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Abstract Hurricanes can benefit wetland accretion by augmenting the delivery of mineral sediment, an
essential process allowing marshes to offset submergence during rising sea levels. Using Hurricane Gustav
(2008, Louisiana) as a control, we examined eight synthetic storms with varying characteristics (track, speed,
intensity, size) to evaluate sediment exchange between the inner shelf and bay and bay-to-marsh interfaces. All
storms showed net landward sediment exchange from the inner shelf to the bay to the marsh—storms with closer
proximity, higher intensity, and slower forward speed positively correlated with net sediment exchange; storm
size had little impact. Except for slow-moving storms (Y2 speed of Gustav), our analyses suggest that most
hurricane scenarios cause net bay erosion, because more sediment is conveyed to landward wetlands than is
replenished from erosion of the inner shelf. Our results suggest that the ongoing deepening of the bay will likely
worsen because of rising sea levels.

Plain Language Summary Under most circumstances, hurricanes are perceived as agents of
destruction that erode coastlines and destroy dwellings and infrastructure. However, for marshes and wetlands
they can add much needed sediment and new sources of nutrients helping them to build vertically. As hurricanes
move onshore, the accompanying large waves and currents suspend sediment into the water column followed by
surge waters that carry this sediment onto wetlands. We have modeled this process using category 2 Hurricane
Gustav that struck near Terrebonne Bay on the central Louisiana coast in 2008. By changing various hurricane
characteristics, we find that in addition to the importance of storm track, forward speed and intensity cause the
greatest net sediment exchange from inner shelf to landward bay and from bay to adjacent wetlands. Moreover,
under most conditions a deficit of sediment replenishing bays will lead to their deepening and ultimately less
sediment transferred to wetlands, hastening their demise.

1. Introduction

Much of the research in the coastal zone is now focused on the future of marshlands and if the loss of existing
marsh area can be compensated by migration onto uplands (Chen & Kirwan, 2024; Fagherazzi et al., 2019; Farron
et al., 2020; Kirwan et al., 2016; Torio & Chmura, 2013). Similarly, other studies are aimed at determining if
ecogeomorphic feedbacks may help counter sea level rise (SLR) by increasing mineral sedimentation due to
greater tidal inundation and by grasses transitioning to species that produce more belowground biomass (Morris
et al., 2002; Mudd et al., 2010). In the Gulf Coast region and eastern seaboard of the United States vertical ac-
cretion of marshes can be substantially aided by hurricane and storm sedimentation (FitzGerald et al., 2020; Hein
et al., 2024; Reed, 1989; Tweel & Turner, 2012).

Various investigators have conducted field studies detailing the extent of hurricane sedimentation (see FitzGerald
& Hughes, 2019) documenting extensive reworking (Goni et al., 2007) of the Louisiana shelf by Hurricanes
Katrina and Rita in 2005. A study of these same hurricanes showed that a blanket of sediment consisting of more
than 131 million metric tons (MMT) was deposited in the chenier and lower delta plains of Louisiana averaging
5.18 cm in thickness (Turner et al., 2006), while another study (McKee & Cherry, 2009) measured similar average
thicknesses of the Hurricane Katrina storm layer at Big Branch Marsh, LA, and Pearl River, MS. A detailed study
of Hurricane Ike sedimentation spanning the coast from western Louisiana to Galveston Island, Texas docu-
mented these deposits extending 3-6 km inland with an estimated quantity of 13.7 MMT (H. F. L.
Williams, 2012).
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Likewise, modeling studies of the northern Gulf of Mexico have advanced our understanding of hydrodynamics
and sediment transport conditions during hurricanes as well as determining provenance of the storm deposits. For
example, a study simulating Hurricane Ike conditions (Lapetina & Sheng, 2015) used a three-dimensional storm
surge-wave model (CH3D-SWAN) and reproduced the hydrodynamics and onshore sediment fluxes corrobo-
rating findings in Louisiana (Tweel & Turner, 2012), while another study (Liu et al., 2018) estimated sediment
deposition during Hurricane Gustav in Terrebonne and Barataria basins and successfully replicated field ob-
servations by Tweel and Turner (2012). They estimated that approximately 27 MMT of sediment was transported
to the wetlands and that most of this sediment (approximately 89%) was sourced from the adjacent open-water
bays.

Although the extent and benefits of hurricane sedimentation are well-established (Smith et al., 2015; Turner
et al., 2007), there are few studies that have attempted to correlate sedimentation trends to physical conditions
during the storm such as wave suspension, storm intensity (Saffir-Simpson category), and transport pathways.
One exception (Liu et al., 2018), estimated net sediment deposition in the coastal wetlands, identified major
sources of the sediment, and produced sediment budgets for Terrebonne and Barataria Basins that agreed
favorably with field measurements (Tweel & Turner, 2012).

In this study, we use Hurricane Gustav which made landfall in Louisiana in 2008, to calibrate a hydrodynamic,
sediment transport, and morphology model for the central Louisiana coast. The study benefitted from extensive
post-storm data collection (Liu et al., 2018; Tweel & Turner, 2012) and oceanographic and meteorologic data
gathered during the storm (Dietrich et al., 2010). We then use the calibrated model to construct eight synthetic
hurricanes, varying the size, intensity (Saffir-Simpson scale), forward speed, and track of the storm to examine
resulting sediment exchange between the inner continental shelf and Terrebonne Bay, and between Terrebonne
Bay and the landward marshes surrounding the Bay.

2. Study Site

Our study area encompasses the inner continental shelf and bay-marsh system of Terrebonne Basin located in
south-central coastal Louisiana (Figure 1). Terrebonne Basin contains approximately 627 km? of swamp (tree and
shrub wetland) and 2,323 km? of marsh (grass wetland), grading from fresh marsh inland to brackish and saline
marsh near open water (CWPPRA, 2024). These wetlands are separated from the Timbalier Islands by the broad
shallow Terrebonne and Timbalier bay system (1-3 m in depth) with a combined width of 10-20 km. Tides in the
region range from 0.2 to 0.8 m (Georgiou et al., 2005), but often are overprinted by strong wind set-up and set-
down accompanying the passage of frontal systems (Feizabadi et al., 2023; Georgiou et al., 2005; Hiatt
etal., 2019; Zhang et al., 2022). The wide and low gradient Louisiana continental shelf tends to enhance the height
of storm surges (Rego & Li, 2010; Resio & Westerink, 2008; C. Zhang & Li, 2019), but the low elevation of the
Timbalier Islands and intervening shallow tidal inlets are still effective in dampening storm wave energy and
surge elevation (Barbier et al., 2013; Day et al., 2007; Loder et al., 2009; Wamsley et al., 2010).

3. Methods and Data

Hurricane Gustav was selected for the study because of an extensive field data set of marsh sediment deposition
(Tweel & Turner, 2012) that was collected during and after the storm, and subsequently used to help validate the
model (Delft3D hydrodynamic and sediment transport model, Lesser et al., 2004; see in Supporting Informa-
tion S1). Hurricane Gustav was then used as a reference to generate additional synthetic storm events by changing
various storm characteristics including intensity (wind speed and central air pressure), forward speed, and size
(radius to maximum winds) (Table 1). Synthetic storms were altered further using the Delft Dashboard tropical
cyclone tool (see in Supporting Information S1) to include additional tracks such as the track of Hurricane Katrina
(2005) (Table S3 in Supporting Information S1) and additional intensities replicating Hurricanes Katrina (2005,
high) and Isaac (2012, low). Collection of these storms allowed us to evaluate how each storm characteristic
affected erosional or depositional patterns, as well as determine net sediment exchange between the inner shelf
and bay and the bay and marsh platform (Liu et al., 2018). To calculate the quantity of sediment exchanged
between components of shelf-bay-marsh system in Terrebonne Bay, we invoked cross-sections across the shelf-
bay interface (Figure la; T1) and bay-marsh boundaries (Figure la; T2). At each of these cross-sections,
instantaneous and cumulative sediment quantities (by mass) were used in the sediment exchange analysis for each
of the scenarios simulated (Table 1). Detailed descriptions of the characteristics of the eight storm scenarios are
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Figure 1. (a) Aerial view of south-central Louisiana coast and Terrebonne Bay showing: model validation locations at CSI 6, CSI 9, AK 9, AK 11, NOAA Buoys
8,761,724 and 8,762,075; cross-section locations (T'1 red, T2 blue), model output locations (loc 1, loc 2), Hurricane Gustav and Katrina tracks. (b) Location of south-
central Louisiana coast and extent of the model domain. (c) Model bathymetry below mean sea level (MSL) of south-central Louisiana coast. Spatial extent of sub-plots
in Figure 3 is shown by the black box in panel (c).

provided in Table 1. The various geographic regions discussed in our analysis included Terrebonne and Barataria
Bays, and the Barataria Bight, west of the Modern Mississippi Delta (Figure 1).

4. Results
4.1. Cumulative Erosion and Deposition

To investigate the cumulative effects for each of the eight storm scenarios, we selected a period of 2 days after
Gustav (and for each other storm) made landfall (Figure 2) when surge water levels had returned to predicted
astronomic tidal elevations (see Figure S4 in Supporting Information S1; NOAA, 2024). Results from all storms
at the time of landfall are presented in the Supplemental (see Figure S6 in Supporting Information S1). One
striking pattern observed after the passage of each storm is the extensive deposition that occurs in the Barataria
Bight (Figure 2), which varies in thickness from 5 to 20 cm for faster moving storms (S1, S2, S4, S6, S7) and more
than 25 cm for slower storms (S3, S5, S8). Widespread sedimentation also occurs landward of the barriers
extending into the bays, which is attributed to a long period of sediment reworked from the inner shelf (Figure S7
in Supporting Information S1) and overwashing the barriers (Figure 2). Additional sediment reworked from ebb-
and flood-tidal deltas is moved onshore by storm-generated flood currents and transported through inlets to
sheltered areas behind the barriers (Figure 2; Miner et al., 2009). In Barataria Bay and mid-Terrebonne Bay, most
scenarios indicate overall erosion, except for deposition in the northern portion of Terrebonne Bay ranging from 2
to 15 cm. One uniform trend observed in all scenarios is sedimentation occurring on the marsh system abutting
northern Terrebonne Bay (Figure 2). Moreover, the landward transfer of sediment by up to 56% (Table 1) was a
product of increased duration of storm conditions for slower moving storms (e.g., S3, S8). The depth of deposition
varied depending on the storm characteristics but was greatest (15 cm) for slow-moving and intense storms (S3
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Table 1

Storm Characteristics for Hurricane Gustav and Other Simulated Storms Examined

Scenario and description S1 S2 S3 S4 S5 S6 S7 S8

Size® Gustav as twice the size same as S1 same as S1 same as S1 same as S1 same as S1 same as S1
Observed of S1

Intensity (Saffir- Gustav as same as S1  same as S1 Hurricane Katrina ~ Hurricane Issac  Hurricane Issac  same as S1 same as S1

Simpson category Observed (cat 3) (cat 1) (cat 1)

Forward Speed Gustav as same as S1 half speed same as S1 three quarter same as S1 same as S1 three quarter
Observed of S1 speed of S1 speed of S1

Track Gustav as same as S1  same as S1 same as S1 same as S1 same as S1 Hurricane same as S1
Observed Katrina

Storm Speed
S1 - Gustav speed
S8 - Three-quarter speed
S3 - half the speed

Storm Intensity

S6 - Hurricane Issac (cat 1)

S1 - Hurricane Gustav (cat 2)

S4 - Hurricane Katrina (cat 3)

Remaining storms

S2 - Twice size of Gustav

S5 - Isaac, half speed of Gustav

S7 - Gustav with Katrina track

Net Sediment Exchange Inner Shelf—Bay (MMT) Net Sediment Exchange Bay—Marsh (MMT)

4.7 7.2
6.5 (+1.8; +38%) 8.5 (+1.3; +18%)
12.4 (+7.7; +164%) 11.2 (+4.0; +56%)
0.9 (—3.8%; —81%) 3.3 (—3.9%; —54%)
4.7 (0) 7.2 (0)
6.8 (+2.1; +45%) 9.2 (+2.0; +28%)
4.7 (0) 7.4 (+0.2; +3%)
1.3 (—3.4%; —72%) 3.7 (—3.5%; —49%)
0.2 (—4.5%; —96%) 0.3 (—6.9%; —96%)

Note. Net Sediment Exchange (NSE) is the quantity of sediment exchanged (in MMT) between inner shelf and bay and bay and marsh and is calculated as a function of
storm forward speed and intensity. Numbers in parenthesis show relative change in NSE compared to the control simulation S1. All quantities were calculated 2 days
after each storm made landfall. *Note that size is measured from center to where strength of winds diminishes to less than tropical storm force (40 mph or less).

and S4; Figure 2). The pattern of deposition is also seen in the Barataria Bay on the marsh and in wetlands
immediately east of the Caminada headland/distributary system (Figure 2).

4.2. Sediment Exchange

The Net Sediment Exchange (NSE), defined by the net transport directions (onshore-offshore) between the inner
shelf, Terrebonne Bay, and the landward marsh were computed for each storm scenario and summarized in
Figure 3.

4.2.1. Shelf—Bay Exchange

For Hurricane Gustav (S1), NSE from the shelf to the bay is approximately 4.7 MMT (Figure 3). Doubling the
size of the storm (S2) does not change the quantity of sediment moved into the bay, however increasing the
intensity of the storm to a Katrina level (S4) or slowing Gustav to three quarter forward speed (S8) substantially
increases the NSE into the bay to 6.8 and 6.5 MMT, respectively. At closer inspection of increased storm intensity
(S4), we find that the model predicts increases in surge levels, waves and depth-averaged velocities (Figure S5 in
Supporting Information S1) at loc 1, located offshore in approximately 9 m of water depth (see Figure 1). The
higher wave energy causes increased erosion of the inner shelf substrate (Figure S7 in Supporting Information S1)
while the increased flow velocity produces landward transport of suspended sediment into Terrebonne Bay
(Figure 3). In contrast, when intensity is reduced to an Isaac level (S6), results indicate that surge levels, sig-
nificant wave height, and depth averaged flow velocities are reduced (Figure S5 in Supporting Information S1).
Consequently, net sediment exchange into Terrebonne Bay decreases to 0.9 MMT.

In evaluating the effect of forward speed of the storm, we compare Gustav (S1) to a condition where forward
speed is slowed to half that of Gustav (S3) (Table 1). Slowing of the storm causes only moderate increases in surge
level, significant wave heights, and depth-averaged velocity (Figure S5 in Supporting Information S1). However,
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Figure 2. Net erosion/deposition 2 days after landfall time for the simulated storm conditions. Red shades (negative values) indicate erosion and blue shades (positive

values) indicate deposition.

on the inner shelf, despite these moderate differences, the slower-moving storm (S3) produces longer duration of
bed shear (~36 hr) compared to S1 (Figure S7 in Supporting Information S1), resulting in more than 2.5 times the
NSE (from 4.7 to 12.4 MMT) being transported into Terrebonne Bay (Figure 3; Table 1). In comparison,
decreasing the forward speed to three quarters of the Gustav speed (S8) increases the NSE from 4.7 to 6.5 MMT,
which is approximately half the quantity transported by a storm moving at half speed (S3; 12.4 MMT). This
overall trend demonstrates the importance of storm speed in controlling onshore sediment transport, and the effect
of storm speed being inversely related to NSE. Finally, S3 is the only scenario demonstrating a positive bay
sediment budget, due to prolonged inner shelf bed shear and sediment suspension (Figure S7 in Supporting In-
formation S1; Table 1).

4.2.2. Bay—Marsh Exchange

Modeling results indicate that all storm scenarios transport sediment onto the marsh (Figure 3, Blue line/arrow), a
finding that is consistent with many field studies of hurricane sedimentation in the region (e.g., Baustian &
Mendelssohn, 2015; McKee & Cherry, 2009; Smith et al., 2015; Turner et al., 2006; Tweel & Turner, 2012) and
modeling studies (Cortese et al., 2024). For the baseline storm, Gustav (S1), 7.2 MMT was transported from the
Terrebonne Bay onto the adjacent marsh and wetlands. This value increases slightly to 7.4 MMT for S2, which is
the same as S1, but is double the storm size. Sediment transported onto the marsh platform and wetlands increases
to 11.2 MMT for S3, which has the same characteristics as Gustav, but half the forward speed. Comparisons of the
modeled hydrodynamic conditions in more detail are presented in Supporting Information S1. Scenarios S3 and
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Figure 3. Net sediment exchange (MMT) between the Inner Continental Shelf and Terrebonne Bay (red line) and Terrebonne Bay and landward Marsh area of

Terrebonne Basin (blue line).

S8 produce NSE of 11.2 and 8.5 MMT (respectively) having Gustav's intensity but with one half and three
quarters the forward speed of Gustav, respectively. Thus, for sediment movement from Terrebonne Bay to the
marsh, hurricane forward speed is again a significant factor like it is for transport from inner shelf to the bay.
However, as S4 (9.2 MMT) demonstrates, hurricane intensity like that of Katrina may be equally important.

The least amount of sediment conveyed onto the marsh occurs for scenario S7 (0.3 MMT), which has the same
characteristics as Gustav (S1), but with the track of Katrina indicating that distance of landfall and approach angle
of the storm, even for intense storms, clearly affects wave energy and sediment transport (Figure S5 in Supporting
Information S1). Storms S5 and S6 move modest amounts of sediment onto the marsh (3.7 and 3.3 MMT,
respectively), with intensities of Hurricane Isaac and three quarters the forward speed of Gustav (S1) for S5.
Lessening wind velocity distinctly affects wave energy, sediment suspension, and depth averaged current
velocity.

5. Discussion
5.1. Modeling Storm Characteristics

While our modeling study of Hurricane Gustav was similar to that of (Liu et al., 2018), we extended the
experimental design and results to contain how different storm characteristics, including storm intensity, storm
size, forward speed of the storm, and storm track affect storm surge levels, significant wave height, depth-
averaged current velocity (Figure S5 in Supporting Information S1), and ultimately sediment exchange
(Figure 3). We find that the quantity of sediment exchanged between the inner shelf and bay, and the bay and
marsh is dominated by forward speed of the storm and intensity and with storm size having a lesser impact. For
example, doubling the size of the storm (S1 vs. S2) results in little change in the NSE (Figure 3). Storm track is a
well-known important storm parameter (i.e., compare S1 to S7) and as such, this factor was not explored in detail.
The effect of storm speed on inner shelf—bay exchange is demonstrated by comparing the results of Gustav at full
speed (S1), three quarters speed (S8), and half speed (S3), which yield NSE of 4.7 (0%), 6.5 (+38%), and 12.4
(+164%) MMT, respectively. We show that for slower moving storms the inner shelf is reworked for a longer
period by waves and attendant bed shear (Figure S7 in Supporting Information S1) producing greater amounts of
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suspended sediment, which are transported onshore into Terrebonne Bay (Table 1; Figure 3; Figure S7 in Sup-
porting Information S1). We establish that storm speed has similar influence on sediment movement from the bay
to the marsh as the net sediment exchange is progressively larger as storm speed decreases (7.2, 0%; 8.5, +18%;
11.2, +56%, MMT respectively; Table 1).

The effect of storm intensity is evaluated by comparing simulations of Isaac (S6), Gustav (S1), and Katrina (S4)
with all other characteristics (e.g., size, speed, track) being equal to Gustav (Table 1). Sediment (NSE) is uni-
formly transported landward in all scenarios (Figure 3) for both the inner shelf-bay and bay-marsh. The
importance of intensity is well illustrated by comparing cat 1 Isaac (S6) to more intense cat 3 Katrina (S4) in
Figure 3. Note that NSE of bay to marsh during Isaac versus Katrina increased from 3.3 to 9.6 MMT and likewise,
the NSE from inner shelf increased from 0.9 to 6.6 MMT. These model findings demonstrate the importance of
wind speed affecting wave energy and storm surge height and resulting sediment transport. Moreover, it is
noteworthy that except for S3 (2 speed of Gustav), a larger quantity of sediment is transported onto the marsh
versus into the bay with model results ranging from 0.1 to 2.7 MMT. The overall greater movement of sediment
onto the marsh versus into the bay from the shelf is explained by the shallowness of the bay resulting in large
bottom shear stresses and high sediment suspension (Figure S8 in Supporting Information S1). Although the
ocean waves are larger on the inner shelf offshore, as they approach the upper shoreface fronting barrier islands
they shoal producing high shear stresses on the seabed (Figure S7 in Supporting Information S1).

5.2. Sediment Budget

Except for S3 (V2 speed of Gustav), all the model simulations show that more sediment is transported from the bay
to the marsh than from the inner shelf to the bay. And even for S3, the NSE for the inner shelf to bay (12.4 MMT)
is not vastly different (~90%) from the NSE transported from the bay to the marsh (11.2 MMT). The slower
moving storms (S3, S8) produce larger waves and bed shear for a prolonged time compared to faster moving
storms (S1) entraining and transporting more sediment (Figure S7 in Supporting Information S1). For the Gustav
simulation (S1), the NSE results are similar in magnitude and direction to those previously calculated (Liu
et al., 2018), but their overall sediment budget is slightly different (into the bay: 4.7 vs. 2.2 MMT and onto marsh:
7.2 vs. 10.8 MMT, respectively). The difference in results may be explained by model setup (see in Supporting
Information S1). One significant trend observed in our study and that of Liu et al. (2018) is that except for V2 speed
Gustav (S3), our scenarios show a net sediment deficit in Terrebonne Bay varying from 0.1 to 2.7 MMT, or 30%—
267% relative to the incoming sediment from the shelf (Figure 3), with an average of 1.8 MMT (S3 excluded).
This trend has important implications - if the bays are the primary source of mineral sediment deposited on the
marsh, and the inner shelf is not replenishing this sediment in the bay at the same rate, then the bays will gradually
deepen. The computed sediment deficit in Terrebonne Bay during Gustav is equal to an average sediment
thickness of 1.6 mm (volume of sediment deficit divided by the area of bay). This storm deepening of the bay
combined with that attributed to SLR (9 mm/yr; NOAA, 2024) will diminish shear stresses imparted to the bay
floor, thereby reducing suspended sediment entrainment and the conveyance of sediment transported to the
marsh.

5.3. Relevance

The ability of marshes and other wetlands to maintain elevation above tidal waters is an important issue because
of their vulnerability caused by accelerating sea-level rise. Marshes exposed to large storms are at an advantage
because of increased mineral sedimentation that can occur during a single event. Moreover, in addition to the Gulf
Coast regions, storm sedimentation in coastal wetlands has been documented in other comparable settings
including large deltaic areas (e.g., Ganges-Brahmaputra: Kuehl et al., 2005, M. Allison and Kepple, 2001;
Yangtze: Yang, 1999, Ren et al., 2021, Fan et al., 2006) and broad estuaries (e.g., The Wash: French & Tom
Spencer, 1993; Southwest Wales: Jardine et al., 2022). Contrastingly, marshes that exist in the protection of well-
developed barrier island systems (occupying >10% of the world's coasts; Stutz & Pilkey, 2011) have restricted
shallow-water fetches and are much less affected by storms; they receive suspended sediment primarily during
normal tidal flooding (Morris et al., 2002).
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6. Conclusion

Hurricane Gustav provides an excellent platform for studying hurricane characteristics and their effects on storm
surge and sediment exchange between the inner continental shelf, Terrebonne Bay, and the surrounding wetlands.
The eight modeled scenarios show a consistent trend of net landward sediment transport from the shelf to the bay
and from bay to the marsh. As expected, storm track has a significant influence on the NSE as evidenced by
comparing Gustav to a storm with the same characteristics but with the track of Katrina. An increase in storm
intensity (cat 1 to 3) shows a corresponding substantial increase in sediment delivery onshore with more than
seven times increase in NSE from the inner shelf to the bay. The same comparison indicates approximately a
threefold increase of NSE from the bay to the marsh. Based on limited model results, we find an inverse rela-
tionship between forward storm speed and NSE for inner shelf to bay and bay to marsh transport. This trend does
not reflect the magnitude of storm conditions (e.g., waves, storm surge) for the shelf and bay, but the duration over
which these storm processes operate, including bed shear, sediment suspension, and onshore water and sediment
flux. Finally, we note that with the exception of slow moving hurricanes, bays are losing sediment during storms,
corroborating the results of previous studies (Liu et al., 2018). This sediment deficit, in combination with SLR
will gradually deepen the bay, eventually leading to less sediment conveyed to the marsh, hastening their
submergence.

Data Availability Statement

Model is available at Georgiou and Sakib (2024), and includes model setup files, initial conditions, and delin-
eation of the sediment provenance zones for all the storms that were simulated, as well as the model output at each
of the cross sections where net sediment fluxes were evaluated. The numerical model used in the analysis is the
Delft3D-4 modeling suite and is available in the public domain. The software and computer source code are
available at https://oss.deltares.nl/web/delft3d/downloads.
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