions and excited-state phenomena in photo-
synthetic systems,1−3 organic semiconductors,4,5 and photo-
catalysts,6,7 and so forth, the importance of developing accurate
yet e:cient nonadiabatic (NA) dynamics algorithms cannot be
overemphasized. In this context, a multitude of mixed
quantum-classical methods8−14 has been developed and widely
employed. They enable modeling of a correlated dynamics of
electrons and nuclei while treating them as quantum and
classical particles, respectively.15 Resorting to classical
trajectories, the nuclear evolution is as simple as propagating
classical degrees of freedom and the necessary amount of
electronic information can be restricted along the correspond-
ing classical sampling. One of the most successful examples of
applying this scheme is the trajectory-based surface hopping
(SH) method, where the electronic transitions are handled
through discrete jumps between adiabatic potential energy
surfaces computed on demand in each time step.16−18

Dealing with the correlated dynamics of electrons and nuclei
and capturing the electronic coherence and decoherence
correctly are all essential aims. However, they are missing in
the traditional algorithms such as Ehrenfest19 or Tully’s fewest-
switches SH (FSSH)18 methods. For this purpose, a plethora
of decoherence algorithms has been developed. Some
decoherence algorithms, such as coherent switching with

decay of mixing (CSDM),20 simplified decay of mixing
(SDM),21 or its modified version (mSDM),22 utilize a
decoherence time parameter to provide a correction to the
electronic equation. This parameter can be estimated in a
variety of ways,23 by using energy gap magnitudes9,21,24,25 and
their variations,26,27 as well as the force and momenta
diBerences for particle propagating on diBerent electronic
potential energy surfaces. Furthermore, starting from wave
function overlaps, this decoherence time can be described
within a Gaussian approximation as in the works of Truhlar et
al.,26 Schwartz et al.,27 and Subotnik et al.28,29 Alternatively,
one can use the optical response function formalism of
Mukamel30 or a related approach based on the energy gap
autocorrelation function used in many works of the Prezhdo
group.10,31,32 Also, the multiple-spawning approach takes
another category, explaining the interaction between nuclear
wave packets directly with a swarm of classical trajectories.33,34
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Among a variety of decoherence algorithms, decoherence-
corrected NA dynamics methods based on exact factorization
(XF) have proven useful.35−37 XF serves as a rigorous starting
point for describing coupled motion of electrons and nuclei,
where a molecular wave function is factored into the nuclear
component and the conditional electronic wave function.38

The mixed quantum-classical approach can be applied to XF,
resulting in the coupled-trajectory mixed quantum-classical
(CTMQC) scheme.39,40 Compared to the conventional
approach, explicit decoherence due to electron−nuclear
coupling naturally emerges in the corresponding time-depend-
ent Schrodinger equation (TD-SE) in the CTMQC method.
The decoherence correction takes the form of an electron−
nuclear coupling explicitly defined by the quantum momentum
and time-dependent vector potential. Recent works have
addressed various aspects of the CTMQC method such as
computing the quantum momentum,41 improving the energy
conservation,42−44 and introducing simplified nuclear prop-
agation schemes motivated by the surface hopping.45

Compared to CTMQC, independent-trajectory mixed
quantum-classical (ITMQC) methods based on XF oBer
notable advantages in terms of computational cost and
robustness to failures of individual trajectories. They
demonstrate better stability and energy conservation proper-
ties,46 even though there are several methods considering
energy conservation at the ensemble level given that imposing
the energy conservation at each trajectory is too strict.47,48,12,42

Instead of collecting information from the swarms of
trajectories, the ITMQC method employs auxiliary trajectories
(ATs) placed on all of the excited states for each “real”
trajectory. These ATs spawned on each adiabatic state describe
the spatial distribution of each adiabatic wave packet indirectly,
and this information is utilized to compute the quantum
momenta and vector potential needed in the XF formulation.
Decoherence-induced surface hopping based on XF (DISH-
XF)49 or simply SHXF46 is a representative of these ITMQC
methods. In SHXF, the electronic propagation is modified
following the XF equation, and the nuclear dynamics is
simplified according to the usual SH technique. To date, the
SHXF method has been used in both model and atomistic
calculations.36,50 Furthermore, the MQCXF method has been
reported and can be regarded as an independent-trajectory
limiting case of CTMQC. Compared to the regular Ehrenfest
approach, both electronic evolution and the nuclear
propagation in MQCXF are aBected by the terms that
originate from the XF.51

In this work, we present a systematic assessment and
comparative analysis of several XF-based and more traditional
ITMQC methods to better understand their potential and
pitfalls. Whenever a new category of NA dynamics methods
emerges among a myriad of existing NA dynamics methods, it
is essential to clarify their benefits and limitations compared to
the pool of pre-existing methods. Without detailed exploration
and assessment, it is often di:cult to use the newly introduced
approaches with confidence, which may result in either an
underappreciation of their advantages or abuse even in
situations where other alternatives may perform equal or
better. In particular, our focus is on the family of XF-based
ITMQC methods. While the SHXF method has been
exclusively tested in various models,49,51 including the Shin−
Metiu,52 NaI,53 Tully,18 and Subotnik−Shenvi double-arch
geometry,28 and atomistic systems,50,54,55 the comprehensive
analysis on the whole family of XF-based ITMQC methods is

still lacking, which includes a variety of model Hamiltonians
and the comparison between the more traditional NA
dynamics methods. Especially, the Ehrenfest variants have
been restricted to simple scattering models51 or a linear
vibronic model for a uracil cation46 with little attention to
more elaborate models emphasizing multiple NA transitions
over long-time scales.

To fill in the identified gap, we first implement the XF-based
ITMQC methods in the Libra package,56,57 which is already
equipped with the range of traditional trajectory surface
hopping (TSH) methods for NA dynamics methods as well as
with fully quantum dynamics (QD) algorithms and can be
used both with model Hamiltonians58−61 and with atomistic
systems.62−67 We present a self-contained account on the
theoretical grounds of the methods implemented, as well as the
corresponding algorithmic details. We pay special attention to
seemingly simple but practically nasty topics of state tracking
and phase correction. In this Libra implementation, we ensure
that they are applied consistently and timely in diBerent parts
of the algorithm and interplay correctly with the multitude of
dynamical variables and parameters involved in the XF
dynamics. We introduce a new branching correction (BC)
method for auxiliary-trajectory (AT) dynamics for the XF
methods. We also implemented the Schwartz and Subotnik
time-dependent width schemes for adaptive quantum
momentum calculations, as needed in the XF-based
simulations.

Relying on the new implementation and the pre-existing
Libra’s capabilities, we conduct a comprehensive evaluation of
the XF-based ITMQC methods, namely: the surface hopping
with exact factorization (SHXF),49 the mixed quantum-
classical dynamics with exact factorization (MQCXF),51 and
the mean-field with exact factorization (MFXF).46 These
methods are compared to several more traditional surface
hopping schemes, such as the fewest-switches surface hopping
(FSSH),18 the branching-corrected surface hopping
(BCSH),13 and the simplified decay of mixing (SDM),21 as
well as the conventional Ehrenfest (mean-field, MF) method.19

Utilizing an extensive set of model Hamiltonians in this work,
we monitor characteristic observables during the dynamics and
conduct error analysis between the NA dynamics methods and
the QD benchmark. We introduce quantitative metrics and
scores for determining the hierarchy of NA dynamics methods,
based on their capabilities to describe the evolution of state
populations and coherences.

2. METHODOLOGY

2.1. Review of the XF-Based MQC Equations. First, we
introduce the notation to describe various kinds of states and
wave functions involved. The electron−nuclear state |Ψ(t)⟩
belongs to Hilbert space =

×r R r R
given by a direct

product of nuclear and electronic Hilbert spaces,
R

and
r
,

respectively. Note also that |R
R

and |r
r
, where r

and R are electronic and nuclear coordinate states, respectively.
Bolded notation is used throughout this work to refer to
vectors and matrices. Whenever possible, we prefer a compact
vector-matrix notation of equations to the explicit multi-index
forms. By definition of the corresponding Hilbert spaces, the
state vector |

×
t( )

r R
can also be rewritten in an explicit

form, |Ψ(t)⟩ = |χ(t), Φ(t)⟩. Here, χ and Φ stand for the
nuclear and electronic states. Following the XF formalism, one
may then determine the marginal and conditional components
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of this ansatz. We choose χ as the marginal component by
applying the resolution of identity to |Ψ(t)⟩ with respect to
|R

R
, that is, |Ψ(t)⟩ = ∫ dR|R⟩⟨R | Ψ(t)⟩ = ∫ dR|R⟩⟨R |

χ(t), Φ(t)⟩ = ∫ dR | R⟩⟨R | χ(t)⟩ | ΦR(t)⟩. Here, the marginal
nuclear state |χ(t)⟩ belongs to

R
and the Φ(t) component of

the |χ(t), Φ(t)⟩ state becomes the conditional electronic state
| t( )

R r
but having the parametric dependence on R

denoted by its subscript. The representation-specific wave
functions are obtained by further projections χ(R, t) =
⟨R|χ(t)⟩, Φ(r, t; R) = ⟨r|ΦR(t)⟩, where the semicolon implies a
parametric dependence of the electronic wave function on
nuclear coordinates, R. Thus, the general state |Ψ(t)⟩ can be

written as | = | |
×

R R Rt t t( ) d ( , ) ( )
R r R

and its

R-projection |Ψ(R, t)⟩ gives the position-resolved molecular
s t a t e d e fi n e d a s | R t( , ) = |R t( ) =

| | |R R R R R R R Rt t t td ( , ) ( ) d ( ) ( , ) ( )
R R

=

|R t t( , ) ( )
R r

.
Based on XF, the XF-based MQC equations have been

formulated for trajectory-based NA dynamics:39,40

| = [ + ]|R Ri
t

t H t H t t
d

d
( ) ( ( )) ( , ) ( )

R RBO XF (1a)

= [ + ]

= [| | + | |]

R M A

M

H t i

i

( , )

R R R R

T

T

XF
1

1

(1b)

=P F (2)

= +F R F R F Rt t t( , ) ( , ) ( , )MF XF
(3a)

= | |F R t t H t( , ) ( ) ( )
R R

MF
BO (3b)

= × [

| ]

RF t

i

M
A A t

t

( , )
2

( Re ( )

( ) )

R

R

XF 2

(3c)

Here, vector matrices of dynamical variables and their
derivatives are column vectors containing the corresponding
variables of each nuclear degree of freedom (DOF): R = (R0,
R1, ···, RNddof − 1)

T, P = (P0, P1, ···, PNddof − 1)
T, ∇ = (∂R d0

, ∂Rd1
, ···, ∂

R
N

dof
1
)T, and so on. We will use this convention in the rest of

the paper. ĤBO(R) is the usual Born−Oppenheimer Hamil-
tonian of the system, and ĤXF(R) is the electron−nuclear
correlation Hamiltonian based on XF. M is the diagonal matrix
containing each mass of the DOF ν as its elements, that is, M =
diag (M0, M1, ...MNddof − 1), ℏ is the reduced Planck’s constant

(ℏ = 1 in atomic units), and Re[*] refers to taking the real part
of the corresponding expression. Note that eq 1a is already an
approximation that disregards an additional term that is similar
to the diagonal Born−Oppenheimer correction present in the
exact treatment.

The total nuclear force, eq 3a, includes the conventional
Ehrenfest or mean-field (MF) term, FMF(R, t), eq 3b, as well as
the decoherence force, FXF(R, t), eq 3c, constructed using the
time-dependent vector potential, A, and quantum momentum,

, defined as

= |A R t t i t( , ) ( ) ( )
R R (4)

=
| |

| |
R

R

R

t i
t

t

( , )
( , )

( , ) (5)

Since both vector potential and quantum momentum
depend on nuclear coordinates, computing these properties
requires a diBerentiable representation of nuclear wave
functions, χ(R, t).

Based on the partial normalization condition, ⟨ΦR | ΦR⟩ = 1,
∀ R, any electronic propagations with the XF decoherence (or
electron−nuclear correlation) Hamiltonian, the middle part of
eq 1b, can be equivalently done in terms of a spatial derivative
on the electronic density operator, the rightmost expression of
eq 1b.68 Using this form of the ĤXF and the expansion of
electronic basis states in adiabatic basis, |ΦR⟩ = |ψ⟩C(R), it can
be written in a more practical form:

= | | + |

+ | + | |

× | |

+

+ + +

M CC

C C C C CC

H i

i

M

(

(( ) ( ) ) )

( )
v

XF
1

(6)

Here, the contraction is conducted over the nuclear degrees of
freedom, leaving the resulting object as an operator. Here, |ψ⟩
= (|ψ0⟩, |ψ1⟩, ..., |ψN−1⟩), is the row-vector of the adiabatic basis
states, C = (c0, c1, ..., cN−1)

T is the column-vector of the
corresponding amplitudes, and ρ = CC

+ is a nuclear
coordinate-dependent reduced electronic density matrix.
More details on this notation can be found elsewhere.23

Here, the coupling between the quantum momentum and
nonadiabatic coupling (NAC) is neglected. Thus, the XF
Hamiltonian matrix in the adiabatic basis is given as

= ×H
i

M
v

XF

(7)

Representing the adiabatic electronic amplitudes in a polar
form, Cj(R) = |Cj(R)| exp (iθj(R)/ℏ), and assuming that the
phase is most sensitive to geometrical changes, their gradients
can be written as

=C
i

C
i

Cj j j j j (8)

In the matrix representation, the spatial derivative of the

coe:cient vector becomes =C C
i

, where ϕν = diag

(∇νθ0, ∇νθ1, ...∇νθN−1), a diagonal matrix of gradients of phase
factors. The key approximations in eqs 6 and 8 follow the
prescriptions of Min et al.39,40

Finally, the HXF matrix is given by

= × +

= ×

= ×

† †

† †

H CC C C

CC CC

i

M

M

M

( )

( )

( )

XF

(9a)

or

=H
M

( ) ( )
ab ab aa bbXF , ,

(9b)

The decoherence force is then given by
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=F
i

M
( )( )

a b

aa bb bb aa bb aa

XF

,
, , , ,

(10)

As follows from the structure of eqs 9b and 10, the XF
Hamiltonian matrix and XF (decoherence) force depend on
the relative diBerences of phase gradients of adiabatic
coe:cients, e.g., ϕν,aa − ϕν,bb, the observation useful for a
qualitative analysis of the decoherence forces.

We briefly summarize the hierarchy of the XF methods
leading to the emergence of the ITMQC methods from the
original CTMQC formalism. The CTMQC method is
considered the most rigorous quantum-classical limit of
XF.39,40,69,38 In it, all trajectories evolve simultaneously
following the coupled equations, eqs 1a, 1b, 2, 3a, 3b, and
3c. The quantum momentum , eq 5, depends on the nuclear
wave function represented by all trajectories, and it aBects all
the trajectories. Considering that can be computed for each
trajectory independently, by leveraging auxiliary-trajectory
basis functions (TBFs) spawned on all electronic states with
nonzero populations, Min and co-workers introduced an
ITMQC variation of the CTMQC with the physical
trajectories described in a way similar to TSH schemes.49

This TSH-based approach is justified by the fact that the exact
time-dependent potential energy surface often resembles the
adiabatic potentials70 while the time-dependent vector
potential acts in a manner reminiscent of the velocity rescaling
in TSH.71 Later, the ideas of ITMQC have been extended to
the mean-field-based formulations.51,46

In the ITMQC methods, the XF corrections emerge as the
corrections to the electronic evolution, eqs 9a and 9b, nuclear
forces, eq 10, or both. The nuclei can be propagated using
either the MF or adiabatic force, corrected with the XF terms
or not. Depending on the chosen combinations, the total
energy can be conserved either naturally or be enforced by the
SH velocity rescaling algorithm, or not conserved at all. The
nomenclature of possible computational schemes is summar-
ized in Table 1. Although one can generalize it to consider
various combinations of the algorithms to be used (e.g., the
surface hopping could be based on the GFSH algorithm
instead of the default FSSH and so on), we keep our
nomenclature consistent with the prior report.46 Also, we point
out how the nomenclature of MQCXF appears diBerently in
the literature. Originally, Ha and Min51 have developed the
MQCXF method and called this method “EhXF”, considering

that the nuclear dynamics is governed by the continuous force
given as eq 3a. Later, Arribas et al.46 have labeled “EhXF” as
MQCXF to clarify that this method is the independent-
trajectory version of CTMQC and used the same term, EhXF,
for referring to its simplification, in which the XF force, eq 3c,
is simply omitted and only the Ehrenfest force, eq 3b, remains.
In this work, we use MFXF to specify the EhXF method for
clarity.
2.2. Electronic Propagation of the XF Equations. The

electronic propagation is conducted using a Trotter splitting
approach and the generalized local diabatization scheme as
implemented in Libra:72,73

=

i

k

jjj
y

{

zzzC U C Ct
t

t

2

( ); ( )XF
(11a)

=C TU Ct( )MF (11b)

+ =
i

k

jjj
y

{

zzzC U C Ct t
t

2

( ) ;XF
(11c)

Here, UMF and UXF are the evolution operators in the adiabatic
basis corresponding to propagation according to the ĤBO and
ĤXF operators, respectively, and computed as

=
+ +

+i

k

jjjjj

y

{

zzzzz
U

H T H T
t i

t t t
t( ) exp

( ) ( )

2
MF

BO BO

(12a)

=

i

k

jjjj

y

{

zzzzU C
H C

t t i
t

t( ( ); ) exp
( ( ))

XF
XF

(12b)

Note that the evolution according to UXF is only
approximate since the XF Hamiltonian itself depends on the
amplitudes, C. Thus, in principle, more sophisticated
integrators could be used. However, a similar simplified
integrator for the XF part, constructed locally in time, has been
utilized previously and led to acceptable quality of integra-
tion.68,74,75 As an alternative, one can resort to the fourth-order
Runge−Kutta (RK4) method as in the work of Pieroni et al.37

to handle the nonlinearity of the underlying equations. In this
context, we have tested the RK4 method for XF propagation
and found that both schemes give nearly identical dynamics
(Section S1) using the same set of model systems.

The matrix T is the orthogonalized basis reprojection matrix,
computed as

Table 1. Nomenclature of the Nonadiabatic Dynamics Methods Used in This Work

method electronic evolution nuclear force
surface hopping/
velocity rescaling auxiliary trajectories spawning

total energy
conservation

MF, aka
Ehrenfest

only ĤBO(R(t)) in eq 1a only F
MF(R, t) in eq 3a no hopping/no

rescaling
no yes

TSH (FSSH,
SDM, BCSH)

only ĤBO(R(t)) in eq 1a; SDM
introduced non-Hamiltonian terms

adiabatic forces of the
active state in eq 3a

do hopping/do
rescaling

no enforced by
velocity
rescaling

MFXF, aka
EhXFa

both ĤBO(R(t)) and ĤXF(R, t) are
used in eq 1a

only F
MF(R, t) in eq 3a do hopping/no

rescaling
yes in eq 5 depends on the active
(pointer) state.

not expected

SHXF (DISH-
XF)

both ĤBO(R(t)) and ĤXF(R, t) are
used in eq 1a

adiabatic forces of the
active state in eq 3a

do hopping/do
rescaling

yes in eq 5 and the physical trajectory
depends on the active (pointer) state.

enforced by
velocity
rescaling

MQCXF both ĤBO(R(t)) and ĤXF(R, t) are
used in eq 1a

both F
MF(R, t) and F

XF(R,
t) are used in eq 3a

do hopping/no
rescaling

yes in eq 5 depends on the active
(pointer) state.

yesb

aIn this table, “EhXF” means an approximation of the MQCXF without the XF force and “MQCXF” means the independent-trajectory formulation
of CTMQC, following ref 46. bThe total energy conservation in MQCXF is not “perfect” around classical turning points, although the overall
energy drift is alleviated using the energy-based approximation51 defined as eq 21 in Sec 2.3.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00343
J. Chem. Theory Comput. 2024, 20, 5022−5042

5025

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00343/suppl_file/ct4c00343_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=T X P( )1 (13a)

=
+

X t t t t( ) ( ) 1/2
(13b)

= | +P P t t t: ( ) ( )ij i j (13c)

The basis reprojection matrix, T, appearing in eq 11b is a
critical component of the simulation since it accounts for phase
and character consistency of the propagated states. It resolves
the known problems of trivial crossing76−79 and inconsistent
phases61,80,81 of adiabatic wave function at diBerent (even
infinitesimally close) geometries.
2.3. The AT Algorithm. The AT approach enables the

quantum momentum, the object that couples the trajectories,
to be computed within each independent trajectory. All
quantities in the present section refer to quantities belonging
to a single independent trajectory. In order to compute the
quantum momentum, one can recognize that eq 5 can be
rewritten in a more convenient form that involves nuclear
probability density, |χ|2, instead of just the nuclear wave
function magnitude, |χ|.

=
| |

| |
R t i( , )

2

2

2
(14)

Thus, a diBerentiable representation of the nuclear
probability density, |χ|2, is needed. We employ a multidimen-
sional Gaussian approximation:
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Here, the summation is carried out over all electronic states (i
= 0, ..., N − 1), Ni is the normalization factor satisfying |χi|

2/|χ|2

= ρii for the Gaussian on each state, Ri = (Ri,0, Ri,1, ...,
Ri,Nddof − 1)

T is the position of center of the Gaussian wave

packet on the ith electronic state, and σi,ν is the width of ith
state Gaussian along the nuclear DOF ν. Taking the width
parameter to be the same for all electronic states, σi,ν = σν, ∀ i,
the quantum momentum can be expressed in a more
computationally convenient way:49

=R R R R Rt
i i
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2 2
a

(16)

Here, σ is the diagonal matrix containing width parameters as

its elements, =
| |

| |
R

R
i i i

i i

2

2
is the average position of the

overall nuclear probability density, and Ra is the auxiliary
position on an active-state AT. The ATs are propagated along
the dynamics. In our implementation, the Gaussian width
parameters, σν, can be kept frozen or treated as time-
dependent. Usually, such parameters are initialized to represent
the initial nuclear probability density.

An AT for the ith electronic state is generated when the
mixing criterion, ϵ < |Ci|

2 < 1 − ϵ, is satisfied. This mixing
criterion is used for determining whether the electronic state is
in a superposition or not. In the case that |Ci|

2 = 0, no adiabatic
wave packet on the ith state would be involved, and when |Ci|

2

= 1, the electronic state corresponds to that ith adiabatic state,
i.e., a pure state. The initial auxiliary position Ri and
momentum Pi are set to the same values as the real position

R and momentum P, respectively. The motion of the AT is
ballistic according to the current auxiliary momentum Pi:

+ = +R R M Pt t t t t( ) ( ) ( )
i i i

1
(17)

The auxiliary momentum at each time step is determined
from the following energy conservation condition:

+ = +P M P P M PE E
1

2

1

2
i

T

i i

T1 1

(18)

In the SHXF methods, E corresponds to the potential energy
of the active (pointer) state, whereas in the MQCXF or MFXF
method, E is the Ehrenfest energy given as E = ∑iρiEi. The
auxiliary momentum is computed as a projection of the real
momentum, i.e., Pi ≔ αiP. There are several peculiarities in
determining the value of rescaling factor αi in the auxiliary
momentum calculation. Depending on the energetics of
potential energy surfaces, the rescaling factor αi may become
imaginary. The propagation of an AT would become classically
forbidden. In the traditional TSH approaches, this situation is
known as frustrated hops. In the original implementation of
SHXF, this situation is handled by setting the momenta of ATs
to zero, αi ≔ 0.49 Instead of fixing the auxiliary position with
the zero auxiliary momentum as above, Arribas et al. suggested
projecting out the corresponding nonactive state and
renormalizing the coe:cients,46 inspired by the branching-
corrected (BC) surface hopping (BCSH) method.13

Another issue for computing AT momenta is related to the
reversal of real trajectory momenta at classical turning points.
Since auxiliary momenta are computed by a positive scaling of
the real momenta, when the system encounters classical
turning points, the directions of all existing auxiliary momenta
reverse discontinuously. To address this artifact, Ha and Min51

monitored the sign change of a dot product between the force
and momenta, following the BCSH scheme as well. If the dot
products F

T(t)P(t) and F
T(t)P(t − Δt) have diBerent signs,

the electronic state is collapsed to the current active state (|Ca|
2

= 1; |Ci≠a|
2 = 0) and destroy all ATs. The information on the

previous momenta P(t − Δt) is saved in the previous auxiliary
momenta, so the sign of the dot product can be easily
determined. In the present work, we consider a strategy to
combine both BC algorithms when an AT becomes classically
forbidden or a turning point is involved. In the case of the
MQCXF or MFXF method, this process could lead to a
collapse to a classically forbidden state and a drift in the total
energy.

In all ITMQC methods, an active state is determined by the
hopping probability Pi→j within a time interval [t, t + Δt]
according to the conventional FSSH scheme.18
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Here, dij is the NAC matrix element. The active state aBects
the calculation of quantum momenta, as in eq 16. In SHXF,
the active state aBects the calculation of quantum momentum
and the nuclear force. However, in MQCXF or MFXF, the
active state only guides the direction of decoherence, so the
active state serves as a “pointer” state.82 Even though this
feature is not detailed in the original work of MQCXF,51 the
pointer state in MQCXF is crucial to capture the wave packet
reflection properly. Each independent mean-field trajectory
cannot “see” the overall nuclear distribution when the wave
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packet splits, and the resulting quantum momentum without
the pointer state cannot yield proper XF force (see Section S2
for details). A hop during the dynamics initializes the ATs.
When an electronic state that has satisfied the mixing criterion
recovers to an adiabatic state, satisfying |Ci|

2 > 1 − ϵ, the
adiabatic recovery is considered to be achieved. Then,
electronic coe:cients are initialized to the ith state and all
ATs are destroyed, mimicking the wave function collapse.

Following the original implementation of SHXF,49 the phase
gradient ϕν is computed by the change of auxiliary momenta:

= +

= + +

>

t t t

t P t t P t t

t

( ) 0; ( )

( ) ( ) ( ),

ii i ii

ii i i

i

, ,

, , ,

(20)

Here, ti is the latest time when ith AT is generated. However,
this computational scheme causes the violation of the energy
conservation in MQCXF. To address this problem, the energy-
based approximation can be used.51

=

+

E
P

T T2( ) (21)

Here, E is a diagonal matrix having each adiabatic energy as its
elements, T is the kinetic energy, and δT is a masking
parameter used to prevent numerical instability of eq 21 when
the dynamics encounters a classical turning point (T = 0). In
this work, we set δT = 10−4 Ha. In MQCXF and MFXF, eq 21
is employed. An analogous energy-based approximation has
been utilized in the works of Maitra and co-workers42,43 and
alleviated the energy conservation problem, although this
method is not a perfect remedy due to the sensitivity near

classical turning points. The MQCXF method conserves the
total energy, except for the case of the turning-point problem
and collapsing events to a classically forbidden state, while the
force of MFXF is fundamentally nonenergy conserving, since
the decoherence force in eq 10 is not considered in the first
place. In this work, the MFXF approach does not correspond
directly to the reported XF-based methods but is regarded as a
variation of MQCXF for the purpose of exploring the eBect of
the mission of the XF force in the original MQCXF
formulation. For more practical use of MFXF, one may need
to investigate the energy-based approximation for MFXF, but
this is outside the scope of the current work.
2.4. Time-Dependent Gaussian Width Approxima-

tions. The wave-patch width parameter σν in the expression of
quantum momenta, eq 16, is the key parameter in the ITMQC
methods. Originally, a fixed Gaussian function was used for
approximating the nuclear density |χ|2. The width parameter is
usually determined by the nuclear distribution of the initial
sampling. However, it is obvious that the predefined width
would deviate from the exact nuclear distribution during the
dynamics. To understand the possible advantages of the
nonfixed Gaussian width parameters, we explore two time-
dependent Gaussian width schemes.
2.4.1. The Schwartz Scheme. Schwartz and co-workers27,83

suggested the following time-dependent width depending on
the instantaneous de Broglie wavelength λD,ν = h/Pν.
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Here, w is the so-called interaction width parameter, estimating
the spatial extent of NAC. Since the decoherence algorithm in

Figure 1. Schematic illustration of the auxiliary-trajectory (AT) propagation and local diabatization in MQCXF. Snapshots of each time step are
distinguished by dashed boxes. Gray circles are representative classical positions on the real trajectory, while green and red circles are ones on ATs
of each adiabatic state. Real and auxiliary trajectories are represented as shaded lines, and adiabatic wave packets, which should be reproduced by
the statistical average of classical positions, are drawn below in the corresponding color code. If the schematic were for SHXF, the real trajectory
coincided with an active-state AT when the dynamics was in coherence. The dynamics is initialized at the first excited state at t = 0. At t = t′, the
dynamics encounters the crossing region and each AT is spawned. Following the local diabatization scheme, electronic propagation from t = t′ to t
= t″ is conducted. Using the basis reprojection matrix T, the coe:cients and corresponding density matrix are reordered to C″ and ρ″, respectively.
This procedure aBects the quantum momenta in the second XF propagation, since the quantum momenta depend on the density matrix as in eq 16.
Furthermore, the phase gradients ϕν are reordered accordingly and are dependent on the coe:cients as well. At t = t‴, the dynamics reaches
decoherence to the active (pointer) state, and each AT is destroyed.
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the ITMQC algorithm turns on after the dynamics has
approached the coupling region, focusing on the behavior at
the crossing region could be a sensible choice.
2.4.2. The Subotnik Scheme. Based on the maximum wave

packet overlap conjecture proposed by Subotnik and his co-
workers,84 Ha and Min employed a time-dependent pairwise
Gaussian width σij,ν(t) for two-state model problems.51
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Even though this expression is originally restricted to the
two-state problem, we have considered a pairwise average as its
generalization.
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This is analogous to the quantum momentum calculation
from pairwise ATs of Han et al.68 It is worth noting that eq 23
allows us to have an almost “parameter-free” decoherence
algorithm by replacing the Gaussian width with internal
auxiliary variables. Since auxiliary variables in eq 23 are defined
only when the electronic state is in a superposition, the time-
dependent width is estimated only when the decoherence
correction is computed. When the ith adiabatic state meets the
mixing criterion (ϵ < |Ci|

2 < 1 − ϵ) at the first time, σij,ν
2 for all i

is set to a large number (1.0 × 1010 Bohr2 in this work),
ensuring no numerical problem for the quantum momentum
calculation due to a vanishing numerator in eq 23.
2.5. The Algorithm Outline. In this section, we present an

explicit flow of the ITMQC dynamics algorithms (see Section
S3 for the flowchart). Also, the schematic illustration of AT
propagation is shown in Figure 1.

1. Trajectories are initialized by setting nuclear positions,
momenta, and initial electronic state.

2. Following the velocity Verlet algorithm, update the half
time-step momentum and full time-step position:
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3 Recompute the Hamiltonian that corresponds to the
updated coordinates HBO(R(t + Δt)).

4. Using the eigenstates of the prior, H(R(t)), and the
updated H(R(t + Δt)) Hamiltonian, compute the time-
overlaps matrix, P(t, t + Δt) = ⟨ψ(t) |ψ(t + Δt)⟩, eq 13c.
Using this matrix, compute the basis set reprojection
matrix, T according to eqs 13a and 13b.

5. If the time-dependent Gaussian width approximation
(Section 2.4) is employed, the Gaussian width is
updated according to eq 22 or 23 (all XF methods).
Here, any of the choices eq 22 or 23 can be used with
any of the XF methods.

6. Electronic amplitudes are propagated. This procedure is
done in several steps:

6.1 The XF Hamiltonian, eqs 9a and 9b, is computed
using the amplitudes at the initial time-step, C(t)
(all XF methods).

6.2 The amplitudes are propagated half time-step
using the computed XF Hamiltonian, eq 11a (all
XF methods).

6.3 The amplitudes are propagated full time-step due
to the Hamiltonian, HBO(t), updated previously,
according to eq 11b. Note that the transformation
by the basis reprojection matrix, T, is applied at
the end of this step to reflect reordering (and
phase adjustment) of the amplitudes that
correspond to the evolution of the adiabatic
basis states, |ψ(t)⟩ → |ψ(t + Δt)⟩. The subsequent
evolution of such amplitudes should follow the
ordering of the properties computed in the new
basis of adiabatic states, |ψ(t + Δt)⟩.

6.4 In all XF methods, the phase gradients are
reordered to reflect the basis transformation
|ψ(t)⟩ → |ψ(t + Δt)⟩ using the basis reprojection
matrix, T, that is ϕν ≔ TϕνT

+. Note that the order
of this operation is made consistent with the order
of adiabatic amplitude transformations. In SHXF,
we save this reordered phase gradient for the next
calculation, eq 20.

6.5 In all XF methods, the XF Hamiltonian is
recomputed once again to reflect the eBect of
updated electronic amplitudes and phase gra-
dients.

6.6 In all XF methods, the amplitudes are propagated
for the second half time-step using the updated
XF Hamiltonian, eq 11c.

7. Active adiabatic state is updated using the basis
reprojection matrix T. Note that while in the TSH
methods such as FSSH and SHXF, the active state
determines the PES governing the evolution of nuclei; in
MFXF and MQCXF, the active state is used in
determining the quantum momentum, eq 5.

8. The updated force is computed F(t + Δt). In TSH
methods including SHXF, the force corresponding to
adiabatic PES of the active state is used. In the MFXF
method, the Ehrenfest force is used, eq 3b. In the
MQCXF, the decoherence force, eq 3c, is also added to
the MF force, eq 3b.

9. The nuclear momentum is updated for the second half
time-step using the updated force:
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10. In all XF methods, if a population |Ci|
2 of the ith

adiabatic state, having satisfied the mixing criterion, ϵ < |
Ci|

2 < 1 − ϵ, becomes larger than 1 − ϵ, we collapse the
electronic state on the ith adiabatic basis state.

11. In all XF methods, we check the mixing criterion for
each adiabatic state, ϵ < |Ci|

2 < 1 − ϵ. If this condition is
satisfied at the first time, we generate the corresponding
AT. If an AT no longer meets this condition, we destroy
that AT.

12. For all XF methods, auxiliary positions are propagated
by following eq 17.

13. For all XF methods, auxiliary momenta are computed by
a projection: Pi ≔ αiP according to the energy
conservation relation, eq 18. If αi

2 < 0, we set αi ≔ 0
and thus Pi = 0. While we propagate auxiliary momenta,
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we check the branching correction condition explained
in Section 2.3.

13.1 If αi
2 < 0 and the ith state is a nonactive state, we

further project out that nonactive state.

13.2 We investigate the sign of dot products between
forces and momenta, FT(t + Δt)P(t + Δt) and
F

T(t + Δt)P(t).This process is done by monitor-
ing the sign of FT(t + Δt)Pi(t + Δt) · FT(t + Δt)
Pi(t). If this product is negative, we collapse the
electronic state to the active state. If the above
branching correction algorithms are activated, all
ATs are destroyed. In MFXF and MQCXF, the
momentum rescaling is followed additionally for
the energy conservation.

14. The phase gradient, ϕν, is computed according to eq 20
(SHXF) or eq 21 (MFXF, MQCXF).

15. In all TSH methods, the hopping process is conducted
using the hopping probability eq 19. In these methods,
the hopping changes the physical state of the trajectory.
In MFXF and MQCXF, only active state is updated and
there is no momentum rescaling for energy conservation.
When a hop occurs successfully, we destroy ATs.

2.6. Comparison between the Quantum and MQC
Dynamics. In this work, the QD is performed with the
discrete variable representation method85 to provide the
reference for each model dynamics. The total wave function
in QD is expressed in the nuclear position grid and electronic
basis {|a⟩} as follows.

| = |R Rt t a( , ) ( , )
a

a
(25)

Here, χa(R, t) is the amplitude of an adiabatic wave packet on
the adiabatic electronic state a and at the grid position R. By
evolving the time-dependent Schrödinger equation within this
ansatz, the amplitudes are collected during QD. The time step
of the quantum benchmark is set to 1.0 au.

For assessing the quality of each dynamics method, the
Ehrenfest position ⟨R⟩, adiabatic population ⟨ρi⟩ based on
coe:cients, the coherence indicator ⟨|ρij|

2⟩, and the gauge-
invariant part of the time-dependent potential energy surface
(TDPES) ⟨ΦR|ĤBO|ΦR⟩ are calculated in the level of the
quantum and trajectory-based dynamics as follows.
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Here, the expressions “b” represent the quantum-classical
equivalents of the corresponding quantum indicators in “a”.
For the SH-based methods, the adiabatic populations can be
defined in terms of the occupation numbers for active states (i)
of all trajectories (k), ni

k:
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We refer to the population based on eqs 27a and 27b and eq
29 as the SE and SH populations, respectively, following the
terminology used in previous works.86,87

Furthermore, the gauge-invariant part of the time-dependent
potential energy surface (TDPES) is computed as
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Through the MQC dynamics, this quantity can be

approximated by | |
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1 2 within a given set of

classical trajectories,{Rk(t), Pk(t)}.
To systematically quantify the performance of all methods

considered, we define the error metrics based on the time-
integral of the mean square error (MSE) of populations and
coherences obtained in approximate methods relative to the
corresponding values obtained from full QD:
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These metrics include averaging over all states (for SE and
SH populations) or over all distinct pairs of states (for
coherences). Furthermore, we define the “scores” of each
method for each Hamiltonian and simulation parameters as the
negative logarithms of the corresponding error values:

=p lg( )SH/SEpop SH/SEpop (32a)

=p lg( )coh coh (32b)

The higher scores correspond to smaller accumulated errors
in the corresponding observables. It should be noted that such
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scores are not necessarily indicative of the global quality of the
methods, since the scores can vary depending on the
parameters of the model Hamiltonian, initial conditions, or
other simulation parameters. However, the scores are
convenient to quantitatively compare the performance of the
methods in the given context of the simulations considered in
this work. To gain more global scores, one may need to
average them over a broader range of simulation conditions
and models, but this task goes beyond the scope of the present
work.
2.7. Model Hamiltonians and Computational Details.

To assess the quality of the NA dynamics methods studied in
this work, we employ five types of 1D Hamiltonians, namely,
the Tully’s extended crossing with reflection (ECWR),18

Subotnik’s double arch geometry (DAG),28 single and double-
crossing (SC and DC) Holstein models,88 and three-state
Esch−Levine models89 (Figure 2). For each model Hamil-
tonian, electron−nuclear propagation is conducted for a time
su:cient to experience multiple NA transitions: 4000 au for
ECWR, 3000 au for DAG, 8000 au for Holstein models, and
8000 au for the Esch-Levine model, respectively. At the same
time, the duration of propagation is chosen such that the wave
packets do not evolve too far into the asymptotic regions. The
mass of the nuclear degree of freedom is 2000 au.

In addition to ITMQC methods, namely, SHXF, MFXF, and
MQCXF, we assess the accuracy of other conventional NA
dynamics methods: mean-field (MF) or Ehrenfest dynamics,
Tully’s fewest-switches SH (FSSH),18 FSSH with the
simplified decay of mixing (SDM) decoherence correction,21

and the branching-corrected surface hopping (BCSH)
method.13 Exact quantum dynamics (QD) is also conducted
using the split operator Fourier transform (SOFT) method of
KosloB and KosloB.85 The results of the QD simulations are
considered the reference and are used to assess the
performance of other methods. In all trajectory-based
simulations, the nuclear and electronic integration time steps
are chosen to be the same and are set to 1.0 au. The initial
nuclear coordinate and momentum are sampled from a
Gaussian distribution that corresponds to the probability
density of the ground state of a harmonic potential with a force
constant of 0.01 Ha/Bohr2. We use 2000 initial conditions to
start independent trajectories. The observables of interest are
averaged over these trajectories. For the ITMQC methods with
a fixed Gaussian width parameter, the value of σν = 0.3 Bohr in
eq 15 is utilized.

The QD simulations are conducted using an integration
time step of 1.0 au and a uniform grid width of 0.025 Bohr
except for the Esch−Levine model dynamics, where the grid
width is set to 0.020 Bohr to ensure proper propagation with
large nuclear momenta. The initial wave function in such
calculations is chosen as a Gaussian with the width that
corresponds to the harmonic oscillator force constant of 0.01
Ha/Bohr2. This wave packet is placed on the adiabatic state of
interest. The SOFT integration is conducted in the diabatic
representation, and the corresponding adiabatic properties are
computed according to the underlying transformation.

Finally, we explore the use of time-dependent Gaussian
width in defining quantum momenta within the ITMQC

Figure 2. Adiabatic potential energy surfaces and nonadiabatic couplings of 1D model Hamiltonians in this study. (a) Tully’s extended crossing
with reflection (ECWR); (b) double arch geometry (DAG); (c) single-crossing (SC) Holstein model; (d) double-crossing (DC) Holstein model;
(e) three-state Esch−Levine model.
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schemes. Through calculations with the time-dependent width
parameters, we evaluate the role of such an approximation on
the quality of the computed results. All computations are
conducted using the Libra package, version 5.6.0.89

3. RESULTS AND DISCUSSION

3.1. Comparison of the ITMQC and Conventional
Methods. In this section, we present the results of the
quantum- and trajectory-based dynamics simulations using the
ITMQC and conventional methods as explained in Section 2.7
and applied to various model Hamiltonians. For the ITMQC
methods, we apply the fixed-width Gaussian approximation, σ
= 0.3 Bohr and the BC algorithm (13.1 and 13.2 in Section
2.5). For the phase gradient calculation, we adopt the original
approach (eq 20) for SHXF and the energy-based approx-
imation (eq 21) for MFXF and MQCXF.
A. ECWR and DAG Models. The ECWR and DAG models

are chosen as the simplest testbeds for this study. The
parametrization of the diabatic Hamiltonians is the same with
the previous study of Ha and Min.51 The initial parameters
(Table 2) are selected to allow the dynamics to pass through

the coupling region, while evolving on the first excited state is
classically forbidden. All SH-based methods conserve the total
energy, while MFXF and MQCXF show drifts of the total
energy (Figure 3a,b). The lack of total energy conservation in

MFXF is inherited from its construction (Table 1): While the
electronic Hamiltonian includes decoherence terms, the
decoherence force is excluded from the nuclear propagation.
One can observe strong total energy drifts in MFXF dynamics
at the times when the decoherence correction is activated with
the mixing criterion fulfilled under the NAC (Figure 3a,b).
Using MQCXF, the total energy drift is relatively weak and
occurs mainly due to the wave function collapse events
activated at classical turning points. Thus, the total energy drift
is gained when the particle is reflected at the coupling region.

Total energy conservation is critical for correctly describing
the dynamics. Due to the large total energy drift observed in
MFXF dynamics, the corresponding trajectories are qualita-
tively wrong: They are more prone to traverse through the
excited-state potential energy surfaces, showing reduced
chances of reflection (Section S4, Figure S10). This traversing
portion of trajectories yields qualitatively diBerent behavior of
the mean coordinate as a function of time (Figure 3). Here,
both MFXF and regular MF yield incorrect trajectories while
both SHXF and MQCXF show perfect agreement with the
reference calculations (Figure 3c,d). In fact, all the conven-
tional TSH-based methods, even those without the decoher-
ence correction, are able to capture this reflection behavior.

As expected, a severe “overcoherence” is observed in MF
and FSSH calculations�the coherence does not decay past the
moment the particle traversed the strong NAC region (Figure
3e,f). Interestingly, both MFXF and SDM show too fast decay
of coherence in the ECWR model. The coherence measure
decays to zero whereas the reference QD calculation suggests a
convergence to the 0.1 value. In the DAG model, both MFXF
and SDM show a better agreement with the reference value,
although still being distinct from the QD result. At the same
time, SHXF, MQCXF, and BCSH show a perfect or nearly
perfect agreement with the coherence indicator from the QD
simulations.

As far as the population dynamics goes, all methods but
MFXF, MF, and FSSH yield a good overall agreement with the
QD reference for the ECWR model. In the DAG model with a
more localized region of NAC, all methods yield similar
population dynamics although MFXF starts showing a crossing

Table 2. Time Durations and Initial Conditions of the
Model Dynamics Simulation

time
duration, a.u.

mean
position, a.u.

mean
momentum,

a.u.
initial

adiabatic state

ECWR 4000 −15.0 25.0 0

DAG 3000 −20.0 20.0 0

SC
Holstein

8000 −4.0 0.0 0

DC
Holstein

8000 −4.0 0.0 0

Esch−
Levine

8000 −1.0 10.0 2

Figure 3. Characteristic observables during the nonadiabatic dynamics for the (a, c, e, g) ECWR and (b, d, f, h) DAG models. (a, b) Total energy
deviation, |E(t) − E(0)|, (c, d) Ehrenfest positions ⟨R⟩, (e, f) coherences, and (g, h) excited-state populations as a function of time. In both figures,
the same color code is used for distinguishing results of each dynamics method and markers are used additionally for the trajectory-based dynamics.
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of the state populations in the long-time limit. The BCSH
dynamics exhibits surprising “bumps” of the population curves
at t = ∼35 fs. This is because its population is based on the
coe:cients that decohere instantaneously by the branching
correction algorithm in BCSH, when the dynamics encounters
a classical turning point. Due to a close similarity of the
population dynamics produced by diBerent methods, the
coherence indicator is an important way to distinguish and
quantify the quality of trajectory-based NA dynamics methods.
B. Holstein Models. Holstein model dynamics is simulated

to observe multiple NA transitions as the nuclear DOF
oscillates back and forth along the bound potential energy
surface. The diabatic Hamiltonian H(R) for two-state Holstein
models is defined as

= + =H E k R R n
1

2
( ) , 0, 1

nn n n n

2

(33a)

=H V
01 (33b)

with (a) E0 = E1 = 0, R0 = 0, R1 = 2.5, k0 = 0.002, k1 = 0.005,
and V = 0.001 and (b) E0 = 0, E1 = −0.01, R0 = 0, R1 = 0.5, k0
= 0.002, k1 = 0.008, and V = 0.001 for the SC and DC Holstein
models, respectively. All parameters are given in the atomic
unit.

Similar to ECWR and DAG models, MFXF and MQCXF
methods show an increase of the total energy conservation
error for both Holstein models (Figure 4a,b). As before, the
drift is much more dramatic for the MFXF method. The
nuclear motion computed with all methods deviates from the
quantum case in the long-time limit; however, the deviation
seen for the MF method is the most pronounced and starts
earlier than for other methods (Figure 4c,d).

As before, the coherences predicted by the MF and FSSH
methods are totally incorrect for both models (Figure 4e,f),
except for the simulation period when the nonadiabatic
coupling region is met by the system for the first time (t <
50 fs). This behavior is expected due to the overcoherent
nature of the MF and FSSH schemes. These methods also fail
to produce accurate populations in the longer-time limit of the
simulations, especially for the SC Holstein model (Figure
4g,h). All other methods, SHXF, MFXF, MQCXF, BCSH, and

SDM�are capable of reasonably reproducing coherences and
populations for both models.

It is interesting to observe that for the DC Holstein model,
the methods tend to predict both coherences and population
better than those in the SC model. With the two coupling
regions in one direction of the position space, NAC
contributes more to the coherence than to spatial overlap.
Thus, for such a model, the dynamics is dominated by
electronic transitions and occurs in a more coherent regime.
Therefore, the trajectory-based dynamics can capture the
coherence better in the DC Holstein model than it does in the
SC Holstein model. In the latter case, the coupling regions are
less dominant and the dynamics is more strongly aBected by
the wave packet overlap decay, which contributes to the
coherence measure. This is because the free motion of wave
packets on diBerent surfaces is more probable. Since such
motion leads to decay of wave packet overlaps, the mechanism
of coherence loss, it is more important and more di:cult to
account for decoherence eBects in this regime. This is why
there are greater errors in the coherence in the SC Holstein
model. It is also interesting to note that the coherences from
the SDM dynamics are rather close to the reference QD
results, even though they deviate quite significantly from the
coherence computed by other methods (Figure 4e).

To illustrate the role of wave packet overlap in determining
electronic coherences, we analyze snapshots of the dynamics
for the SC Holstein model (Figure 5). As seen in the snapshot
for t = 87.8 fs (Figure 5d), the missing coherence in Figure 4e
originates from the wave function overlap. The ITMQC
methods cannot describe the coherence resulting from an
(accidental) overlap, since the population transfer only occurs
when the NAC is finite.68 For resolving missing coherence
rigorously, one may need to consider the coupling of the
trajectories as in CTMQC. Even though the original CTMQC
method cannot capture the coherence originating from the
accidental wave packet overlap,68 an alternative CTMQC
framework that could present a new coherence descriptor and
fix the coherence problem may still be possible to develop in
future. Also, utilizing quantum trajectories based on Bohmian
mechanics would be another candidate.60,90,91 After the first

Figure 4. Characteristic observables during the nonadiabatic dynamics for the (a, c, e, g) SC and (b, d, f, h) DC Holstein models. (a, b) Total
energy deviation, |E(t) − E(0)|, (c, d) Ehrenfest positions ⟨R⟩, (e, f) coherences and (g, h) excited-state populations as a function of time. In both
figures, the same color code is used for distinguishing results of each dynamics method, and markers are used additionally for trajectory-based
dynamics.
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NA transition, the classical trajectories are separated,
propagating on each adiabatic PES. These branched
trajectory-based wave packets behave independently toward
the end of the dynamics. This independent behavior of the
trajectories causes only a partial capture of the gauge-invariant
part of TDPES at t = 68.3 fs (Figure 5c) and t = 117.1 fs
(Figure 5e). Due to the discrepancy of the coherence (t =
117.1 fs), the nuclear distribution of trajectory-based wave
packets at the end is diBerent from the QD’s as seen in the
snapshot at t = 146.3 fs (Figure 5f).

Notably, the trajectories from the MQCXF method cascade
around the coupling region (t = 68.3 and t = 117.1 fs), instead
of following a single potential step as seen in the previous

CTMQC studies.45 This is because, unlike the CTMQC
method, the trajectories in the MQCXF do not share the same
centroid of adiabatic wave packets but all have distinct centers
computed based on their own ATs. This situation also holds
true for other ITMQC algorithms. In this sense, the motion
predicted by the MQCXF method is similar to that originating
from the SHXF method. The NA transitions can occur at any
position with a finite NAC, but the switches between adiabatic
states are “delayed” by following a continuous potential.
C. Three-State Esch−Levine Model. We test the methods’

performance when applied to a three-state Esch−Levine
model. The corresponding diabatic Hamiltonian is given by

= >H w R w, 000 0 0 (34a)

=H w R
11 1 (34b)

=H w R 2
22 1 (34c)

= = = =H H H H k
01 02 10 20 (34d)

= =H H 0
12 21 (34e)

with w0 = 0.015, w1 = 0.005, δ = 0.01, and k = 0.005 in the
atomic unit. What diBerentiates the three-state Esch−Levine
model from the previous model systems the most is that both
bound and unbound motions are possible at diBerent regions
simultaneously.

As for previous models, we observe that the MFXF has a
poor energy conservation; however, the MQCXF shows a
significantly smaller energy drift for the Esch−Levine
Hamiltonian than for other models (Figure 6a). This is
because the wave packet collapse events are much less frequent
in this model, since the turning points can be met only near the
region of the surfaces crossing points. Once the system passes
through this region, there is little chance it may return back, at
least for the current choice of the initial conditions.

Expectedly, the MF gives a poor description of the average
position of the system. In fact, at a longer time, it suggests a
qualitatively incorrect recoil behavior. This behavior originates
from overpopulating the higher excited states (1 and 2) with
the negative direction of the adiabatic forces at longer time (as
indeed seen in Figure 6b). As a result, the MF force becomes
negative and leads to a reversal of the average-position
trajectories. For all other methods, the mean position agrees
with the reference value for the whole duration of simulation,
although we observe a small deviation for FSSH, MFXF, and

Figure 5. Snapshots of the MQCXF and quantum dynamics (QD) for
the single-crossing (SC) Holstein model. The gauge-invariant part of
the time-dependent potential energy surface ⟨ΦR|ĤBO|ΦR⟩ in QD
(black solid line) and the potential energy of each MQCXF trajectory
(cyan circles) are given, while the adiabatic potential energy surfaces
are drawn for the reference, in the first panel of each snapshot. The
exact nuclear density and each adiabatic wave packet density from QD
and classical nuclear distribution are shown as a histogram from
MQCXF in the second panel with the same color code.

Figure 6. Evolution of total energy drift and average nuclear coordinate in nonadiabatic dynamics simulations with the three-state Esch−Levine
model. (a) Total energy deviation, |E(t) − E(0)| and (b) Ehrenfest positions ⟨R⟩ as a function of time for the three-state Esch−Levine model.
DiBerent colors are used for distinguishing results of each dynamics method, and markers are used additionally for trajectory-based dynamics.
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SDM methods at the end of simulation period. Yet, such
deviations are qualitatively correct (correct direction).

Out of all methods, SHXF and MQCXF show the most
consistent and accurate population dynamics of all states
(Figure 7a−c). Importantly, these methods yield a good
agreement with the QD population not only in the short-time
interval but also in the longer time limit. SDM shows the
second best performance, although slightly overestimating the
population of the ground state. The populations produced by
BCSH are also rather consistent with the QM reference,
especially in the asymptotic region of longer times. However,
unphysical “bumps” are observed in the shorter time interval
corresponding to trajectories passing the state crossing region.
In this region, the trajectory reflection events may occur as
prescribed by the BCSH, leading to such “bumps” in the
population. The “bumps” can be regarded a manifestation of a
“delayed decoherence”�a less dramatic version of the fully
overcoherent regime than the one realized in the Tully
scattering models as well as in other unbound problems. In
such models, trajectories may evolve into zero-NAC regions
yet containing nondecayed coherences (e.g., Figure 1). In the
present unbound system, the coherences also exist, even in
regions with negligible NACs. However, when the density
matrix collapses instantaneously due to the trajectory reflection
events, the coherences decay, yielding the “bumps”. We note
that even though the appearance of “bump” may look
unphysical and disturbing, this behavior of coherences is still
more accurate than the nondecaying behavior in traditional
TSH approaches, where coherences may remain notable
indefinitely. It is in this sense that the “bumps” can be
regarded as a less dramatic case of fully overcoherent behavior.
We note that such bumps can also be observed for the ECWR
and DAG models for similar reasons. In these cases, the
trajectory reflection can induce wave function collapses,
yielding notable variations of coherences and populations.
Similar bumps are also present in the ITMQC methods
(MQCXF, SHXF, and MFXF) due to the BC of ATs.
However, their deviations in coherence and population are
smaller in those methods because the corresponding electronic
equation contains the decoherence term that improves the
consistency of electronic dynamics with the wave function
collapsing induced by the BC algorithm. Finally, the FSSH and
MFXF show a varied quality that deteriorates at the end of the
simulation interval while MF populations are dramatically

diBerent from the reference values, as noted above. The
deviation of the MF populations from the QD values is also
facilitated by the divergence of the corresponding nuclear
trajectories, as discussed above. The divergence of populations
and trajectories for the MF reinforces each other.

The diBerences in the coherence dynamics are very
pronounced for this model and strongly depend on the chosen
method (Figure 7d−f). First, almost all methods show too fast
decay of ρ12 coherence (Figure 7d) whereas the two most
unfavorable methods so far, FSSH and MF, work particularly
well in this case, likely by a chance. Both FSSH and MF largely
overestimate the coherences for other pairs of states and
preserve them for nearly the whole duration of the simulation.
The second least favorable approach here is BCSH, which
produces large spurious coherences for ρ01 and ρ02. However, it
correctly captures the coherence behavior in longer time limit.
The SDM method shows a good initial decay of the ρ01 and ρ02

coherences but has di:culties in capturing the coherence
revivals at a later time. Finally, the ITMQC methods lead to
the best (although not ideal yet) coherence dynamics on
average. As noted previously, they have di:culties in modeling
persistent ρ12 coherence at shorter times. They also may
exhibit unphysical coherence “bumps”, but at a much smaller
scale than in BCSH. However, most of them (except for
MFXF) are capable of capturing the revival of ρ01 and ρ02

coherences at longer times.
We present a more detailed analysis of the MQCXF and QD

dynamics in Figure 8. The trajectories pass the surface crossing
region already at t = 9.8 fs, keeping most of the population on
the highest state 2 but already start populating states 1 and 0.
The presence of nonzero amplitudes on each of these states
leads to a raise of coherences for all three pairs as seen in
Figure 7d−f. At t = 19.5 fs, some portion of trajectories
cascades down to the ground state, following the gauge-
invariant part of TDPES in that computed from the QD
(Figure 8b, black line). At t = 39.0 fs (Figure 8c), the
trajectories on the ground state diverge significantly from the
trajectories on states 1 and 2, resulting in a decay of wave
packet overlaps and hence in a decay of coherences ρ01 and ρ02,
consistent with results in Figure 7e,f. After the first passage of
the NAC region, the coherent evolution of wave packets on
states 2 and 1 persists until about t = 150 fs due to the
corresponding PES being parallel and the corresponding
trajectories occupying an overlapping region of space (Figure

Figure 7. Reduced electronic density matrix elements from the nonadiabatic dynamics for the three-state Esch−Levine model. (Left, a−c)
populations (right, d−f) coherences as a function of time for the three-state Esch−Levine model. DiBerent colors are used for distinguishing results
of each dynamics method, and markers are used additionally for the trajectory-based dynamics.
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8d,e). This spatial overlap yields a constant coherence between
the first and second excited states ⟨|ρ12|

2⟩ in QD, while this is
missing in trajectory-based dynamics as seen in Figure 7d.
Starting at this time (t = 146.3 fs, Figure 8e and t = 195.1 fs,
Figure 8f), trajectories pass the surface crossing region for the
second time and bifurcate between states 2 and 1 (leading to
decay of ρ21 coherence) and later branch to state 0. The latter
process causes the revival of ρ01 and ρ02 coherences at a later
time.
D. Accuracy Assessment. Finally, we compare the quality of

the methods using the accuracy metrics defined in eqs 31a,
31b, 32a, and 32b and computed for each model Hamiltonian
separately (Figure 9). Generally, the SH population scores
(Figure 9a) are somewhat higher than the SE population
scores (Figure 9b), suggesting that having trajectory
representation improves the accuracy of the results compared
to the corresponding mean values derived directly from the

TD-SE solution. On average, these scores vary in intervals of
2.5−3.2 and 2.2−3.0 for SH and SE populations, respectively.
Among all methods, the SHXF has the highest average pϵSH,pop

score slightly above 3.0. This method also shows the highest
average pϵSE,pop score, slightly below 3.0. The MQCXF average
pϵSE,pop score is the second largest. Note that there is no
pϵSH,pop score for this method as well as for MF and MFXF
since the active state in these MF-based XF algorithms only
guides the decoherence indirectly. The average coherence
scores diBer to a larger extent across the methods (Figure 9c).
Both MF and FSSH show rather low average coherence scores
of about 2.0, followed by SDM and MFXF with average scores
around 2.5−2.7. The SHXF and MQCXF methods show even
higher average coherence scores of 3.0. Surprisingly, the BCSH
method yields an even higher average coherence score.

The comparison of the average scores should be taken with
the grain of salt, since the scores are strongly aBected by the
identities of model Hamiltonians; thus, the average scores do
not represent the global accuracy of the methods, only their
accuracy when applied to particular models. We observe that
the population scores are typically higher for the unbound
models, such as ECWR and DAG, compared to the semibound
cases such as Esch−Levine and especially the bound cases SC
and DC Holstein models. This eBect can be rationalized as
described in the above discussion. In the bound systems, the
regions of nonadiabatic coupling are passed more frequently,
leading to more frequent population exchange. Thus, error
accumulation is faster in the bound systems, leading to lower
population scores. As far as the coherence scores are
concerned, there is no clear correlation between the accuracy
scores and the type of model.

To summarize, the performance ranking of the methods for
predicting the population is SHXF > MQCXF > BCSH >
SDM ≈ MFXF > FSSH ≈ MF, and for coherence, it is BCSH
> SHXF > MQCXF > MFXF > SDM > FSSH ≈ MF.
However, as previously seen, MFXF is not desirable to use,
since it suBers from incorrect nuclear motions due to the
nonenergy conserving force.

In addition to the error measurement for the population and
coherence, we present the accuracy metric for the average
position ⟨R⟩ by the use of the normalized mean square error
(Section S5, Figure S18).92 In terms of predicting ⟨R⟩, SHXF,
MQCXF, and BCSH have achieved high scores.

Figure 8. Snapshots of the MQCXF and quantum dynamics (QD) for
the 3-state Esch-Levine model. The code of the figure is analogous to
that in Figure 5.

Figure 9. Accuracy scores for various models and method: (a) pϵSH,pop, only for methods that define SH populations; (b) pϵSE,pop; (c) pϵSE,coh. The
color codes of all of the panels are identical.
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3.2. Impact of the BC Algorithm. In this section, we
discuss the impact of the BC algorithm on ITMQC dynamics.
The BC algorithm is introduced to prevent the unphysical
behavior of ATs when real trajectories meet the turning points,
as explained in Section 2.3. However, utilizing the BC
algorithm can worsen the energy conservation in MQCXF,
since the collapse to forbidden states can be facilitated by such
a correction. In order to assess its influence of BC on the XF-
based methods' (SHXF and MQCXF only) accuracy, we
conduct the simulations using the models listed in Table 2
under the same conditions as in Section 3.1 except for turning
oB the BC algorithm (13.1 and 13.2 in Section 2.5). First, we
monitor the deviation of the total energy and Ehrenfest
position from the corresponding exact values. Even though the
Ehrenfest position only quantifies the average nuclear position
and should not be directly interpreted as positions of any
realistic trajectories, the ⟨R⟩ value is still useful for discussing
qualitative diBerence in the nuclear dynamics computed with
diBerent approaches. Furthermore, the change of the curvature
the ⟨R⟩ function of time gives useful hints on the prevailing
behavior of trajectories: whether they exhibit any branching or
reflections or simply transmit the NA coupling regions. Except
for the Esch−Levine model, the BC algorithm has a negative
impact on energy conservation, leading to larger total energy
drift when BC is utilized (Figure 10a). The Ehrenfest positions
are relatively weakly aBected by using the BC or not (Figure

10b,c). The BC correction proves to be important for the
Esch−Levine model both in SHXF and MQCXF, since one
observes an increasingly growing deviation of the average
position from the corresponding QM reference.

The magnitude of the energy drift is particularly large in the
Esch−Levine model when no BC is applied. These deviations
arise from the energetics of the Esch−Levine model. Without
the BC algorithm, the direction of the auxiliary momenta is
reversed discontinuously at classical turning points. In the
Esch−Levine model, the magnitude of auxiliary momenta is
particularly large, since the dynamics is considerably
accelerated along the slanted PES with the initial mean
momentum 10.0 a.u (Figure 2e and Table 2). This makes the
eBect of the sign change in auxiliary momenta more critical in
the Esch−Levine case than in the other model systems. The
reversed auxiliary momenta directly influence the phase
gradient calculation in eq 20, and the auxiliary positions
propagated by these auxiliary momenta lead to incorrect
quantum momenta, as given in eq 16. The discontinuous
reverse in the auxiliary momenta without BC and resulting
quantum momenta over trajectories are shown in Section S6,
Figures S19 and 20, panels a, c, e, and g.

Consistent with large energy drift and mean position
deviations in the Esch−Levine model, we also observe a
notable diBerence in the population and coherence dynamics
for this model depending on whether the BC is applied or not

Figure 10. DiBerences in the model simulations using the SHXF and MQC dynamics with or without the branching correction (BC) algorithm. (a)
Normalized total energy deviations in MQCXF and (b, c) Ehrenfest position deviations from the quantum dynamics in SHXF and MQCXF.
Results without the BC algorithm are depicted by solid lines with circles, whereas those with the correction use dashed lines with diamonds. Results
are presented for the duration of each model dynamics. A consistent color code is applied across (a−c).

Figure 11. Reduced electronic density matrix elements from the SHXF and MQCXF dynamics with or without the branching correction (BC)
algorithm for the three-state Esch−Levine model. (a−c) populations and (d−f) coherences as a function of time for the three-state Esch−Levine
model, with or without the branching correction algorithm.
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(Figure 11). As the analysis of the population plots suggests,
both SHXF and MQCXF yield populations nearly matching
the corresponding quantum reference while not including this
correction leads to notable nonphysical deviations of the
computed populations. The diBerence in the state population
computed with SHXF or MQCXF can be attributed to the
following factor. In MQCXF, the phase gradient calculation is
unaBected by the sign change of auxiliary momenta, since it
relies on the energy-based approximation, eq 21. Nonetheless,
the BC algorithm still impacts the calculation of quantum
momenta (eq 16) in MQCXF since the position displacement
R − ⟨R⟩ in eq 16 is aBected by the auxiliary momenta.

Thus, we suggest that BC is an important component of the
algorithm even though it may lead to drifts of the total energy.
The latter is, however, expected since the motion of the ATs is
ballistic and consequently not consistent with the total
Hamiltonian of the system.

The eBect of the BC algorithm is also quantified using the
accuracy metric as defined in eqs 31a, 31b, 32a, and 32b
(Section S7, Figure S21). As highlighted in the previous
analysis, the Esch−Levine dynamics presents the most
pronounced diBerence depending on whether the BC
algorithm is activated or not. The diBerences in the unbound
systems (ECWR and DAG) follow the next, with the least
eBect in the bound Holstein models. The eBect of the BC
algorithm largely depends on the amount of possible kinetic
energy or the magnitude of nuclear momenta during the
dynamics. Furthermore, the BC algorithm improves the
prediction of coherence, even though its influence is less
prominent than that in the population prediction (Section S7,
Figure S21c). Thus, employing the BC algorithm is highly
preferred in the ITMQC methods.
3.3. Time-Dependent Gaussian Width Analysis. In

addition to the above analyses, we explore the eBects of the
time-dependent Gaussian width approximation in the SHXF
and MQCXF methods using the model systems listed in Table
2. We utilize the BC algorithm (13.1 and 13.2 in Section 2.5).
For the phase gradient calculation, we adopt the original
approach (eq 20) for SHXF and the energy-based approx-

imation (eq 21) for MFXF and MQCXF. The Schwartz and
Subotnik approximations (eqs 22−24) are used for calculating
the time-dependent Gaussian width. In the Schwartz scheme,
we consider three interaction width parameters, namely, w2 =
1,4,9 Bohr2 for investigating their influence on the dynamics.
For the Subotnik scheme, setting a parameter for the Gaussian
width is unnecessary, as the width is determined by the internal
auxiliary variables during the dynamics.

We present the ECWR and DAG dynamics as the
representative results since the feature of time-dependent
width is particularly prominent for these unbound models. By
monitoring the behavior of the time-dependent widths, we
observe that the widths from the Schwartz and Subotnik
schemes behave in significantly diBerent manners. The
Schwartz width, based on the instantaneous de Broglie length
(eq 22), diverges when the dynamics undergoes the reflection.
Notably, there are two branches of the Schwartz widths,
indicating the reflecting and transmitting events. On the
contrary, the Subotnik widths gradually increase in accordance
with the displacement of auxiliary variables along the AT
propagation (eq 23). The average Subotnik widths for ECWR
and DAG are 0.42 ± 0.27 and 0.30 ± 0.14 Bohr, respectively.
These numbers are close to the predefined fixed width, 0.3
Bohr used in the analyses above, and the dynamics with the
fixed-width and Subotnik approximation are similar indeed.
This observation suggests that one may estimate reasonable
widths using the Subotnik scheme and use their averages as a
starting point for further optimization of the dynamics.

Overall, the coherences and populations are well repro-
duced, even though spurious bumps are found when the low-
w2 Schwartz width values are employed (Figure 12). This eBect
can be seen in the time intervals of [30, 40] fs for ECWR
(Figure 12c,e) and [35, 45] fs for DAG (Figure 12f), where
population and/or coherence curves have notable deviations
from the exact results. At these moments, Schwartz widths
(Figure 12a,b) gain large values, especially for the case of w2 =
1. This means that the magnitude of the decoherence
correction is relatively small since the quantum momenta are
inversely proportional to the square of the width (eq 16). In

Figure 12. Characteristic observables during the SHXF dynamics with the time-dependent width approximations for (a, c, e) ECWR and (b, d, f)
DAG models. (a, b) Time-dependent Gaussian widths of all trajectories, (c, d) coherences, and (e, f) populations in the SHXF dynamics as a
function of time. In (a) and (b), the time-dependent width of the higher-w2 Schwartz approximations (w2 = 4, 9 Bohr2) are omitted for conciseness
since they behave similarly to the case of w2 = 1 Bohr2 except for their reduced magnitudes in line with eq 22. The widths from the Subotnik
scheme are shown only when the decoherence algorithm is activated.
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this scenario, the dynamics become very close to that of
BCSH, where the population of each trajectory behaves
coherently, eventually leading to an abrupt collapse due to the
BC algorithm. Using the higher values of w2 mitigates these
bumps, although the coherences are underestimated to a larger
extent. As seen from Figure 12, values of the Swartz parameter
w2 = 4 Bohr2 are optimal for both the ECWR and DAG models
since they deliver a good balance between the description of
coherences and populations. The Subotnik’s approach to
define the time-dependent widths yields values significantly
smaller than those of the Schwartz approach with small w2

parameters (Figure 12a,b). As a result, the coherence
correction is notable and no unphysical population drops are
observed. The Subotnik’s width increases in time, which is also
a physically meaningful behavior. Indeed, in these unbound
models, the wave packets should completely decohere in the
long-time limit, which corresponds to small decoherence
correction or large width parameter.

We also computed the MQCXF dynamics with the above
time-dependent width schemes (Figure 13). The overall trends
in the dynamics are similar to those found in SHXF
simulations except for the lowest-w2 Schwartz width. The
MQCXF dynamics with the lowest w2 suBers from a larger
total energy deviation than the others (Figure 13a). This is also
due to the weak decoherence correction, arising from a large
width. Abrupt collapses to a classically forbidden state in the
middle of mixing, triggered by the BC algorithm, cause large
jump in the total energy, explaining the lack of energy
conservation in this method. Thus, using too large widths (and
weak decoherence correction) in MQCXF simulation should
be avoided as it is detrimental to its quality. Stated diBerently,
using larger Swartz w2 parameters improves the accuracy of the
population and coherence dynamics, helps avoid unphysical
population drops (or coherence shoulders), and improves the
quality of the total energy conservation in the MQCXF
dynamics.

Finally, we evaluate the accuracy of each time-dependent
width approximation using the previous accuracy metric, eqs
31a, 31b, 32a, and 32b, for the population and coherences
(Section S8, Figure S23). The overall accuracy scores are

similar regardless of the time-dependent width approximations.
One can possibly observe more dramatic results when the
initial nuclear distribution is broader.51 It is noteworthy that
both the Subotnik and Schwartz schemes can yield similar
results in the Esch−Levine model. Away from the coupling
region, the wave packet should be spread out, and its momenta
become large following its unbound PES. However, according
to the formula of the Schwartz scheme, eq 22, the width
decreases as the momenta increase. Thus, the key consid-
eration is clearly whether an “interaction width” near the
crossing region can be captured, rather than describing the
width over the entire time domain. Tuning the dynamics by
adjusting the w2 parameters can be done in the Schwartz
scheme, while the error due to undercoherence can be
accumulated when the value of w2 is increased as seen in
Section S8, Figure S23c,d.

4. CONCLUSIONS

In this work, we have presented a detailed assessment of the
MFXF, MQCXF, and SHXF methods based on XF theory
following their implementation in the open-source Libra
package. A particular care is taken about the BC algorithm
for ATs, state, and phase tracking in electronic integration of
the corresponding XF-based equations using the local
diabatization scheme, and about the corresponding trans-
formations in computing quantum momentum. Using the
present implementation, we conduct a comprehensive
comparative study of the XF-based approaches and several
conventional TSH methods: FSSH, SDM, BCSH, and MF
using carefully designed 1D model Hamiltonians that yield the
dynamics in distinct regimes. We introduce the accuracy scores
based on the time integrals of the MSE for populations and
coherences and use them to quantitatively compare and rank
the considered methods.

Out of the tested methods, the MFXF shows the worst
quality of energy conservation and therefore is not
recommended, even though it may lead to reasonable
population and coherence dynamics in short-time simulations.
The rest of the tested methods can be ranked as follows: SHXF
≈ MQCXF > BCSH > SDM > FSSH ≫ MF. The MQCXF

Figure 13. Characteristic observables during the MQCXF dynamics with the time-dependent width approximations for (a, c, e) ECWR and (b, d,
f) DAG models. (a, b) Total energy deviation, |E(t) − E(0)|, (c, d) coherences, and (e, f) populations in the MQCXF dynamics for the ECWR and
DAG models.
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method exhibits a moderate to large drifts in total energy due
to wave function collapses that cannot obey the total energy
conservation condition (where TSH methods would have a
frustrated hop) but is generally consistent with the QD results
both in terms of populations and coherences, especially in the
long-time limit, where the traditional TSH methods may
already accumulate larger errors. The performance of the
SHXF often exceeds that of MQCXF and QD. Considering it
has no problems with energy conservation, SHXF is the
recommended approach.

Surprisingly, simple decoherence methods such as BCSH
and SDM often yield rather good agreement with QD
populations or coherences. For some models, BCSH shows a
higher score than even that of the SHXF method. We identify
several intrinsic deficiencies in these methods. First, BCSH
may show spurious “bumps” in population dynamics as well as
lead to locally overcoherent dynamics in some situations.
However, it tends to yield reasonable asymptotic behavior of
coherences and populations in longer simulations. These
spurious bumps can be excluded using the SH population, even
though it still has an internal consistency problem between the
SE and SH populations. The SDM approach is limited in its
capacity to consistently produce nonvanishing coherences in
longer simulation times, including the coherence revivals.

We also make several observations regarding the validity of
various methods in several regimes of the anticipated
dynamics, as defined by model Hamiltonians. First, the
dynamics in models with multiple NAC regions (e.g., DAG
or DC Holstein) is dominated by the electronic transitions,
where coherence eBects prevail. For these models or dynamic
regimes, even simple methods without decoherence correc-
tions such as FSSH perform rather well. In this regime,
coherences are easier to describe correctly but methods may
show larger errors in describing populations. Second, the
dynamics in models with few NAC regions (ECWR, SC
Holstein, Esch−Levine models) are more strongly aBected by
the wave packet divergences. In this regime, the population
dynamics is easier to describe but coherences are not. In this
regime, it is much more important to account for decoherence
eBects. One of the implications of such findings is that the
methodology assessment eBorts need to employ both kinds of
models and explore accuracy criteria that are based on both
populations and coherences. As an example, the Esch−Levine
model manifests itself as a good test problem for methods
incorporating decoherence corrections. The branching dynam-
ics determines the nontrivial behavior of electronic coherences,
including coherence revivals due to wave packet interference
eBects. The models of this kind should be fruitful testbeds for
methods introducing decoherence corrections. However, one
should keep in mind that coherence dynamics is not defined
solely by the topology of PESs but also by the population
transfer eBects. Thus, having parallel surfaces does not
guarantee persistent coherences, and vice versa, the coherences
may persist between states with diBerently sloped PESs.

We find that the branching correction is very important for
producing accurate population and coherence dynamics with
XF methods, although it introduces the total energy drift in the
MQCXF method. Without the BC algorithm, auxiliary
momenta change abruptly at turning points. This change
leads to unphysical AT propagation, consequently leading to
incorrect calculations of the phase gradients and quantum
momenta. This issue becomes particularly pronounced in
systems with a high kinetic energy, as observed in the Esch−

Levine dynamics. Employing the BC algorithm significantly
enhances the accuracy of predicting the population and
coherence. Thus, its use in ITMQC dynamics is highly
recommended.

Finally, we highlight the eBects of time-dependent width
approximations. We find that employing a fixed-width
approach with the meticulously selected width parameter is
su:cient to gain good accuracy in population and coherence
dynamics. Selecting Gaussian width parameters that are too
large can cause unreliable results in XF methods combined
with the BC algorithms, especially in MQCXF. Using the
parameter-free width scheme of Subotnik yields accurate
results comparable to those with the optimized width
parameter. We find that Subotnik’s and Schwartz schemes
for time-dependent width parameters behave in qualitatively
diBerent manners, with the former yielding more reliable
results. Thus, the adaptive scheme of Subotnik is recom-
mended when no a priori estimates of the width parameters are
available.
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