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Abstract.

Severe natural multi-hazard events can cause damage to infrastructure and economic losses of billions of dollars.

The challenges of modeling these losses include dependency between hazards, cause and sequence of loss, and lack of available
data. This paper presents and explores multi-hazard loss modeling in the context of the combined wind and rain vulnerability of
mid/high-rise buildings during hurricane events. A component-based probabilistic vulnerability model provides the framework
to test and contrast two different approaches to treat the multi-hazards: In one, the wind and rain hazard models are both
decoupled from the vulnerability model. In the other, only the wind hazard is decoupled, while the rain hazard model is
embedded into the vulnerability model. The paper presents the mathematical and conceptual development of each approach,
example outputs from each for the same scenario, and a discussion of weaknesses and strengths of each approach.
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1. Introduction

Many natural hazard events involve more than one
hazard. Multi-hazard events can lead to billions of dollars
losses (NOAA 2023). The top three worst years of natural
hazards events in the U.S. caused up to $377, $256, and
$175 billion dollars (CPI-adjusted) in damage in 2017,
2005, and 2022 respectively, mainly due to tropical
cyclones (Miller 2018, NOAA 2023, Smith 2023), which
involved wind, surge and flood, and rain. For example, in
2022 there were 17 natural disaster events of which 3 were
tropical cyclones causing 65% of the losses or damages.

These multiple hazards can happen concurrently,
although their peak intensities might not occur
simultaneously. These multiple hazards can be classified as:
1) concurrent and independent, for example, earthquake and
hurricane happening simultaneously; 2) concurrent and
correlated. For example, dual-hazard hail and tornadic
winds in thunderstorms; or tri-hazard high winds, wind-
driven rain, and either inland flooding or coastal storm
surge in hurricanes (Li ef al. 2012, NOAA 2023); or high
wind and ice hazards in winter storms (Mahmoudi et al.
2021). Multi-hazards can also be cascading rather than
concurrent, occurring in hazard chains, for example,
earthquake-blast chain (Francioli et al. 2023), earthquake
and tsunami; earthquake and fire; rainfall and landslide.

Modeling losses from multi-hazard events present many
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challenges related to the hazards themselves, their
interaction with the built environment, and timing and
sequencing issues (Zaghi et al. 2016). At the hazard stage,
for hurricane exposed infrastructure, wind, rain, surge,
waves and inland flooding vary in time and space, and the
duration of the overlap may directly influence multi-hazard
effects (Nofal et al. 2021). Heavy rainfall may affect
buildings in the hurricane’s track from coastline to inland
(Matyas 2010). At the vulnerability stage, different hazards
commonly damage different components of the same
structure. Wind damages the building exterior systems and
appurtenant, allowing rainwater ingress to damage interior
components and contents (Lu et al. 2021, Pita et al. 2012,
Sim et al. 2020). Storm surge, wave, and flood can cause
both structural and interior damage and even collapse
buildings (Baradaranshoraka et al. 2019, Kennedy et al.
2020, Paleo-Torres et al. 2020, Tomiczek et al. 2014). A co-
occurrence of storm surge and riverine flooding may
intensify the inundation effect. At the design strategy stage,
current design codes are strength-based and generally
consider multi-hazard interaction only through load
combinations and load factors, which usually do not
account for possible changes in the characteristics of
structures because of individual hazards. Petrini et al.
(2020) summarized the practical issues arising when the
design of bridges in a multi-hazard framework. Similarly,
(Ciabattoni et al. 2024) proposed a unified design
framework for the design of tall buildings subjected to both
earthquakes and high winds. These design issues are
especially relevant in the context of a performance-based
design scenario, but this paper focuses on catastrophe
modeling over large portfolios of buildings.

Catastrophe (cat) models are developed to project the
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natural hazard induced damage to infrastructure. Typically,
cat models include four main components (Pita et al. 2013):
a component which models the hazard (hazard model); a
component that categorizes the building exposure into
generic building classes (BC); a component which models
the effects of the hazard on the exposure to define
vulnerability functions for each building class (vulnerability
model); and a component which utilizes outputs from the
hazard, exposure and vulnerability components to quantify
the actuarial risk in terms of economic damage and insured
losses (actuarial model). Examples of cat models include
(Barbato et al. 2013, Biasi ef al. 2017, Bhandari ef al. 2018,
Chian 2016, Dong 2002, Hatzikyriakou and Lin 2016,
Henderson and Ginger 2007, Ma et al. 2021, Michel-Kerjan
et al. 2013, RMS (Risk Management Solutions), 2021,
Wang et al. 2021).

To project hazard intensities researchers typically
develop a separate model for each hazard. For example,
separate models for hurricane winds, surge, and inland
flood (Dietrich et al. 2012, Nofal et al. 2021, Powell et al.
2010). In that context, it is difficult when employing these
models in a multi-hazard framework to capture the
dependency and/or correlation between hazards. In addition,
field data might be more prevalent for one hazard than the
other, e.g., more wind data available but no rain data
(Knabb et al. 2005, 2006), which can complicate the
validation of different hazard models. Moreover, modeling
interaction  between multiple hazards might be
computationally intensive (Borgonovo et al. 2012, Geist et
al. 2009, Luger and Harris 2010, Tilloy et al. 2019).

Traditionally, cat modelers have approached multi-
hazard loss modeling by projecting losses from one hazard
at a time, and then combining the results into overall losses
via empirical relationships (Baradaranshoraka et al. 2017,
Ming et al. 2015, Nofal and Lindt 2020). However, there is
a dearth of data available to validate multi-hazard model
loss outputs since insurance claim data do not in general
distinguish between causes of loss in a multi-hazard cause
of loss scenario.

This paper illustrates two different approaches to treat
the multi-hazards and discusses weaknesses and strengths
of these two approaches. In the first approach, the different
hazard models are decoupled from the vulnerability model,
insuring independence of the hazard and vulnerability
models. In the second approach, the hazards are classified
as primary and secondary, and only the primary hazard
model is decoupled, while the secondary hazard model is
embedded into the vulnerability model. Section 2 presents
the two proposed approaches for multi-hazard loss
modeling. Section 3 briefly describes a vulnerability model
developed by the authors. Section 4 introduces the hazard
model and the probability distribution of hazard intensities
derived from the hazard model. The vulnerability model in
section 3 is then tested with the proposed decoupled and
coupled approaches. Section 5 and 6 illustrate the
implementation and outputs of the two approaches. Section
7 presents the pros and cons and relationship between
outputs of the two approaches respectively.

2. Different approaches for multi-hazard

vulnerability modeling
2.1 Single hazard case

Most probabilistic vulnerability models employ a
Monte-Carlo (MC) simulation engine. In the case of a
single-hazard event, in general the hazard intensity is
discretized over a pre-defined range and intervals, and the
vulnerability being produced via MC is conditional upon
these hazard intensities. Thus, over a series of discrete and
defined hazard intensities, the MC program produces a
large number of samples of building and contents damage,
where the random variables that vary between samples may
be any or a combination of the building component
capacities, interior damage propagation, and conversion
from physical damage to repair cost. This repair cost in
ratio with the building value is the damage ratio, and is the
typical output presented as dependent on (conditional upon)
hazard intensity. The results of the MC simulations are
collected in a vulnerability matrix, with samples of damage
ratio down the rows and discretized hazard intensities along
the columns. A histogram of any column provides a
probability mass function of damage ratio as a function of
the discrete hazard intensity assigned to that column.
Averaging through each column produces the vector pair of
mean damage ratio and hazard intensity which can be
plotted as a vulnerability curve.

The specific content of the vulnerability matrix and
shape of the vulnerability curve are of course strongly
dependent upon the nature of the infrastructure or building
class they represent. Consider vulnerability (matrix and
curve) conditional upon the peak wind speed in a hurricane
hazard. In Florida, the vulnerability of a 1970’s constructed
single family wood frame residential home would differ
considerably from a 2023 constructed single family
reinforced masonry residential home, due to choice of
materials, aging, and the advancement of load path
requirements in building codes. Thus, projecting losses over
a region due to a hazard with a large geographic footprint
(e.g., hurricane) requires the generation of a library of many
vulnerability matrices for different building classes to
properly capture the breadth of the building inventory being
impacted.

As an expression of damage probability conditional
upon a given hazard intensity, the vulnerability matrix (or
curve) has nothing to say about the likelihood of any
specific hazard intensity in single hazard cases. This is the
role of the hazard model. For example, a hurricane wind
hazard model is employed to generate the geometrically
varying time history of wind speed and wind direction of a
hurricane over its life. The hazard and vulnerability models
are combined in the actuarial model for either the
simulation of a real historical hurricane event (scenario
simulation) or the creation of a fictitious event that is
designed to behave within the stochastic bounds of the
record of real past real events (stochastic simulation). In the
stochastic mode, a given portfolio of exposure is subjected
to thousands of fictitious simulated hurricanes, where each
simulated hurricane is treated as a fictitious scenario.
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Hazard model outputs are employed to inform the
probability of the conditional (independent) hazard variable
in the vulnerability matrix or curve. In a scenario analysis,
the combined hazard and vulnerability models will project
losses from past hurricanes, thus providing a means of
validation by comparing projections against real insurance
claims data from those events. In a stochastic analysis, the
hazard and vulnerability models can be used to project
average annual losses from hurricane wind damage,
aggregated by region or stratified further by structure type
(Hamid et al. 2011, Pinelli et al. 2011, Pita et al. 2015, Pita
etal. 2013).

2.2 Multi-hazard case: hazard and vulnerability
decoupling

This single-hazard strategy can be expanded to the case
of multiple simultaneous hazard events, e.g., hurricane
winds and rain. In the so-called decoupling approach, the
various hazard intensities are discretized over pre-defined
ranges and intervals, and the vulnerability being produced
via MC is conditional upon combinations of these hazard
intensities. The results of the MC simulations are collected
in multi-dimensional vulnerability tensors, where each cell
yields probabilities of damage given combined hazard
intensities. A histogram of any column provides a
probability mass function of damage ratio as a function of
the combined discrete hazard intensities assigned to that
column. Averaging through each column produces the
combinations of mean damage ratio and hazard intensities
which can be plotted as a vulnerability surface, for the case
of two hazards. The vulnerability model outputs are
conditioned upon discretized hazard intensities, and are
therefore independent of the hazard model(s), in the same
way than for the single hazard case.

This decoupling of the multiple hazard model(s) and
vulnerability model have advantages and disadvantages.
First, the multi-hazard vulnerability functions require that
either different hazard models, or an integrated multi-hazard
model provide estimates of all hazard intensities at each
location of the exposure. In that case, for each scenario
analysis, either real or fictitious (in the case of a stochastic
analysis), mean values of damage are assigned based on the
corresponding combined hazard intensities. Section 3 below
shows that in a decouple model, separate vulnerability
curves conditional on each hazard can be developed. The
independence of the wvulnerability model and hazard
model(s) makes it easy to test the influences of different
hazard model(s) on the projected insured losses. The
decoupling approach is computationally intensive for both
hazard modeling and the vulnerability modeling. On the
hazard side it requires prediction of all the hazard intensities
at every location. On the vulnerability side it requires a
large number of simulations for all combinations of hazard
intensities.

2.3 multi-hazard case: hazard and vulnerability
coupling

A different approach for multi-hazard vulnerability

modeling defines one hazard as the primary (independent)
hazard and the others as secondary hazards. In cases where
there is a correlation between primary and secondary
hazards, probability distribution functions (PDFs) of
secondary hazard intensities conditional on primary hazard
intensities can be developed. An example will be provided
in section 4. This strategy mimics the single-hazard
implementation, where the primary hazard intensity is
discretized over a pre-defined range and intervals, and the
vulnerability being produced via MC is conditional upon
these primary hazard intensities. For each MC simulation,
the secondary hazard intensity is not discretized. Instead, it
is sampled from its PDF as a function of the assigned
primary hazard intensity, and is therefore embedded in the
vulnerability model. Results are vulnerability matrices
which yield probabilities of damage conditional on the
primary hazard intensity. The coupled secondary hazard and
vulnerability model is essentially a one-hazard model,
which is transparent to the secondary hazard.

The advantages and disadvantages of this coupling
approach are the opposites to those of the decoupling
approach. First, the primary-hazard vulnerability functions
require only primary-hazard intensities at each location of
the exposure to estimate the damage. In that case, for each
scenario analysis, either real or fictitious (in the case of a
stochastic analysis), mean values of damage are assigned
based on the corresponding primary hazard intensities. The
dependence of the vulnerability model on the secondary
hazard model makes it difficult to test the influences of
alternative secondary hazard modes on the projected
insured losses. The approach can produce vulnerability
curves dependent on the primary-hazard only. The coupling
approach is computationally less intensive for both hazard
modeling and the vulnerability modeling. On the hazard
side it requires prediction of only the primary hazard
intensities at every location. On the vulnerability side it
does not require simulations for all combinations of hazard
intensities.

3. Mid/high-rise hurricane wind and rain

vulnerability model

The paper illustrates the two vulnerability modeling
approaches described above for the case of mid/high-rise
buildings subjected to hurricanes. With funding from the
Florida Office of Insurance Regulation (OIR) and the Wind
Hazard and Infrastructure Performance Center (WHIP-C),
the authors developed a component-based probabilistic
vulnerability model to predict wind and rain vulnerability of
mid/high-rise buildings (MHRB) during hurricane events.
This model referred to as the WHIP-MHRB categorizes the
MHRB into different BC’s, and for each BC, the model
projects interior and exterior building damage, contents
damage, and it also includes a module, the WHIP-TRE,
which projects recovery time and time related expenses
(TRE). Both the WHIP-MHRB and the WHIP-TRE are
described in detail in companion papers (Wei et al. 2024,
Wei et al. 2024). In this case, the multiple hazards are the
wind and the wind-driven rain. The wind hazard is the
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primary hazard, and its intensity is the 3-sec maximum peak
gust wind speed at 10 meters height over actual terrain
(WSmax), and the height of accumulated wind-driven rain
from start to end of the storm at a height of 10 m (WDRujo),
is the secondary hazard intensity. Although there is no
causality between WS and WDRyio, we shall see in the
next section that there is a correlation between the two, and
probability distribution functions of WDRy;o conditional on
WSmax can be derived.

MHRB are engineered structures and therefore highly
resistant to wind induced structural damage. For that reason,
the Florida Public Hurricane Loss Model (FPHLM), from
which the WHIP-MHRB is derived, only considers damage
to exterior openings (windows, doors, and sliders) and
water ingress via a component approach (Pita et al. 2016).
In the WHIP-MHRB model, the authors took the FPHLM
component approach one step further to capture the physics
of wind-driven rainwater ingress, distribution and
propagation to produce estimates of hurricane damage to
both interior and contents in MHRB. Water may ingress
absent any physical damage (e.g., an undamaged window
can leak), through installation, product, or maintenance
defect, and through the breaches of the envelope due to
wind or debris impact.

At the heart of the WHIP-MHRB model is a MC
simulation engine, which conducts large numbers (n) of
simulations (in this paper n=2000) for different
combinations of WSmax, wind direction, and WDRuo.
WSmax is discretized into 41 intervals from 22.35 m/s (50
mph) to 111.76 m/s (250 mph) with a width of 2.26 m/s (5
mph). The wind direction is selected from 0° to 315° in 45°
increments. WDRyyo is either discretized into 20 intervals
from 0 m to 2.54 m with a length of 0.13 m in the
decoupling approach, or sampled from its pdf conditional
on WSnax as described in section 4 (coupling approach).
The result of the simulations are distributions of damage to
the exterior, interior, and contents components of the
building, with subsequent recovery times and TRE. These
damage simulations are then transformed into vulnerability
tensors and matrices, and their respective vulnerability
surfaces and curves.

In the following sections, the authors illustrate the
details of the decoupling and coupling approaches within
the framework of the WHIP-MHRB.

4. Hazard model

For muti-hazards, the same hazard model could produce
the estimates of both the primary and secondary hazard
intensities, in this case, WSmax and WDRyjo or different
models can independently produce the primary and
secondary hazard intensities. Although the first case is
preferable, especially if a decoupled vulnerability model is
used (described in section 5), the FPHLM v8.2 (FPHLM
2022) and the WHIP-MHRB hazard models follow the
second case strategy. The wind model was developed
initially by (Powell ef al. 2005) without a rain component.
Later, Pita et al. (2012) performed an independent study on
the estimation of WDRyjo during hurricane events via

simulation of a large number of synthetic hurricanes. For
each of these hurricanes, the radially averaged rain rate and
wind speed distribution (assuming that tangential wind is
the full wind speed) are estimated based on models by
(Holland 1980, Marks et al. 1993), respectively. A number
of recording stations are placed uniformly across each
synthetic hurricane at a given distance from the coast. The
simulation records the time history of rain rate and wind
speed at each station for all synthetic hurricanes resulting in
probability distribution functions of WDRuio conditional on
WShnax, and vice-versa.

H
n..
p1 (G, j) = PH(WDRhlo = de'lWSmax = Wsi) = n_Z (l)
L
H
S~ oH _ _ _ny
P2(i.) = PH(WSmax = wsilWDRp1p = wdry) = (2)

<

PH(A|B) = the conditional probability distribution
function derived from the rain hazard model (hence the
superscript H), e.g., P(WDRy1o = wdrj|WSpax = ws;)
is the probability that WDRyo is in the j-th WDRy interval
given that the WS is the i-th WS, interval.

ng- = the number of simulations instances in the i-th
WSmax interval and j-th WDRy interval simultaneously.

nf = the number of simulations instances in the i-th
WSmax interval.

5. Hazards and vulnerability models decoupling in
the WHIP-MHRB model

In the decoupling approach (Fig. 1(a)) the MC
simulation vulnerability engine treats both WS« and
WDRy0 as deterministic variables. For each wind direction,
for every combination of WSmax, WDRhio, @ number n of
simulation is carried out, which produce building and
contents damage ratios (DR) and recovery times (Treco).
For each BC, the results of the simulations translate into
building, contents, and recovery times vulnerability tensors
and vulnerability surfaces where, the expected damage
ratios are conditional on both WS, and WDRy;o,
DRBC (Wsmax' WDRth)-

Outputs of the WHIP-MHRB Model include 3D
vulnerability tensors, vulnerability surfaces, vulnerability
matrices and curves which are detailed in the following
sections. The Egs. (3)-(11) below are developed to express
damage ratios, but they can also be adapted to express
recovery times and TRE.

5.1 3D vulnerability tensor and vulnerability surface

For each BC, the combinations of WS,.x, WDRy0, and
damage ratios (DR), directly result in a 3D vulnerability
tensor (Fig. 2), Vi, with a dimension of 250 x 41 x 20
representing 250 equal DR intervals from 0 to 100%, 41
WS intervals, and 20 WDRyo intervals. V; is
independent of the distributions of WSna« and WDRyo.
Each cell of V; is a conditional probability of damage from

Eq. (3).
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in the i-th WSnax interval, and WDRyo in the j-th WDRuio
interval.

The vulnerability surface gives the mean damage ratio
given a certain combination of WSna and WDRyj
calculated with Eq. (4). Fig. 3 is an example of vulnerability
surface showing the mean building DR for a building class
with open layout, 6 stories and 6 apartments per story,
without sliding balcony door, impact resistant glass, and
carpet floor (open_U6 S6 NSD IR C).

DR(W Smax = wsi, WDRpyo = wdry)
Mmax
= z dry - Vi(m,i,j)
M (4)

Nmij

- Z drm. ’
n..

m=1 Y

5.2 Vulnerability matrices and vulnerability curves

In many cases, only one hazard intensity, WSmax or
WDRuio, at a particular building location is provided, or the
distribution of damage with respect to one hazard only is
required. In that case, it is necessary to reduce the
vulnerability tensor V| with probabilities conditional on two
hazard intensities to a vulnerability matrix with
probabilities conditional on only one, WSmax or WDRjo.
The resulting vulnerability matrices, V», conditional on
WSmax and V3, conditional on WDRy1o are derived from V;
thanks to Eqs. (5)-(6). In these matrices, each column
provides the pdf of DR conditional on WSmax or WDRyio
(Fig. 4). In these equations, pi and p are the pdf of WDRui0
conditional on WSmax and WSmax conditional on WDRujo
derived from the hazard model (Egs. (1)-(2)). Therefore, in
these vulnerability matrices we lose the independence
between hazard and vulnerability models.

V,(m,i) = P(DR = dt,|WSax = WS;)

Jmax

_ Z Vi(m, i, ) - 1 (i, )]
o ®

H
_ Z ("mij ”ij)
= —'—H
nij n:

1

Vs(m,j) = P(DR = A1 |[WDRpo = wd; i)
= > im i) pai )
=1 (6)

lmax

H

- Z (nmij . nij)
- H
nij n:

i=1 7

The vulnerability curves provide the mean damage ratio
given a certain WSyax or WDRuio calculated with Egs. (7)-
(8) respectively. Fig. 5 shows the WSna and WDRuio
vulnerability curves for the same BC used for Fig. 3.

WS max Intervals

\
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| /
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(a) Vulnerability matrices conditional on WSmax
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" f{(DR=drp|WDRpyi=wdr)

Fig. 4 Vulnerability matrices conditional on: WSuax and
WDRhio

Mmax
DR(W S0y = Ws;) = Z dryy, - Vo (m, i)
=1
mmax Jmax (7)
Z dry, - Z (nml/ ) i')
N Ny
Mmax
DR(WDRpyo = wdry) = Z dr, - Vs(m, j)
Mmax imax (8)

Nmij . n;j
Z i Z ( ny; >

5.3 Insured losses

In the actuarial model, each building in an insurance
portfolio is assigned a building class BC, with its
corresponding vulnerability surface DRp. , and the
combination of wind hazard intensity WSnax, and WDR
hazard intensity WDRy0, results in a mean damage ratio.
Deductible and limit transform the resulting damage into a
mean insured loss, $L,, for each property in a portfolio,
which is:
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$L, = max (0, (DRpc(W Smax = Wsi, WDRy1o
= wdr;) - $Vy — Dk)) < Limit, ©)

$V; = the building value.
D, = the insurance deductible.
Limit;, = the insurance limit.

With the decoupled vulnerability model, the actuarial
model can take advantage of intensity information on both
WS and WDR at the location of the property, resulting in
potentially more accurate estimate of the loss.

If only a single hazard intensity (either wind WSy or
rain WDRy¢) is available at the location of the property, the
mean loss based on either one of these hazard intensities
can still be computed from the vulnerability matrices V, or
V3 and their corresponding vulnerability curves as follows.

$L,. = max(0, DRpe(WSmax = ws;) - $Vi — Dy))
< Limity, (10)

$Li = max (0, (DRpc (WD Ry = wdry) - $V, — D) )
< Limity

(11)

In this case, for example in Eq. (10) the pdf’s of WDR
are embedded in the vulnerability model, and the estimate
of the loss does not consider the local intensities of WDR.

6. Hazards and vulnerability models coupling in
the WHIP-MHRB model

In the coupling approach (Fig 1(b)) the MC simulation
vulnerability engine treats WSpax as a deterministic
variable, while for each simulation WDRyo is sampled from
its pdf conditional on WSpax. In this case the rain hazard
model is embedded in the vulnerability model. For each
combination of wind direction and WS,,x, a number n of
simulation is carried out, which produce building and
contents damage ratios (DR) and recovery times (Treco).
For each BC, the results of the simulations translate into
building, contents, and recovery times vulnerability
matrices. The vulnerability curves give the expected
damage ratios DR (W S,,4,) conditional on WSy, as in
a one-hazard case. The coupling approach is the default
approach in both the original FPHLM (Johnson et al. 2018,
Pita et al. 2012, Pita et al. 2016) and the WHIP-MHRB
(including its WHIP-TRE component).

The following sub-sections describe the outputs of the
WHIP-MHRB Model, which include vulnerability matrices
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and curves. The Egs. (12)-(14) are developed to express
damage ratios, but they can also be adapted to express
recovery times and TRE.

6.1 Vulnerability matrices and curves

For each BC, the outputs of the coupled WHIP-MHRB
model are vulnerability matrices, V», where each cell
represents the probabilities of damage conditional on only
WSmax (Eq. (12)). In these matrices, each column provides
the pdf of DR conditional on WS (Fig. 4(a)).

, Nmi
Vo(m,i) = P(DR = dt,|W S0 = WS;) =

o 12)
Ny, = the number of data points of having the m-th DR
interval, and i-th WSy« interval from vulnerability model.
n; = the number of data points of having the i-th WSy«
interval from vulnerability model.
The vulnerability curves give mean damage ratio as a
function of WSnax (Eq. (13)).

Mmax

RWSpax = wsy) = Z dry, - Vo(m, 1)

=1
Mmax
Nini
n;
m=1

The wvulnerability matrix from Eq. (12) and the
vulnerability curve from Eq. (13) are theoretically the same
as the ones from Egs. (5) and (7), provided that the same
hazard model yielding the same pdf’s of secondary hazard
conditional on primary hazard (p; Eq. (1)) are used in both
models.

(13)

6.2 Limitations of the coupling approach

In the coupling approach, where WDRuio is sampled
from a pdf instead of being treated as an independent
deterministic  variable, each simulation results in
combinations of WS, WDRyjo, and DR. Therefore, a 3D
vulnerability tensor V; could also be derived from the
simulations, where theoretically the cells would represent
the probabilities of DR conditional on both WS, and
WDRuio (Eq. (3)). However, in the coupled model, the
values npjj and n;jj can be zero or very small for some
combined intervals of WS,a.x and WDRyj. Thus, it is
impossible to produce a proper pdf of DR for all
combinations of WSna and WDRpjo. In summary, the
coupled model cannot produce a meaningful vulnerability
tensor (V).

Similarly, the coupled model can also produce
vulnerability matrices conditional on WDRyio using Eq.
(14).

n .

Vs(m.j) = P(DR = dr|WDRyo = wdry) = —= (14)

j

Ny; = the number of data points of having the m-th DR
interval, and j-th WDRy interval from vulnerability model.

n; = the number of data points of having the j-th

WDRuj¢ interval from vulnerability model.

Here again, for the coupled model, the values ny; and n;
can be zero or very small for some intervals of WDRy1o and
do not reflect the distribution p, of WSnax conditional on
WDR4io derived from the rain hazard model (Eq. (2)).
Therefore, the coupled vulnerability matrix Vi(m,j) is
meaningless. As a result, the coupled vulnerability curve
derived from V3(m,j), differs from the vulnerability curve
from the decoupled model. Fig. 6 illustrates this situation by
comparing the vulnerability curves conditional on WDRuio
from both the decoupled and coupled models for BC:
open_ U6 S6 NSD IR C. The smooth  decoupled
vulnerability curve is derived from the complete pdf p> of
WShax conditional on WDRyjo derived from the hazard
model (Egs. (2) (6) and (8)). The coupled curve has
oscillations for the reason described above and for large
WDRGuio the rain hazard model only provides very few
datapoints which results in large oscillations of DR. This
last curve would lead to incorrect loss projections.

6.3 Insured losses

In the actuarial model, each building in an insurance
portfolio is assigned a building class BC, with its
corresponding vulnerability matrix V, and curve, and the
combination of wind hazard intensity WSm. and
vulnerability DRgc results into mean insured loss $Ly, for
each property in a portfolio, given by Eq. (10). For the
actuarial model there is no difference between the one-
hazard and the coupled hazard-vulnerability approach. With
the coupled vulnerability model, the actuarial model cannot
take advantage of information on the secondary hazard
WDRuo at the location of the property.

7. Discussion

7.1 Computational efficiency of coupled vs. decoupled
model

All things being equal in term of computer hardware (a
desktop with Intel Core i7-10700KF CUP, 32 GB memory
and 100 GB virtual memory), for one BC, the decoupled
model required 38 minutes of computer time and 101 GB
memory to run 1,476,000 simulations while the coupled
model required 12 minutes of computer time and 45 GB
memory to run 656,000 simulations. For 1500 BC’s, that
would result in 40 days of running time vs. 12.5 days for the
decoupled and coupled models respectively. The coupled
model computational efficiency is a factor of 3.2
improvement over the decoupled model. However, the
coupled model produces only vulnerability matrices and
curves conditional on WSy as described previously. The
computational efficiency of the decoupled model could be
improved with more efficient source code, parallel
computing, and more powerful computers. In terms of
computer storage, the outputs of the decoupled model
include the tensors V; with their vulnerability surfaces, and
the vulnerability matrices V, and V3 with their vulnerability
curves, while the outputs of the coupled model include only
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Fig. 7 Relationships between model outputs

the vulnerability matrices V, with their vulnerability curves,
less than one third the needs of the decoupled model.

In the actuarial model which projects losses and
recovery times, a simple test-case with 1,920,000
hypothetical buildings showed that a scenario analyses
using vulnerability tensors and surfaces take twice the time
of the same scenario analyses using vulnerability matrices
and curves. Although the execution times of the scenarios
are measured in seconds, for a stochastic analysis involving
50,000 scenarios, the overall difference in execution time
could be significant. How significant would depend on the
computer power available.

7.2 Relationship between model outputs

Fig. 7 shows the relationships between vulnerability
models and secondary hazard model and where the coupling
between the two can occur. In the figure, green boxes
represent the stages where decoupling between the models
exists, while orange represents where coupling occurs. The
secondary hazard model, without any color in the figure,
whether a standalone model or part of a multi-hazard
model, yields the pdf’s p; and p, from Egs. (1) and (2).

In the case of the decoupled model, in a first stage
(green in the figure), the MC simulations iterate over wind
direction (WD), WSmax and WDRyi, and result in a 3D
vulnerability tensor, Vi, completely independent of the
hazard(s) model(s), which gives the probabilities of DR
conditional on combinations of WSna and WDRyio. The
graphical representation of Vi is the vulnerability surface
which gives the mean value of DR for each combination of
WSmax and WDRyjo. In a second coupled stage (orange in
the figure), the model converts V; into vulnerability

matrices, V2 and V3, thought integration over p; and p»
(section 4), which are embedded in this second stage of the
model. V, and V3 give the probabilities of DR conditional
on either WSpax or WDRy 0. The graphical representation of
V, and V3 are vulnerability curves which give the mean
values of DR for each value of WSmax or WDRyj.

In the case of the coupled vulnerability model, the MC
simulations iterate over WD and WSn.x, whereas for each
simulation WDRyi is sampled from the pdf pi, which is
embedded in the model, and the output is the same
vulnerability matrix Vo.

The actuarial model (not shown in the figure), shall need
estimates of both WSy« and WDRuo at property locations,
from the primary and secondary hazard models, to be able
to use V; to project losses. If only either WSnax or WDRyio
is available, then the actuarial model shall use V; or V3 to
predict losses.

7.3 Comparison between loss projections from the two
approaches

It should be clear from the above that, for any BC, the
main difference between the decoupled tensor V; (and its
vulnerability surface) and the matrix V> (and its
vulnerability curve) is that, for a given WSnmax, there are
many points on the vulnerability surface corresponding to
all possible values of WDRyio while there is only one point
on the vulnerability curve corresponding the mean value of
WDRui at that given WSax.

Large insurance portfolios in general will have buildings
belonging to multiple BC’s. When doing a portfolio
analysis, the projected losses at each property location, to
which a BC is assigned, could vary widely depending on
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whether the loss was computed using a vulnerability surface
or a vulnerability curve. It can be argued that the local
projections from the vulnerability surface are more accurate
since they use local rain hazard estimates instead of mean
values. However, for large portfolios, if the number of
properties belonging to each BC gets large enough at any
WSmax (at least close to the number of simulations used for
each WS« in the coupled model) the law of large numbers
plays out and the average of the results from the BC
vulnerability surface at each WSnax shall converge to the
WSmax results from the vulnerability curve. Tests show that
for 2000 properties of the same BC the results of the two
approaches converge with less than 2% difference. This is
true of any BC, and hence for a heterogeneous portfolio, as
long as they are represented in the portfolio by a large
enough number of properties for each WS, of interest, the
aggregated portfolio losses from the two approaches shall
be very similar.

For a small portfolio, this is not true. The local
differences will not average out at the aggregated level, and
large differences can be expected on the total portfolio
losses, between the predictions based on vulnerability
surfaces and curves. To summarize, in the case of smaller
portfolios, a portfolio analysis based on a vulnerability
surface, which can take advantage of the complete local
hazard estimates shall be more accurate both at the local
and at the aggregated level. In the case of a large portfolio,
the analysis with vulnerability surface will still be more
accurate at the property level, but both analyses will
converge at the portfolio level.

8. Conclusions

This paper presents two approaches for multi-hazard
vulnerability modeling, which are implemented into a
component-based wind and rain hurricane vulnerability
model, where the wind is the primary hazard and the rain is
the secondary hazard. In the first approach, in a decoupled
first tier, the primary and secondary hazard models and
vulnerability model are independent of each other, and the
primary output is a vulnerability tensor (Vi) conditional
upon both hazard intensities. The decoupling facilitates the
testing of the influence of different hazard models on the
outputs of the actuarial model. In a second coupled tier, this
approach has the unique advantage that it can also produce
vulnerability matrices (V2 or V3) conditional on either the
primary or the secondary hazard, although the independence
of hazard and vulnerability model is lost, since in each case
the vulnerability matrix results from the integration of the
tensor V over the pdf of one of the hazard conditional on
the other. In the purely coupled second approach, where the
secondary hazard model is embedded in the MC simulations
of the wvulnerability model, the only outputs of the
vulnerability model are vulnerability matrices (V2)
conditional on the primary hazard. The graphic
representations of Vi, V,, and V3 are vulnerability surfaces
and vulnerability curves.

The paper shows the pros and cons of each approach.
For sufficiently large portfolios where all the building

classes have large populations in each wind speed interval
of interest, there are no statistical differences between the
results of the two approaches at the aggregated level of
portfolio losses. The decoupled approach though, which
takes advantage of all the local hazard information,
produces more realistic loss projections for each individual
portfolio property. The decoupled approach has also the
distinct advantage of being the only approach which can
produce vulnerability matrices and curves conditional on
the secondary hazard, which can be very useful for loss
estimations and mitigation studies. For smaller portfolios or
portfolios where certain building classes might be under-
represented, there can be significant differences between the
loss projections from the decoupled model (based on
vulnerability surfaces and local hazard estimates) and
coupled model (based on vulnerability curves and mean
values of secondary hazard), with the decoupled model
providing more realistic results.

In terms of computational efficiency, the generation of
the vulnerability matrices and curves from the coupled
approach could be 3 to 4 times faster than the generation of
the vulnerability tensors and surfaces, and subsequent
matrices and curves from the decoupled approach, and
require less storage space. At the actuarial level, the
execution time of a stochastic portfolio analysis could be
twice as long using a library of decoupled vulnerability
tensors than using a library of vulnerability matrices. The
significance of the extra computer time will depend on the
computing power available.

In practice, many hazard models might provide local
primary hazard intensities only, in which case, the only
option for the cat model is to project losses and recovery
times based on the vulnerability matrices from the second
coupled tier of the first approach or from the purely coupled
second approach. Hopefully, this research shall raise
awareness of the issues linked to coupled models, and the
constant advances in computer power might improve the
computational efficiency and attractiveness of the
decoupled approach. Validation is an important issue as
well, since proper validation of a cat model using a
decoupling approach between hazard and vulnerability
requires both primary and secondary hazard data at each
insurance claim location.
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