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ABSTRACT

Several ways of defining the probabilities of quantum state transitions in nonadiabatic trajectory
surface hopping simulations have been proposed and successfully applied to date. Despite their
success, there is a question about the uniqueness of the ways to define such probabilities – some
formulations require mathematically-motivated but still ad hoc assumptions to resolve the other-
wise under-determined problem. In this work, I present a new approach (termed FSSH-3) to define
the hop proposal probabilities. Unlike other approaches, it does not require any ad hoc assump-
tions and is based on the least squares optimisation of certain functionals combined with particular
choices of initial conditions for the target variables. A comprehensive comparative study of several
established surface hoppingmethodologies is conducted using several multiple-statemodel Hamil-
tonians. The recently reported formulation of the FSSH-2method is extended to the case ofmultiple
states and validated. It is demonstrated that the performance of all studied methods, including the
new FSSH-3 (in two variants) is robust with respect to integration time step used but only if local
diabatisation approach is used. Under such conditions, all methods yield nearly identical results, in
excellent agreement with fully quantum simulations, even with sufficiently large integration time
steps.
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Introduction

The Fewest Switches Surface Hopping (FSSH) algorithm

is one of the most popular approaches for mod-

elling quantum-classical nonadiabaticmolecular dynam-

ics (NA-MD), with the seminal work of John Tully

[1] cited over 4000 times at this point. Although the

algorithm is formulated in a very speci�c way, the

de�nition of the hopping probabilities to di�erent states

is based on a rather arbitrary partitioning of the overall

hopping probability from a given starting state. Upon a

closer look, one can realise that probability partitioning

used in the FSSH is only one of the in�nitely many pos-

sibilities. Thus, although the FSSH algorithm is unique
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in its de�nition, the de�nitions of the hopping proba-

bilities are not. As a manifestation of this fact, several

alternative de�nitions of hopping probabilities within

the framework consistent with that of the FSSH have

been proposed in the literature, all addressing various

shortcomings of the FSSH-based de�nitions of hopping

probabilities. For instance, Markov state surface hopping

(MSSH) de�nes the hopping probabilities in a naïve way

based on quantum populations but enables capturing

the superexchange e�ects [2], global �ux surface hop-

ping (GFSH) de�nes the hopping probabilities based on

the analysis of positive and negative population �uxes

for all involved states, removes the direct dependence of

© 2024 Informa UK Limited, trading as Taylor & Francis Group



2 A. V. AKIMOV

the hopping probabilities on the potentially numerically

problematic nonadiabatic couplings (NACs) and hence

enables using larger electronic integration timesteps in

such algorithms [3]. Very recently, a new de�nition of

hopping probabilities within the framework of FSSH was

proposed by Araujo, Lasser, and Schmidt [4], dubbed the

FSSH-2. Similar to GFSH, the approach is formulated

using only the state populations and does not directly

involve NACs. However, while the theoretical framework

used to de�ne the hopping probabilities in FSSH-2 is

solid for 2-state problems, it may be not generalisable to

the arbitrary number of states. In summary, although the

hopping probabilities of FSSH and FSSH-2 are based on

rather intuitive and mathematically-motivated assump-

tions, they are all formulated in a rather ad hoc way.

The logical question one may ask then is: is it possible

to de�ne the hopping probabilities between states in a

non-ad-hoc, non-human-supervised way and preferably

relying only on the state population information at the

consecutive timesteps?

In this work, I investigate the possibility of de�ning

and using such a non-ad-hoc, non-human-supervised

hopping probability. It is shown that such probabili-

ties can be found by solving a least squares optimisa-

tion problem for state-to-state rate constants combined

with a physics-motivated partitioning of the state hop-

ping probabilities in proportionality to the found opti-

mal rate constants. The optimisation can be formulated

using only the constraints of initial state populations

and either the population �nite di�erences or the �nal

state population at the end of each integration time

interval. The resulting algorithms are dubbed current-

based or population-based FSSH-3, respectively. The new

approach is demonstrated using several N-state crossing

models of the Esch-Levine [5] kind. The performance of

the FSSH-3 approaches is compared to that of the pre-

viously reported FSSH, FSSH-2, and GFSH algorithms.

The performance of all algorithms when used with dif-

ferent integration time steps and electronic propagation

algorithms is analysed. Finally, the dependence of the

FSSH-3 results on the choice of the initial guess of the

rate constant matrices is investigated.

Methods

To set the stage for a mathematical formulation of the

problem being solved in this work, I �rst give a gen-

eral overview of the key elements of the FSSH-like tra-

jectory surface hopping (TSH) algorithms. The distinc-

tions between FSSH, GFSH, and FSSH-2 are discussed

next. Finally, I proceed to the formulation of the FSSH-3

approach.

Overview of the generic FSSH-like TSH algorithms

All quantum-classical TSH schemes discussed in this

work share a common framework which is summarised

in this section. To start with, nuclei are treated as clas-

sical particles, that follow the Hamiltonian equations of

motion:

q̇(I) = M−1p(I), (1a)

ṗ(I) = F(I)
aI
. (1b)

The bolded notation is used to denote multidi-

mensional (f degrees of freedom, DOF) vectors, x =
(x0, x1, . . . xf−1)

T or matrices, the dot over the symbols

indicates the time-derivatives. The superscript in paren-

thesis denotes the trajectory index, and the sub-script aI
in Eq. (1b) indicates that the force for the trajectory I

is determined according to the active electronic state of

that trajectory, aI . Here, q, p, and F are the nuclear coor-

dinates, momenta, and forces, respectively. The diagonal

matrix M = diag(m0,m1, . . . ,mf−1) is composed of the

masses of each nuclear DOF.

The electronic DOFs are treated quantum mechani-

cally. Namely, the overall electronic wavefunction of the

system, �(r, t; q(t)) is represented in the basis of elec-

tronic adiabatic functions,{ψi}, that depend on electronic
coordinates, r, functionally but depend on nuclear coor-

dinates only parametrically, that is ψi = ψi(r; q(t)):

�(r, t; q(t)) =
N−1
∑

i=0

ci(t)ψi(r; q(t)). (3)

Here, N is the number of electronic basis states, ci(t)

are the time-dependent coherent amplitudes of adiabatic

basis functions. The electronic wave function � evolves

according to the time-dependent Schrodinger equation

(TD-SE):

i�
∂�

∂t
= Ĥel� . (4)

Here, � is the reduced Planck’s constant (� = 1 in

atomic units), Ĥel(r, t; q) is the electronic Hamiltonian

operator, such that:

Ĥel(r, t; q)ψi(r; q(t)) = Ei(q(t))ψi(r; q(t)). (5)

Taking into account Eqs. (3) and (5), Eq. (4) can be

simpli�ed to:

i�
∂ci

∂t
=

N−1
∑

j=0

Hvib
ij cj, (6)

where Hvib
ij = Eiδij − i�dij is the vibronic Hamilto-

nian, dij = 〈ψi| ∂
∂t |ψj〉 = hTijM

−1p is the scalar time-

derivativeNAC (also referred to asNACmatrix elements,
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NACME), andhij = 〈ψi|∇q|ψj〉 is the derivative coupling
vector.

The propagated Eq. (6) de�nes a sequence of time-

dependent adiabatic amplitudes, ci(t). This information,

perhaps together with the NACME information is used

to compute the adiabatic state hopping probabilities, as

discussed in the next sub-section. The hopping proba-

bilities are used to stochastically change the index of the

active state for each trajectory. Not all proposed hops

are accepted. Only the hops i → j that can conserve the

total energy upon rescaling of nuclearmomenta along the

derivative coupling vector hij can be accepted:

∃α ∈ R : p̃ = p − αh :
1

2
p̃
T
M−1p̃ + Ej

= 1

2
pTM−1p + Ei. (7)

If the proposed hop is accepted, the nuclear momenta

are adjusted according to Eq. (7), and the active state is

reset to the new state onto which the system hopped. If

the proposed hop is not accepted because Eq. (7) can-

not be satis�ed, the proposed hop is rejected (a frustrated

hop). In the original prescription of Tully [1], nuclear

velocities are reverted upon every frustrated hop. In the

present approach, I adapt the Jasper-Truhlar’s criterion

[6] according to which the momenta along the hij direc-

tion are inverted only if the following two conditions are

satis�ed: FTi hij · FTj hij < 0 and (M−1p)Thij · FTj hij < 0.

Hop proposal probabilities in FSSH, GFSH, and

FSSH-2

Now, that we have revised the overall TSH scheme, we

can focus on the key distinguishing element of the FSSH,

GFSH, and FSSH-2 algorithms – the formulas to compute

the hop proposal probabilities.

FSSH hopping probability formula

The original work of Tully derives the hopping probabil-

ities for a 2-state system and assumes the resulting for-

mula is applicable to systems with any number of states.

Although such a solution is possible, it is not unique. To

better understand this challenge, it is instructive to resort

to the presentation of the FSSH algorithm by Fabiano,

Keal and Thiel [7]. One de�nes the probability of leaving

a state i during the time interval [t, t + �t] as:

Pi→∗(t, t + �t) = σ

(

ρii(t) − ρii(t + �t)

ρii(t)

)

≈ σ

(−ρ̇ii(t)�t

ρii(t)

)

= σ

(

−�ρii(t)

ρii(t)

)

= σ

(

−ρii(t + �t) − ρii(t)

ρii(t)

)

. (8)

Here, I introduce the σ function (also referred to as sigma

function in this work) for the notational convenience:

σ(x) = xH(x) =
{

x, x ≥ 0

0, otherwise
, (9)

where H(x) is the Heaviside (step) function. The sigma

function only ensures that the hopping probability out

of a state i is de�ned only if the population on this state

decreases, ρ̇ii < 0. If the population of the state increases,

the hopping out of this state would not be consistent

with the fewest switches principle. The time-derivative

of the population can be replaced with the correspond-

ing expression coming from the TD-SE and involving

NACMEs:

Pi→∗(t, t + �t) ≈ σ

(−ρ̇ii(t)�t

ρii(t)

)

= 2σ

(
∑N−1

j=0 Re(ρ∗
ijdij)�t

ρii

)

≈
N−1
∑

j=0

σ

(

2Re(ρ∗
ijdij)�t

ρii

)

. (10)

It is intuitive and natural to interpret each term in the last

sum,

PFSSHi→j = σ

(

2Re(ρ∗
ijdij)�t

ρii

)

, (11)

as the hopping probability from state i to state j. Although

this approach is a possibility, it is based on a rather ad hoc

assumption. First, strictly speaking, only the total prob-

ability of leaving a state is well-de�ned. The partition of

the total probability into channels for hopping into di�er-

ent states is rather arbitrary, based only on the intuitive

interpretation of the resulting formula. The partition is

not unique as non-unique the representation of any num-

ber in terms of a sum of other numbers. For instance,

the number 5 can be represented as 1+ 4, 2+ 3, or even

6+ (−1), to show a few of the in�nite number of possi-

ble ways to partition it. The second approximation, more

visible in the current formalism involving the sigma func-

tion is that the sigma function of a sum is not the sum of

the sigma functions as sneakily introduced in the last step

of Eq. (10) to arrive at the FSSHhopping probabilities for-

mula. Note that, the FSSH is commonly formulated using

the ‘max’ function, that is: Pi→j = max

(

0,
2Re(ρ∗

ijdij)�t

ρii

)

,

which has the same purpose as the sigma function in the

current notation.
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GFSH hopping probability formula

In the GFSH approach, all states are classi�ed into two

groups – the states whose population decrease in the

integration interval [t, t + �t] (group A, that is: i ∈ A :

�ρii < 0) and the states whose populations increase

(group B, that is: i ∈ B : �ρii > 0). The hopping proba-

bility between states belonging to these di�erent groups

of states is given by:

PGFSHi→j =
�ρjj

ρii

�ρii
∑

k∈A �ρkk
, i ∈ A, j ∈ B. (12)

Upon a closer look, it can be interpreted as the prod-

uct of probabilities of leaving the state i, Pi→∗ = −�ρii
ρii

(the total probability density �ux out of state i) and

the fraction of the total �ux that ends up in a given

state j if we start with the state i, P(j|i) = �ρjj
∑

k∈A(−�ρkk)
=

− �ρjj
∑

k∈A �ρkk
, which can be regarded as a conditional prob-

ability:

PGFSHi→j = P(j|i)Pi→∗ (13)

As noted above, only the total probability �ux out of

a given state is rigorously de�ned in the FSSH, while the

splitting of total �ux into distinct channels is based on the

mathematical structure of the equation. Unlike the FSSH,

the GFSH partitions the total �ux among di�erent chan-

nels based on the corresponding incoming �uxes to the

target states, which is a solid physically motivated basis

to do so.

FSSH-2 hopping probability formula

The FSSH-2 also starts with the de�nition of the total

out�ow probability �ux from the starting state i given

by the �rst equality in Eq. (10). Pi→∗(t, t + �t) ≈
σ

(

−ρ̇ii(t)�t
ρii(t)

)

= σ
(

−�ρii(t)
ρii(t)

)

, where, again, �ρii(t) =
ρii(t + �t) − ρii(t). The key distinguishing idea of the

FSSH-2 is to use the normalisation condition,
N−1
∑

i=0
ρii = 1

in the above formula for the total out�ow probability:

Pi→∗(t, t + �t) = σ

(

−�ρii(t)

ρii(t)

)

= σ

(

−ρii(t + �t) − ρii(t)

ρii(t)

)

= σ

⎛

⎜

⎜

⎜

⎝

−

(1 −
∑

j �=i ρjj(t + �t))

−(1 −
∑

j �=i ρjj(t))

ρii(t)

⎞

⎟

⎟

⎟

⎠

= σ

(
∑

j �=i(ρjj(t + �t) − ρjj(t))

ρii(t)

)

= σ

⎛

⎝

∑

j�=i

ρjj(t + �t) − ρjj(t)

ρii(t)

⎞

⎠ (14)

The formula is then interpreted in a spirit similar to the

idea of the FSSH, as

PFSSH−2
i→j =

ρjj(t + �t) − ρjj(t)

ρii(t)
, (15)

being the hopping probabilities corresponding to each

channel of state transitions. Note that the original work

of Araujo and co-workers does not introduce the sigma

function, which is re�ected in it being omitted in Eq. (15).

However, as the authors indicate in their work, Eq. (15)

if used directly could lead to incorrect results. As they

suggest, when ρjj(t + �t) − ρjj(t) > 0 and the out�ow

from the state i is zero (ρii(t + �t) − ρii(t) = 0), Eq. (15)

would still suggest a i → j transition, which should not

really occur. Thus, the formula is corrected as:

PFSSH−2
i→j = min

(

−ρii(t + �t) − ρii(t)

ρii(t)
,

ρjj(t + �t) − ρjj(t)

ρii(t)

)

, (16)

This formula taken directly is still potentially problem-

atic if the population of states other than the current

active state decreases (∃k : ρkk(t + �t) − ρkk(t) < 0). In

this situation, hopping probabilities can becomenegative.

To �x this shortcoming, one simply has to apply the sigma

function to each of the two arguments of the minimum

function:

PFSSH−2
i→j = min

(

σ

(

−ρii(t + �t) − ρii(t)

ρii(t)

)

,

σ

(

ρjj(t + �t) − ρjj(t)

ρii(t)

))

,∀j �= i, (17a)

PFSSH−2
i→i = 1 −

∑

j�=i

PFSSH−2
i→j . (17b)

It is in this form, the FSSH-2 is now implemented in the

Libra software [8,9].

The new approach to hop proposal probabilities via

the optimisation problem (FSSH-3)

As demonstrated above for both the FSSH and FSSH-

2, the hopping probabilities to certain states are de�ned

mainly by the structure of the equations, by the sum-

over-states partitioning. Although intuitive, such a way

is not physically motivated and is only one of the

in�nitely many possible other ways. Here, I propose

a generic framework that aims to remove this arbi-

trariness, although in a somewhat ‘mathematical black
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box’ way. The hopping probabilities can be de�ned

as a solution to the following optimisation prob-

lem. Assume, the vectors of state populations at two

times are ρ(t) = (ρ00(t), ρ11(t), . . . , ρN−1,N−1(t))
T and

ρ(t + �t) = (ρ00(t + �t), ρ11(t + �t), . . . , ρN−1,N−1

(t + �t))T . One can then formulate a chemical kinetics

problem:

ρ(t + �t) − ρ(t)

�t
= J(t, t + �t)ρ(t), (18)

Here, the matrix element Jij is the rate constant for the

j → i transition, the positive value indicates that hav-

ing a population in state j initially leads to the increase

of the population of state i at the end of the time inter-

val [t, t + �t]. Thus, there is a non-zero probability of

such a transition. In the spirit of the fewest switches

surface hopping principle, one can consider negative

values of the J matrix elements as the no-hop crite-

rion. The total probability of hopping out of a state

is already well-de�ned and was introduced above, e.g.

Eq. (8). Thus, the probability of staying in the same

state is PFSSH−3
i→i (t, t + �t) = 1 − Pi→∗. The probability

of the hopping to other states should be proportional

to the total probability to leave the initial state as in

Eq. (13), PFSSH−3
i→j (t, t + �t) = P(j|i)Pi→∗ The question

is how to determine the conditional probabilities P(j|i).
Apparently, such probabilities are proportional to the

corresponding rate constants, P(i|j) ∼ σ(Ji,j) and should

add up to unity, that is
∑

i�=j

P(i|j) = 1.Note that such a sum

represents the probability of ending up in any of the non-

starting states, provided we have already left the initial

state j, so the summation skips the index of the starting

state, i = j. Alternatively, one can enforce P(j|j) = 0 since

the probability of ending in state j is zero if we are certain

that we have left that state. This condition is also consis-

tent with the de�nition of the sigma function σ(0) = 0

and the convention of having Jjj = 0 in master equation,

Eq. (18). It is easy to observe that to satisfy all the above

conditions, one can choose:

P(i|j) =
σ(Ji,j)

∑

k σ(Jk,j)
. (19)

To reiterate, the hopping probabilities in FSSH-3 are

given by:

PFSSH−3
i→j = σ

(

−�ρii(t)

ρii(t)

)

σ(Jj,i)
∑

k σ(Jk,i)
,∀j �= i, (20a)

PFSSH−3
i→i = 1 − σ

(

−�ρii(t)

ρii(t)

)

. (20b)

The next step is to determine the rate constants matrix

J with the condition of Jii = 0, ∀i. Eq. (18) can be viewed

as a matrix equation:

y = Jx, (21)

with y = �ρ

�t = ρ(t+�t)−ρ(t)
�t and x = ρ(t). Unlike many

other situations when an equation of such kind arises, the

unknown here is thematrix J. For a general N-state prob-

lem, Eq. (21) imposes N constraints, while there are N2

unknowns. The problem is underdetermined, meaning

that there is no unique solution to it, even for the smallest

problem with N = 2. One may try enforcing the unique

solution by introducing additional constraints, such as

some additional equations relating coherences. However,

it is unclear how to introduce such additional equations

speci�cally. For the time being, a plausible practical solu-

tion can be given in terms of the least squares �tting, that

is via solving the following optimisation problem:

J0 = min
J

||y − Jx||22, (22)

Matrix calculus yields a solution that could also be

envisioned if one �rst multiplies both sides of Eq. (21)

by xT from the right and thenmultiplies both sides of the

resulting equation by (xxT)−1 from the right:

J0 = (yxT)(xxT)−1. (23)

However, this solution is not practical since the matrix

xxT may be non-invertible. Indeed, already for a simple

2-level problemwith all population residing on one of the

states, that is with x = (1, 0), one runs into trouble, since

xxT =
(

1 0

0 0

)

, with det(xxT) = 0.

A more practical and robust way to solve the min-

imisation problem Eq. (22) is to use gradient descent

optimisation. Here, it is important to start with a good

guess of the Jmatrix. Speci�cally, all the rate constants are

initialised to be zero initially. The matrix J is then opti-

mised using a steepest descent algorithm until the error

||y − Jx||22 becomes smaller a speci�ed threshold value ε

which in this work is set to the value of 10−12. Following

the recent nomenclature of Araujo and co-workers, the

present approach is dubbed FSSH-3.

Note, that this scheme does not aim to provide sig-

ni�cant practical advantages over the original FSSH

approach or other TSH schemes. It is intended to demon-

strate the conceptual connection between the intuitive

approach taken in the FSSH and the optimisation-rooted

grounds of the FSSH-3 method. Similar to the GFSH and

FSSH-2, the FSSH-3 hopping probabilities do not directly

depend on the NACME values, and hence can be used

with larger electronic integration timesteps.
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Simulation details

In this work, the FSSH, GFSH, FSSH-2 and the new

FSSH-3 methods are tested using three linear crossing

model Hamiltonians of Esch and Levine [5] (Figure 1).

In the diabatic representation, the model Hamiltonians

are given by:

H0,0 = −ω0x,ω0 > 0, (24a)

Hi,i = ω1x − iδ − εi,ω1 > 0, 0 < i ≤ N − 1, (24b)

εi = ε,∀i ≥ icrit , (24c)

H0,i = Hi,0 = V ,∀i : 0 < i ≤ N − 1, (24d)

Hi,j = 0, otherwise. (24e)

Speci�cally, I consider three models: a 2-stateModel I,

a 3-stateModel II, a 5-stateModel III, and a 4-stateModel

IV (Figure 1). For all models, ω0 = 0.015 Ha
Bohr ,ω1 =

Figure 1. Model Hamiltonians considered in this work: (a, b) Model I; (c, d) Model II; (e, f ) Model III; (g, h) Model IV. The left column (a, c,
e, g) shows the diabatic energies, right column (b, d, f, h) shows the adiabatic energies.
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0.005 Ha
Bohr ,V = 0.005Ha, ε = 0Ha, δ = 0.01Ha. For the

�rst threemodels, the only di�erence between them is the

number of states and the index of the critical state (Model

I: N = 2, icrit = 2; Model II: N = 3, icrit = 3; Model III:

N = 5, icrit = 4). The last model IV is formulated in a

somewhat more general way:

Hij = Vij + ωijx,∀i, j ∈ [0,N − 1]. (25)

The parameters chosen are: Vij = 0.001Ha,∀i �= j, ωij =
0.0,∀i �= j, V00 = 0.0,V11 = 0.001,V22 = V33 = 0.05,

ω00 = ω22 = −0.0025 Ha
Bohr , ω11 = ω33 = 0.0025 Ha

Bohr .

This model is discussed in the work of Araujo et al.

[4] in the context of potential limitations of the FSSH-

2 approach. It consists of two pairs of crossing diabats,

but separated by a sizable gap. The tests are also con-

ducted for twomoremodels of this kind (withN = 3 and

N = 5 but distinct other parameters), but the results are

not discussed in this work since they do not add new con-

clusions, while the conclusions derived based on the �rst

three models equally hold for the additional models. The

details and the results of such calculations are available in

the public Zenodo repository [10].

All the TSH methods and model Hamiltonian con-

struction functions are implemented in Libra software

[8,9]. The methods reported here are included (or

�nalised) in the new release of the Libra code, v 5.7.1

[11], prepared together with this work. In all calcula-

tions, except when explicitly noted, the initial electronic

state is selected as the uppermost adiabatic state (which

for this coordinate corresponds to the 0 diabatic state).

The mass of the nucleus is taken m = 1800a.u. (where

1a.u. is the mass of the electron,me). The average surface

hopping populations are computed using 2000 trajecto-

ries. The dynamics is integrated for a total time of 1000

a.u., which is su�cient for all the trajectories to pass the

crossing region. The TD-SE, Eq. (6), is integrated using

the local diabatisation (LD)-based approach [12] similar

to that of Granucci and co-workers [13]. The approach

automatically accounts for any phase inconsistencies of

electronic states thatmay occur during the dynamics [14]

and enables tracking the adiabatic states’ identities dur-

ing the course of adiabatic evolution, a notorious problem

encountered in many situations [15]. The total duration

of simulations is kept �xed to 1000 a.u. of time, but

I consider several integration time-steps varying from

�t = 4a.u. to �t = 40a.u.. The nuclear and electronic

timesteps are chosen to be the same.

The initial nuclear coordinates and moments of the

trajectories are sampled from the Gaussian distribution:

P(q, p; q0, p0, σq, σp) ∼ exp

(

− (q − q0)
2

σ 2
q

)

× exp

(

− (p − p0)
2

σ 2
p

)

. (25)

The mean values of the distribution are taken as q0 =
−2a.u. and p0 = 10.0a.u. in position and momentum

directions, respectively. The widths of the distributions

correspond to the width of the ground state probabil-

ity density distribution (Gaussian) of the ground state

of a harmonic oscillator with the force constant k =
0.01Ha/Bohr2, that is σq = 1

2
√
mk

and σp = 1
2

√
mk.

Although the present work aims at a comparison

of several TSH schemes to the ‘reference’ FSSH cal-

culations, it is still helpful to compare all the results

obtained to the true reference of numerically exact cal-

culations. In this work, the split-operator-Fourier trans-

form (SOFT) integration scheme of Koslo� and Koslo�

[16] as implemented in Libra software is used to pro-

duce such reference dynamics. The following setups are

used in the SOFT simulation. The initial wavefunction

is initialised as a Gaussian wavepacket on the adiabatic

state corresponding to the initial adiabatic state used in

the TSH simulations. The initial coordinate, momentum,

and width parameters are chosen to be consistent with

the counterparts used to sample the ensembles of trajec-

tories. Note the width parameters used in the wavepacket

de�nition are half of the σq and σp mentioned above

since the latter correspond to the Gaussian describing

the probability density rather than the wavefunctions.

Similar to TSH simulations, the mass of the particle is

chosen to be m = 1800me. The integration on the grid

is conducted for 1000 a.u. of time with the 4.0 a.u. inte-

gration timestep. The position grid spacing is chosen to

be dx = 0.025Bohr, which is su�cient to accommodate

the momenta in the range from – 20 a.u. to 20 a.u. The

coordinate extent of the grid is chosen su�ciently large to

avoid any wavepacket scattering at the boundaries within

the duration of the quantum dynamics simulation.

The input �les for conducting all TSH and SOFT cal-

culations reported in this work as well as the visualisation

scripts and �les are publicly available via GitHub and

Zenodo [10]. The repository also contains the results for

the additional two models, not discussed in this work.

However, the results for these additional models are in

line with the discussion presented in the current work

using Models I – IV.

Results and discussion

The evolution of the TSH populations of all states in sim-

ulations using models I-III are shown in Figures 2–4,

respectively. The outcomes are embarrassingly simple to

present – all the methods generate nearly identical pop-

ulation dynamics. Furthermore, the results are nearly
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Figure 2. Evolution of the state populations for Model I com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d,
f, h) 40 a.u. State colour codes: 1 – green; 0 – red. Dashed lines
represent the results of numerically exact calculations. The local
diabatisation is used to integrate TD-SE.

Figure 3. Evolution of the state populations for Model II com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 2 – purple, 1 – green; 0 – red. Dashed
lines represent the results of numerically exact calculations. The
local diabatisation is used to integrate TD-SE.

insensitive to the electronic/nuclear integration time-

steps used. In principle, this is an expected result given

that all four methods are simply di�erent ways of de�n-

ing the surface hopping probabilities. They do not di�er

in the level of physics they capture (e.g. none of them

introduces decoherence corrections). However, such an

ideal agreement of the results yielded by all the methods

still carries a notable value. There are at least three main

points to highlight.

First, the mere agreement of the FSSH-3 results to

those of the well-established FSSH and GFSH methods

for multiple models proves that the optimisation-based

approach with no ad hoc splitting of the hopping prob-

abilities to distinct states is indeed equivalent to the

Figure 4. Evolution of the state populations for Model III com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 4 – orange, 3 – blue-grey, 2 – purple,
1 – green; 0 – red. Dashed lines represent the results of numeri-
cally exact calculations. The local diabatisation is used to integrate
TD-SE.

pre-determined formulas for the corresponding hopping

probabilities, which is the main message of this work.

Second, the current results demonstrate that the

FSSH-2 corrected to include the sigma-function trans-

forms does indeed perform as intended, also for the

model Hamiltonians with more than 2 states. Note that

the original work of Araujo and co-workers discussed the

potentially problematic situations for systemswithN > 2

states and the performance of the method was not clear

for model Hamiltonians with more than 2 states. Poten-

tially, for this reason, the reported test included only

2-state problems. The present results demonstrate that

the FSSH-2 approach is indeed applicable to systemswith

more than two states, but the sigma function correction

is needed.

Third, the present results are somewhat surprising

because the population dynamics practically does not

depend on the choice of the electronic/nuclear integra-

tion timestep. At the same time, the works reporting

the GFSH and FSSH-2 showed a stronger dependence

of the results on the integration timesteps, especially

for the original FSSH prescription, and demonstrated

that the newly introduced methods (GFSH and FSSH-

2) produced the converged results with su�ciently large

integration timesteps. I attribute this surprisingly robust

performance of allmethods to the use of the LD approach

in the TD-SE integration. To test this hypothesis, the

calculations for all three models are repeated using the

NAC-based TD-SE integrator, discussed elsewhere [12].

Since the NAC-based integrator does not automatically

resolve the electronic wavefunction phase inconsistency

problem, a suitable correction is applied [14]. In addition,
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Figure 5. Evolution of the state populations for Model I com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 1 – green; 0 – red. Dashed lines repre-
sent the results of numerically exact calculations. The NAC-based
approach together with the phase correction and mincost state
tracking are used to evolve coherent amplitudes.

Figure 6. Evolution of the state populations for Model II com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 2 – purple, 1 – green; 0 – red. Dashed
lines represent the results of numerically exact calculations. The
NAC-based approach togetherwith thephase correction andmin-
cost state tracking are used to evolve coherent amplitudes.

the state identity is tracked using the min-cost algorithm

[15]. The results of such calculations are summarised in

Figures 5–7.

Although for su�ciently small integration timestep of

4.0 a.u. theNAC-based integration yields results identical

to the LD counterparts and agrees perfectlywith the exact

reference or LD-based results, one can clearly observe

notable deviations of the TSH-based populations from

the exact value for larger integration timestep of 40.0

a.u. For the 2-state Model I, the deviations are relatively

mild and are larger for the FSSH-2 and FSSH-3 than for

the FSSH and GFSH methods (Figure 5). For the 3-state

Figure 7. Evolution of the state populations for Model III com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 4 – orange, 3 – blue-grey, 2 – purple,
1 – green; 0 – red. Dashed lines represent the results of numer-
ically exact calculations. The NAC-based approach together with
the phase correction andmincost state tracking are used to evolve
coherent amplitudes.

Model II, the deviations are critical. In fact, the popula-

tion dynamics is completely di�erent from the reference

exact dynamics or the corresponding converged TSH cal-

culations (Figure 6). Similar to calculations for Model

I, FSSH-2 and FSSH-3 behave similarly to each other,

forming one group of methods. The FSSH and GFSH

algorithms form another group. Compared to FSSH-2

and FSSH-3, both FSSH and GFSH predict much smaller

population decay of the initial state 2 (purple curve).

Thus, the former may be considered somewhat supe-

rior to the latter since such behaviour is closer to the

full depopulation of state 2 observed in the converged

calculations and fully quantum calculations. Similar to

results of the Model I, the results of Model III show

somewhat larger errors for FSSH-2 and FSSH-3 meth-

ods compared to those of FSSH andGFSHones, although

still small in absolute values (Figure 7). Although the

obtained results suggest the FSSH-2 and FSSH-3 may be

somewhat more robust than FSSH and GFSH, it is too

premature to make a de�nite conclusion about it. Amore

extensive and focused study may be needed, but such a

goal goes beyond the scope of the present work.

To summarise, the observed dependence of the com-

puted dynamics on the integration time-step used is

much stronger when the NAC-based integration of TD-

SE is used instead of the LD. Thus, the goal of fast conver-

gence of TSH calculations with respect to the integration

timesteps (what both the GFSH and FSSH-2 methods

pursued) is better achieved by using the LD-based inte-

grator instead of the NAC-based one rather than by for-

mulating the hopproposal probabilities in away that does

not explicitly depend on NAC values.
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Although the performance of the FSSH-3 approach

is quite encouraging, it may be initial guess-dependent.

Indeed, since the approach is based on the minimisation

of the error de�ned in Eq. (22), one may end up with

one of the multiple possible solutions (local minima),

depending on where one starts. The results discussed so

far are obtained with the zero initial guess of the rate

constants, matrix J = 0 in Eq. (22). This is a situation

when there are no population �uxes in the system. Start-

ing from such a guess, it is likely that the closestminimum

would also correspond to one of the possible combina-

tions of the smallest population �uxes between states.

Such a solution is conceptually close to the idea of the

fewest switches surface hopping.

To illustrate the dependence of the FSSH-3 method

on the choice of initial guess for the rate constants

matrix J, the calculations on all threemodels are repeated

again, but now de�ning the initial J matrix elements as:

Ji,j = 1, i� − j = 1 and Ji,j = −1 if i − j = −1 and Ji,j =
0 otherwise (Figures 8–10). One can clearly observe that

for Models I and III (Figures 8 and 10) the approach

generates population evolutions that are substantially dif-

ferent from the exact results (or the converged TSH ones,

which are the same in thesemodels), even though the tar-

get error tolerance for the metric y − Jx22 is set to 10−15,

tighter than the tolerance of 10−12 used in the default

FSSH-3 calculations. Luckily, the proper state of the rate

constants is found for Model II (Figure 9). As before, the

calculations are not sensitive to the choice of the inte-

gration time-step, since the LD is used to propagate the

coherent amplitudes when solving TD-SE.

Figure 8. Evolution of state populations for Model I computed
with the FSSH-3 method using different integration time-steps
(columns), but with the initial rate constants (J matrix) chosen in a
specific way described in the text. (a, b) the population dynamics;
(c, d) the evolution of the error given by y − Jx22. The integration
time-steps are (a, c) 4 a.u.; (b, d) 40 a.u. State colour codes in panels
(a) and (b): 1 – green; 0 – red. Dashed lines represent the results of
numerically exact calculations. The LD-based approach is used to
evolve coherent amplitudes.

Figure 9. Evolution of state populations for Model II computed
with the FSSH-3 method using different integration time-steps
(columns), but with the initial rate constants (J matrix) chosen in a
specific way described in the text. (a, b) the population dynamics;
(c, d) the evolution of the error given by y − Jx22. The integration
time-steps are (a, c) 4 a.u.; (b, d) 40 a.u. State colour codes in panels
(a) and (b): 2–purple, 1–green; 0– red.Dashed lines represent the
results of numerically exact calculations. The LD-based approach
is used to evolve coherent amplitudes.

Figure 10. Evolution of state populations for Model III computed
with the FSSH-3 method using different integration time-steps
(columns), but with the initial rate constants (J matrix) chosen in a
specific way described in the text. (a, b) the population dynamics;
(c, d) the evolution of the error given by y − Jx22. The integration
time-steps are (a, c) 4 a.u.; (b, d) 40 a.u. State colour codes in pan-
els (a) and (b): 4 – orange, 3 – blue-grey, 2 – purple, 1 – green;
0 – red. Dashed lines represent the results of numerically exact
calculations. The LD-based approach is used to evolve coherent
amplitudes.

The found dependence of the dynamics on the ini-

tial guess is a purely mathematical problem, which is

unlikely related to physical e�ects such as decoherence

or detailed balance. It can be viewed as �nding one of

the N roots in the N-th order polynomial or N eigen-

vectors of the rank-N matrix. This work starts with the

discussion of the presence ofmultitude of possibilities for

partitioning the total hopping probabilities into pair-of-

states-speci�c contributions. The FSSH-3 solution pro-

posed in this work does not make this problem to fully
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disappear. In fact, one of the key results of this work is

that one can �nd a solution that would be the closest to

the FSSH by conducting the optimisation with the initial

guess closest to the smallest overall currents. The depen-

dence of the dynamics computed by the FSSH-3 on the

initial choice of the probability currents means that the

FSSH-3 solutions are not unique. However, the hopping

probabilities are de�ned ‘automatically’ as a result of the

optimisation of the identi�ed functionals. In that sense,

the approach is free of ambiguity since one needs not

de�ne the splitting of the total probability to the pairs-

of-states contribution in a ‘manual’ (and sometimes ad

hoc) way. The FSSH-3 does not yield a unique solution

as this solution depends on the initial guess, but it identi-

�es the solution based on only one human-guided choice

– the initial guess of the state of probability currents.

This choice is shown to yields the results consistent with

other established methods such as FSSH, FSSH-2, and

GFSH, thus providing additional support for the hopping

probability partitioning given by these methods.

The optimisation of problem for the polynomial with

N minima is related to a corresponding root-�nding

problem for the derivative of such a polynomial, which

can also be related to the eigenvalue problem. The present

work suggests that there may be several special hop par-

titioning schemes (stationary regimes), which may be

viewed as the eigenvectors of the corresponding prob-

lem (e.g. the set of the linear equations derived by setting

the derivatives of the error functional with respect to

all the �uxes or hopping probabilities to zero, although

this is just a loose recipe to arrive to it). The FSSH-

3 solution may be one such eigenvectors in the space

of the hopping probabilities, likely the one correspond-

ing to the lowest probability �ux. In the excited-states

terminology, the FSSH (and FSSH-3) could thus be inter-

preted as the ‘ground-state’ methodology in the sense

that it corresponds to the smallest set of �uxes between

the states. Likely, the ‘excited-state’ approaches are also

possible, in which the total probability currents may be

not minimal, although it is not clear yet what advantage

they would have. In fact, the frequent hopping method-

ologies similar to those reported by Tully and Preston

several decades ago [17], and re-introduced by others

more recently [2], may be considered examples of such

‘excited-state’ methodologies. I stress that in the con-

text of the current paragraph, the terms ‘excited-state’

or ‘ground-state’ refer to the level of the methodology

itself (the extent to which the total hopping probabil-

ity currents are ‘quantized’), not to the traditional use

of such terms to indicate the nature of states between

which quantum transitions occur. It may be an interest-

ing topic to explore the ‘�ux-quantization’ surface hop-

ping methodologies in the future, in which non-fewest

switches surface hops would be possible. In this regard,

the FSSH-3 may serve a convenient starting point.

Finally, I test an alternative formulation of the FSSH-

3 approach. It follows the same machinery as described

already. The only di�erence is the de�nition of the

x and y variables in Eq. (21). As a reminder, in the

default approach, these variables are chosen as: y =
�ρ

�t = ρ(t+�t)−ρ(t)
�t and x = ρ(t). Together with the ini-

tial guess of the choice of the initial J matrix to be a

zero matrix, it makes the FSSH-3 approach. I refer to it

as a current-based FSSH-3 formulation. In the modi�ed

version, I choose y = ρ(t + �t) and x = ρ(t) and ini-

tialise the J matrix to be the identity matrix, J = I. This

version is referred to as the population-based FSSH-3.

One can recognise that this approach is simply the �nite-

di�erence version of the master equation, Eq. (21). Here,

the choice of the initial J matrix as the identity matrix

corresponds to the choice of the zero J matrinx in the

current-based FSSH-3 formulation.

As a demonstration, the dynamics computed for all

three models using the population-based version of

FSSH-3 is shown in Figures 11–13, together with the

evolution of the error metric y − Jx22 with the conver-

gence threshold set to the default 10−12 value. The results

of the population-based FSSH-3 calculations perfectly

agree with those of the reference (exact) calculations.

Thus, such an approach is another valid alternative for

the FSSH-3 framework.

In addition to the results obtained forModels I-III, cal-

culations are conducted forModel IV. This kind ofmodel

Figure 11. Evolution of state populations for Model I computed
with the alternative version of the FSSH-3 (population-based)
method using different integration time-steps (columns), but
with the initial rate constants (J matrix) chosen in a specific way
described in the text. (a, b) thepopulationdynamics; (c, d) the evo-
lution of the error givenby y − Jx22. The integration time-steps are
(a, c) 4 a.u.; (b, d) 40 a.u. State colour codes in panels (a) and (b):
1 – green; 0 – red. Dashed lines represent the results of numeri-
cally exact calculations. The LD-based approach is used to evolve
coherent amplitudes.
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Figure 12. Evolution of state populations for Model II computed
with the alternative version of the FSSH-3 (population-based)
method using different integration time-steps (columns), but
with the initial rate constants (J matrix) chosen in a specific way
described in the text. (a, b) thepopulationdynamics; (c, d) the evo-
lution of the error givenby y − Jx22. The integration time-steps are
(a, c) 4 a.u.; (b, d) 40 a.u. State colour codes in panels (a) and (b): 2
– purple, 1 – green; 0 – red. Dashed lines represent the results of
numerically exact calculations. The LD-based approach is used to
evolve coherent amplitudes.

Figure 13. Evolution of state populations for Model III computed
with the alternative version of the FSSH-3 (population-based)
method using different integration time-steps (columns), but
with the initial rate constants (J matrix) chosen in a specific way
described in the text. (a, b) thepopulationdynamics; (c, d) the evo-
lution of the error givenby y − Jx22. The integration time-steps are
(a, c) 4 a.u.; (b, d) 40 a.u. State colour codes in panels (a) and (b):
4 – orange, 3 – blue-grey, 2 – purple, 1 – green; 0 – red. Dashed
lines represent the results of numerically exact calculations. The
LD-based approach is used to evolve coherent amplitudes.

is discussed by Araujo et al. [4] as one of the situations

that may be problematic for the FSSH-2 approach due to

spurious transitions. Speci�cally, the separate crossings of

state pairs 0–1 and 2–3 mean there may be population

transfers 3→2 and 1→0. The simultaneous occurrence

of such transitions is consistent with the possibility of

the population transfer between states separated by a

sizable gap and hence weakly coupled, that is 3→0 or

1→2. In the situation when the overcoherence e�ects

Figure 14. Evolution of the state populations for Model IV com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b,
d, f, h) 40 a.u. State colour codes: 3 – blue-grey, 2 – purple, 1 –
green; 0 – red. Dashed lines represent the results of numerically
exact calculations. The local diabatisation is used to integrate TD-
SE. The initial state in TSH calculations is chosen as the adiabat
with index 3.

are not present due to, for instance, decoherence correc-

tions, only one of the pairs of the closely-spaced states

should remain preferably populated for the Hamiltoni-

ans of type IV. Thus, the initial condition when both

states 3 and 1 are populated can be regarded statistically

– having 50% of trajectories initiated on the pure state

1 and 50% of trajectories initiated on the pure state 3.

The dynamics of each category of trajectories won’t be

too distinct from what is already discussed above. As a

demonstration, Figure 14 illustrates the dynamics in this

4-states model starting on the top adiabatic state. Due to

a substantial gap between states 1 and 2, the observed

dynamics is e�ectively the dynamics of a 2-state problem,

similar to that of Model I. In this situation, all methods

(FSSH, FSSH-2, FSSH-3, andGFSH) yield similar results,

also close to the reference exact calculations.One can also

observe that FSSH-2 and FSSH-3 both yield a better con-

vergence with respect to integration time step compared

to FSSH and GFSH, which start showing deviations from

the reference dynamics if the timestep of 40.0 a.u. is used

(Figure 14, panels b and h).

However, the dynamics is more interesting when the

initial wavefunction is chosen as a coherent superposi-

tion of states 1 and 3 (Figure 15). In this situation, one can

indeed observe a di�erence in the dynamicswith the hop-

ping probabilities based on NACs (FSSH, Figure 15, pan-

els a and b) from the dynamics with the hopping prob-

abilities de�ned in the NAC-free way (FSSH-2, FSSH-3,

and GFSH). In this case, the FSSH populations behave

most closely to the numerically exact simulations, in

which the wavefunction is also initialised as a coherent
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Figure 15. Evolution of the state populations for Model IV com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f ) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, c, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 3 – blue-grey, 2 – purple, 1 – green; 0
– red. Dashed lines represent the results of numerically exact cal-
culations. The local diabatisation is used to integrate TD-SE. The
initial state in TSH calculations is chosen as incoherent superpo-
sition of adiabats with indices 3 and 1 (with equal populations of
0.5 oneach). The exact reference (dashed lines) corresponds to the
initial coherent superposition on these states.

superposition of two Gaussians placed on states 1 and

3. The population dynamics observed for all NAC-free

hopping probabilities are very close to each other. Such

calculations do indeed show an increased growth of the

population of the lowest state, which can be attributed to

spurious hops onto this state, when the quantum popula-

tion from state 3 decreases intending to transfer to state 2

(according to NACs) and when the quantum population

of state 0 increases due to the decay of the quantum pop-

ulation of state 1. Interestingly, the spurious population

transfer of this kind observed in FSSH-3 is similar to that

of the GFSH, while for both of them it is slightly smaller

than for the FSSH-2.

It should be commented though that comparing of the

TSH calculations initiated in the coherent state to the

analogous numerically exact simulation is a bit tricky.

This is because, in the fully quantum dynamics the nuclei

experience the Ehrenfest-like forces from the very begin-

ning, while in the TSH simulations, the nuclei for each

batch of trajectories only ‘know’ the corresponding active

adiabatic forces, even though the electronicwavefunction

can evolve as a quantum superposition of multiple states

(of the two initial states in the initial run). Thus, it may

be misleading to compare the numerically exact simula-

tions presented to the TSH counterparts when the initial

condition is selected as a superposition state. Hence, the

seeming ‘agreement’ of the FSSH population dynamics

to that from SOFT simulations is not necessarily the

prove that the FSSH results are more physical than the

results predicted by other methodologies. In this regard,

the ‘spurious’ population transfer may still be physical.

Unfortunately, it is not possible to set up a completely

consistent comparison of the TSH and SOFT simulations

to address this question more de�nitely.

In passing, it is important to keep in mind that

although the NAC-free approaches for de�ning the sur-

face hopping probabilities can be advantageous in a num-

ber of way, they are prone to the presence of ‘spurious’

hops, although as discussed above such ‘spurious’ hops

may still be physical and cannot be ruled out yet. Inves-

tigating this conceptual problem could be a next impor-

tant step in the development of this kind of methodolo-

gies. It should be noted that the question of the ‘spu-

rious’ hops can be avoided when decoherence correc-

tions are incorporated. Indeed, the recent study of Shao

et al. [18] demonstrated that di�erent surface hopping

schemes such as FSSH and GFSH can yield somewhat

di�erent results on their own, but become consistent

with each other when decoherence is properly described.

This implies that as long as the internal consistency is

maintained and proper decoherence is implemented, the

question on the appearance of ‘spurious’ transitions nat-

urally dissolves. In a similar spirit, the recently proposed

uni�ed framework of mixed quantum-classical dynam-

ics [19] indicates that di�erent mixed quantum-classical

algorithms can yield comparable results if proper deco-

herence correction is employed.

Conclusions

In this work, I show that the minimisation of the ||y −
Jx||22 functional with respect to the rate-constant matrix

J is a feasible way to de�ne the hop proposal probabil-

ities for TSH simulations. One can use either the y =
ρ(t+�t)−ρ(t)

�t and x = ρ(t) with the initial guess of J = 0

(current-based FSSH-3) or y = ρ(t + �t) and x = ρ(t)

with the initial guess of J = I (population-based FSSH-

3). The optimised matrix J can be used to construct the

hop proposal probabilities in a non-ad hoc way and with-

out explicit dependence on NAC values. It is suggested

that the FSSH-3 approach may be regarded a special

case of a potentially even more general framework that

considers ‘quantization’ of hopping probability currents

(levels of the non-fewest switches surface hopping). Also,

the previously reported FSSH-2 methodology is slightly

clari�ed and is shown to work well for problems with

more than 2 states.

It is demonstrated that the performance of all meth-

ods tested here (FSSH, FSSH-2, FSSH-3, and GFSH) is

robust if the local diabatisation approach is used instead

of the NAC-based integrators of the TD-SE. Using the

LD approach, all methods yield nearly identical results,

even if large integration time steps are used. On the
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contrary, if the NAC-based integrator of the TD-SE is

used, small integration time steps are required to obtain

the converged results. If the larger time steps are used,

the predicted results are incorrect, but interestingly they

show similar results for methods falling within one of the

two groups: one – FSSH andGFSH (larger errors) and the

other – FSSH-2 and FSSH-3 (somewhat smaller errors).

Although the latter observation is not necessarily a gen-

eral trend, the grouping of the methods in this way is a

rather curious phenomenon, although its study is outside

the scope of the current work.

It is shown that in simulations for many-level sys-

tems where parallel coherent population transfers are

possible between several pairs of states, ‘spurious’ surface

hops can emerge for all approaches that use NAC-free

hopping probability expressions (FSSH-2, FSSH-3, and

GFSH). The FSSH approach does not shows such hops

and yields the best agreement with the quantum simu-

lations corresponding to a similar setup. However, due

to the intrinsic unavoidable di�erence in such simula-

tion setups, the �nal assessment of the physicality of the

observed ‘spurious’ hops remains an open question that

may need further investigation.
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