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ABSTRACT

Several ways of defining the probabilities of quantum state transitions in nonadiabatic trajectory
surface hopping simulations have been proposed and successfully applied to date. Despite their
success, there is a question about the uniqueness of the ways to define such probabilities - some
formulations require mathematically-motivated but still ad hoc assumptions to resolve the other-
wise under-determined problem. In this work, | present a new approach (termed FSSH-3) to define
the hop proposal probabilities. Unlike other approaches, it does not require any ad hoc assump-
tions and is based on the least squares optimisation of certain functionals combined with particular
choices of initial conditions for the target variables. A comprehensive comparative study of several
established surface hopping methodologies is conducted using several multiple-state model Hamil-
tonians. The recently reported formulation of the FSSH-2 method is extended to the case of multiple
states and validated. It is demonstrated that the performance of all studied methods, including the
new FSSH-3 (in two variants) is robust with respect to integration time step used but only if local
diabatisation approach is used. Under such conditions, all methods yield nearly identical results, in
excellent agreement with fully quantum simulations, even with sufficiently large integration time
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Introduction

The Fewest Switches Surface Hopping (FSSH) algorithm
is one of the most popular approaches for mod-
elling quantum-classical nonadiabatic molecular dynam-
ics (NA-MD), with the seminal work of John Tully
[1] cited over 4000 times at this point. Although the
algorithm is formulated in a very specific way, the
definition of the hopping probabilities to different states
is based on a rather arbitrary partitioning of the overall
hopping probability from a given starting state. Upon a
closer look, one can realise that probability partitioning
used in the FSSH is only one of the infinitely many pos-
sibilities. Thus, although the FSSH algorithm is unique

in its definition, the definitions of the hopping proba-
bilities are not. As a manifestation of this fact, several
alternative definitions of hopping probabilities within
the framework consistent with that of the FSSH have
been proposed in the literature, all addressing various
shortcomings of the FSSH-based definitions of hopping
probabilities. For instance, Markov state surface hopping
(MSSH) defines the hopping probabilities in a naive way
based on quantum populations but enables capturing
the superexchange effects [2], global flux surface hop-
ping (GFSH) defines the hopping probabilities based on
the analysis of positive and negative population fluxes
for all involved states, removes the direct dependence of
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the hopping probabilities on the potentially numerically
problematic nonadiabatic couplings (NACs) and hence
enables using larger electronic integration timesteps in
such algorithms [3]. Very recently, a new definition of
hopping probabilities within the framework of FSSH was
proposed by Araujo, Lasser, and Schmidt [4], dubbed the
FSSH-2. Similar to GFSH, the approach is formulated
using only the state populations and does not directly
involve NACs. However, while the theoretical framework
used to define the hopping probabilities in FSSH-2 is
solid for 2-state problems, it may be not generalisable to
the arbitrary number of states. In summary, although the
hopping probabilities of FSSH and FSSH-2 are based on
rather intuitive and mathematically-motivated assump-
tions, they are all formulated in a rather ad hoc way.
The logical question one may ask then is: is it possible
to define the hopping probabilities between states in a
non-ad-hoc, non-human-supervised way and preferably
relying only on the state population information at the
consecutive timesteps?

In this work, I investigate the possibility of defining
and using such a non-ad-hoc, non-human-supervised
hopping probability. It is shown that such probabili-
ties can be found by solving a least squares optimisa-
tion problem for state-to-state rate constants combined
with a physics-motivated partitioning of the state hop-
ping probabilities in proportionality to the found opti-
mal rate constants. The optimisation can be formulated
using only the constraints of initial state populations
and either the population finite differences or the final
state population at the end of each integration time
interval. The resulting algorithms are dubbed current-
based or population-based FSSH-3, respectively. The new
approach is demonstrated using several N-state crossing
models of the Esch-Levine [5] kind. The performance of
the FSSH-3 approaches is compared to that of the pre-
viously reported FSSH, FSSH-2, and GFSH algorithms.
The performance of all algorithms when used with dif-
ferent integration time steps and electronic propagation
algorithms is analysed. Finally, the dependence of the
FSSH-3 results on the choice of the initial guess of the
rate constant matrices is investigated.

Methods

To set the stage for a mathematical formulation of the
problem being solved in this work, I first give a gen-
eral overview of the key elements of the FSSH-like tra-
jectory surface hopping (TSH) algorithms. The distinc-
tions between FSSH, GFSH, and FSSH-2 are discussed
next. Finally, I proceed to the formulation of the FSSH-3
approach.

Overview of the generic FSSH-like TSH algorithms

All quantum-classical TSH schemes discussed in this
work share a common framework which is summarised
in this section. To start with, nuclei are treated as clas-
sical particles, that follow the Hamiltonian equations of
motion:

q(I) — M_lp(I), (1a)
P =F. (1b)

The bolded notation is used to denote multidi-
mensional (f degrees of freedom, DOF) vectors, x =
(x0, X1, . . .xf_l)T or matrices, the dot over the symbols
indicates the time-derivatives. The superscript in paren-
thesis denotes the trajectory index, and the sub-script a;
in Eq. (1b) indicates that the force for the trajectory I
is determined according to the active electronic state of
that trajectory, ar. Here, ¢, p, and F are the nuclear coor-
dinates, momenta, and forces, respectively. The diagonal
matrix M = diag(mo, my, ..., ms_1) is composed of the
masses of each nuclear DOE.

The electronic DOFs are treated quantum mechani-
cally. Namely, the overall electronic wavefunction of the
system, W (r, t;q(t)) is represented in the basis of elec-
tronic adiabatic functions,{y/;}, that depend on electronic
coordinates, r, functionally but depend on nuclear coor-
dinates only parametrically, that is y; = wi(r; q(¢)):

N—1
Y(rtq(t) = D () yilr; (). (3)
i=0

Here, N is the number of electronic basis states, c;(t)
are the time-dependent coherent amplitudes of adiabatic
basis functions. The electronic wave function ¥ evolves
according to the time-dependent Schrodinger equation
(TD-SE):

oY N
ih— = Y. 4
1 ot el (4)

Here, h is the reduced Planck’s constant (A =1 in
atomic units), H(r,t; q) is the electronic Hamiltonian
operator, such that:

Hu(r, ;) wi(r;q(H) = Ei(q(O) wi(r;q(1)).  (5)

Taking into account Egs. (3) and (5), Eq. (4) can be
simplified to:

o
ih— = Z H;Zth, (6)
j=0

at_,_

where HZ?]’-ib = E;0;j — ihdjj is the vibronic Hamilto-
nian, djj = (l//i|a%|l//j) = th_lp is the scalar time-
derivative NAC (also referred to as NAC matrix elements,



NACME), and hjj = (| V4| ;) is the derivative coupling
vector.

The propagated Eq. (6) defines a sequence of time-
dependent adiabatic amplitudes, ¢;(¢). This information,
perhaps together with the NACME information is used
to compute the adiabatic state hopping probabilities, as
discussed in the next sub-section. The hopping proba-
bilities are used to stochastically change the index of the
active state for each trajectory. Not all proposed hops
are accepted. Only the hops i — j that can conserve the
total energy upon rescaling of nuclear momenta along the
derivative coupling vector h;; can be accepted:

JoeR:p=p—oah: %f)TM_lf)+Ej
1
= 2p'M7'p+Ei (7)

If the proposed hop is accepted, the nuclear momenta
are adjusted according to Eq. (7), and the active state is
reset to the new state onto which the system hopped. If
the proposed hop is not accepted because Eq. (7) can-
not be satisfied, the proposed hop is rejected (a frustrated
hop). In the original prescription of Tully [1], nuclear
velocities are reverted upon every frustrated hop. In the
present approach, I adapt the Jasper-Truhlar’s criterion
[6] according to which the momenta along the h;; direc-
tion are inverted only if the following two conditions are
satisfied: F hjj - F| hjj < 0and (M~'p)"h;; - F/'h; <0.

Hop proposal probabilities in FSSH, GFSH, and
FSSH-2

Now, that we have revised the overall TSH scheme, we
can focus on the key distinguishing element of the FSSH,
GFSH, and FSSH-2 algorithms - the formulas to compute
the hop proposal probabilities.

FSSH hopping probability formula

The original work of Tully derives the hopping probabil-
ities for a 2-state system and assumes the resulting for-
mula is applicable to systems with any number of states.
Although such a solution is possible, it is not unique. To
better understand this challenge, it is instructive to resort
to the presentation of the FSSH algorithm by Fabiano,
Keal and Thiel [7]. One defines the probability of leaving
a state i during the time interval [¢,t + At] as:

pii(t) — pii(t + At))
pii(t)

( —pii(t) Af)
o (2Lt
pii(t)

( Apii(t))
ol -
pii(t)

Pi.(t,t+At) =0 (

%
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_ A _pit+ AD) — pi(D)
-7 ( pii(t) ) - ®

Here, Iintroduce the o function (also referred to as sigma
function in this work) for the notational convenience:

X, x>0
0, otherwise’

o(x) =xH(x) = [ 9)
where H(x) is the Heaviside (step) function. The sigma
function only ensures that the hopping probability out
of a state i is defined only if the population on this state
decreases, pj; < 0.If the population of the state increases,
the hopping out of this state would not be consistent
with the fewest switches principle. The time-derivative
of the population can be replaced with the correspond-
ing expression coming from the TD-SE and involving
NACMEs:

—pii(t) At
Piyu(tt+ A ~ o (A)
pii(t)
zjli?)l Re(plf]“-dij)At
=20
Pii
N-—1 *
2Re(pidi) At
~S ol ) (10
=0 Pii
It is intuitive and natural to interpret each term in the last
sum,
2Re(pid;) At
PEH — g (—U ), (11)
Pii

as the hopping probability from state i to state j. Although
this approach is a possibility, it is based on a rather ad hoc
assumption. First, strictly speaking, only the total prob-
ability of leaving a state is well-defined. The partition of
the total probability into channels for hopping into differ-
ent states is rather arbitrary, based only on the intuitive
interpretation of the resulting formula. The partition is
not unique as non-unique the representation of any num-
ber in terms of a sum of other numbers. For instance,
the number 5 can be represented as 1 + 4, 2 4 3, or even
6+ (—1), to show a few of the infinite number of possi-
ble ways to partition it. The second approximation, more
visible in the current formalism involving the sigma func-
tion is that the sigma function of a sum is not the sum of
the sigma functions as sneakily introduced in the last step
of Eq. (10) to arrive at the FSSH hopping probabilities for-
mula. Note that, the FSSH is commonly formulated using
2Re(p} d,-j)m)

Pii ?
which has the same purpose as the sigma function in the
current notation.

the ‘max’ function, that is: P;_,; = max (O,
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GFSH hopping probability formula

In the GFSH approach, all states are classified into two
groups — the states whose population decrease in the
integration interval [¢,t 4+ At] (group A, thatis: i€ A:
Apii < 0) and the states whose populations increase
(group B, thatis: i € B: Apj; > 0). The hopping proba-
bility between states belonging to these different groups
of states is given by:

P = Aoj _ Api o A,jeB. (12)

pii 2kea Dpik
Upon a closer look, it can be interpreted as the prod-
uct of probabilities of leaving the state i, Pi, = Ap i
(the total probability density flux out of state i) and
the fraction of the total flux that ends up in a given

.. . . L. Apjj
state ]A if we start with the state i, P(j|i) = S oA =
— 2% whi ;
S Ao which can be regarded as a conditional prob
ability:
P = P(li)Pis (13)

As noted above, only the total probability flux out of
a given state is rigorously defined in the FSSH, while the
splitting of total flux into distinct channels is based on the
mathematical structure of the equation. Unlike the FSSH,
the GFSH partitions the total flux among different chan-
nels based on the corresponding incoming fluxes to the
target states, which is a solid physically motivated basis
to do so.

FSSH-2 hopping probability formula

The FSSH-2 also starts with the definition of the total
outflow probability flux from the starting state i given
by the first equality in Eq. (10). Pi.(t,t+ At) =~

o (—éii(t)At) —0 ( Apii(t) ), where, again, Apii(t) =

pii(t) pii(t)
pii(t + At) — pii(t). The key distinguishing idea of the
N-1
FSSH-2 is to use the normalisation condition, > p; =1
i=0
in the above formula for the total outflow probability:
Apii(t
Piyu(t,t+Af) =0 (—L())
pii(t)

=0

pu(t + At) — Pu(t))
pii(t)

Hél pji(t + At))
_(1 J;él Pjj ()

pii(t)

Zﬁé,(pﬂ(t + At) — pji(t))
pii(t)

i(t+ At) — pj(t
Yy ZP]J( ) — pji(t) (14)
— pii(t)
J#i
The formula is then interpreted in a spirit similar to the
idea of the FSSH, as

pFSSH—2 _ pii(t + At) — p;i(1)
e pii(t) )
being the hopping probabilities corresponding to each
channel of state transitions. Note that the original work
of Araujo and co-workers does not introduce the sigma
function, which is reflected in it being omitted in Eq. (15).
However, as the authors indicate in their work, Eq. (15)
if used directly could lead to incorrect results. As they
suggest, when pji(t + At) — pji(t) > 0 and the outflow
from the state i is zero (p;i (t + At) — p;i(t) = 0), Eq. (15)
would still suggest a i — j transition, which should not
really occur. Thus, the formula is corrected as:
PESSH=2 _ . (_ pii(t + At) — pii(t)
e pii(t)
pji(t + At) — ij(t))
pii(t) ’
This formula taken directly is still potentially problem-
atic if the population of states other than the current
active state decreases (Fk : pgr(t + At) — pi(t) < 0).In
this situation, hopping probabilities can become negative.
To fix this shortcoming, one simply has to apply the sigma
function to each of the two arguments of the minimum
function:

FSSH—2 .
Pz—>] = min (a (—

(15)

>

(16)

pii(t + At) — Pii(t))
pii(t) ’

; (PJ’J'(t+ /)Aﬁt()t)— pjj(t)))’vj L0 (7
P =1-2 P (17b)

j#i
It is in this form, the FSSH-2 is now implemented in the
Libra software [8,9].

The new approach to hop proposal probabilities via
the optimisation problem (FSSH-3)

As demonstrated above for both the FSSH and FSSH-
2, the hopping probabilities to certain states are defined
mainly by the structure of the equations, by the sum-
over-states partitioning. Although intuitive, such a way
is not physically motivated and is only one of the
infinitely many possible other ways. Here, I propose
a generic framework that aims to remove this arbi-
trariness, although in a somewhat ‘mathematical black



box’ way. The hopping probabilities can be defined
as a solution to the following optimisation prob-
lem. Assume, the vectors of state populations at two
times are p(t) = (poo(1), p11(t), . . . pN—1.N-1())T and
p(t+ At) = (poo(t + At), pr1(t + Atb), ..., pN—1,N—1
(t + Af))T. One can then formulate a chemical kinetics
problem:

p(t+ At) — p(t)
At

=J(t,t+ At)p(t), (18)

Here, the matrix element Jij is the rate constant for the
j — i transition, the positive value indicates that hav-
ing a population in state j initially leads to the increase
of the population of state i at the end of the time inter-
val [t,t + At]. Thus, there is a non-zero probability of
such a transition. In the spirit of the fewest switches
surface hopping principle, one can consider negative
values of the J matrix elements as the no-hop crite-
rion. The total probability of hopping out of a state
is already well-defined and was introduced above, e.g.
Eq. (8). Thus, the probability of staying in the same
state is PLo > (t,t + At) = 1 — Pi,,. The probability
of the hopping to other states should be proportional
to the total probability to leave the initial state as in
Eq. (13), PfiS]H_3(t, t + At) = P(jli)Pi—« The question
is how to determine the conditional probabilities P(j|i).
Apparently, such probabilities are proportional to the
corresponding rate constants, P(i|j) ~ o (J;;) and should
add up to unity, thatis >_ P(i|j) = 1. Note that such a sum
i#f

represents the probabilit]y of ending up in any of the non-
starting states, provided we have already left the initial
state j, so the summation skips the index of the starting
state, i = j. Alternatively, one can enforce P(j|j) = 0 since
the probability of ending in state j is zero if we are certain
that we have left that state. This condition is also consis-
tent with the definition of the sigma function ¢ (0) =0
and the convention of having J; = 0 in master equation,
Eq. (18). It is easy to observe that to satisfy all the above
conditions, one can choose:

o (Jij)
2 k0 Ukj)

To reiterate, the hopping probabilities in FSSH-3 are
given by:

P(ilj) = (19)

PESSH=3 _ (_ Apii(t)) o (J;,i) Viti (0

=1 =\ ) Seeg T B

PRSI _ 1 _ (_ Aﬂii(f)) ‘ (20b)
pii(t)

The next step is to determine the rate constants matrix
J with the condition of J;; = 0, Vi. Eq. (18) can be viewed
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as a matrix equation:

y=Jx, (21)

with y = % = w and x = p(¢). Unlike many

other situations when an equation of such kind arises, the
unknown here is the matrix J. For a general N-state prob-
lem, Eq. (21) imposes N constraints, while there are N2
unknowns. The problem is underdetermined, meaning
that there is no unique solution to it, even for the smallest
problem with N = 2. One may try enforcing the unique
solution by introducing additional constraints, such as
some additional equations relating coherences. However,
it is unclear how to introduce such additional equations
specifically. For the time being, a plausible practical solu-
tion can be given in terms of the least squares fitting, that
is via solving the following optimisation problem:

Jo = min|ly — Jxl13, (22)

Matrix calculus yields a solution that could also be
envisioned if one first multiplies both sides of Eq. (21)
by x” from the right and then multiplies both sides of the
resulting equation by (xx7)~! from the right:

Jo = (x")(ex) L. (23)

However, this solution is not practical since the matrix
xx” may be non-invertible. Indeed, already for a simple
2-level problem with all population residing on one of the

states, that is with x = (1, 0), one runs into trouble, since
xxl = ((1) 8), with det(xxT) = 0.

A more practical and robust way to solve the min-
imisation problem Eq. (22) is to use gradient descent
optimisation. Here, it is important to start with a good
guess of the J matrix. Specifically, all the rate constants are
initialised to be zero initially. The matrix J is then opti-
mised using a steepest descent algorithm until the error
[ly — Jx| |§ becomes smaller a specified threshold value €
which in this work is set to the value of 10712, Following
the recent nomenclature of Araujo and co-workers, the
present approach is dubbed FSSH-3.

Note, that this scheme does not aim to provide sig-
nificant practical advantages over the original FSSH
approach or other TSH schemes. It is intended to demon-
strate the conceptual connection between the intuitive
approach taken in the FSSH and the optimisation-rooted
grounds of the FSSH-3 method. Similar to the GFSH and
FSSH-2, the FSSH-3 hopping probabilities do not directly
depend on the NACME values, and hence can be used
with larger electronic integration timesteps.
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Simulation details H;; = w1x —id — €;,01 > 0,0 <i < N—1, (24b)
In this work, the FSSH, GFSH, FSSH-2 and the new € = €,Y1 > igit (24c¢)
FSSH-3 met.hods. are tested using thr.ee linear Frossing Ho;= Hig= V,¥i: 0 <i<N—1, (24d)
model Hamiltonians of Esch and Levine [5] (Figure 1). .

In the diabatic representation, the model Hamiltonians Hij = 0, otherwise. (24e)

are given by: Specifically, I consider three models: a 2-state Model I,

a 3-state Model I, a 5-state Model I11, and a 4-state Model
Hpp = —wox, w9 > 0, (24a) IV (Figure 1). For all models, wy = 0.015-2% o, =

Bohr
5 0.05 = Hoo — £
o —_— Hyy —_—
5 0.00-
(]
C
w —0.05+ \
-4 -2 0 2 4 -4 -2 0 2 4
Coordinate, a.u. Coordinate, a.u.
(a) (b)
>
M
>
2
Q
c
AN}
-4 -2 0 2 4 -4 -2 0 2 4
Coordinate, a.u. Coordinate, a.u.
(© (d)
5 0.05 = Hoo _— F
© m— Hi m— Eq
5 0.00- = Hz = —
o — e H33 ™ Es
w —0.05:_' S— H44 - — — E4
-4 —2 0 2 4 -4 -2 0 2 4
Coordinate, a.u. Coordinate, a.u.
(e) H
5 0.05 — e —
> 0.00- Hyp ——] £y —
g — H22 — E2
w —0.05- — —
-4 -2 0 2 4 -4 -2 0 2 4
Coordinate, a.u. Coordinate, a.u.

(2 (h)

Figure 1. Model Hamiltonians considered in this work: (a, b) Model I; (c, d) Model II; (e, f) Model ll; (g, h) Model IV. The left column (a, ¢,
e, g) shows the diabatic energies, right column (b, d, f, h) shows the adiabatic energies.



0.005224 |V = 0.005Ha, € = 0Ha,d = 0.01Ha. For the
first three models, the only difference between them is the
number of states and the index of the critical state (Model
I: N = 2, iy = 2; Model II: N = 3, iy = 3; Model III:
N = 5, iy = 4). The last model IV is formulated in a
somewhat more general way:

H,‘j = Vij + wijx, Vi, j e [0,N —1]. (25)

The parameters chosen are: Vij = 0.001Ha, Vi # j, wjj =

0.0,Vi#j, Voo = 0.0, Vi1 = 0.001, Vo3 = V33 = 0.05,
o) = Wy = —00025%, w11 = W33 = 00025%

This model is discussed in the work of Araujo et al.
[4] in the context of potential limitations of the FSSH-
2 approach. It consists of two pairs of crossing diabats,
but separated by a sizable gap. The tests are also con-
ducted for two more models of this kind (with N = 3 and
N = 5 but distinct other parameters), but the results are
not discussed in this work since they do not add new con-
clusions, while the conclusions derived based on the first
three models equally hold for the additional models. The
details and the results of such calculations are available in
the public Zenodo repository [10].

All the TSH methods and model Hamiltonian con-
struction functions are implemented in Libra software
[8,9]. The methods reported here are included (or
finalised) in the new release of the Libra code, v 5.7.1
[11], prepared together with this work. In all calcula-
tions, except when explicitly noted, the initial electronic
state is selected as the uppermost adiabatic state (which
for this coordinate corresponds to the 0 diabatic state).
The mass of the nucleus is taken m = 1800a.u. (where
la.u. is the mass of the electron, m,). The average surface
hopping populations are computed using 2000 trajecto-
ries. The dynamics is integrated for a total time of 1000
a.u., which is sufficient for all the trajectories to pass the
crossing region. The TD-SE, Eq. (6), is integrated using
the local diabatisation (LD)-based approach [12] similar
to that of Granucci and co-workers [13]. The approach
automatically accounts for any phase inconsistencies of
electronic states that may occur during the dynamics [14]
and enables tracking the adiabatic states’ identities dur-
ing the course of adiabatic evolution, a notorious problem
encountered in many situations [15]. The total duration
of simulations is kept fixed to 1000 a.u. of time, but
I consider several integration time-steps varying from
At = 4a.u. to At = 40a.u.. The nuclear and electronic
timesteps are chosen to be the same.

The initial nuclear coordinates and moments of the
trajectories are sampled from the Gaussian distribution:

2
P(q, p; 40 Po> 0g> Op) ™~ €Xp (_w)

%
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)2
X exp (—M). (25)

%

The mean values of the distribution are taken as go =
—2a.u. and pg = 10.0a.u. in position and momentum
directions, respectively. The widths of the distributions
correspond to the width of the ground state probabil-
ity density distribution (Gaussian) of the ground state
of a harmonic oscillator with the force constant k =
0.01Ha/Bohr?, that is oq = #ﬂ and o, = %\/ﬂ

Although the present work aims at a comparison
of several TSH schemes to the ‘reference’ FSSH cal-
culations, it is still helpful to compare all the results
obtained to the true reference of numerically exact cal-
culations. In this work, the split-operator-Fourier trans-
form (SOFT) integration scheme of Kosloft and Kosloft
[16] as implemented in Libra software is used to pro-
duce such reference dynamics. The following setups are
used in the SOFT simulation. The initial wavefunction
is initialised as a Gaussian wavepacket on the adiabatic
state corresponding to the initial adiabatic state used in
the TSH simulations. The initial coordinate, momentum,
and width parameters are chosen to be consistent with
the counterparts used to sample the ensembles of trajec-
tories. Note the width parameters used in the wavepacket
definition are half of the o, and o, mentioned above
since the latter correspond to the Gaussian describing
the probability density rather than the wavefunctions.
Similar to TSH simulations, the mass of the particle is
chosen to be m = 1800m,. The integration on the grid
is conducted for 1000 a.u. of time with the 4.0 a.u. inte-
gration timestep. The position grid spacing is chosen to
be dx = 0.025Bohr, which is sufficient to accommodate
the momenta in the range from - 20 a.u. to 20 a.u. The
coordinate extent of the grid is chosen sufficiently large to
avoid any wavepacket scattering at the boundaries within
the duration of the quantum dynamics simulation.

The input files for conducting all TSH and SOFT cal-
culations reported in this work as well as the visualisation
scripts and files are publicly available via GitHub and
Zenodo [10]. The repository also contains the results for
the additional two models, not discussed in this work.
However, the results for these additional models are in
line with the discussion presented in the current work
using Models I - IV.

Results and discussion

The evolution of the TSH populations of all states in sim-
ulations using models I-III are shown in Figures 2-4,
respectively. The outcomes are embarrassingly simple to
present — all the methods generate nearly identical pop-
ulation dynamics. Furthermore, the results are nearly
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Figure 2. Evolution of the state populations for Model | com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, €, g) 4 a.u.; (b, d,
f, h) 40 a.u. State colour codes: 1 — green; 0 — red. Dashed lines
represent the results of numerically exact calculations. The local
diabatisation is used to integrate TD-SE.
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Figure 3. Evolution of the state populations for Model Il com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 2 — purple, 1 - green; 0 - red. Dashed
lines represent the results of numerically exact calculations. The
local diabatisation is used to integrate TD-SE.

insensitive to the electronic/nuclear integration time-
steps used. In principle, this is an expected result given
that all four methods are simply different ways of defin-
ing the surface hopping probabilities. They do not differ
in the level of physics they capture (e.g. none of them
introduces decoherence corrections). However, such an
ideal agreement of the results yielded by all the methods
still carries a notable value. There are at least three main
points to highlight.

First, the mere agreement of the FSSH-3 results to
those of the well-established FSSH and GFSH methods
for multiple models proves that the optimisation-based
approach with no ad hoc splitting of the hopping prob-
abilities to distinct states is indeed equivalent to the
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Figure 4. Evolution of the state populations for Model Ill com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, €, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 4 - orange, 3 - blue-grey, 2 - purple,
1 - green; 0 — red. Dashed lines represent the results of numeri-
cally exact calculations. The local diabatisation is used to integrate
TD-SE.

pre-determined formulas for the corresponding hopping
probabilities, which is the main message of this work.

Second, the current results demonstrate that the
FSSH-2 corrected to include the sigma-function trans-
forms does indeed perform as intended, also for the
model Hamiltonians with more than 2 states. Note that
the original work of Araujo and co-workers discussed the
potentially problematic situations for systems with N > 2
states and the performance of the method was not clear
for model Hamiltonians with more than 2 states. Poten-
tially, for this reason, the reported test included only
2-state problems. The present results demonstrate that
the FSSH-2 approach is indeed applicable to systems with
more than two states, but the sigma function correction
is needed.

Third, the present results are somewhat surprising
because the population dynamics practically does not
depend on the choice of the electronic/nuclear integra-
tion timestep. At the same time, the works reporting
the GFSH and FSSH-2 showed a stronger dependence
of the results on the integration timesteps, especially
for the original FSSH prescription, and demonstrated
that the newly introduced methods (GFSH and FSSH-
2) produced the converged results with sufficiently large
integration timesteps. I attribute this surprisingly robust
performance of all methods to the use of the LD approach
in the TD-SE integration. To test this hypothesis, the
calculations for all three models are repeated using the
NAC-based TD-SE integrator, discussed elsewhere [12].
Since the NAC-based integrator does not automatically
resolve the electronic wavefunction phase inconsistency
problem, a suitable correction is applied [14]. In addition,
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Figure 5. Evolution of the state populations for Model | com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 1 — green; 0 — red. Dashed lines repre-
sent the results of numerically exact calculations. The NAC-based
approach together with the phase correction and mincost state
tracking are used to evolve coherent amplitudes.
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Figure 6. Evolution of the state populations for Model Il com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, e, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 2 — purple, 1 - green; 0 - red. Dashed
lines represent the results of numerically exact calculations. The
NAC-based approach together with the phase correction and min-
cost state tracking are used to evolve coherent amplitudes.

the state identity is tracked using the min-cost algorithm
[15]. The results of such calculations are summarised in
Figures 5-7.

Although for sufficiently small integration timestep of
4.0 a.u. the NAC-based integration yields results identical
to the LD counterparts and agrees perfectly with the exact
reference or LD-based results, one can clearly observe
notable deviations of the TSH-based populations from
the exact value for larger integration timestep of 40.0
a.u. For the 2-state Model I, the deviations are relatively
mild and are larger for the FSSH-2 and FSSH-3 than for
the FSSH and GFSH methods (Figure 5). For the 3-state
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Figure 7. Evolution of the state populations for Model Ill com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, €, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 4 - orange, 3 - blue-grey, 2 - purple,
1 - green; 0 — red. Dashed lines represent the results of numer-
ically exact calculations. The NAC-based approach together with
the phase correction and mincost state tracking are used to evolve
coherent amplitudes.

Model II, the deviations are critical. In fact, the popula-
tion dynamics is completely different from the reference
exact dynamics or the corresponding converged TSH cal-
culations (Figure 6). Similar to calculations for Model
I, FSSH-2 and FSSH-3 behave similarly to each other,
forming one group of methods. The FSSH and GFSH
algorithms form another group. Compared to FSSH-2
and FSSH-3, both FSSH and GFSH predict much smaller
population decay of the initial state 2 (purple curve).
Thus, the former may be considered somewhat supe-
rior to the latter since such behaviour is closer to the
full depopulation of state 2 observed in the converged
calculations and fully quantum calculations. Similar to
results of the Model I, the results of Model III show
somewhat larger errors for FSSH-2 and FSSH-3 meth-
ods compared to those of FSSH and GFSH ones, although
still small in absolute values (Figure 7). Although the
obtained results suggest the FSSH-2 and FSSH-3 may be
somewhat more robust than FSSH and GFSH, it is too
premature to make a definite conclusion about it. A more
extensive and focused study may be needed, but such a
goal goes beyond the scope of the present work.

To summarise, the observed dependence of the com-
puted dynamics on the integration time-step used is
much stronger when the NAC-based integration of TD-
SE is used instead of the LD. Thus, the goal of fast conver-
gence of TSH calculations with respect to the integration
timesteps (what both the GFSH and FSSH-2 methods
pursued) is better achieved by using the LD-based inte-
grator instead of the NAC-based one rather than by for-
mulating the hop proposal probabilities in a way that does
not explicitly depend on NAC values.
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Although the performance of the FSSH-3 approach
is quite encouraging, it may be initial guess-dependent.
Indeed, since the approach is based on the minimisation
of the error defined in Eq. (22), one may end up with
one of the multiple possible solutions (local minima),
depending on where one starts. The results discussed so
far are obtained with the zero initial guess of the rate
constants, matrix J = 0 in Eq. (22). This is a situation
when there are no population fluxes in the system. Start-
ing from such a guess, it is likely that the closest minimum
would also correspond to one of the possible combina-
tions of the smallest population fluxes between states.
Such a solution is conceptually close to the idea of the
fewest switches surface hopping.

To illustrate the dependence of the FSSH-3 method
on the choice of initial guess for the rate constants
matrix J, the calculations on all three models are repeated
again, but now defining the initial J matrix elements as:
]i,j=1,1:ﬁ—j=land]i’j=—1 ifi—jz—l and],-,jz
0 otherwise (Figures 8-10). One can clearly observe that
for Models I and III (Figures 8 and 10) the approach
generates population evolutions that are substantially dif-
ferent from the exact results (or the converged TSH ones,
which are the same in these models), even though the tar-
get error tolerance for the metric y — ]x% is set to 10~1>,
tighter than the tolerance of 10712 used in the default
FSSH-3 calculations. Luckily, the proper state of the rate
constants is found for Model II (Figure 9). As before, the
calculations are not sensitive to the choice of the inte-
gration time-step, since the LD is used to propagate the
coherent amplitudes when solving TD-SE.
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5B dt =4.0 a.u. dt = 40.0 a.u.
0.5 _(a)\C FSSH-3 _(b)\\ﬁ'
0.0 f _/_—
le-16
®s.0(] () (d)
3
825
0.0
0 10 20 0 10 20

Time, fs

Figure 8. Evolution of state populations for Model | computed
with the FSSH-3 method using different integration time-steps
(columns), but with the initial rate constants (J matrix) chosenin a
specific way described in the text. (a, b) the population dynamics;
(c, d) the evolution of the error given by y — Ix%. The integration
time-steps are (a, ¢) 4a.u.; (b, d) 40 a.u. State colour codes in panels
(a) and (b): 1 — green; 0 — red. Dashed lines represent the results of
numerically exact calculations. The LD-based approach is used to
evolve coherent amplitudes.
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Figure 9. Evolution of state populations for Model Il computed
with the FSSH-3 method using different integration time-steps
(columns), but with the initial rate constants (J matrix) chosenin a
specific way described in the text. (a, b) the population dynamics;
(c, d) the evolution of the error given by y — ]x%. The integration
time-steps are (a, ¢) 4 a.u.; (b, d) 40 a.u. State colour codes in panels
(@)and (b):2—purple, 1 —green; 0 -red. Dashed lines represent the
results of numerically exact calculations. The LD-based approach
is used to evolve coherent amplitudes.
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Figure 10. Evolution of state populations for Model Ill computed
with the FSSH-3 method using different integration time-steps
(columns), but with the initial rate constants (J matrix) chosenin a
specific way described in the text. (a, b) the population dynamics;
(c, d) the evolution of the error given by y — ]x%. The integration
time-steps are (a, ¢) 4 a.u.; (b, d) 40 a.u. State colour codes in pan-
els (a) and (b): 4 - orange, 3 - blue-grey, 2 — purple, 1 - green;
0 - red. Dashed lines represent the results of numerically exact
calculations. The LD-based approach is used to evolve coherent
amplitudes.

The found dependence of the dynamics on the ini-
tial guess is a purely mathematical problem, which is
unlikely related to physical effects such as decoherence
or detailed balance. It can be viewed as finding one of
the N roots in the N-th order polynomial or N eigen-
vectors of the rank-N matrix. This work starts with the
discussion of the presence of multitude of possibilities for
partitioning the total hopping probabilities into pair-of-
states-specific contributions. The FSSH-3 solution pro-
posed in this work does not make this problem to fully



disappear. In fact, one of the key results of this work is
that one can find a solution that would be the closest to
the FSSH by conducting the optimisation with the initial
guess closest to the smallest overall currents. The depen-
dence of the dynamics computed by the FSSH-3 on the
initial choice of the probability currents means that the
FSSH-3 solutions are not unique. However, the hopping
probabilities are defined ‘automatically’ as a result of the
optimisation of the identified functionals. In that sense,
the approach is free of ambiguity since one needs not
define the splitting of the total probability to the pairs-
of-states contribution in a ‘manual’ (and sometimes ad
hoc) way. The FSSH-3 does not yield a unique solution
as this solution depends on the initial guess, but it identi-
fies the solution based on only one human-guided choice
- the initial guess of the state of probability currents.
This choice is shown to yields the results consistent with
other established methods such as FSSH, FSSH-2, and
GFSH, thus providing additional support for the hopping
probability partitioning given by these methods.

The optimisation of problem for the polynomial with
N minima is related to a corresponding root-finding
problem for the derivative of such a polynomial, which
can also be related to the eigenvalue problem. The present
work suggests that there may be several special hop par-
titioning schemes (stationary regimes), which may be
viewed as the eigenvectors of the corresponding prob-
lem (e.g. the set of the linear equations derived by setting
the derivatives of the error functional with respect to
all the fluxes or hopping probabilities to zero, although
this is just a loose recipe to arrive to it). The FSSH-
3 solution may be one such eigenvectors in the space
of the hopping probabilities, likely the one correspond-
ing to the lowest probability flux. In the excited-states
terminology, the FSSH (and FSSH-3) could thus be inter-
preted as the ‘ground-state’ methodology in the sense
that it corresponds to the smallest set of fluxes between
the states. Likely, the ‘excited-state’ approaches are also
possible, in which the total probability currents may be
not minimal, although it is not clear yet what advantage
they would have. In fact, the frequent hopping method-
ologies similar to those reported by Tully and Preston
several decades ago [17], and re-introduced by others
more recently [2], may be considered examples of such
‘excited-state’ methodologies. I stress that in the con-
text of the current paragraph, the terms ‘excited-state’
or ‘ground-state’ refer to the level of the methodology
itself (the extent to which the total hopping probabil-
ity currents are ‘quantized’), not to the traditional use
of such terms to indicate the nature of states between
which quantum transitions occur. It may be an interest-
ing topic to explore the ‘flux-quantization’ surface hop-
ping methodologies in the future, in which non-fewest
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switches surface hops would be possible. In this regard,
the FSSH-3 may serve a convenient starting point.

Finally, I test an alternative formulation of the FSSH-
3 approach. It follows the same machinery as described
already. The only difference is the definition of the
x and y variables in Eq. (21). As a reminder, in the
default approach, these variables are chosen as: y =
% = %ﬂt—p(r) and x = p(t). Together with the ini-
tial guess of the choice of the initial J matrix to be a
zero matrix, it makes the FSSH-3 approach. I refer to it
as a current-based FSSH-3 formulation. In the modified
version, I choose y = p(t + At) and x = p(¢) and ini-
tialise the J matrix to be the identity matrix, J] = I. This
version is referred to as the population-based FSSH-3.
One can recognise that this approach is simply the finite-
difference version of the master equation, Eq. (21). Here,
the choice of the initial J matrix as the identity matrix
corresponds to the choice of the zero J matrinx in the
current-based FSSH-3 formulation.

As a demonstration, the dynamics computed for all
three models using the population-based version of
FSSH-3 is shown in Figures 11-13, together with the
evolution of the error metric y — Jx3 with the conver-
gence threshold set to the default 1072 value. The results
of the population-based FSSH-3 calculations perfectly
agree with those of the reference (exact) calculations.
Thus, such an approach is another valid alternative for
the FSSH-3 framework.

In addition to the results obtained for Models I-1II, cal-
culations are conducted for Model IV. This kind of model
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Figure 11. Evolution of state populations for Model | computed
with the alternative version of the FSSH-3 (population-based)
method using different integration time-steps (columns), but
with the initial rate constants (J matrix) chosen in a specific way
described in the text. (a, b) the population dynamics; (c, d) the evo-
lution of the error given by y — Ix%. Theintegration time-steps are
(a, ) 4 a.u.; (b, d) 40 a.u. State colour codes in panels (a) and (b):
1 - green; 0 — red. Dashed lines represent the results of numeri-
cally exact calculations. The LD-based approach is used to evolve
coherent amplitudes.
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Figure 12. Evolution of state populations for Model Il computed
with the alternative version of the FSSH-3 (population-based)
method using different integration time-steps (columns), but
with the initial rate constants (J matrix) chosen in a specific way
described in the text. (a, b) the population dynamics; (c, d) the evo-
lution of the error given by y — Ix%. The integration time-steps are
(a, ) 4 a.u,; (b, d) 40 a.u. State colour codes in panels (a) and (b): 2
- purple, 1 — green; 0 - red. Dashed lines represent the results of
numerically exact calculations. The LD-based approach is used to
evolve coherent amplitudes.
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Figure 13. Evolution of state populations for Model Ill computed
with the alternative version of the FSSH-3 (population-based)
method using different integration time-steps (columns), but
with the initial rate constants (J matrix) chosen in a specific way
described in the text. (a, b) the population dynamics; (c, d) the evo-
lution of the error given by y — Ix%. The integration time-steps are
(a, ) 4 a.u.; (b, d) 40 a.u. State colour codes in panels (a) and (b):
4 - orange, 3 - blue-grey, 2 — purple, 1 - green; 0 - red. Dashed
lines represent the results of numerically exact calculations. The
LD-based approach is used to evolve coherent amplitudes.

is discussed by Araujo et al. [4] as one of the situations
that may be problematic for the FSSH-2 approach due to
spurious transitions. Specifically, the separate crossings of
state pairs 0-1 and 2-3 mean there may be population
transfers 3—2 and 1—0. The simultaneous occurrence
of such transitions is consistent with the possibility of
the population transfer between states separated by a
sizable gap and hence weakly coupled, that is 3—0 or
1—-2. In the situation when the overcoherence effects
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Figure 14. Evolution of the state populations for Model IV com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, e, g) 4 a.u,; (b,
d, f, h) 40 a.u. State colour codes: 3 — blue-grey, 2 — purple, 1 -
green; 0 — red. Dashed lines represent the results of numerically
exact calculations. The local diabatisation is used to integrate TD-
SE. The initial state in TSH calculations is chosen as the adiabat
with index 3.

are not present due to, for instance, decoherence correc-
tions, only one of the pairs of the closely-spaced states
should remain preferably populated for the Hamiltoni-
ans of type IV. Thus, the initial condition when both
states 3 and 1 are populated can be regarded statistically
- having 50% of trajectories initiated on the pure state
1 and 50% of trajectories initiated on the pure state 3.
The dynamics of each category of trajectories won’t be
too distinct from what is already discussed above. As a
demonstration, Figure 14 illustrates the dynamics in this
4-states model starting on the top adiabatic state. Due to
a substantial gap between states 1 and 2, the observed
dynamics is effectively the dynamics of a 2-state problem,
similar to that of Model I. In this situation, all methods
(FSSH, FSSH-2, FSSH-3, and GFSH) yield similar results,
also close to the reference exact calculations. One can also
observe that FSSH-2 and FSSH-3 both yield a better con-
vergence with respect to integration time step compared
to FSSH and GFSH, which start showing deviations from
the reference dynamics if the timestep of 40.0 a.u. is used
(Figure 14, panels b and h).

However, the dynamics is more interesting when the
initial wavefunction is chosen as a coherent superposi-
tion of states 1 and 3 (Figure 15). In this situation, one can
indeed observe a difference in the dynamics with the hop-
ping probabilities based on NACs (FSSH, Figure 15, pan-
els a and b) from the dynamics with the hopping prob-
abilities defined in the NAC-free way (FSSH-2, FSSH-3,
and GFSH). In this case, the FSSH populations behave
most closely to the numerically exact simulations, in
which the wavefunction is also initialised as a coherent
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Figure 15. Evolution of the state populations for Model IV com-
puted with different methods (rows) and using different integra-
tion time-steps (columns). (a, b) FSSH; (c, d) FSSH-2; (e, f) FSSH-3;
(g, h) GFSH. The integration time-steps are (a, ¢, €, g) 4 a.u.; (b, d, f,
h) 40 a.u. State colour codes: 3 - blue-grey, 2 — purple, 1 —green; 0
—red. Dashed lines represent the results of numerically exact cal-
culations. The local diabatisation is used to integrate TD-SE. The
initial state in TSH calculations is chosen as incoherent superpo-
sition of adiabats with indices 3 and 1 (with equal populations of
0.5 on each). The exact reference (dashed lines) corresponds to the
initial coherent superposition on these states.

superposition of two Gaussians placed on states 1 and
3. The population dynamics observed for all NAC-free
hopping probabilities are very close to each other. Such
calculations do indeed show an increased growth of the
population of the lowest state, which can be attributed to
spurious hops onto this state, when the quantum popula-
tion from state 3 decreases intending to transfer to state 2
(according to NACs) and when the quantum population
of state 0 increases due to the decay of the quantum pop-
ulation of state 1. Interestingly, the spurious population
transfer of this kind observed in FSSH-3 is similar to that
of the GFSH, while for both of them it is slightly smaller
than for the FSSH-2.

It should be commented though that comparing of the
TSH calculations initiated in the coherent state to the
analogous numerically exact simulation is a bit tricky.
This is because, in the fully quantum dynamics the nuclei
experience the Ehrenfest-like forces from the very begin-
ning, while in the TSH simulations, the nuclei for each
batch of trajectories only ‘know’ the corresponding active
adiabatic forces, even though the electronic wavefunction
can evolve as a quantum superposition of multiple states
(of the two initial states in the initial run). Thus, it may
be misleading to compare the numerically exact simula-
tions presented to the TSH counterparts when the initial
condition is selected as a superposition state. Hence, the
seeming ‘agreement’ of the FSSH population dynamics
to that from SOFT simulations is not necessarily the
prove that the FSSH results are more physical than the
results predicted by other methodologies. In this regard,
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the ‘spurious’ population transfer may still be physical.
Unfortunately, it is not possible to set up a completely
consistent comparison of the TSH and SOFT simulations
to address this question more definitely.

In passing, it is important to keep in mind that
although the NAC-free approaches for defining the sur-
face hopping probabilities can be advantageous in a num-
ber of way, they are prone to the presence of ‘spurious’
hops, although as discussed above such ‘spurious’ hops
may still be physical and cannot be ruled out yet. Inves-
tigating this conceptual problem could be a next impor-
tant step in the development of this kind of methodolo-
gies. It should be noted that the question of the ‘spu-
rious’ hops can be avoided when decoherence correc-
tions are incorporated. Indeed, the recent study of Shao
et al. [18] demonstrated that different surface hopping
schemes such as FSSH and GFSH can yield somewhat
different results on their own, but become consistent
with each other when decoherence is properly described.
This implies that as long as the internal consistency is
maintained and proper decoherence is implemented, the
question on the appearance of ‘spurious’ transitions nat-
urally dissolves. In a similar spirit, the recently proposed
unified framework of mixed quantum-classical dynam-
ics [19] indicates that different mixed quantum-classical
algorithms can yield comparable results if proper deco-
herence correction is employed.

Conclusions

In this work, I show that the minimisation of the ||y —
Jx||3 functional with respect to the rate-constant matrix
J is a feasible way to define the hop proposal probabil-
ities for TSH simulations. One can use either the y =
w and x = p(¢) with the initial guess of ] = 0
(current-based FSSH-3) or y = p(t + At) and x = p(¢)
with the initial guess of J = I (population-based FSSH-
3). The optimised matrix J can be used to construct the
hop proposal probabilities in a non-ad hoc way and with-
out explicit dependence on NAC values. It is suggested
that the FSSH-3 approach may be regarded a special
case of a potentially even more general framework that
considers ‘quantization’ of hopping probability currents
(levels of the non-fewest switches surface hopping). Also,
the previously reported FSSH-2 methodology is slightly
clarified and is shown to work well for problems with
more than 2 states.

It is demonstrated that the performance of all meth-
ods tested here (FSSH, FSSH-2, FSSH-3, and GFSH) is
robust if the local diabatisation approach is used instead
of the NAC-based integrators of the TD-SE. Using the
LD approach, all methods yield nearly identical results,
even if large integration time steps are used. On the
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contrary, if the NAC-based integrator of the TD-SE is
used, small integration time steps are required to obtain
the converged results. If the larger time steps are used,
the predicted results are incorrect, but interestingly they
show similar results for methods falling within one of the
two groups: one - FSSH and GFSH (larger errors) and the
other — FSSH-2 and FSSH-3 (somewhat smaller errors).
Although the latter observation is not necessarily a gen-
eral trend, the grouping of the methods in this way is a
rather curious phenomenon, although its study is outside
the scope of the current work.

It is shown that in simulations for many-level sys-
tems where parallel coherent population transfers are
possible between several pairs of states, ‘spurious’ surface
hops can emerge for all approaches that use NAC-free
hopping probability expressions (FSSH-2, FSSH-3, and
GFSH). The FSSH approach does not shows such hops
and yields the best agreement with the quantum simu-
lations corresponding to a similar setup. However, due
to the intrinsic unavoidable difference in such simula-
tion setups, the final assessment of the physicality of the
observed ‘spurious’ hops remains an open question that
may need further investigation.
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