
Wind and Structures, Vol. 38, No. 5 (2024) 355-366 

https://doi.org/10.12989/was.2024.38.5.355                                                                      355 

Copyright © 2024 Techno-Press, Ltd. 
http://www.techno-press.com/journals/was&subpage=5                                     ISSN: 1226-6116 (Print), 1598-6225 (Online) 

 
1. Introduction 

 

Many natural hazard events involve more than one 

hazard. Multi-hazard events can lead to billions of dollars 

losses (NOAA 2023). The top three worst years of natural 

hazards events in the U.S. caused up to $377, $256, and 

$175 billion dollars (CPI-adjusted) in damage in 2017, 

2005, and 2022 respectively, mainly due to tropical 

cyclones (Miller 2018, NOAA 2023, Smith 2023), which 

involved wind, surge and flood, and rain. For example, in 

2022 there were 17 natural disaster events of which 3 were 

tropical cyclones causing 65% of the losses or damages. 

 These multiple hazards can happen concurrently, 

although their peak intensities might not occur 

simultaneously. These multiple hazards can be classified as: 

1) concurrent and independent, for example, earthquake and 

hurricane happening simultaneously; 2) concurrent and 

correlated. For example, dual-hazard hail and tornadic 

winds in thunderstorms; or tri-hazard high winds, wind-

driven rain, and either inland flooding or coastal storm 

surge in hurricanes (Li et al. 2012, NOAA 2023); or high 

wind and ice hazards in winter storms (Mahmoudi et al. 

2021). Multi-hazards can also be cascading rather than 

concurrent, occurring in hazard chains, for example, 

earthquake-blast chain (Francioli et al. 2023), earthquake 

and tsunami; earthquake and fire; rainfall and landslide.  

Modeling losses from multi-hazard events present many  
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challenges related to the hazards themselves, their 

interaction with the built environment, and timing and 

sequencing issues (Zaghi et al. 2016). At the hazard stage, 

for hurricane exposed infrastructure, wind, rain, surge, 

waves and inland flooding vary in time and space, and the 

duration of the overlap may directly influence multi-hazard 

effects (Nofal et al. 2021). Heavy rainfall may affect 

buildings in the hurricane’s track from coastline to inland 

(Matyas 2010). At the vulnerability stage, different hazards 

commonly damage different components of the same 

structure. Wind damages the building exterior systems and 

appurtenant, allowing rainwater ingress to damage interior 

components and contents (Lu et al. 2021, Pita et al. 2012, 

Sim et al. 2020). Storm surge, wave, and flood can cause 

both structural and interior damage and even collapse 

buildings (Baradaranshoraka et al. 2019, Kennedy et al. 

2020, Paleo-Torres et al. 2020, Tomiczek et al. 2014). A co-

occurrence of storm surge and riverine flooding may 

intensify the inundation effect. At the design strategy stage, 

current design codes are strength-based and generally 

consider multi-hazard interaction only through load 

combinations and load factors, which usually do not 

account for possible changes in the characteristics of 

structures because of individual hazards.  Petrini et al. 

(2020) summarized the practical issues arising when the 

design of bridges in a multi-hazard framework. Similarly, 

(Ciabattoni et al. 2024) proposed a unified design 

framework for the design of tall buildings subjected to both 

earthquakes and high winds. These design issues are 

especially relevant in the context of a performance-based 

design scenario, but this paper focuses on catastrophe 

modeling over large portfolios of buildings. 

Catastrophe (cat) models are developed to project the 
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natural hazard induced damage to infrastructure. Typically, 

cat models include four main components (Pita et al. 2013): 

a component which models the hazard (hazard model); a 

component that categorizes the building exposure into 

generic building classes (BC); a component which models 

the effects of the hazard on the exposure to define 

vulnerability functions for each building class (vulnerability 

model); and a component which utilizes outputs from the 

hazard, exposure and vulnerability components to quantify 

the actuarial risk in terms of economic damage and insured 

losses (actuarial model). Examples of cat models include 

(Barbato et al. 2013, Biasi et al. 2017, Bhandari et al. 2018, 

Chian 2016, Dong 2002, Hatzikyriakou and Lin 2016, 

Henderson and Ginger 2007, Ma et al. 2021, Michel-Kerjan 

et al. 2013, RMS (Risk Management Solutions), 2021, 

Wang et al. 2021). 

To project hazard intensities researchers typically 

develop a separate model for each hazard. For example, 

separate models for hurricane winds, surge, and inland 

flood (Dietrich et al. 2012, Nofal et al. 2021, Powell et al. 

2010). In that context, it is difficult when employing these 

models in a multi-hazard framework to capture the 

dependency and/or correlation between hazards. In addition, 

field data might be more prevalent for one hazard than the 

other, e.g., more wind data available but no rain data 

(Knabb et al. 2005, 2006), which can complicate the 

validation of different hazard models. Moreover, modeling 

interaction between multiple hazards might be 

computationally intensive (Borgonovo et al. 2012, Geist et 

al. 2009, Luger and Harris 2010, Tilloy et al. 2019). 

Traditionally, cat modelers have approached multi-

hazard loss modeling by projecting losses from one hazard 

at a time, and then combining the results into overall losses 

via empirical relationships (Baradaranshoraka et al. 2017, 

Ming et al. 2015, Nofal and Lindt 2020). However, there is 

a dearth of data available to validate multi-hazard model 

loss outputs since insurance claim data do not in general 

distinguish between causes of loss in a multi-hazard cause 

of loss scenario. 

This paper illustrates two different approaches to treat 

the multi-hazards and discusses weaknesses and strengths 

of these two approaches. In the first approach, the different 

hazard models are decoupled from the vulnerability model, 

insuring independence of the hazard and vulnerability 

models. In the second approach, the hazards are classified 

as primary and secondary, and only the primary hazard 

model is decoupled, while the secondary hazard model is 

embedded into the vulnerability model. Section 2 presents 

the two proposed approaches for multi-hazard loss 

modeling. Section 3 briefly describes a vulnerability model 

developed by the authors. Section 4 introduces the hazard 

model and the probability distribution of hazard intensities 

derived from the hazard model. The vulnerability model in 

section 3 is then tested with the proposed decoupled and 

coupled approaches. Section 5 and 6 illustrate the 

implementation and outputs of the two approaches. Section 

7 presents the pros and cons and relationship between 

outputs of the two approaches respectively. 

 

 

2. Different approaches for multi-hazard 
vulnerability modeling 

 

2.1 Single hazard case 
 

Most probabilistic vulnerability models employ a 

Monte-Carlo (MC) simulation engine. In the case of a 

single-hazard event, in general the hazard intensity is 

discretized over a pre-defined range and intervals, and the 

vulnerability being produced via MC is conditional upon 

these hazard intensities. Thus, over a series of discrete and 

defined hazard intensities, the MC program produces a 

large number of samples of building and contents damage, 

where the random variables that vary between samples may 

be any or a combination of the building component 

capacities, interior damage propagation, and conversion 

from physical damage to repair cost. This repair cost in 

ratio with the building value is the damage ratio, and is the 

typical output presented as dependent on (conditional upon) 

hazard intensity. The results of the MC simulations are 

collected in a vulnerability matrix, with samples of damage 

ratio down the rows and discretized hazard intensities along 

the columns. A histogram of any column provides a 

probability mass function of damage ratio as a function of 

the discrete hazard intensity assigned to that column. 

Averaging through each column produces the vector pair of 

mean damage ratio and hazard intensity which can be 

plotted as a vulnerability curve. 

The specific content of the vulnerability matrix and 

shape of the vulnerability curve are of course strongly 

dependent upon the nature of the infrastructure or building 

class they represent. Consider vulnerability (matrix and 

curve) conditional upon the peak wind speed in a hurricane 

hazard. In Florida, the vulnerability of a 1970’s constructed 

single family wood frame residential home would differ 

considerably from a 2023 constructed single family 

reinforced masonry residential home, due to choice of 

materials, aging, and the advancement of load path 

requirements in building codes. Thus, projecting losses over 

a region due to a hazard with a large geographic footprint 

(e.g., hurricane) requires the generation of a library of many 

vulnerability matrices for different building classes to 

properly capture the breadth of the building inventory being 

impacted. 

As an expression of damage probability conditional 

upon a given hazard intensity, the vulnerability matrix (or 

curve) has nothing to say about the likelihood of any 

specific hazard intensity in single hazard cases. This is the 

role of the hazard model. For example, a hurricane wind 

hazard model is employed to generate the geometrically 

varying time history of wind speed and wind direction of a 

hurricane over its life. The hazard and vulnerability models 

are combined in the actuarial model for either the 

simulation of a real historical hurricane event (scenario 

simulation) or the creation of a fictitious event that is 

designed to behave within the stochastic bounds of the 

record of real past real events (stochastic simulation). In the 

stochastic mode, a given portfolio of exposure is subjected 

to thousands of fictitious simulated hurricanes, where each 

simulated hurricane is treated as a fictitious scenario. 
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Hazard model outputs are employed to inform the 

probability of the conditional (independent) hazard variable 

in the vulnerability matrix or curve. In a scenario analysis, 

the combined hazard and vulnerability models will project 

losses from past hurricanes, thus providing a means of 

validation by comparing projections against real insurance 

claims data from those events. In a stochastic analysis, the 

hazard and vulnerability models can be used to project 

average annual losses from hurricane wind damage, 

aggregated by region or stratified further by structure type 

(Hamid et al. 2011, Pinelli et al. 2011, Pita et al. 2015, Pita 

et al. 2013). 

 

2.2 Multi-hazard case: hazard and vulnerability 
decoupling 

 

This single-hazard strategy can be expanded to the case 

of multiple simultaneous hazard events, e.g., hurricane 

winds and rain. In the so-called decoupling approach, the 

various hazard intensities are discretized over pre-defined 

ranges and intervals, and the vulnerability being produced 

via MC is conditional upon combinations of these hazard 

intensities. The results of the MC simulations are collected 

in multi-dimensional vulnerability tensors, where each cell 

yields probabilities of damage given combined hazard 

intensities. A histogram of any column provides a 

probability mass function of damage ratio as a function of 

the combined discrete hazard intensities assigned to that 

column. Averaging through each column produces the 

combinations of mean damage ratio and hazard intensities 

which can be plotted as a vulnerability surface, for the case 

of two hazards. The vulnerability model outputs are 

conditioned upon discretized hazard intensities, and are 

therefore independent of the hazard model(s), in the same 

way than for the single hazard case. 

This decoupling of the multiple hazard model(s) and 

vulnerability model have advantages and disadvantages.  

First, the multi-hazard vulnerability functions require that 

either different hazard models, or an integrated multi-hazard 

model provide estimates of all hazard intensities at each 

location of the exposure. In that case, for each scenario 

analysis, either real or fictitious (in the case of a stochastic 

analysis), mean values of damage are assigned based on the 

corresponding combined hazard intensities. Section 3 below 

shows that in a decouple model, separate vulnerability 

curves conditional on each hazard can be developed. The 

independence of the vulnerability model and hazard 

model(s) makes it easy to test the influences of different 

hazard model(s) on the projected insured losses. The 

decoupling approach is computationally intensive for both 

hazard modeling and the vulnerability modeling. On the 

hazard side it requires prediction of all the hazard intensities 

at every location. On the vulnerability side it requires a 

large number of simulations for all combinations of hazard 

intensities. 

 

2.3 multi-hazard case: hazard and vulnerability 
coupling 

 

A different approach for multi-hazard vulnerability 

modeling defines one hazard as the primary (independent) 

hazard and the others as secondary hazards. In cases where 

there is a correlation between primary and secondary 

hazards, probability distribution functions (PDFs) of 

secondary hazard intensities conditional on primary hazard 

intensities can be developed. An example will be provided 

in section 4. This strategy mimics the single-hazard 

implementation, where the primary hazard intensity is 

discretized over a pre-defined range and intervals, and the 

vulnerability being produced via MC is conditional upon 

these primary hazard intensities. For each MC simulation, 

the secondary hazard intensity is not discretized. Instead, it 

is sampled from its PDF as a function of the assigned 

primary hazard intensity, and is therefore embedded in the 

vulnerability model.  Results are vulnerability matrices 

which yield probabilities of damage conditional on the 

primary hazard intensity. The coupled secondary hazard and 

vulnerability model is essentially a one-hazard model, 

which is transparent to the secondary hazard. 

The advantages and disadvantages of this coupling 

approach are the opposites to those of the decoupling 

approach. First, the primary-hazard vulnerability functions 

require only primary-hazard intensities at each location of 

the exposure to estimate the damage. In that case, for each 

scenario analysis, either real or fictitious (in the case of a 

stochastic analysis), mean values of damage are assigned 

based on the corresponding primary hazard intensities. The 

dependence of the vulnerability model on the secondary 

hazard model makes it difficult to test the influences of 

alternative secondary hazard modes on the projected 

insured losses. The approach can produce vulnerability 

curves dependent on the primary-hazard only. The coupling 

approach is computationally less intensive for both hazard 

modeling and the vulnerability modeling. On the hazard 

side it requires prediction of only the primary hazard 

intensities at every location. On the vulnerability side it 

does not require simulations for all combinations of hazard 

intensities. 

 

 

3. Mid/high-rise hurricane wind and rain 
vulnerability model 

 

The paper illustrates the two vulnerability modeling 

approaches described above for the case of mid/high-rise 

buildings subjected to hurricanes. With funding from the 

Florida Office of Insurance Regulation (OIR) and the Wind 

Hazard and Infrastructure Performance Center (WHIP-C), 

the authors developed a component-based probabilistic 

vulnerability model to predict wind and rain vulnerability of 

mid/high-rise buildings (MHRB) during hurricane events. 

This model referred to as the WHIP-MHRB categorizes the 

MHRB into different BC’s, and for each BC, the model 

projects interior and exterior building damage, contents 

damage, and it also includes a module, the WHIP-TRE, 

which projects recovery time and time related expenses 

(TRE). Both the WHIP-MHRB and the WHIP-TRE are 

described in detail in companion papers (Wei et al. 2024, 

Wei et al. 2024). In this case, the multiple hazards are the 

wind and the wind-driven rain. The wind hazard is the 
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primary hazard, and its intensity is the 3-sec maximum peak 

gust wind speed at 10 meters height over actual terrain 

(WSmax), and the height of accumulated wind-driven rain 

from start to end of the storm at a height of 10 m (WDRh10), 

is the secondary hazard intensity. Although there is no 

causality between WSmax and WDRh10, we shall see in the 

next section that there is a correlation between the two, and 

probability distribution functions of WDRh10 conditional on 

WSmax can be derived. 

MHRB are engineered structures and therefore highly 

resistant to wind induced structural damage. For that reason, 

the Florida Public Hurricane Loss Model (FPHLM), from 

which the WHIP-MHRB is derived, only considers damage 

to exterior openings (windows, doors, and sliders) and 

water ingress via a component approach (Pita et al. 2016). 

In the WHIP-MHRB model, the authors took the FPHLM 

component approach one step further to capture the physics 

of wind-driven rainwater ingress, distribution and 

propagation to produce estimates of hurricane damage to 

both interior and contents in MHRB. Water may ingress 

absent any physical damage (e.g., an undamaged window 

can leak), through installation, product, or maintenance 

defect, and through the breaches of the envelope due to 

wind or debris impact. 

At the heart of the WHIP-MHRB model is a MC 

simulation engine, which conducts large numbers (n) of 

simulations (in this paper n=2000) for different 

combinations of WSmax, wind direction, and WDRh10. 

WSmax is discretized into 41 intervals from 22.35 m/s (50 

mph) to 111.76 m/s (250 mph) with a width of 2.26 m/s (5 

mph). The wind direction is selected from 0° to 315° in 45° 

increments. WDRh10 is either discretized into 20 intervals 

from 0 m to 2.54 m with a length of 0.13 m in the 

decoupling approach, or sampled from its pdf conditional 

on WSmax as described in section 4 (coupling approach). 

The result of the simulations are distributions of damage to 

the exterior, interior, and contents components of the 

building, with subsequent recovery times and TRE. These 

damage simulations are then transformed into vulnerability 

tensors and matrices, and their respective vulnerability 

surfaces and curves. 

In the following sections, the authors illustrate the 

details of the decoupling and coupling approaches within 

the framework of the WHIP-MHRB. 

 

 

4. Hazard model 
 

For muti-hazards, the same hazard model could produce 

the estimates of both the primary and secondary hazard 

intensities, in this case, WSmax and WDRh10 or different 

models can independently produce the primary and 

secondary hazard intensities. Although the first case is 

preferable, especially if a decoupled vulnerability model is 

used (described in section 5), the FPHLM v8.2 (FPHLM 

2022) and the WHIP-MHRB hazard models follow the 

second case strategy. The wind model was developed 

initially by (Powell et al. 2005) without a rain component. 

Later, Pita et al. (2012) performed an independent study on 

the estimation of WDRh10 during hurricane events via 

simulation of a large number of synthetic hurricanes. For 

each of these hurricanes, the radially averaged rain rate and 

wind speed distribution (assuming that tangential wind is 

the full wind speed) are estimated based on models by 

(Holland 1980, Marks et al. 1993), respectively. A number 

of recording stations are placed uniformly across each 

synthetic hurricane at a given distance from the coast. The 

simulation records the time history of rain rate and wind 

speed at each station for all synthetic hurricanes resulting in 

probability distribution functions of WDRh10 conditional on 

WSmax, and vice-versa. 

𝑝1(𝑖, 𝑗) = 𝑃𝐻(𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗|𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖) =
𝑛𝑖𝑗

𝐻

𝑛𝑖
𝐻  (1) 

𝑝2(𝑖, 𝑗) = 𝑃𝐻(𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖|𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗) =
𝑛𝑖𝑗

𝐻

𝑛𝑗
𝐻  (2) 

𝑃𝐻(𝐴|𝐵)  = the conditional probability distribution 

function derived from the rain hazard model (hence the 

superscript H), e.g., 𝑃𝐻(𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗|𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖) 

is the probability that WDRh10 is in the j-th WDRh10 interval 

given that the WSmax is the i-th WSmax interval.  

𝑛𝑖𝑗
𝐻  = the number of simulations instances in the i-th 

WSmax interval and j-th WDRh10 interval simultaneously. 

𝑛𝑖
𝐻 = the number of simulations instances in the i-th 

WSmax interval. 

 

 

5. Hazards and vulnerability models decoupling in 
the WHIP-MHRB model 

 

In the decoupling approach (Fig. 1(a)) the MC 

simulation vulnerability engine treats both WSmax and 

WDRh10 as deterministic variables. For each wind direction, 

for every combination of WSmax, WDRh10, a number n of 

simulation is carried out, which produce building and 

contents damage ratios (DR) and recovery times (Treco). 

For each BC, the results of the simulations translate into 

building, contents, and recovery times vulnerability tensors 

and vulnerability surfaces where, the expected damage 

ratios are conditional on both WSmax and WDRh10, 

𝐷𝑅𝐵𝐶
̅̅ ̅̅ ̅̅ ̅(𝑊𝑆𝑚𝑎𝑥 , 𝑊𝐷𝑅ℎ10). 

Outputs of the WHIP-MHRB Model include 3D 

vulnerability tensors, vulnerability surfaces, vulnerability 

matrices and curves which are detailed in the following 

sections. The Eqs. (3)-(11) below are developed to express 

damage ratios, but they can also be adapted to express 

recovery times and TRE. 

 
5.1 3D vulnerability tensor and vulnerability surface 
 

For each BC, the combinations of WSmax, WDRh10, and 

damage ratios (DR), directly result in a 3D vulnerability 

tensor (Fig. 2), V1, with a dimension of 250 × 41 × 20 

representing 250 equal DR intervals from 0 to 100%, 41 

WSmax intervals, and 20 WDRh10 intervals. V1 is 

independent of the distributions of WSmax and WDRh10. 

Each cell of V1 is a conditional probability of damage from 

Eq. (3). 
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𝑉1(𝑚, 𝑖, 𝑗) = 𝑃(𝐷𝑅 = 𝑑𝑟𝑚|𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖 , 𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗)

=
𝑛𝑚𝑖𝑗  

𝑛𝑖𝑗
 (3) 

 

 

𝑛𝑚𝑖𝑗  = the number of simulation data points with DR in 

the m-th DR interval, WSmax in the i-th WSmax interval, and 

WDRh10 in the j-th WDRh10 interval. 

𝑛𝑖𝑗 = the number of simulation data points with WSmax  

  
(a) Decoupling approach (b) Coupling approach 

Fig. 1 Difference between decoupling approach and coupling approaches 

 

 

Fig. 2 Schematic of 3D vulnerability tensor 

 

 

Fig. 3 Vulnerability surface for BC: open_U6_S6_NSD_IR_C 
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in the i-th WSmax interval, and WDRh10 in the j-th WDRh10 

interval. 

The vulnerability surface gives the mean damage ratio 

given a certain combination of WSmax and WDRh10 

calculated with Eq. (4). Fig. 3 is an example of vulnerability 

surface showing the mean building DR for a building class 

with open layout, 6 stories and 6 apartments per story, 

without sliding balcony door, impact resistant glass, and 

carpet floor (open_U6_S6_NSD_IR_C). 

𝐷𝑅̅̅ ̅̅ (𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖 , 𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗)

= ∑ 𝑑𝑟𝑚 ∙ 𝑉1(𝑚, 𝑖, 𝑗)

𝑚𝑚𝑎𝑥

𝑚=1

= ∑ 𝑑𝑟𝑚

𝑚𝑚𝑎𝑥

𝑚=1

∙
𝑛𝑚𝑖𝑗  

𝑛𝑖𝑗

 

(4) 

 

5.2 Vulnerability matrices and vulnerability curves 
 

In many cases, only one hazard intensity, WSmax or 

WDRh10, at a particular building location is provided, or the 

distribution of damage with respect to one hazard only is 

required. In that case, it is necessary to reduce the 

vulnerability tensor V1 with probabilities conditional on two 

hazard intensities to a vulnerability matrix with 

probabilities conditional on only one, WSmax or WDRh10. 

The resulting vulnerability matrices, V2, conditional on 

WSmax and V3, conditional on WDRh10 are derived from V1 

thanks to Eqs. (5)-(6). In these matrices, each column 

provides the pdf of DR conditional on WSmax or WDRh10 

(Fig. 4). In these equations, p1 and p2 are the pdf of WDRh10 

conditional on WSmax and WSmax conditional on WDRh10 

derived from the hazard model (Eqs. (1)-(2)). Therefore, in 

these vulnerability matrices we lose the independence 

between hazard and vulnerability models. 

𝑉2(𝑚, 𝑖) = 𝑃(𝐷𝑅 = 𝑑𝑟𝑚|𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖)

= ∑ [𝑉1(𝑚, 𝑖, 𝑗) ∙ 𝑝1(𝑖, 𝑗)]

𝑗𝑚𝑎𝑥

𝑗=1

= ∑ (
𝑛𝑚𝑖𝑗  

𝑛𝑖𝑗

∙
𝑛𝑖𝑗

𝐻

𝑛𝑖
𝐻)

𝑗𝑚𝑎𝑥

𝑗=1

 

(5) 

𝑉3(𝑚, 𝑗) = 𝑃(𝐷𝑅 = 𝑑𝑟𝑚|𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗)

= ∑ [𝑉1(𝑚, 𝑖, 𝑗) ∙ 𝑝2(𝑖, 𝑗)]

𝑖𝑚𝑎𝑥

𝑖=1

= ∑ (
𝑛𝑚𝑖𝑗  

𝑛𝑖𝑗

∙
𝑛𝑖𝑗

𝐻

𝑛𝑗
𝐻)

𝑖𝑚𝑎𝑥

𝑖=1

 

(6) 

The vulnerability curves provide the mean damage ratio 

given a certain WSmax or WDRh10 calculated with Eqs. (7)-

(8) respectively. Fig. 5 shows the WSmax and WDRh10 

vulnerability curves for the same BC used for Fig. 3. 

 
(a) Vulnerability matrices conditional on WSmax 

 
(b) Vulnerability matrices conditional on WDRh10 

Fig. 4 Vulnerability matrices conditional on: WSmax and 

WDRh10 

 

 

𝐷𝑅̅̅ ̅̅ (𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖) = ∑ 𝑑𝑟𝑚 ∙ 𝑉2(𝑚, 𝑖)

𝑚𝑚𝑎𝑥

𝑚=1

= ∑ 𝑑𝑟𝑚

𝑚𝑚𝑎𝑥

𝑚=1

∙ ∑ (
𝑛𝑚𝑖𝑗  

𝑛𝑖𝑗

∙
𝑛𝑖𝑗

𝐻

𝑛𝑖
𝐻)

𝑗𝑚𝑎𝑥

𝑗=1

 

(7) 

𝐷𝑅̅̅ ̅̅ (𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗) = ∑ 𝑑𝑟𝑚 ∙ 𝑉3(𝑚, 𝑗)

𝑚𝑚𝑎𝑥

𝑚=1

= ∑ 𝑑𝑟𝑚

𝑚𝑚𝑎𝑥

𝑚=1

∙ ∑ (
𝑛𝑚𝑖𝑗  

𝑛𝑖𝑗

∙
𝑛𝑖𝑗

𝐻

𝑛𝑗
𝐻)

𝑖𝑚𝑎𝑥

𝑖=1

 

(8) 

 

5.3 Insured losses 
 

In the actuarial model, each building in an insurance 

portfolio is assigned a building class BC, with its 

corresponding vulnerability surface 𝐷𝑅𝐵𝐶
̅̅ ̅̅ ̅̅ ̅ , and the 

combination of wind hazard intensity WSmax, and WDR 

hazard intensity WDRh10, results in a mean damage ratio. 

Deductible and limit transform the resulting damage into a 

mean insured loss, $𝐿𝑘
̅̅ ̅̅ ̅, for each property in a portfolio, 

which is: 
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$𝐿𝑘
̅̅ ̅̅ ̅ = max (0, (𝐷𝑅𝐵𝐶

̅̅ ̅̅ ̅̅ ̅(𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖 , 𝑊𝐷𝑅ℎ10

= 𝑤𝑑𝑟𝑗) ∙ $𝑉𝑘 − 𝐷𝑘)) ≤ 𝐿𝑖𝑚𝑖𝑡𝑘 
(9) 

$𝑉𝑘 = the building value. 

𝐷𝑘 = the insurance deductible. 

𝐿𝑖𝑚𝑖𝑡𝑘 = the insurance limit. 

 

With the decoupled vulnerability model, the actuarial 

model can take advantage of intensity information on both 

WS and WDR at the location of the property, resulting in 

potentially more accurate estimate of the loss. 

If only a single hazard intensity (either wind WSmax or 

rain WDRh10) is available at the location of the property, the 

mean loss based on either one of these hazard intensities 

can still be computed from the vulnerability matrices V2 or 

V3 and their corresponding vulnerability curves as follows. 

$𝐿𝑘
̅̅ ̅̅ ̅ = max(0, (𝐷𝑅𝐵𝐶

̅̅ ̅̅ ̅̅ ̅(𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖) ∙ $𝑉𝑘 − 𝐷𝑘))

≤ 𝐿𝑖𝑚𝑖𝑡𝑘 (10) 

$𝐿𝑘
̅̅ ̅̅ ̅ = max (0, (𝐷𝑅𝐵𝐶

̅̅ ̅̅ ̅̅ ̅(𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗) ∙ $𝑉𝑘 − 𝐷𝑘))

≤ 𝐿𝑖𝑚𝑖𝑡𝑘 
(11) 

 

 

In this case, for example in Eq. (10) the pdf’s of WDR 

are embedded in the vulnerability model, and the estimate 

of the loss does not consider the local intensities of WDR. 

 

 

6. Hazards and vulnerability models coupling in 
the WHIP-MHRB model 

 

In the coupling approach (Fig 1(b)) the MC simulation 

vulnerability engine treats WSmax as a deterministic 

variable, while for each simulation WDRh10 is sampled from 

its pdf conditional on WSmax. In this case the rain hazard 

model is embedded in the vulnerability model. For each 

combination of wind direction and WSmax, a number n of 

simulation is carried out, which produce building and 

contents damage ratios (DR) and recovery times (Treco). 

For each BC, the results of the simulations translate into 

building, contents, and recovery times vulnerability 

matrices. The vulnerability curves give the expected 

damage ratios 𝐷𝑅𝐵𝐶
̅̅ ̅̅ ̅̅ ̅(𝑊𝑆𝑚𝑎𝑥) conditional on WSmax, as in 

a one-hazard case. The coupling approach is the default 

approach in both the original FPHLM (Johnson et al. 2018, 

Pita et al. 2012, Pita et al. 2016) and the WHIP-MHRB 

(including its WHIP-TRE component). 

The following sub-sections describe the outputs of the 

WHIP-MHRB Model, which include vulnerability matrices 

  
(a) Example of WSmax vulnerability curve (b) Example of WDRh10 vulnerability curve 

Fig. 5 WSmax and WDRh10 vulnerability curves for BC: open_U6_S6_NSD_IR_C 

 

 

Fig. 6 Comparison of WDRh10 vulnerability curves from decoupled model (correct) and coupled model (incorrect) 

361



 

Zhuoxuan Wei, Jean-Paul Pinelli, Kurtis Gurley and Shahid Hamid  

and curves. The Eqs. (12)-(14) are developed to express 

damage ratios, but they can also be adapted to express 

recovery times and TRE. 

 

6.1 Vulnerability matrices and curves 
 

For each BC, the outputs of the coupled WHIP-MHRB 

model are vulnerability matrices, V2, where each cell 

represents the probabilities of damage conditional on only 

WSmax (Eq. (12)). In these matrices, each column provides 

the pdf of DR conditional on WSmax (Fig. 4(a)). 

𝑉2(𝑚, 𝑖) = 𝑃(𝐷𝑅 = 𝑑𝑟𝑚|𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖) =
𝑛𝑚𝑖

𝑛𝑖

 (12) 

𝑛𝑚𝑖 = the number of data points of having the m-th DR 

interval, and i-th WSmax interval from vulnerability model. 

𝑛𝑖 = the number of data points of having the i-th WSmax 

interval from vulnerability model. 

The vulnerability curves give mean damage ratio as a 

function of WSmax (Eq. (13)). 

𝐷𝑅̅̅ ̅̅ (𝑊𝑆𝑚𝑎𝑥 = 𝑤𝑠𝑖) = ∑ 𝑑𝑟𝑚 ∙ 𝑉2(𝑚, 𝑖)

𝑚𝑚𝑎𝑥

𝑚=1

= ∑ 𝑑𝑟𝑚 ∙
𝑛𝑚𝑖

𝑛𝑖

𝑚𝑚𝑎𝑥

𝑚=1

 

(13) 

The vulnerability matrix from Eq. (12) and the 

vulnerability curve from Eq. (13) are theoretically the same 

as the ones from Eqs. (5) and (7), provided that the same 

hazard model yielding the same pdf’s of secondary hazard 

conditional on primary hazard (p1 Eq. (1)) are used in both 

models. 

 

6.2 Limitations of the coupling approach 
 

In the coupling approach, where WDRh10 is sampled 

from a pdf instead of being treated as an independent 

deterministic variable, each simulation results in 

combinations of WSmax, WDRh10, and DR. Therefore, a 3D 

vulnerability tensor V1 could also be derived from the 

simulations, where theoretically the cells would represent 

the probabilities of DR conditional on both WSmax and 

WDRh10 (Eq. (3)). However, in the coupled model, the 

values nmij and nij can be zero or very small for some 

combined intervals of WSmax and WDRh10. Thus, it is 

impossible to produce a proper pdf of DR for all 

combinations of WSmax and WDRh10. In summary, the 

coupled model cannot produce a meaningful vulnerability 

tensor (V1). 

Similarly, the coupled model can also produce 

vulnerability matrices conditional on WDRh10 using Eq. 

(14). 

𝑉3(𝑚, 𝑗) = 𝑃(𝐷𝑅 = 𝑑𝑟𝑚|𝑊𝐷𝑅ℎ10 = 𝑤𝑑𝑟𝑗) =
𝑛𝑚𝑗

𝑛𝑗

 (14) 

𝑛𝑚𝑗 = the number of data points of having the m-th DR 

interval, and j-th WDRh10 interval from vulnerability model. 

𝑛𝑗  = the number of data points of having the j-th 

WDRh10 interval from vulnerability model. 

Here again, for the coupled model, the values nmj and nj 

can be zero or very small for some intervals of WDRh10 and 

do not reflect the distribution p2 of WSmax conditional on 

WDRh10 derived from the rain hazard model (Eq. (2)). 

Therefore, the coupled vulnerability matrix 𝑉3(𝑚, 𝑗)  is 

meaningless. As a result, the coupled vulnerability curve 

derived from 𝑉3(𝑚, 𝑗), differs from the vulnerability curve 

from the decoupled model. Fig. 6 illustrates this situation by 

comparing the vulnerability curves conditional on WDRh10 

from both the decoupled and coupled models for BC: 

open_U6_S6_NSD_IR_C. The smooth decoupled 

vulnerability curve is derived from the complete pdf p2 of 

WSmax conditional on WDRh10 derived from the hazard 

model (Eqs. (2) (6) and (8)). The coupled curve has 

oscillations for the reason described above and for large 

WDRh10 the rain hazard model only provides very few 

datapoints which results in large oscillations of DR. This 

last curve would lead to incorrect loss projections. 

 
6.3 Insured losses 
 

In the actuarial model, each building in an insurance 

portfolio is assigned a building class BC, with its 

corresponding vulnerability matrix V2 and curve, and the 

combination of wind hazard intensity WSmax and 

vulnerability DRBC results into mean insured loss $𝐿𝑘
̅̅ ̅̅ ̅, for 

each property in a portfolio, given by Eq. (10). For the 

actuarial model there is no difference between the one-

hazard and the coupled hazard-vulnerability approach. With 

the coupled vulnerability model, the actuarial model cannot 

take advantage of information on the secondary hazard 

WDRh10 at the location of the property. 

 

 

7. Discussion 
 

7.1 Computational efficiency of coupled vs. decoupled 
model 

 

All things being equal in term of computer hardware (a 

desktop with Intel Core i7-10700KF CUP, 32 GB memory 

and 100 GB virtual memory), for one BC, the decoupled 

model required 38 minutes of computer time and 101 GB 

memory to run 1,476,000 simulations while the coupled 

model required 12 minutes of computer time and 45 GB 

memory to run 656,000 simulations. For 1500 BC’s, that 

would result in 40 days of running time vs. 12.5 days for the 

decoupled and coupled models respectively. The coupled 

model computational efficiency is a factor of 3.2 

improvement over the decoupled model. However, the 

coupled model produces only vulnerability matrices and 

curves conditional on WSmax as described previously. The 

computational efficiency of the decoupled model could be 

improved with more efficient source code, parallel 

computing, and more powerful computers. In terms of 

computer storage, the outputs of the decoupled model 

include the tensors V1 with their vulnerability surfaces, and 

the vulnerability matrices V2 and V3 with their vulnerability 

curves, while the outputs of the coupled model include only  
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the vulnerability matrices V2 with their vulnerability curves, 

less than one third the needs of the decoupled model. 

In the actuarial model which projects losses and 

recovery times, a simple test-case with 1,920,000 

hypothetical buildings showed that a scenario analyses 

using vulnerability tensors and surfaces take twice the time 

of the same scenario analyses using vulnerability matrices 

and curves. Although the execution times of the scenarios 

are measured in seconds, for a stochastic analysis involving 

50,000 scenarios, the overall difference in execution time 

could be significant. How significant would depend on the 

computer power available. 

 

7.2 Relationship between model outputs 
 

Fig. 7 shows the relationships between vulnerability 

models and secondary hazard model and where the coupling 

between the two can occur. In the figure, green boxes 

represent the stages where decoupling between the models 

exists, while orange represents where coupling occurs. The 

secondary hazard model, without any color in the figure, 

whether a standalone model or part of a multi-hazard 

model, yields the pdf’s p1 and p2 from Eqs. (1) and (2). 

In the case of the decoupled model, in a first stage 

(green in the figure), the MC simulations iterate over wind 

direction (WD), WSmax and WDRh10, and result in a 3D 

vulnerability tensor, V1, completely independent of the 

hazard(s) model(s), which gives the probabilities of DR 

conditional on combinations of WSmax and WDRh10. The 

graphical representation of V1 is the vulnerability surface 

which gives the mean value of DR for each combination of 

WSmax and WDRh10. In a second coupled stage (orange in 

the figure), the model converts V1 into vulnerability  

 

 

matrices, V2 and V3, thought integration over p1 and p2 

(section 4), which are embedded in this second stage of the 

model. V2 and V3 give the probabilities of DR conditional 

on either WSmax or WDRh10. The graphical representation of 

V2 and V3 are vulnerability curves which give the mean 

values of DR for each value of WSmax or WDRh10. 

In the case of the coupled vulnerability model, the MC 

simulations iterate over WD and WSmax, whereas for each 

simulation WDRh10 is sampled from the pdf p1, which is 

embedded in the model, and the output is the same 

vulnerability matrix V2. 

The actuarial model (not shown in the figure), shall need 

estimates of both WSmax and WDRh10 at property locations, 

from the primary and secondary hazard models, to be able 

to use V1 to project losses. If only either WSmax or WDRh10 

is available, then the actuarial model shall use V2 or V3 to 

predict losses. 

 
7.3 Comparison between loss projections from the two 

approaches 
 

It should be clear from the above that, for any BC, the 

main difference between the decoupled tensor V1 (and its 

vulnerability surface) and the matrix V2 (and its 

vulnerability curve) is that, for a given WSmax, there are 

many points on the vulnerability surface corresponding to 

all possible values of WDRh10 while there is only one point 

on the vulnerability curve corresponding the mean value of 

WDRh10 at that given WSmax. 

Large insurance portfolios in general will have buildings 

belonging to multiple BC’s. When doing a portfolio 

analysis, the projected losses at each property location, to 

which a BC is assigned, could vary widely depending on 

 

Fig. 7 Relationships between model outputs 
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whether the loss was computed using a vulnerability surface 

or a vulnerability curve. It can be argued that the local 

projections from the vulnerability surface are more accurate 

since they use local rain hazard estimates instead of mean 

values. However, for large portfolios, if the number of 

properties belonging to each BC gets large enough at any 

WSmax (at least close to the number of simulations used for 

each WSmax in the coupled model) the law of large numbers 

plays out and the average of the results from the BC 

vulnerability surface at each WSmax shall converge to the 

WSmax results from the vulnerability curve. Tests show that 

for 2000 properties of the same BC the results of the two 

approaches converge with less than 2% difference. This is 

true of any BC, and hence for a heterogeneous portfolio, as 

long as they are represented in the portfolio by a large 

enough number of properties for each WSmax of interest, the 

aggregated portfolio losses from the two approaches shall 

be very similar.  

For a small portfolio, this is not true. The local 

differences will not average out at the aggregated level, and 

large differences can be expected on the total portfolio 

losses, between the predictions based on vulnerability 

surfaces and curves. To summarize, in the case of smaller 

portfolios, a portfolio analysis based on a vulnerability 

surface, which can take advantage of the complete local 

hazard estimates shall be more accurate both at the local 

and at the aggregated level. In the case of a large portfolio, 

the analysis with vulnerability surface will still be more 

accurate at the property level, but both analyses will 

converge at the portfolio level. 

 

 

8. Conclusions 
 

This paper presents two approaches for multi-hazard 

vulnerability modeling, which are implemented into a 

component-based wind and rain hurricane vulnerability 

model, where the wind is the primary hazard and the rain is 

the secondary hazard.  In the first approach, in a decoupled 

first tier, the primary and secondary hazard models and 

vulnerability model are independent of each other, and the 

primary output is a vulnerability tensor (V1) conditional 

upon both hazard intensities. The decoupling facilitates the 

testing of the influence of different hazard models on the 

outputs of the actuarial model. In a second coupled tier, this 

approach has the unique advantage that it can also produce 

vulnerability matrices (V2 or V3) conditional on either the 

primary or the secondary hazard, although the independence 

of hazard and vulnerability model is lost, since in each case 

the vulnerability matrix results from the integration of the 

tensor V1 over the pdf of one of the hazard conditional on 

the other. In the purely coupled second approach, where the 

secondary hazard model is embedded in the MC simulations 

of the vulnerability model, the only outputs of the 

vulnerability model are vulnerability matrices (V2) 

conditional on the primary hazard. The graphic 

representations of V1, V2, and V3 are vulnerability surfaces 

and vulnerability curves. 

The paper shows the pros and cons of each approach. 

For sufficiently large portfolios where all the building 

classes have large populations in each wind speed interval 

of interest, there are no statistical differences between the 

results of the two approaches at the aggregated level of 

portfolio losses. The decoupled approach though, which 

takes advantage of all the local hazard information, 

produces more realistic loss projections for each individual 

portfolio property. The decoupled approach has also the 

distinct advantage of being the only approach which can 

produce vulnerability matrices and curves conditional on 

the secondary hazard, which can be very useful for loss 

estimations and mitigation studies. For smaller portfolios or 

portfolios where certain building classes might be under-

represented, there can be significant differences between the 

loss projections from the decoupled model (based on 

vulnerability surfaces and local hazard estimates) and 

coupled model (based on vulnerability curves and mean 

values of secondary hazard), with the decoupled model 

providing more realistic results.   

In terms of computational efficiency, the generation of 

the vulnerability matrices and curves from the coupled 

approach could be 3 to 4 times faster than the generation of 

the vulnerability tensors and surfaces, and subsequent 

matrices and curves from the decoupled approach, and 

require less storage space. At the actuarial level, the 

execution time of a stochastic portfolio analysis could be 

twice as long using a library of decoupled vulnerability 

tensors than using a library of vulnerability matrices. The 

significance of the extra computer time will depend on the 

computing power available. 

In practice, many hazard models might provide local 

primary hazard intensities only, in which case, the only 

option for the cat model is to project losses and recovery 

times based on the vulnerability matrices from the second 

coupled tier of the first approach or from the purely coupled 

second approach. Hopefully, this research shall raise 

awareness of the issues linked to coupled models, and the 

constant advances in computer power might improve the 

computational efficiency and attractiveness of the 

decoupled approach. Validation is an important issue as 

well, since proper validation of a cat model using a 

decoupling approach between hazard and vulnerability 

requires both primary and secondary hazard data at each 

insurance claim location. 
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