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Abstract

Longitudinal studies with binary or ordinal responses are widely encountered in various disciplines, where the primary
focus is on the temporal evolution of the probability of each response category. Traditional approaches build from the
generalized mixed effects modeling framework. Even amplified with nonparametric priors placed on the fixed or random
effects, such models are restrictive due to the implied assumptions on the marginal expectation and covariance structure of
the responses. We tackle the problem from a functional data analysis perspective, treating the observations for each subject as
realizations from subject-specific stochastic processes at the measured times. We develop the methodology focusing initially
on binary responses, for which we assume the stochastic processes have Binomial marginal distributions. Leveraging the
logits representation, we model the discrete space processes through continuous space processes. We utilize a hierarchical
framework to model the mean and covariance kernel of the continuous space processes nonparametrically and simultaneously
through a Gaussian process prior and an Inverse-Wishart process prior, respectively. The prior structure results in flexible
inference for the evolution and correlation of binary responses, while allowing for borrowing of strength across all subjects.
The modeling approach can be naturally extended to ordinal responses. Here, the continuation-ratio logits factorization of
the multinomial distribution is key for efficient modeling and inference, including a practical way of dealing with unbalanced
longitudinal data. The methodology is illustrated with synthetic data examples and an analysis of college students’ mental
health status data.

Keywords Bayesian hierarchical modeling - Continuation-ratio logits - Functional data analysis - Markov chain Monte
Carlo - Student-t process

1 Introduction

Recent years have witnessed a rapid growth of longitudinal
studies with binary and ordinal responses in several disci-
plines, including econometrics, and the health and social
sciences. In such studies, of primary importance are the prob-
ability response curves, i.e., the probabilities of the response
categories that evolve dynamically over time. This article
aims at developing a hierarchical framework, customized to
longitudinal settings, that allows flexible inference for the
probability response curves. In addition, the defining charac-

< Jizhou Kang
jkang37@ucsc.edu

Athanasios Kottas
thanos @soe.ucsc.edu

Department of Statistics, University of California, Santa Cruz,
CA, USA

Published online: 26 October 2024

teristic of longitudinal data is that repeated measurements on
the same subject induce dependence. Hence, a further objec-
tive is to flexibly model lead-lag correlations among repeated
measurements.

The development of statistical methods for longitudinal
binary and ordinal data stems from models for longi-
tudinal continuous responses, postulating the generalized
linear model framework. Analogous to the continuous
case, a specific model is formulated under one of three
broad approaches pertaining to marginal models, conditional
models, or subject-specific models. Marginal models pro-
vide alternative modeling options when likelihood-based
approaches are difficult to implement. A conditional model
describes the distribution of responses conditional on the
covariates and also on part of the other components of the
responses. In a subject-specific model, the effects of a subset
of covariates are allowed to vary randomly from one individ-
ual to another. In the absence of predictor variables, functions
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of the observation time are usually used as covariates. We
refer to Molenberghs and Verbeke (2006) for a comprehen-
sive review. In Sect.2.5, we elaborate on the connection of
our proposed modeling approach with existing methods.

In this article, we introduce a novel viewpoint for lon-
gitudinal binary and ordinal data analysis. We begin with
the model construction for longitudinal binary responses.
The critical insight that distinguishes our methodology from
the majority of the existing literature is functional data
analysis. We treat the subjects’ measurements as stochas-
tic process realizations at the corresponding time points.
The benefits are twofold. First, the models can incorpo-
rate unbalanced data from longitudinal studies in a unified
scheme; directly inferring the stochastic process provides a
well-defined probabilistic model for the missing values. Sec-
ondly, we can exploit the power of Bayesian hierarchical
modeling for continuous functional data (e.g., Yang et al.
2016). To that end, we adopt the Binomial distribution with
the logit link that connects binary responses to continuous
signals, which, subject to additive measurement error, are
then modeled as (conditionally) independent and identically
distributed (i.i.d.) realizations from a Gaussian process (GP)
with random mean and covariance function. We place an
Inverse-Wishart process (IWP) prior on the covariance func-
tion, and conditional on it, use a GP prior for the mean
function. Therefore, the two essential ingredients in longi-
tudinal modeling, the trend and the covariance structure, are
modeled simultaneously and nonparametrically.

The hierarchical structure allows borrowing of strength
across the subjects’ trajectories. We apply a specific set-
ting of hyperpriors for the GP and IWP priors, such that
marginalizing over them, the latent continuous functions
have a Student-t process (TP) prior. The TP enhances the flex-
ibility of the GP (e.g., Shah et al. 2014). It retains attractive
GP properties, such as analytic marginal and predictive dis-
tributions, and it yields predictive covariance that, unlike the
GP, explicitly depends on the observed values. For inferential
purposes, we represent the joint posterior distribution in mul-
tivariate form through evaluating the functions on the pooled
grid, resulting in the common normal-inverse-Wishart con-
ditional conjugacy. In conjunction with the Pélya-Gamma
data augmentation technique (Polson et al. 2013), we develop
a relatively simple and effective posterior simulation algo-
rithm, circumventing the need for specialized techniques or
tuning of Metropolis-Hastings steps.

To extend the model for ordinal responses, we utilize
the continuation-ratio logits representation of the multino-
mial distribution. Such representation features an encoding
of an ordinal response with C categories as a sequence of
C — 1 binary indicators, in which the j-th indicator signifies
whether the ordinal response belongs to the j-th category or
to one of the higher categories. We show that fitting a multi-
nomial model for the ordinal responses is equivalent to fitting
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separately the aforementioned model on the binary indica-
tors. Hence, we can conduct posterior simulation for each
response category in a parallel fashion, leading to significant
computational efficiency gains in model implementation.

In modern longitudinal studies, it is common that the com-
plete vector of repeated measurements is not collected on
all subjects. As a specific example, in ecological momen-
tary assessment (EMA) studies, emotions and behaviors are
repeatedly measured for a cohort of participants, through
wearable electronic devices (Ruwaard et al. 2018). For
instance, in the StudentLife study (Wang et al. 2014),
researchers monitored the students’ mental status through
pop-up questionnaires on their smartphones that prompted
multiple times at pseudorandom intervals during the study
period. Since the data collection process is based on the
participants’ conscious responding to prompted questions
several times a day, non-response is inevitable. Missing val-
ues are typically considered to be a nuisance rather than a
characteristic of EMA time series. Parametric and nonpara-
metric Bayesian methods have been developed to handle
longitudinal data with missingness; see Daniels and Xu
(2020) for a review. The common issue is that one has to
bear the drawbacks of making either structured or unstruc-
tured assumptions to manage missingness. The unstructured
approach leads to flexibility, yet it may result in difficulties
due to a large number of parameters relative to the sample
size. Besides, the majority of the existing literature on longi-
tudinal studies with missingness focuses on the scenario with
continuous responses, and the extension to discrete responses
is not trivial.

Accordingly, our contributions can be summarized as fol-
lows: (i) we model the mean and covariance jointly and
nonparametrically, avoiding potential biases caused by a
pre-specified model structure; (ii) we unify the toolbox for
balanced and unbalanced longitudinal studies; (iii) the model
encourages borrowing of strength, preserving systematic pat-
terns that are common across all subject responses; (iv)
we develop a computationally efficient posterior simulation
method by taking advantage of conditional conjugacy; (v)
the model facilitates applications for ordinal responses with
a moderate to large number of categories.

The rest of the paper is organized as follows. Section?2
develops the methodology for binary responses, including
model formulation, study of model properties, and the com-
putational approach to inference and prediction. Section3
illustrates the modeling approach through an EMA study
that focuses on analyzing students’ mental health through
binary outcomes. The modeling extension for longitudinal
ordinal responses is presented in Sect.4, including an illus-
tration involving an ordinal outcome from the same EMA
study. Finally, Sect. 5 concludes with discussion.



Statistics and Computing (2024) 34:206

Page3of15 206

2 The modeling approach for binary
responses

Here, we develop the methodology for longitudinal binary
responses. The data consist of repeated binary responses
on n subjects, with the observation on subject i at time
7;; denoted by Y;;. The set of repeated outcomes for the
i-th subject is collected into a 7;-dimensional vector Y; =
Y1, ..., Yir, ) T'. The hierarchical model construction is pre-
sented in Sect.2.1. In Sect. 2.2, we discuss model properties
related to our inference objectives. Bayesian inference and
prediction is developed in Sect.2.3. In Sect.2.4, we outline
the findings from simulation studies, the details of which are
included in the Supplementary Material. Finally, to place our
contribution within the literature, we discuss in Sect. 2.5 the
proposed model in the context of relevant Bayesian nonpara-
metric approaches.

Regarding notation under our functional data analysis
modeling approach, we use the regular letter and its bold form
to distinguish between the trajectory of responses over time
and its evaluation on a number of time points. We use similar
notation for other functional variables, possibly including the
time input(s) inside parentheses or as a subscript. Moreover,
T and T denote the generic time input and a grid of times,
respectively.

2.1 Model specification

We examine the data from a functional data analysis perspec-
tive, treating each observed data vector Y; as the evaluation
of trajectory Y;(t) on grid 7; = (v, ..., t,-T,.)T, fori =
1,...,n. The n trajectories are assumed to be (condi-
tionally) independent realizations from a continuous-time
stochastic process. The prior probability model is built on
the stochastic process. This approach avoids strong pre-
determined assumptions on the transition mechanism within
the sequence of subject-specific responses in Y;, while it is
suitable to accommodate repeated measurements regardless
of their observational pattern.

The functional data analysis view of longitudinal data
dates back at least to Zhao et al. (2004), where it is suggested
that functional data analysis tools, such as principal compo-
nent analysis, can be used to capture periodic structure in
longitudinal data. Indeed, Yao et al. (2005) study functional
principal component analysis (FPCA) for sparse longitudi-
nal data, a method that can provide effective recovery of the
entire individual trajectories from fragmental data. FPCA
has been applied in finance (Ingrassia and Costanzo 2005),
biomechanics (Dona et al. 2009), and demographic studies
(Shamshoian et al. 2020). Its extension to examine sequences
of discrete data is studied in Hall et al. (2008).

Our methodology builds from a GP-based hierarchical
model for continuous functional data (Yang et al. 2016).
Regarding mean-covariance estimation, the model in Yang
et al. (2016) can be considered as a Bayesian counterpart of
Yao et al. (2005). The hierarchical scheme enables a natural
extension to studies with binary responses. We assume that,
subject to measurement error, the i-th subject’s responses,
Yi; =Yi(7i;), depend on the i-th trajectory of the underlying
process, evaluated at times t;;, through the following model

nd.
Yi(rio) | Zi(rio), €ir '~ Bin(1, 9(Zi(zir) + €ir)),
t=1,...,.7T;, i=1,...,n,

where p(x) = exp(x)/{1 + exp(x)} denotes the expit func-
tion. The error terms are i.i.d. from a white noise process, that

jid.
is, €j; | ‘752 N 0, 03), and independent of the process
realizations Z;(-). The main building block for the model
construction is a hierarchical GP prior for the Z;(-). In par-
ticular, given random mean function @ (-) and covariance

kernel X(-,-), the Z;(-) are i.i.d. GP realizations, denoted

d.d.
by Zi | p. = '~ GP(u, %), fori = 1,...,n. The hier-

archical GP prior model is completed with nonparametric
priors for the mean function and covariance kernel:

wl X ~GP(uo, 2/k), X ~IWP(, ¥y), 1)
where GP (-, -) and I W P (-, -) denote the GP and IWP prior,
respectively. The nonparametric prior reflects the intuition
that parametric forms will generally not be sufficiently flex-
ible for the mean and covariance functions.

We adopt an IWP prior for the covariance kernel,
defined such that, on any finite grid T = (t1,...,77)
with |T| points, the projection X (t, ) follows an inverse-
Wishart distribution with mean Wy (7, 7)/(v — 2), denoted
by IW(v, ¥y (7, 7)). Here, Wy (-, -) is a non-negative def-
inite function with parameters ¢. Note that we use the
parameterization from Dawid (1981) for the inverse-Wishart
distribution, in particular, v is the shape parameter and v +
|7| — 1 is the degrees of freedom parameter in the more com-
mon parameterization. Yang et al. (2016) validate that this
parameterization defines an infinite dimensional probability
measure whose finite dimensional projection on grid T coin-
cides with the inverse-Wishart distribution I W (v, Wy (7, 7)).

The model formulation is completed with prior specifica-
tion for the hyperparameters. The error variance is assigned
an inverse gamma prior, 0'62 ~ 1G(ae, be). We focus primar-
ily on stationary specifications under the prior structure in (1).
In particular, we work with mean function, po(7) = o, and
isotropic covariance function, Wg, within the Matérn class,
a widely used class of covariance functions (Rasmussen and
Williams 2006). In general, the Matérn covariance function
is specified by a scale parameter o2, a range parameter p,
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and a smoothness parameter ¢. To encourage smoothness in
the probability response curves, we set t = 5/2, such that the
covariance kernel is given by

- 2
\I’q;(‘[’ 'L'/) — 0-2 <1+ «/g\fp T’| + 5\1’3p'§| )

X exp (—@) ,

where ¢ = {02, p}. For hyperparameters pi, o2, p, we take
the commonly used choice,

wo ~ N(au, by), o2~ Gamma(a,, by ),
p ~Unif(ay,by).

Finally, we set k = (v —3)~!, such that the continuous-time
process for the Z; (-) is a TP when p and ¥ are marginalized
out (see Sect.2.2 for details). As a consequence, parameter
v controls the tail heaviness of the marginal process, with
smaller values of v corresponding to heavier tails. We place
a uniform prior on v, v ~ Unif(ay, b,), with a, > 3 to
ensure positive definiteness of X /.

As discussed in Diggle (1988), the correlation of repeated
measurements on the same subject commonly has the fol-
lowing patterns. First, it should decrease with respect to the
measurements’ separation in time, while remaining positive
to indicate the measurements are from the same subject. This
feature is encapsulated by the form of the covariance kernel
Wy. The IWP prior elicits realizations for which this prop-
erty holds a priori, while enabling a flexible estimate of the
covariance structure with information from the data a poste-
riori. Second, measurements that are made arbitrarily close
in time are subject to imperfect correlation, possibly caused
by subsampling of each subject. This feature is represented
by the error term in our model. Moreover, the motivation for
adding the error term arises from the fact that measurement
error is introduced in the estimation of a continuous-time
function based on data collected at discrete time points.

In addition to the aforementioned methodological con-
siderations, adding the error term is practically important.
Effectively, the error term serves as a nugget to the covari-
ance matrix. It can alleviate numerical problems that may
arise from its inversion, a calculation required in the poste-
rior inference procedure. Moreover, adding the error term is
common practice in other areas involving GP-based models,
including spatial statistics (e.g., Carmack et al. 2012) and
computer model emulation (e.g., Andrianakis and Challenor
2012).

Although the probability model is formulated through
stochastic process realizations, posterior simulation is based

on the corresponding finite dimensional distributions (f.d.d.s.).

Consequently, to write the model for the data, we need to rep-
resent the likelihood and prior in multivariate forms through
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evaluating the functions on finite grids. Denoting Y;(7;) by
Y;, Zi(t;) by Z;, and €¢; = (€1, ..., e,-Ti)T, the model for
the data can be written as

T;
ind.
Yi | Zioei ~ [ [ Bin(Lo(Zis +€n). i=1.....n,

=1
ind.
Z; | n(ti), Z(zi, ;) ~ N(u(ry), (i, 7)),

ind.
€| 62" N, 02T).

@

Notice that the grids {z; : i = 1, ..., n} are not necessarily
the same for all subjects. Therefore, the shared GP and IWP
prior in (1) need to be evaluated on the pooled grid T =
U?:ln.lfu, X,and ¥4 denote u(7), X(7, 7),and Wy (7, T),
respectively, then

12 | Zs Hno, vV~ N(MOL (l) - 3)2)9 b2 | v, ¢ ~ IW(V’ ‘II¢)
3)

The hierarchical model formulation for the data in (2) and (3)
forms the basis for the posterior simulation algorithm, which
is discussed in detail in Sect.2.3.

2.2 Model properties

To fix ideas for the following discussion, we refer to Z; (1)
as the signal process of the binary process Y;(tr), and to
Zi(t) = Z;i(1) + €;(7) as the latent process of Y;(t). Since
the stochastic process is characterized by its f.d.d.s., we shall
investigate therandom vectors Y; =Y; (1), Z; = Z; (1), and
7. = Z;(7), for a generic grid vector T = (71, ..., )T,
We surpass the subject index i because the subject trajecto-
ries are identically distributed. The Supplementary Material
includes proofs for the propositions included in this section.

Among the various inference goals in a study that involves
longitudinal binary data, estimating the probability response
curve and the covariance structure of the repeated mea-
surements are the most important ones. In Proposition 1,
we derive the probability response curves and covariance
matrix of the binary vector Y, conditional on the signal
vector Z, and error variance 63. The probability response
curve can be defined generically as Py; = (Pr(Yy, = yy |
Z:,02), ..., Pr(Yo, = oy | Z7,02) 7, where ys, is either
0 or 1. Without loss of generality, we focus on Py..

Proposition 1 The probability response curve is given by
Py = E@(Z;) | Z,, 062), where 1 (X) denotes the vec-
tor operator that applies the expit function to every entry of
X. Regarding the covariance matrix, for t € t, Var(Yy |
Z:,00) = E@(Z) | Zy,00) — EX9(Z0) | Zs,00),
and for t,t' € T, with v’ # 1, Cov(Y, Yy | Zy, 03) =
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Cov(p(Z), (Z1) | Ly, 02). The conditional expectations
in all of the above expressions are with respect to distribution,
Zi | Ze,02 ~ N(Zyg, 02 1)

The practical utility of Proposition 1 lies on performing
posterior inference for the probability response curve and
the covariance structure of the binary process, conditioning
on the signal process and the noise. With posterior samples
of Z; and 062, we can simulate Z; from N (Z., 0621) and
numerically compute the corresponding moments in Propo-
sition 1. The entries of Z; are independent, given Z, and
thus simulating Z is not computationally demanding, even
when |7] is large.

We next establish a closer connection between the binary
process and the signal process. Proposition 2 reveals that the
evolution of the binary process over time can be (approx-
imately) expressed as a function of the expectation of the
signal process and the total variance. Moreover, the covari-
ance of the binary process is approximately the covariance of
the signal process scaled by a factor related to the expectation
of the signal.

Proposition 2 Consider the proposed model as described in
(2) and denote u(t) = p, and (t, t) = X. Then,

Pr(Y; =1|p, 2,05~ gEZ; | n, X))

Var(Z ) 2
s “; ALz ¢"(E(Z; | 1, X)), VT € 7,

Cov(Ye, Yo | 1, 2,02 ~ ¢ (E(Z; | 1, X))
X ¢/ (E(Zy | @, 2)) Cov(Ze, Zyr | 1, Z)

1
= g VarZe | 1, 2) + o21Var(Zy | p, ) + 0]
x ¢"(E(Z¢ | 0, )@ (E(Zy | 1, X)), V7,7’ € 7.

20— )[1 — ¢(x)] and ¢"(x) =

dzdffzx) = e@)[1 — ()11 = 2¢x)].

Here, ¢'(x) =

Our inference results are based on exact expressions, such
as the ones in Proposition 1. Nonetheless, the approximate
expressions derived in Proposition 2 are practically useful
to gain more insight on properties of the binary process, as
well as for prior specification. Note that exploring properties
of the binary process is not trivial due to the lack of general
analytical forms for moments of logit-normal distributions.
Hence, a connection with properties of the signal process is
useful. For instance, if we specify the covariance for the sig-
nal process to decrease as a function of separation in time, an
analogous structure will hold (approximately) for the binary
process.

The previous discussion focuses on studying the f.d.d.s
of the binary process given the signal process. Therefore, it
is important to investigate the marginal f.d.d.s of the signal

process. We show that, under the specification k = (v — 3)_1 s
the f.d.d.s. of the signal process correspond to a multivariate
Student-t (MVT) distribution, and thus the signal process is
a TP. We first state the definition of the MVT distribution and
the TP (see, e.g., Shah et al. 2014). Notice that we use the
covariance matrix as a parameter for the MVT distribution,
instead of the more common parameterization based on a
scale matrix.

Definition 1 The random vector Z € R”" is MVT distributed,
denoted Z ~ MV T (v, u, ¥), if it has density

v+n
utn _\Tw—=l7 _ -5
(= w12 (14 (Z—-—p)' v~ (Z—p)
[(v =27 "2 (%) v—2

where v > 2 is the degrees of freedom parameter, u € R”,
and W is an n X n symmetric, positive definite matrix. Under
this parameterization, £(Z) = p and Cov(Z) = V.

Consider a process Z(t) formulated through mean func-
tion w(tr), a non-negative kernel function W(t, t), and
parameter v > 2, such that its f.d.d.s correspond to the MVT
distribution with mean vector and covariance matrix induced
by u(r) and ¥ (7, 1), respectively. Then, Z(7) follows a TP,
denoted by Z(t) ~ T P(v, u(tr), ¥(z, 1)).

Marginalizing over p and X in (2) and (3), the implied dis-
tribution for Z, is MVT, with degrees of freedom parameter
v (with v > 3 in our context), mean vector ugl, and covari-
ance matrix Wy = Wy (T, 7). We thus obtain the following
result for the signal process.

Proposition 3 Under the model formulation in (2) and (3),
the signal process follows marginally a TP, that is, Z ~
TP(v, no, Ve).

Proposition 3 is beneficial in terms of both computation
and interpretation. Without a constraint on «, as in Yang et al.
(2016), the marginal distribution of Z, does not have ana-
lytical form. Hence, for prediction at new time points, one
has to sample from an IWP and a GP, which is computa-
tionally intensive, especially for a dense grid. In contrast, we
can utilize the analytical form of the TP predictive distribu-
tion to develop a predictive inference scheme that resembles
that of GP-based models (see Sect.2.3). Moreover, the result
highlights the model property that the degrees of freedom
parameter v controls how heavy tailed the process is. Smaller
values of v correspond to heavier tails. As v gets larger, the
tails resemble Gaussian tails. Additionally, v controls the
dependence between Z; and Z,/, which are jointly MVT dis-
tributed, with smaller values indicating higher dependence.
Such interpretation of parameter v facilitates the choice of
its hyperprior.
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The local behavior of stochastic process realizations is
crucial for interpolation. Under the longitudinal setting, con-
tinuous, or perhaps differentiable, signal process trajectories
are typically anticipated. Evidently, the observed data can
not visually inform the smoothness of signal process real-
izations. Rather, such smoothness should be captured in the
prior specification that incorporates information about the
data generating mechanism. For weakly stationary processes,
mean square continuity is equivalent to the covariance func-
tion being continuous at the origin (Stein 1999). And, the
process is (-times mean square differentiable if and only if
the 2¢-times derivative of the covariance function at the origin
exists and is finite. Under our model, the signal process fol-
lows a TP marginally. Its covariance structure is specified by
the Matérn covariance function with smoothness parameter
t. Referring to the behavior of the Matérn class of covariance
functions at the origin, we obtain the following result for
the mean square continuity and differentiability of the signal
process.

Proposition 4 Consider the proposed model with marginal
signal process Z ~ T P(v, o, Wg), where Wy belongs to
the Matérn family of covariance functions with smoothness
parameter t. Then, the signal process is mean square contin-
uous and |t]-times mean square differentiable.

The results in this section study several properties that are
useful in model implementation. Indeed, the practical utility
of such model properties with respect to prior specification
and posterior inference is discussed in the next section.

2.3 Prior specification and posterior inference

The model described in Sect.2.1 contains parameters
{02, no, o2, p, v} whose prior hyperparameters need to be
specified. We develop a default specification strategy that
relies on the model properties explored in Sect.2.2.

First, we set the prior for 1o such that the prior expected
probability response curve does not favor any category, and
the corresponding prior uncertainty bands span a significant
portion of the unit interval. For instance, this can be achieved
with prior o ~ N (0, 100) which yields prior expected prob-
ability of positive response of about 1/2 across t. In general,
we would not expect to have available prior information about
the variance and correlation structure of the unobserved sig-
nal process, which are controlled by parameters o> and p.
However, Proposition 2 suggests an approximate relationship
between the covariance structure of the binary process and
the signal process, and we can thus specify the corresponding
priors similarly to GP-based models. In particular, we select
the uniform prior for the range parameter p such that the
correlation between Z; and Z,/ decreases to 0.05 when the
difference between  and 7’ is within a pre-specified subset of
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the observation time window. For instance, for the data anal-
ysis in Sect. 3 where the total observation window comprises
72 days, we used a Unif (3, 12) prior for p, which implies
that the aforementioned correlation decreases to 0.05 when
the time difference ranges from 7 to 31 days. The hyperprior
for v is Unif (a,, b,). We specify a, > 3 to reflect the con-
straint for X /(v — 3) to be a well-defined covariance matrix,
and b,, large enough such that the tail behavior of the marginal
TP is hard to distinguish from that of a GP. For instance, a
default choice is a, = 4 and b,, = 30.

We follow Fong et al. (2010) to specify the prior for
03 ~ 1G(ae, be). Integrating out 052’ the measurement error
€ is marginally distributed as a univariate Student-t distribu-
tion with location parameter 0, scale parameter b /a., and
degrees of freedom parameter 2a. . For a predetermined mea-
surement error range (— R, R) with degree of freedom v, we
can use the relationship £, /2M = =£R to obtain
ac = v/2 and b, = R2u/[2(tf_(1_q)/2)2], where 77 is the
g-th percentile of a Student-t distribution with v degrees of
freedom.

Proceeding to posterior inference, we develop an MCMC
algorithm based on (2) and (3). We introduce layers of
latent variables, beginning with &; ~ PG(1,0) for every
observation Y;;, where PG (a, b) denotes the P6lya-Gamma
distribution with shape parameter a and tilting parameter b
(Polson et al. 2013). Denote the collection of Pélya-Gamma
variables for each subject by &, = (&1, ..., EiTi)T. Also,
introduce Z;; = Z;; + €1, and let Z; = (Z;4, ..., ZiT[.)T.
Recall that T = U_ 7, is the pooled grid. Denote the evalua-
tions on the pooled grid by Zi = Z;(t) and let Zl’.‘ = Z,- \Z;.
That is, Z;k = Zi(r;.*), where r;‘ =t \ 7; is the set of grid
points at which the i-th trajectory misses observations. Then,
the hierarchical model for the data {Y;, : t =1,..., T;, i =
1, ..., n} can be expressed as

ind.
Yir | 2t &~ B(Zir, Eir),
[.0.d.
& < PG(1,0), t=1,...,T,
212, 02" N, oP1r),

Zi=Z, 2 w2 N, 2y, i=1,..n,

02 ~1G(ae, be), p| o, Z,v ~ N(pol, (v —3)X),
1o ~ N(ay,by), | v, Wg~IW(, ¥y),

Wy =Wy(z,7), ¢ =02, p}, 0>~ Gamma(ay, by),
o ~Unif(ap,by), v~ Unif(ay,by).

Here, B(Zi;, &) ocexp{(Yi; —0.5) 2, —0.5&;; Z2} denotes
the probability mass function of ¥;; conditional on both sets
of latent variables, Z;; and &;;. Based on Theorem 1 from
Polson et al. (2013), marginalizing out &;; from B(Zi;, &;1),
we obtain the Binomial distribution for Y;; conditional on
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. . ind. .
latent variable Z;;, that is, Y;; | Zi; e Bin(1, o(Zi1)).
Hence, the joint posterior density of all model parameters
can be written as

PUZN EN AZ . . 2, 02,
Mo, 027 P,V | {Yi}?:])

o [[(p(Yi | Zi.€)pEDP(Zi | Zi,od) @
i=1

p(ZiZi,n, ) p(Zi | 1, 2))
x p(p | o, Z,v)p(E | 02, p,v)p(a2) p(io)
p(@?)p(p)p(v).

The introduction of the latent variables enables a Gibbs
sampling scheme with conditionally conjugate updates.
Denote generically by p(@ | —) the posterior full con-
ditional for parameter . Notice that p(Z;,§;, | —) «
p(Yi | Zi,E)pE)p(Z; | Zi,02), which matches the
Bayesian logistic regression structure in Polson et al. (2013).
Therefore, p(Z; | —) and p(§; | —) can be sampled
directly. Factorizing the prior of Z; as p(Z;|p, £) = p(Z |
Ziop. D)pZi | . B). results in p(ZF,Zi|~) o p(Zf |
Zi,w,X)pZ; | p, 2)p(2Z; | Z;, 03). This forms yields
ready updates for Z7 and Z; using GP-based predictive sam-
pling. All other model parameters can be sampled using
standard updates. The details of the MCMC algorithm are
given in the Supplementary Material.

We have linked the probability response curve and covari-
ance structure of the binary process Y; (t) to the correspond-
ing signal process Z; (7). To estimate the signal process, we
obtain posterior samples for Z;r = Zi(tT),wherett D 1
is a finer grid than the pooled grid. Denote T = 7T \ T as
the time points where none of the subjects have observa-
tions, and let Z; = Z; (¥). Using the marginal TP result from
Proposition 3,

() e (v (i) (2022)
Z ot/ \¥ir Wiz
where p. = 1ol}., and W. . denotes the covariance function

evaluation W (-, -). Next, based on the conditionals of the
MVT distribution (Shah et al. 2014),

.~ . v+ Si:—2.
Zi|Z; ~MVT (v+|z], iz, —————— VW33 ), (5
v+ t| —2

with iz = Wi W L(Zi — Roo) + Rows Sic = (Zi —
Roo) W (Zi — pog) and Wiy = Wy — Wy WL W
Using (5), given each posterior sample for Z,-, Wo, ¢ and v,
we can complete the posterior realization for the signal pro-
cess over the finer grid. As discussed in Sect. 2.2, we can then

obtain full posterior inference for functionals of the binary
process.

The predictive distribution of the signal process also illus-
trates the information borrowed across subjects. For the i-th
subject, the grid, T+, where predictions are made can be par-
titioned as 7; Ut} U T, where T} = 7\ 7; represents the grid
points where subject i does not have observations, while at
least one of the other subjects have observations. Then, we
first predict Z;(t}) conditioning on Z;(t;) by the GP pre-
dictive distribution, and next predict Z; (%) conditioning on
Zi(t;)and Z; (r;k) by the TP predictive distribution. Compar-
ing with the GP, (5) suggests the TP is scaling the predictive
covariance by the factor ‘\))ifﬁ:zz . Note that S;; is distributed
as the sum of squares of || independent MV T;(v, 0, 1)
random variables and hence E(S;;) = |t]|. Accordingly, if
we have made good interpolation prediction, the predictive
covariance for extrapolation of Z;(7) is expected to scale
down and vice versa. Comparing with predicting both Z; (7})
and Z; () conditioning on Z; (t;) through the GP predictive
distribution, our model allows using information across sub-
jects to adjust the individual trajectory’s credible interval.

Another crucial benefit of modeling the signal process as
a TP emerges when we consider making predictions at 7,
the grid points where none of the subjects have observations.
Under the hierarchical GP prior in Yang et al. (2016), for
which the marginal is not generally a TP, such predictions
would require the conditional distribution X; ; | X ; from
their joint inverse-Wishart distribution, which is not analyt-
ically available. We circumvent this issue by marginalizing
out 4 and X. The predictions are then based on the con-
ditional Zi | Z,- from their joint multivariate t distribution,
which is the MVT distribution in (5). Hence, for prediction
on a grid denser than the pooled grid 7, the marginal TP
specification for the signal process is a practically important
model feature.

2.4 Synthetic data examples

We assess the model by applying it to carefully designed
simulation scenarios that reflect our main contributions. The
full details are provided in the Supplementary Material. Here,
we briefly discuss the simulation study setting and summarize
the main findings.

For the three sets of simulation studies we considered, the
longitudinal binary responses are generated from the follow-
ing generic process:

Yi(ti) | Zi(x) " Bin(1, 5(Zi(x0)).

T,‘Z(‘lfil,...,r,']'l.), i=1,...,l’l, (6)

ii.d.
Zi(t) = f@) +wi +e€ € X NO,02T),

€

@ Springer



206 Page8of15

Statistics and Computing (2024) 34:206

where 7n(-) is a link function mapping R to (0, 1), f(7)
is a signal function, and ; is a realization from a mean
zero continuous stochastic process that depicts the temporal
covariance within the i-th subject.

The first set of simulation studies focuses on evaluating
the effectiveness of the proposed model in capturing the
fluctuation of the temporal trend. We consider different link
function, signal function, and temporal covariance structure
combinations, and we simulate unbalanced data with differ-
ent sparsity levels. The results demonstrate that, despite the
data generating process and the sparsity level, the model can
recover not only the subject’s probability response curve, but
also the underlying continuous signal function.

The objective of the second set of simulation studies is to
explore the performance of the proposed model in estimating
the within subject covariance structure. To this end, we exam-
ine a number of possible choices for generating the ; in (6),
which imply covariance structures that are not of the same
form as the covariance kernel of the model. The results reveal
that the model can recover the true covariance between the
signal variables, (Z; (i), Z;(t;;)), and the binary responses,
(Yi(tir), Yi(tir)), thus providing empirical evidence for the
robustness of the covariance kernel choice.

Inboth cases, we examine simplified versions of the model
for comparison. The simplified models are constructed by
modeling either the mean structure or the covariance struc-
ture parametrically in the two sets of simulation studies,
respectively. Demonstrating that the proposed model outper-
forms its parametric backbones, we highlight the practical
utility of the nonparametric modeling for the mean and
covariance structure.

To further illustrate the practical benefits of the functional
data analysis perspective, in the third simulation study, we
consider a scenario where observations are made irregularly.
Through formal model comparison, we show that the pro-
posed model outperforms a traditional approach under the
GLMM framework.

2.5 Connections with existing literature

Our methodology is broadly related with certain Bayesian
nonparametric methods. The proposed model is related to
a particular class of conditional models, known as transition
models, which induce the aging effect by allowing past values
to explicitly affect the present observation, usually through
autoregressive dynamics. Di Lucca et al. (2013) studied a
class of non-Gaussian autoregression models for continuous
responses, which can be extended to handle binary longitu-
dinal outcomes by treating them as a discretized version of
the continuous outcomes. DeYoreo and Kottas (2018) devel-
oped a nonparametric density regression model for ordinal
regression relationships that evolve in discrete time. Com-
pared with the proposed methodology, these models are more

@ Springer

flexible in terms of the binary response distribution. However,
it is demanding to handle higher than first-order dynamics,
and there is no natural way to treat missing data under a dis-
crete time autoregressive framework, hindering applications
for unbalanced longitudinal studies.

The proposed model is more closely related to subject-
specific models, where the responses are assumed to be
independent conditioning on subject-specific effects. The
main approach has been to construct models for longitudi-
nal binary responses building from Bayesian nonparametric
models for longitudinal continuous data, developed under the
mixed effects framework, utilizing Dirichlet process mixture
models (e.g., Li et al. 2010; Ghosh and Hanson 2010; Quin-
tana et al. 2016) or additive GP models (e.g., Cheng et al.
2019). For instance, embedding a Dirichlet process mixture
of normals prior as the probability model for the latent vari-
ables, Jara et al. (2007) and Tang and Duan (2012) consider
binary responses, and Kunihama et al. (2019) handle mixed-
scale data comprising continuous and binary responses. The
proposed model differs in the way of treating subject-specific
effects, and it arguably offers benefits in terms of computa-
tional efficiency.

There is a growing trend of adopting functional data anal-
ysis tools in longitudinal data modeling. These methods
specify observations as linear combinations of functional
principal components (FPCs), with the FPCs represented
as expansions of a pre-specified basis. Bayesian methods
include Jiang et al. (2020) for continuous responses, and Van
Der Linde (2009) for binary and count responses. Challenges
include inference which is sensitive to the basis choice, and
a complex orthogonality constraint on the FPCs. Recently,
Matuk et al. (2022) proposed an approach that can serve as
foundation for generalized FPC analysis of sparse and irregu-
lar binary responses. Nonetheless, our model involves a more
parsimonious formulation, including the structure with the
GP and TP predictive distributions.

3 Application with binary responses:
Studentlife data

3.1 Data for analysis

Studentlife (Wang et al. 2014) is a study that integrates auto-
matic sensing data and an EMA component to probe students’
mental health status and to study its relationship with stu-
dents’ academic performance and behavior trends. The data
were collected by a smartphone app carried by 48 students
over a 10-week term at Dartmouth College. The dataset is
available from the R package “studentlife” (Fryer et al. 2022).

We focus on a subset of the data that corresponds to assess-
ing the students’ emotional status. In the Studentlife study,
the assessment of emotion is conducted by the Photographic
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Affect Meter (PAM), a tool for measuring affect in which
users select from a wide variety of photos the one which
best suits their current mood (Pollak et al. 2011). The PAM
survey is deployed to the mobile app and prompts everyday
during the study period. The participants either respond to
the survey, or ignore it, introducing missingness. The out-
come of the survey contains two attributes, the PAM valence
and the PAM arousal. They are scores of -2 to 2 (excluding 0)
that measure the subject’s extent of displeasure to pleasure or
state of activation ranging from low to high, respectively. We
dichotomize the valence and arousal scores by their sign, rep-
resenting the positive values by 1. In this section, we focus on
analyzing the change of binary valence and arousal responses
to evaluate students’ affects as the term progresses.

The data were collected during the spring 2013 term at
Dartmouth college. We set the study period according to
the official academic calendar, from the first day of classes
(March 25, 2013) to the end of the final exam period (June
4, 2013), resulting in a total of 72 days. We exclude sub-
jects with less than 12 responses, resulting in 45 students.
The longitudinal recordings of valence or arousal of the
i-th student are denoted by Y;(t;), for i = 1,...,45,
where the student-specific grid points are a subset of T =
o,1,..., 71)T, representing the days on which the measure-
ments are recorded. Several special events occurred during
the study period, and we are particularly interested in inves-
tigating the change of students’ affects on the time intervals
around these events. Specifically, the events and correspond-
ing periods are: (i) Days following the Boston marathon
bombing (April 15, 2013 to April 17, 2013); (ii) The Green
Key (a spring festival at Dartmouth) period (May 17,2013 to
May 18, 2013); (iii) The Memorial Day long weekend (May
25,2013 to May 27, 2013); (iv) The final examination period
(May 31, 2013 to June 3, 2013).

We retrieve the data for the specific responses and study
period from the R package “studentlife” that contains the
database for the entire study. Over all observations, the per-
centage of missing values is 31.1%. There are slightly more
missing responses at the beginning and toward the end of
the study. In light of the structure of EMA studies, the miss-
ing pattern for each subject can be viewed as random. We
elaborate on the missing-at-random assumption in the Sup-
plementary Material.

We further explore the correlations between the binary
responses within a week. We split the whole observation
sequence into batches representing a week, and empirically
calculate the Pearson and the tetrachoric correlation coeffi-
cient for each pair of time and distance combinations. The
results, plotted in Fig. 1, suggest that the correlation of the
students’ response to valence and arousal decreases slowly
in time.

3.2 Analysis and results

We fit the proposed model for the binary valence and arousal
responses separately. We specify the prior for the model
parameters by the procedure mentioned in Sect. 2.3. (Results
from prior sensitivity analysis are presented in the Supple-
mentary Material.) Posterior inference results are based on
5000 MCMC samples obtained every 4 iterations from a
chain of 50000 iterations with a 30000 burn-in period (which
is conservative).

We first examine in Fig. 2 the probability response curves,
defined as the probability of obtaining positive valence or
arousal as a function of time. For the valence, the happi-
ness level drops as the term begins and increases when the
term ends. The Boston marathon bombing may have had a
minor effect on the valence. We observe local peaks around
the Green Key festival and the Memorial Day holiday. As
the students finish their exams, there is a trend toward hap-
piness. As for arousal, it is relatively stable at the beginning
of the term, and fluctuates as the term progresses. There is a
drop in activation level after the Boston marathon bombing
and during the final exam period, while the activation level
reaches a local maximum at around the Green Key festival
and the Memorial Day holiday.

Moreover, we assess the student’s emotional status on spe-
cific days. According to Russell (1980), various states of
emotional status can be represented by points located at the
two dimensional mood coordinate space spanned by valence
for the horizontal dimension and arousal for the vertical
dimension. Moods such as excitement, distress, depression,
and contentment, are represented by points in the quadrants of
the space. For each observation, we can map the correspond-
ing pairs of probabilities for positive valence and arousal
onto the unit square in the mood space. In Fig.3, the den-
sity heatmap is obtained by the posterior samples of positive
probabilities for a new student of the same cohort, while the
posterior means of the in-sample positive probabilities are
marked by crosses. Panels (a) and (b) suggest the students
are mostly excited at the festival and holiday. Moving from
panel (c) to panel (d), we observe that the happiness level
increases and the activation level decreases towards the end
of the exam period.

We also obtain the posterior point and 95% interval esti-
mate for the covariance kernel of the signal process, which
is displayed in Fig.4. It is noteworthy that there is a simi-
lar decreasing trend for the two distinct binary responses of
valence and arousal. The practical range, defined as the dis-
tance at which the correlation is 0.05, has an estimated mean
of 20.99 for valence and 22.97 for arousal.

@ Springer
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Fig.1 Studentlife data. Empirical estimate of the correlation coefficients between binary responses within a week. In each panel, the upper triangle
and the lower triangle are for the Pearson and the tetrachoric correlation coefficient, respectively

Fig.2 Studentlife data. Posterior mean (dashed line) and 95% interval

estimate (shaded region) of the probability response curve for an out-of-

sample subject. The posterior mean estimates of probability response
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Fig.3 Studentlife data. Posterior density estimate of an out-of-sample
subject’s valence and arousal probability over the mood coordinate
space on four specific days. In each panel, the crosses represent the
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curves for in-sample subjects are given by the solid lines. The vertical
shaded regions correspond to the four special time periods (see Sect. 3.1)
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posterior means of the in-sample subjects’ valence and arousal proba-
bility mapped to the mood coordinate space
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Fig.4 Studentlife data. Posterior mean (solid line) and 95% interval estimate of the signal process covariance kernel

3.3 Performance comparisons

For comparison with a traditional approach, we consider an
analysis of the data under the GLMM setting. In particular,
we assume the model

.
Yir | Zi ~ Bin(1, 9(Zi)),

Zir = 'i'izﬂ + Z/f:] Sitkbr + i + €ir,
t=1,...,T;, i=1,...,n,

where 7;; = (1, 7;;) ", B is the vector of fixed effects, and
€ir S N(O, 03) is the measurement error. To allow flexibil-
ity in modeling the time effect, we consider cubic B-spline
basis functions with K = 9 knots that separate naturally
the observed interval by week; S;; is the k-th basis asso-
ciated with time, with parameter by - N (O, abz). Finally,
i S N (O, oﬁ) are subject-specific random effects. The
model is implemented using the integrated nested Laplace
approximation (INLA) approach (Rue et al. 2009) with the
“INLA” package in R (Rue et al. 2017). We used the default
choices provided by the R package for the prior on f (a flat
prior), and for the values of the variance terms, o2, 07, and
o2,

We perform model comparison using two different met-
rics: the posterior predictive loss criterion which combines

Raftery 2007). Both criteria can be calculated from the poste-
rior samples for model parameters, and both favor the model
with a smaller value. Table 1 summarizes the results. For the
valence response, both criteria favor the proposed model. As
for the arousal response, the proposed model provides a more
accurate fit to the data, while being penalized more than the
GLMM with respect to model complexity. Nonetheless, our
model is favored in terms of total posterior predictive loss,
as well as by the CRPS criterion.

4 Model for ordinal responses
4.1 The extended model

We extend the model developed in Sect. 2.1 to handle ordinal
responses. Suppose the observation on subject i at time t;;,
denoted by Y;;, takes C possible categories. We can equiv-
alently encode the response as a vector with binary entries
Y, = (Yi1, ..., Yict), such that Y;; = j is equivalent to
Yijy = 1 and Yjx;, = O for any k # j. We assume a multi-
nomial response distribution for Yj;, factorized in terms of
binomial distributions,

a goodness-of-fit term, G (M), and a penalty term, P (M), Mult(Yi, | mig, 0ite, - - - 0ict)

for model complexity (Gelfand and Ghosh 1998); and, the c—1

continuous ranked probability score (CRPS), defined in terms - l_[ Bin(Yijr | mije, (Ziji + €ij1)) @)

of predictive cumulative distribution functions (Gneiting and =1

;i?rllxar;gufdfgrﬁgzr?:;i Response Model Posterior predictive loss CRPS

between the proposed model GM) PM GM) + PM)

and the generalized linear mixed 1000 Proposed 428.09 47531 903.40 0.19

effects model (GLMM) using

two different criteria GLMM 456.09 475.83 931.92 0.20
Arousal Proposed 457.62 496.63 954.25 0.20

GLMM 476.17 492.28 968.45 0.21

The values in bold correspond to the model favored by the particular criterion.
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where m;; = Z?:l Yiip = 1, mjyi;, = my;, and m;j; =
mis — ,i;} Yik:. This factorization bridges the gap between
binary and ordinal responses. Similar to the model for binary
responses, we adopt a functional data analysis perspective
on {Z;j,}, modeling them separately through the hierar-

chical framework developed in Sect.2.1. That is, Z;;(t) |

idi.d.
Wi, Xj ™ GP(uj, %)), fori = 1,...,n, and pu; |

ind. ind.
T N GPoj. (v; — 3B, T N IWP (v, W),

where ¢ . = {a.z,p-}, for j = 1,...,C — 1. The error
J AR

ind.
terms are modeled as €;;; | 062/. e N(O, afj). Hence, the
hierarchical model for the data can be expressed as

I; C—-1
Yil{Zi}}, {Gij}”’lg'l—[ 1_[ Bin(Yij; | myjq,
=1 j=1
o(Zijt +€ijr), i =1,....n,
Zij | wj(ti), Zj(z;, Ti)i%'N(Mj(Ti), i(ti,Ti)),  (8)
eij | 02 "N, 02 1),
iy | oj. B, N (uos 1, (v — 3)E);
v W ), j=1,....C—1

where Yi = (Y,‘], ey Y,‘TI.)T, Z,‘j = (Z,'jl, ey Z,‘jTI.)T,
€ij = (€ij1, ..., €T, )T, and the collection of the functional
evaluations on the pooled grid T are denoted by the corre-
sponding bold letter.

The structure in (7) is referred to as the continuation-ratio
logits representation of the multinomial distribution (Tutz
1991). In the context of Bayesian nonparametric modeling,
it has been used as the kernel of nonparametric mixture mod-
els for cross-sectional ordinal regression (Kang and Kottas
2022).

Examining model properties reveals the practical utility of
the continuation-ratio logits structure. The factorization in (7)
allows us to examine the probability response curves and the
within subject covariance structure in the same fashion as for
binary responses. Specifically, the continuation-ratio logit for
response category j is the logit of the conditional probability
of response j, given that the response is j or higher. As
a consequence, for any finite grid T = (tq,..., rT)T, the
probability response curves are given by

Pjr = (Pr(Ye, = j | Z7,02), ..., Pt(Yey = j | Z¢,02))"
j—1

=E(m)c 1 2je,0%) [TE((1 = 740) | Zir 02

k=1

©))
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where 7 jr = (@(Zj1), ..., 9(Z,;7) " and Z ¢ | Zjz, 02 ~
N(Zj, ofl.IT), for j = 1,...,C. To avoid redundant
expressions, we include the term 7 ¢, and set it always equal
to 1. As for the covariance structure, we study the joint prob-
ability of the repeated measurements on the same subject at
time 7 and 7’ taking category j and j'. Exploiting the con-
ditional independence structure across the categories,

Pr(Yr = j, Yo = j [ {Zjz} (o))
E(7j 7 |zj,,a€2j)
x [Ty B = ) (0 = ) | Zig 021 G =
={ Blnje(l = 7)) | Zjz. 0]
XE[(1 = 7jr) 7 jrer | Lo agj,]
x [Trgj j EL = ) (U = ) | Zgr, 020 G # J
(10)

Hence, we can explore the covariance of the two ordinal
responses Y., Y/ by studying the pairwise covariance for
each entry.

The continuation-ratio logits structure is also key to
efficient model implementation. It implies a sequential mech-
anism, such that the ordinal response is determined through
a sequence of binary outcomes. Starting from the lowest cat-
egory, each binary outcome indicates whether the ordinal
response belongs to that category or to one of the higher
categories. This mechanism inspires a novel perspective on
the model implementation. That is, we can re-organize the
original data set containing longitudinal ordinal responses to
create C — 1 data sets with longitudinal binary outcomes.
Then, fitting model (8) to the original data set is equivalent
to fitting the model of Sect.2.1 separately on the C — 1 re-
organized data sets. The procedure is elaborated below.

Denote the set of all possible subject and time indices by
Ty, thatis, Z; ={(i,t):i=1,...,n,t =1,...,T;}. To
build the first re-organized data set with binary outcomes,
we create binary indicators Yi(tl), such that Yl.(tl) = 1if
Yiiy = 1 and Yi(tl) = 0if Y;1; = 0. The first data set is
then D; = {Yl.(tl) . (i,t) € Z,}. Moving to the second
data set, we first filter out the observations that are already
categorized into the smallest scale, and denote the remain-
ing indices set by Zp = Z7 \ {(i,t) : Y;1; = 1}. This is
the set of indices with original ordinal responses belong-
ing to categories higher than or equal to the second smallest
scale. Then, we create new binary indicators Y. i(rZ)’ such that
Y(? = 1if Yipy = 1, and ¥? = 0if ¥;5, = 0. The sec-
ond data set is obtained as D, = {Yl.(tz) 2 (i,t) € I,}. The
process is continued until we obtain the (C — 1)-th data set,
Dey = {Y\7V 1 (i,1) € Ty}, where Zc_y is the
indices set such that the original ordinal responses belong to
either category C—1 or C. Notice thatevery re-organized data
set D, for j = 1,...,C — 1, contains longitudinal binary
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Fig. 5 Four levels arousal score data. Posterior mean (dashed line) and 95% interval estimate (shaded region) of probability response curve for
an out-of-sample subject. The posterior mean estimates for the probability response curves of in-sample subjects are given by the solid lines. The
vertical shaded regions correspond to the four special time periods (see Sect.3.1)

outcomes for which the model of Sect.2.1 is directly appli-
cable. Provided the priors placed on each ordinal response
category’s parameters are independent, it is straightforward
to verify that fitting separately the model for binary responses
to the re-organized data sets {D; : j = 1,...,C — 1} is
equivalent to fitting model (8) to the original data set. We
formalize the conclusion in the following proposition.

Proposition 5 Fitting the ordinal responses model in (8) is
equivalent to fitting the model for binary responses sepa-
rately, C — 1 times to the data sets {D; : j =1,...,C—1}.

Based on Proposition 5, the posterior simulation algo-
rithm for the ordinal responses model can be parallelized
and implemented on separate cores. In applications where
the number of response categories is moderate to large, such
a parallel computing scheme is especially beneficial. Also,
since the binary responses model serves as the backbone for
modeling ordinal responses, the prior specification strategy
and the posterior simulation method described in Sect.2.3
can be readily extended to model (8). Finally, from (9) and
(10), it is clear that the posterior samples obtained from the
C — 1 separate models suffice to obtain full posterior infer-
ence for the ordinal response process.

4.2 Dataillustration

As an illustration example, we consider the PAM arousal
score on the original scale, which is obtained from the same
EMA study discussed in Sect.3. PAM arousal is a —2 to
2 (excluding 0) score. We examine the same cohort of stu-
dents on the same study period as described in Sect. 3.1. Over
all observations, the distribution of arousal scores involves
16.6% for level —2, 27.7% for level —1, 12.6% for level 1,
and 12% for level 2, while 31.1% of the observations are
missing.

To implement model (8), we follow the procedure outlined
above Proposition 5. We re-organize the original data into
separate data sets {D; : j = 1,..., 3}, each of them con-
taining the binary responses indicating whether the arousal
scores are at level j or a higher level. Then, the proposed
model is fitted to the three data sets in parallel.

The primary inference focus is on the change of arousal
scores as the term progresses, which is depicted by the prob-
ability response curve of each response level. We display
posterior point and interval estimates of Pj; (defined in (9))
in Fig.5. The probability of the highest arousal level drops
dramatically as the term begins, indicating that the excite-
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ment of a new quarter may vanish within a week. The Boston
marathon bombing slightly triggers higher probability for
moderately low to low arousal level. There is a drop of the
probability for moderately high to high arousal level after
the Green Key festival and the Memorial Day holiday. The
exams may have a significant impact on the arousal level. We
observe peaks of arousal at the beginning of the final exam
period, and also the middle of the term, which correspond-
ing to the midterm exam period. Since the students are taking
different courses, the midterm exam times vary, resulting in
some curves with lead or lag peaks compared to the major-
ity. This pattern is not clear in the analysis of binary arousal
scores. Hence, examining the finer ordinal scale enables us
to discover subtle changes of the students activation states.
We have also investigated the temporal covariance structure
of the ordinal responses, with details presented in the Sup-
plementary Material.

5 Discussion

We have developed a novel Bayesian hierarchical model for
analyzing longitudinal binary data. We approach the prob-
lem from a functional data analysis perspective, resulting in
a method that is suitable for either regularly or irregularly
spaced longitudinal data. The modeling approach achieves
flexibility and computational efficiency in full posterior infer-
ence. With regard to the former, the key model feature
is the joint and nonparametric modeling of the mean and
covariance structure. As illustrated by the data application,
our approach enables interpretable inference with coher-
ent uncertainty quantification, and provides improvement
over the GLMM approach. The model formulation enables
a natural extension to incorporate ordinal responses, which
is accomplished by leveraging the continuation-ratio logits
representation of the multinomial distribution. This represen-
tation leads to a factorization of the multinomial model into
separate binomial models, on which the modeling approach
for binary responses can be applied. The computational ben-
efitis retained, since we can utilize parallel computing across
response categories.

The proposed methodology for modeling longitudinal
binary and ordinal responses can be elaborated in differ-
ent directions. We have focused on stationary specifications
for the hierarchical GP prior. Nonstationary model com-
ponents can be incorporated through a time-varying mean
function wo and/or a nonstationary covariance kernel Wg.
Moreover, longitudinal studies typically have predetermined
covariates associated with each subject, or time-varying
covariates corresponding to each observation. The predeter-
mined covariates can be incorporated in the model through
the prior placed on the mean function of the signal process.
Using the functional linear model may be a possible strategy
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for the more challenging task of accounting for time-varying
covariates.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10525-
2.
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