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Seasonal biases in fluorescence-
estimated chlorophyll-a derived from
biogeochemical profiling floats

Check for updates
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Marine phytoplankton biomass and chlorophyll-a concentration are often estimated from pigment
fluorescence measurements, which have become routine despite known variability in the fluorescent
response for a given amount of chlorophyll-a. Here, we present a near-global, monthly climatology of
chlorophyll-a fluorescence measurements from profiling floats combined with ocean color satellite
estimates of chlorophyll-a concentration to illuminate seasonal biases in the fluorescent response and
expand upon previously observed regional patterns in this bias. Global biases span over an order of
magnitude, and can vary seasonally by a factor of 10. An independent estimate of chlorophyll-a from
light attenuation shows similar global patterns in the chlorophyll-fluorescence biaswhen compared to
biases derived from satellite estimates. Without accounting for these biases, studies or models using
fluorescence-estimated chlorophyll-a will inherit the seasonal and regional biases described here.

Fluorescence spectroscopy is one of the most common methods of esti-
mating in situ chlorophyll-a concentrations (Chl-a) in seawater1. Robust,
scalable, off-the-shelf sensors have allowed the oceanographic community
to routinely collect these measurements from ships, moorings, marine
mammals, and autonomous vehicles2. Autonomous measurements of
chlorophyll fluorescence (ChlFL) have filled observation gaps in previously
difficult-to-sample regions and seasons (Fig. 1, and Supplementary Fig. 1),
and are increasing in global coverage through programs such as Biogeo-
chemical (BGC)-Argo. Given the prevalence of profiling float measure-
ments that resolve subsurface features3,4, they have been used in a wide
variety of applications, such as for estimates of primary production5–8,
carbon cycling and export9,10, bloom phenology11, ecosystem studies12,
biogeographical classification13, and to assess marine health for commercial
industries14.However, there are a variety of factors that affect the intensity of
the fluorescence emission that are not related to the chlorophyll-a con-
centration directly: fluorescence by primary pigments other than Chl-a and
accessory pigments, ambient sunlight intensity, nutrient limitation, and
adaptations such as non-photochemical quenching15–17. These mechanisms
are not accounted for in ChlFL sensor calibration conversions, causing
persistent spatial and temporal patterns in the ratio of ChlFL to Chl-a that
can lead to an order ofmagnitude error globally18, reducing the full potential
of this dataset19 (e.g., Supplementary Fig. 2).

To quantify and correct biases in ChlFL, independent and co-located
measurements of Chl-a and ChlFL can be used to calculate a multiplicative
‘bias correction’ (ChlFL:Chl-a). This correction can be used to adjust the
sensor’s factory calibration, yieldingunbiasedChlFL estimates. The standard
technique to validate Chl-a estimates is by using high-performance liquid
chromatography (HPLC)20. A detailed analysis by Roesler et al.18 compared
measurements of ChlFL from fluorometers (the primary ChlFL instrument
onBGC-Argofloats) andChl-a fromHPLC, and found aglobalmedianbias
correction of 2. However, regional patterns in the bias correction, ranging
from 1 in the Arabian Sea and Arctic Ocean to >6 in the Southern Ocean,
were also identified. Regardless, a bias correction of 2 is currently applied to
all BGC-Argo ChlFL data during the quality control process21. While this
improves the global average, systematic regional biases still persist. Further,
these bias corrections are expected to vary seasonally in some regions, as
phytoplankton groups shift22, or limiting nutrients, such as iron, become
available23. Due to the sparseness of co-located HPLC and ChlFL measure-
ments, many ocean regions were not evaluated by Roesler et al.18, and their
associated correction factors remain unconstrained, limiting our ability to
accurately adjust the global float ChlFL dataset. As BGC-Argo float coverage
increases, a spatially and temporally resolved bias correction is desired.

Estimates of Chl-a from satellites (ChlSAT) and light attenuation (Kd)
measured using radiometers on profiling floats (ChlKd)

24 present alternative
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means for quantifying bias corrections in more ocean regions and at more
frequent time intervals thanHPLCChl-ameasurements. ChlSAT and ChlKd
estimates are based on empirical relationships between optical measure-
ments and Chl-a derived from HPLC measurements25–27 and include their
own uncertainties. The benefit of using ChlSAT to derive bias corrections is
the near-daily global coverage of observations that span the full BGC-Argo
float record, making it possible to better resolve regional patterns and sea-
sonality in the ChlFL bias. Using the ChlKd approach requires the co-
deployment of a chlorophyll fluorometer with a radiometer, which is pre-
sently the case for <35%offluorometer-equippedBGC-Argofloats, limiting
its spatiotemporal coverage.

Here, we present a near-global, 5° × 5° griddedmonthly climatology of
bias corrections derived from spatiotemporal matchups of ChlFL float
profiles and ChlSAT, including 631 floats and 45,318 profiles between 2008
and 2023 (Fig. 1). The same analysis was conducted using ChlKd for the
subset of floats that carried radiometers, including 228 floats and 16,754
profiles.Wefind coherent spatial and seasonal biases in both theChlSAT and
ChlKd bias corrections, broadly consistent with previous HPLC-based
corrections18. However, a systematic discrepancy of ~35% was observed
between ChlSAT and ChlKd, and should be a focus of future research to
resolve the differences. Our climatology product can be used to apply sea-
sonally resolved educated uncertainties to open ocean ChlFL measurements

madewith SeaBird (previouslyWETLabs) ECOandMCOMSsensors from
any platform.

Results and discussion
Regional variability
The satellite-based climatology of annual median bias corrections (Fig. 2g)
exhibits clear spatial patterns. Excluding the equatorial Pacific, the low
latitudes and subtropical gyres have low bias corrections, with ChlFL
underestimated relative to ChlSAT (values < 1) in some areas. The annual
climatological bias correction increases towards higher latitudes, reaching
more than 10 in latitudes below−52° of the SouthernOcean.While there is
limited coverage in the Indian Ocean, climatological values are low in
observed regions. These global patterns are similar to those foundbyRoesler
et al.18, and previous works have explored the underlying mechanisms
responsible for the spatial variations. This variability is partially attributed to
changingphytoplankton species and community composition18, as different
phytoplankton species contain distinct photopigments, having unique
fluorescence and absorption spectra22. This may contribute to the bias
correction variability from low to high latitudes as dominant phytoplankton
species change. Cell size has also been shown to affect the fluorescence to
Chl-a ratio22, further explaining the general latitudinal trend, as phyto-
plankton size tends to shift with latitude. Additionally, it has been well
documented that the fluorescence to Chl-a ratio increases when phyto-
plankton is iron-limited, and nitrate is replete23,28–30. In alignment with these
studies, we find that regions exhibiting the largest required bias corrections,
such as the subarctic Pacific andAtlantic, equatorial eastern Pacific, and the
SouthernOcean, are also known to be high-nutrient-low-chlorophyll zones,
and iron-limited31,32. However, it is possible that other factors, such as
phytoplankton cell size and community shifts, are contributing to the high
biases found in these regions33,34.

The area-weighted, global median bias correction based on satellite-
float matchups was 3.6; higher than the global average of 2 reported by
Roesler et al.18. Differences could be due to a variety of factors. First, the bias
corrections byRoesler et al.18 were derived fromdirect comparisons ofChlFL
to Chl-a from HPLC analysis, whereas ours were derived from matchups
with 8-day averaged satellite measurements, as explained in the “Methods”
section. Second, the spatial coverage between the two studies differs sub-
stantially. The dataset included in Roesler et al.18 was largely limited to the
Mediterranean and Atlantic Oceans, with <20 floats in the Southern Ocean
and 3 floats in the Pacific. At that time, no data were available from the
NorthPacific, the Pacific sector of the SouthernOcean, or the IndianOcean.

Fig. 1 | Locations of float data used in the study between 2008 and 2023. BGC-
Argo float profile locations of float fluorescence-estimated chlorophyll-a only
(ChlFL, green) from 631 floats and 45,318 profiles, and both ChlFL and irradiance-
estimated chlorophyll-a (ChlKd, purple) from 228 floats and 16,754 profiles.
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Fig. 2 | Regional and temporal variability in ChlFL bias estimated from ChlSAT.
g Global distribution of annual climatological biases (calculated as the median of
monthly climatological values at each 5° × 5° grid). b, d, f Climatologies of monthly
medians for three selected regions with the interannual spread (1-sigma) shaded in

gray. a, c, e Full-time series of ChlFL to ChlSAT ratios for each region are shown with
gray shades representing unique floats. Amovingmean filter (MATLAB,movmean)
of 30 days was applied to daily interpolated data to smooth higher-frequency var-
iations and more clearly visualize seasonal cycles.
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Though they attempted to account for spatial gaps in their dataset, it is likely
that reported global estimates were biased towards regions with direct
observations. It is also likely that the globalmedianbias correctionpresented
herewill change as gaps in the existing dataset, such as theNorthPacific and
the IndianOcean, become populatedwith BGC-Argo floats. Still, this serves
as a valuable comparison against Roesler’s global estimate, as both studies
conclude that ChlFL overestimates Chl-a globally by several factors. How-
ever, it is also clear that a single global bias correction is insufficient23,35,36, and
regionally and temporally resolved bias corrections are required to obtain
accurate Chl-a estimates from in situ ChlFL measurements across the globe.

Seasonal variability
There were clear, global patterns in the seasonal cycle of the bias corrections
(Fig. 3), demonstrating that applying a monthly-to-seasonally resolved bias
correction to ChlFL can further improve estimates of Chl-a derived from
ChlFL. The bias correction changed by more than an order of magnitude
over the annual cycle in some regions (Fig. 4). Seasonal biases could be
classified into the following three categories: (1) having a seasonal cycle with
minimal interannual variability (Fig. 2a, b), (2) having a seasonal cycle with
significant interannual variability (in phasing and/or magnitude; Fig. 2e, f),
and (3) having no obvious seasonal cycle (Fig. 2c, d). As more data become
available, it may be possible to assign a category to each grid and provide
specific recommendations for bias correction. For the first case, we advise
using the monthly climatological bias correction in order to accurately
calculate Chl-a throughout the year. In regions with large interannual
variability in the seasonal cycle, a static monthly climatological bias cor-
rectionmaynot fully remove seasonal biases in each year. In these regions, it
may be necessary to conduct float-satellite matchups for the target month
and year. Due to limited data availability, the magnitude of interannual
variability is unclear inmany regions, however it may be expected to have a

dominant effect in highly dynamic regions, such as frontal zones. If no clear
seasonal cycle exists, or indata-limited regionswhere amonthly climatology
has not yet been accurately resolved, applying the climatological annual
median value is advised.

The highest seasonal cycle amplitudes for the bias correction were
observed in the northwestern Atlantic and Southern Ocean (Fig. 4), where
seasonal amplitudes exceeded 10 in some regions. Seasonal peaks occurred
in the summer and fall throughout most of the Southern Ocean and Sub-
polar North Atlantic (Supplementary Fig. 3), withminimums in the winter,
consistent with prior observations37. Seasonality in the bias correction likely
reflects changes in phytoplankton community structure, nutrient avail-
ability, and ambient light intensity associated with seasonal mixed layer
dynamics.
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>

Fig. 3 | Seasonal variability in ChlFL biases estimated from ChlSAT. Grids in the northern and southern hemispheres were split to show the same season for each global
image for a winter, b spring, c summer, and d fall.

Fig. 4 | Global patterns of seasonal amplitude in ChlFL bias estimated from
ChlSAT. Calculated as the maximum−minimum of monthly climatological bias
values in each 5° × 5° grid with data for at least 7 months of the climatology.
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Comparison of satellite and radiometric chlorophyll-a estimates
Radiometric estimates of ChlKd on BGC-Argo floats are a promising option
for calculating bias corrections (see the “Methods” section). They are fre-
quently co-located with ChlFL measurements and provide an independent
estimate ofChl-a using light attenuation, and they gather data below thefirst
optical depth. While these sensors were not historically common on BGC-
Argo floats, they are now becoming more common on floats, with growing
global coverage (Fig. 1). Annual climatologies for the Kd and satellite-based
bias corrections exhibit strong agreement in terms of the spatial pattern
(Figs. 5a and 2g), with higher seasonal amplitudes in ChlFL:ChlKd observed
in the Equatorial Pacific (Supplementary Fig. 4). Low bias corrections were
observed at low latitudes, and higher biases were observed in the Southern
Ocean, Subpolar North Atlantic, and Equatorial Pacific.

ChlSAT estimates were ~36% lower than ChlKd, based on matchups
between satellite observations andfloats equippedwith radiometers (Fig. 5b,
R2 = 0.8). This would lead to an underestimation of Chl-a if the satellite-
based bias corrections were implemented relative to theKd-based approach.
This offset may be driven by larger biases in high latitude regions compared
to the subtropics and equatorial waters (Supplementary Fig. 5); regions where
the ChlKd and ChlSAT algorithms used herein are poorly constrained25–27. It is
outside the scope of this project to determine whether ChlSAT or ChlKd is
more accurate, but this should be examined closely in future studies,
including the effect of decreasing sun angles on radiometer-estimated Kd.
Nonetheless, similarities in the climatological spatial and seasonal patterns
between the twomethods suggest that bothmethods agree on the presence of
large-scale spatiotemporal variability in the ChlFL bias.

Considerations
While the satellite-based bias corrections presented in this study can be used
to improve estimates of ChlFL globally, there are several limitations worth
noting. First, the bias correction is derived by comparing satellite and float
measurements over the first optical depth, which ranges from about 5–45m
globally. As a result, these bias corrections reflect the influences of phyto-
plankton community structure and physiology in the near-surface waters22.
In cases when the seasonal mixed layer is shallower than the first optical
depth (the depth horizon of this study), a mix of phytoplankton groups
living above and below the mixed layer may necessitate the application of
different bias corrections seasonally. Previous studies have demonstrated
that bias corrections can vary with depth, as phytoplankton communities
change and experience changes in ambient light and/or nutrient
availability22,38,39. Thus, there may remain a depth dependence to biases in
ChlFL, even after applying the satellite or light attenuation-based bias
correction24. As subsurface production and phytoplankton biomass have
been shown to play an important role in carbon export40, depth-resolved
bias corrections are needed to obtain accurate subsurface biomass3 and
productivity rates41. Additionally, the effect of non-photochemical

quenching (NPQ, a suppression in fluorescence where light energy is
instead dissipated as heat) is present in the first optical depth. Corrections
were applied to day-time data for NPQ, and results were similar whether
using corrected daytime or nighttime data (see discussion in “Methods”
section), however unconstrained NPQ corrections may account for some
regional variability (e.g., the Equatorial Eastern Pacific, Supplementary
Fig. 6), especially for regions with regularly shallow mixed layers or mixed
layers impinging on signals of deep fluorescence maxima42.

Second, seasonal errors in ChlSAT or ChlKd could contribute to the
seasonal variations in the reported bias corrections43. However, we believe
that this effect is not the dominant driver of observed seasonal patterns in
the bias corrections. Seasonal biases in ChlFL:Chl-a have been observed
using other methods of Chl-a estimation22, including extracted Chl-a
measurements7. Furthermore, it is reasonable to expect that ChlSAT and
ChlKd estimates perform better in regions where in situ data were available
for their algorithmdevelopment44, and thus different algorithms to compute
ChlKd or ChlSAT could work better in certain regions than others23,45.

Third, we have used a static boundary of 5° × 5° lat/lon grids for this
product. However, the driving forces behind the spatiotemporal patterns in
the bias corrections are inherently dynamic and could occur at smaller
spatial scales. As a result, different water masses may occupy a single grid,
especially in regions with dynamic fronts, such as the Southern Ocean,
where sharp gradients in surface nitrate and phytoplankton communities
exist46. A water mass framework could be implemented if, for example, bias
factors were determined according to environmental characteristics47.

Finally, spatiotemporal patterns in the bias corrections reported here
will likely apply to ChlFL measurementsmade from any platform due to the
physiological nature of the fluorescence response. However, it is important
to note that the bias corrections reported in this paper apply to the Seabird
(previously WET Labs) ECO and MCOMS sensor products, and magni-
tudes may vary for other manufacturers depending on their calibration
protocols.

Conclusions
Our study provides a comprehensive, near-global, monthly climatology of
the bias in fluorescence-estimated chlorophyll-a that we derive from spa-
tiotemporal matchups of ChlFL float profiles and chlorophyll-a estimates
from satellite and radiometric observations. The patterns of bias corrections
were consistent across both methods, however, there was a systematic dis-
crepancy between satellite- and radiometer-based Chl-a estimates that
warrants further investigation. By quantifying seasonal and regional biases
in ChlFL estimates, our findings underscore the importance of accounting
for thesebiases toobtain accurate assessmentsofChl-a concentrations in the
ocean. The observed spatial patterns in bias corrections spanned over an
order of magnitude and were highest in iron-limited regions. Seasonal
variability in bias corrections changed by an order of magnitude over the
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annual cycle in some regions. These patterns of variability emphasize the
complex interplay between phytoplankton physiology, community com-
position, nutrient availability, phytoplankton size classes, and environ-
mental conditions, highlighting the necessity for a space and time-resolved
bias correction approach.

Moving forward, an increased number of radiometers co-deployed
with Chl-a fluorometers will help to improve bias correction estimates.
Spatiotemporal discrepancies can be minimized using the ChlKd approach
compared to ChlSAT because the fluorescence and downwelling irradiance
measurements are made simultaneously. Furthermore, downwelling irra-
diance data can be used to implement a more robust NPQ correction48,
reducing uncertainty in day-time ChlFL estimates (Supplementary Fig. 6).
Finally, bias corrections could be computed from machine learning
approaches by combining satellite observations and other biogeochemical
variables measured on floats, such as nitrate and downwelling irradiance49.
Anticipated increases in the number of floats equipped with radiometers in
the coming years will improve our ability to quantify ocean productivity in
near-real time and to monitor the health of ocean ecosystems. These
methods of correction are currently being explored by theArgo community
for application in delayed-mode quality control procedures. It is recom-
mended that users of ChlFL data, especially those combining ChlSAT and
ChlFL, apply the results from this study as an educated uncertainty when
interpreting ChlFL data.

Methods
Float data
Synthetic profile files were downloaded from the Argo Global Data
Assembly Center (2023–05 snapshot, doi:10.17882/42182). There were 631
floats equipped with Seabird Scientific chlorophyll fluorescence sensors
from 2 April 2008 to 9 May 2023 (Fig. 1), with 503 ECO sensors, and 128
MCOMS sensors. All floats carried conductivity-temperature-depth sen-
sors, and a subset offloats (n = 228) carrieddownwelling radiometer sensors
(Seabird Scientific OCR-504) that included measured radiance at 490 nm
(Fig. 1). Profiling float data go through post-deployment quality con-
trol following standard Argo protocols21,50. For ChlFL data, the field
CHLA_ADJUSTED represents ChlFL data that has gone through the QC
process, and theCHLA field represents rawChlFL based on applying factory
calibration coefficients inmgm−3. For ECO andMCOMS sensors, the dark
counts are subtracted from the raw sensor counts and then converted to
CHLA in mgm−3 by applying a factory-determined scale factor. The scale
factor converts fluorescence to Chl-a concentration based on a single cali-
bration with a monospecific culture of the diatom Thalassiosira weisflogii.
During the QC process, four main adjustments are applied to CHLA21:
determination of in situ dark counts based on minimum sensor counts for
profiles deeper than 900m, non-photochemical quenching correction
during the day, manual inspection and flagging of bad and questionable
data, and a bias correction of two18. The CHLA_ADJUSTED field should
have these adjustments applied, but there are small inconsistencies in the
details of how these adjustments are implemented, particularly for the in situ
dark count and NPQ corrections. Therefore, to eliminate this source of
uncertainty, we have applied the dark and NPQ correction42 using the
CHLA field for all of the floats and omitted the global bias correction of 2.
However, to take advantage of themanual inspections that flaggedbad data,
data quality flags were imported from CHLA_ADJUSTED of 1, 5, and 8,
which correspond to good data, value changed, and estimated value. Data
with a qualityflag of 2 (“probably good”)werenot included in order toavoid
unknown uncertainties from using these flagged data. The latter two flags
are applied for NPQ corrected and interpolated data, respectively.

Briefly, for each float, an in situ dark correction was applied by sub-
tracting the median of the minimum ChlFL value of the first five deep
(>900m) profiles from all data23. Floats that were recently deployed and did
not collect at least five deep profiles were not included. Daytime profiles
(defined as having a sun angle >0 using MATLAB function SolarAzElq)
were adjusted for non-photochemical quenching42. This correctionfinds the
maximum ChlFL value above the mixed layer depth (defined as a density

changegreater than0.03 kgm−3 froma surface reference value51), andcopies
that value from its coincidingdepth to the surface.ChlFL values > 50mgm−3

and less than 0.014mgm−3 were removed from the dataset. 50mgm−3 is a
reasonable upper limit for open ocean chlorophyll-a maxima, whereas the
lower limit is twice the factory-specified sensitivity of 0.007mgm−3. This
limit of detection was confirmed in situ by looking at the smallest change
between samples in the mixed layer depth of night-time profiles of floats
(WMO ID’s 5906514, 5904655, 5906529, 5904172) in a low chlorophyll
region near Hawaii. To compare float ChlFL to ChlSAT, the median value of
ChlFLwas calculated over thefirst optical depth (OD)because this is roughly
equivalent to the depth of ocean color satellite retrievals. The first optical
depth was estimated per profile as the inverse of Kd(490), estimated using
ChlSAT using the following equations (Morel et al., Eq. (8))25,

Kd 490ð Þ ¼ 0:0166þ 0:077298×ChlSAT
0:67155 ð1Þ

OD ¼ 1
Kdð490Þ

ð2Þ

Float temperature and salinity data were used to calculate the mixed
layer depth. For this, adjusted temperature, pressure, and salinity data with
Argo quality flags 1, 2, 5, and 8were usedwhen available. If only unadjusted
data were available, quality-control flags 1, 2, 3, 5, and 8 were used. Quality
control flags 1, 2, 3, 5, and 8 were used for downwelling irradiance data. A
visual inspection of the irradiance data was used in Ocean Data View to
remove floats and profiles with obviously bad irradiance data.

ChlKd
ChlKd, the estimate of Chl-a concentration based on the attenuation of light,
was estimated from radiometric measurements of light irradiance at
490 nm24, using the subset of floats carrying both a radiometer and fluo-
rometer. Only the irradiance data to the first optical depth were used, rather
than a threshold depth of minimum light, in order to be consistent with
ChlSAT and the median surface ChlFL used for the study. We found that
setting the integration depth to the first optical depth versus themixed layer
depth affected the final bias correction values (Supplementary Fig. 7),
suggesting that this is an important definition for similar analyses. Only
profileswith a sunangle>30° above thehorizonwereused to estimateChlKd.
A 7-pointmedian filterwas applied to each profile tominimize the effects of
wave focusing at the surface, passing clouds, or changes in the float’s posi-
tion with respect to vertical. The 7-point median filter was chosen based on
the higher sampling resolution of floats in the surface waters, for example,
floats sampling at 0.2 dbar resolution would result in 1.4m bins. The
attenuation coefficientwas determined from theModel 1 regression slope of
depth versus the natural log of irradiance down to the first optical depth.
ChlKd was estimated by inverting Eq. (8) from Morel et al.25. to solve for
chlorophyll-a. This chlorophyll-a estimate represents a water column
average between the surface and the first optical depth. Profiles with
Kd(490) < 0.0166 (the attenuation due to water) were excluded and only
profiles with an R2

fit >80%, and a relative standard deviation of the esti-
mated slope <10% were used to estimate ChlKd.

Satellite data
Ocean color products derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard theNASAAqua satellite were used for
this analysis. The level-3, 8-day averaged, 9 km resolution ChlSAT con-
centration product (OCI algorithm26,27) was downloaded from the NASA
Ocean Biology Processing Group. The 8-day averaged product was chosen
to improve spatial coverage of the satellite data, which canbe limited in daily
satellite observations due to incomplete global satellite coverage, high sun
glint, clouds, as well as the infrequency of same-day float-satellitematchups.
ChlSAT data less than 0.05mgm−3 were removed based on the minimum
value of in situ Chl-a data used in algorithm development26,27.

For each float profile, ChlSAT data that were within 8 km and closest in
time based on the median satellite data were matched. The 8 km threshold
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was chosen based on an autocorrelation threshold analysis over one year of
4 km (highest level-3 spatial resolution) MODIS Chl (1 January 2020 to 31
December 2020). Globally, this 8 km threshold corresponds to 75% or
higher autocorrelation for 99.97% and 96.59% of valid matchups across
longitude and latitude, respectively (Supplementary Fig. 8). The auto-
correlation threshold analysis was completed separately for both the zonal
and meridional directions based on similar methods52. Briefly, each line of
latitude or longitude was treated as a discrete data series, for which an
autocorrelation function can be calculated (done using MATLAB function
autocorr), anddefining a length scale at lagm≥0.75. This lag indicates thefirst
location within the data series at which the resulting autocorrelation coef-
ficient is ≤0.75. The median of all spatiotemporally matched satellite data
per profile was used to compare to the float data.

Building the climatology
The ratio of ChlFL data to the median of ChlSAT matchups or ChlKd were
taken per profile, and represent thefinal data used to estimate climatological
correction factors, where ChlFL and ChlKd are median values taken within
the first optical depth. Within a 5° × 5° gridded area, the median of
ChlFL:ChlSAT or ChlFL:ChlKd data for a single month, year, and float are
taken first, then the median of this data across floats for a month and year,
andfinally, themedian and standarddeviation across all years for amonth is
taken, producing the final gridded climatological median and standard
deviation values presented here. Seasonal climatological values are taken as
the median of monthly climatological values for the northern/southern
hemispheres, respectively, for December, January, February (winter/sum-
mer), March, April, May (spring/fall), June, July, August (summer/winter),
September,October,November (fall/spring).Amplitudeswere calculated as
the absolute difference between the maximum and minimum monthly
climatological values for each 5° × 5° grid with more than 6months of valid
data, and the negative inverse of bias corrections <1 was taken prior to
calculating amplitudes. Area-weighted values are reported for calculated
global medians. For all variable-variable plots and corresponding linear fit
statistics, outliers were removed using Chauvenet’s criterion. The mean of
the monthly ChlFL:ChlSAT standard errors (SE) for each grid shows little
regional variability (Supplementary Fig. 9, left). To gauge the significance of
seasonal amplitudes, an uncertainty (U) was estimated as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2× SE2 þ 2× SE2
p

ð3Þ

Most regions were found to have a seasonal amplitude larger than the
uncertainty (Supplementary Fig. 9, right), which may arise from either a
well-defined seasonal shape or large month-to-month variability with no
clear seasonal shape.

The climatology presented here includes both daytime and nighttime
float data. To limit potential errors introduced by the NPQ correction, it
would be preferable to use only night-time profiles of ChlFL, however this
wouldhave greatly reducedournumber of validChlFL profiles by~75%, and
removed the comparison to ChlKd, which is only valid during daylight
hours. A linear trend between the annual gridded climatology using night-
only and daytime-only profiles showed good agreement with minimal
additional bias (R2 = 0.6, m = 0.9) (Supplementary Fig. 6). To illuminate
potential regional discrepancies between day and night-time data, the dif-
ference between the two was taken for the annual climatological mapped
data (Supplementary Fig. 6). In general, regions showed no consistent or
unique differences when using one data set versus the other, with the
exception of the Eastern Equatorial Pacific where bias corrections would be
lower if using daytime data compared to night time data. Uncertainties in
our results of ChlFL to ChlSAT from float observations arise from the NPQ
correction (10%, based on the slope in daytime versus night time data in
Supplementary Fig. 6), spatial variability in float-satellite match-ups (25%,
based on the chosen autocorrelation threshold of 75%, Supplementary
Fig. 8), and the fluorescence sensor (the reported factory calibration
uncertainty is 1%, however to be conservative we have chosen 5%). These
result in a combined uncertainty of 27%, which is largely driven by the

autocorrelation threshold. Because it is reasonable to assume that much of
the data matchups are below this threshold, we consider this uncertainty to
be conservative.

Data availability
The profiling float data used in this study were obtained in May 2023 by
downloading all Argo synthetic profile files directly from the Argo Global
Data Assembly Center from the May 2023 snapshot (https://www.seanoe.
org/data/00311/42182/). 8-day satellite data were downloaded from https://
oceancolor.gsfc.nasa.gov/l3/order/. The synthetic profile files for floats were
then merged into one file containing float-averaged data within the first
optical depth and cross-over satellite Chl-a data for each profile, used to
generate the climatologies presented in the study.Ourdatahave been shared
on Zenodo (https://doi.org/10.5281/zenodo.13137041).

Code availability
Relevant code for this study is archived in aGitHub repositoryunder https://
github.com/CarbonLab/global-fluorescence-bias/.
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