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Abstract—Electrical capacitance tomography (ECT) can be
used to predict information about the interior volume of an
object based on measured capacitance at its boundaries. Here,
we present a microscale capacitance tomography system with
a spatial resolution of 10 microns using an active CMOS
microelectrode array. We introduce a deep learning model for
reconstructing 3-D volumes of cell cultures using the boundary
capacitance measurements acquired from the sensor array, which
is trained using a multi-objective loss function that combines a
pixel-wise loss function, a distribution-based loss function, and
a region-based loss function to improve model’s reconstruction
accuracy. The multi-objective loss function enhances the model’s
reconstruction accuracy by 3.2% compared to training only with
a pixel-wise loss function. Compared to baseline computational
methods, our model achieves an average of 4.6% improvement
on the datasets evaluated. We demonstrate our approach on ex-
perimental datasets of bacterial biofilms, showcasing the system’s
ability to resolve microscopic spatial features of cell cultures in
three dimensions. Microscale capacitance tomography can be a
low-cost, low-power, label-free tool for 3-D imaging of biological
samples.

Index Terms—CMOS, biosensor, tomography, inverse prob-
lems, deep learning, transposed convolution, microelectrode array

[. INTRODUCTION

LECTRICAL capacitance tomography (ECT) is a non-
optical imaging technique that reconstructs a cross-
sectional image of an area by measuring the mutual ca-
pacitance between sensing electrodes placed at its boundary.
ECT belongs to a larger family of tomographic imaging tech-
niques, which also includes electrical impedance tomography
(EIT) [1]. EIT and ECT exist on a continuum, but whereas EIT
may be influenced by both the conductivity and permittivity of
the sample, ECT tends to operate at higher frequencies where
the permittivity dominates. EIT and ECT have numerous uses
measuring volumes containing contrasting materials. Spatial
contrasts in conductivity or permittivity are created by changes
in the electrical properties within the volume or by movements
of fluids or gasses. Applications include monitoring lung
volume [2], cancerous tissue imaging [3], [4], neural activity
recording [5], [6], [7], and blood flow monitoring [8].
The imaging physics of ECT, in 3-D, are described by
the Poisson PDE in Eq. 1, which describes the relationship
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Fig. 1: (a) Capacitance measurements using a planar CMOS
microelectrode array underneath the sample of interest. For
example, 1 may be the lower dielectric permittivity of a
colony of cells growing above the sensor, and g may be the
higher permittivity of the liquid growth media. (b) Electrical
Capacitance Tomography (ECT) aims to computationally solve
the inverse problem and predict the 3-D sample geometry from
the boundary capacitance measurements.
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between the electric potential u(z,y, z) and the interior per-
mittivity distribution o (x, y, z) [9]. The mapping from the per-
mittivity distribution and the electric potential to the boundary
capacitance measurements is described by the integral in Eq. 2,
where Cj; is the mutual capacitance between two sensing
electrodes ¢ and j, Vi; is the potential difference between
the two electrodes, and S is the path enclosing the sensing
electrodes. Changes in the internal permittivity affect the
electric field distribution, which in turn reflects a change in the
measured capacitance at the boundary. The forward problem
of ECT involves calculating the capacitance measurements
based on the permittivity distribution by solving the integral
in Eq. 2 [10]. In contrast, the inverse problem entails doing
the opposite, where the permittivity distribution is estimated
based on the boundary capacitance measurements.
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The inverse problem is inherently challenging as it involves
going from the measured capacitance back to the structure
of the volume being imaged. This process is both non-linear



10 microns

Fig. 2: An image of the CMOS microelectrode array, showing
the die photo on the left and a photo of a sub-array of the
sensing electrodes on the right. The array has 131, 072 sensing
electrodes, each of size 10 x 10pum? [18]

and ill-posed, meaning that there are multiple solutions to
the problem, and any noise in the measured data can cause
significant uncertainties in the estimated cross-sectional per-
mittivity [11]. The inverse problem is traditionally solved by
minimizing a least squares objective function with an addi-
tional regularization term like the Tikhonov regularization [11]
or the total variation [12]. The added regularization prior
enforces an additional constraint on the estimated solution
to alleviate the ill-posedness of the problem [13]. However,
traditional algorithms are not robust to experimental noise,
which makes them more susceptible to divergence and often
result in low-resolution image reconstructions, in addition to
being computationally expensive. Therefore, recent work has
focused on using deep learning techniques to solve the inverse
problem of ECT, aiming to enhance robustness to noise and
obtain higher-quality image reconstructions [14]-[17].

Prior demonstrations of ECT are often implemented us-
ing centimeter scale sensing electrodes, which limited their
imaging application to macroscopic objects. With appropriate
miniaturization of the sensing electrodes, ECT can realize 3-
D imaging of micron-scale objects like cell cultures [19]-
[24]. Although optical confocal microscopy is often the gold
standard for 3-D visualization of living cells, its intense light
source and bright illumination can risk damaging the sample
through photobleaching and phototoxicity [25]. Additionally,
it can be prohibitively expensive for routine use and very
slow for observing larger ficlds of view. Microscale ECT can
help address these challenges by offering a non-optical, low-
cost imaging technique for visualizing the 3-D structure of
cell cultures. There are some early demonstrations of using
impedance and capacitance tomography as a non-optical imag-
ing technique of biological samples like tissue cultures [20],
stem cells [19], yeast cells [22], and cancer cells [23],
[24]. However, these systems use relatively few electrodes
with relatively large dimensions, which limits their ability to

resolve finer spatial features and observe larger fields of view.
Additionally, they rely on traditional image reconstruction
algorithms, which produce only coarse image reconstructions.

To address these challenges, we introduce a microscale
electrical capacitance tomography system using a 512 x 256
microelectrode CMOS sensor [18], [26], [27] with a spatial
resolution of 10 microns, which is the highest-resolution
ECT reported to date. The sensor contains 131,072 sensing
electrodes on a 10 x 10um? grid, allowing it to capture 3-D
spatial features with a large field of view. The CMOS sensor
can be configured to measure the mutual capacitance between
any two sensing electrodes in the array. These capacitance
measurements are then used as input to the ECT inverse
problem to reconstruct the 3-D shapes of the sample above
the sensor, as illustrated in Fig. 1. We propose a deep learning
model and an enhanced multi-objective training scheme for
approximating the ECT inverse operator. In this setup, training
data act as a regularization prior to the severely ill-posed
inverse problem. Experimental results show that the system
is able to accurately predict the 3-D volumes from the CMOS
capacitance measurements with a high reconstruction quality.

This work builds on our earlier conference publication [28],
which described a microscale electrical capacitance tomogra-
phy (ECT) system using a CMOS sensor array. In that earlier
study, out-of-plane images are reconstructed from a linear
array of electrodes. Here, we expand the image reconstruction
model to incorporate mutual capacitance measurements from
a rectangular grid of electrodes, which provides the model
with richer information about the sample’s geometry, resulting
in more accurate predictions. Using this enhancement, we
also expanded the models to predict 3-D volumes instead
of predicting vertical 2-D slices. This paper is structured
as follows. Section II gives an overview of the capacitance
tomography hardware and the different sets of capacitance
data acquired from it. Section III describes the architecture
of the volume prediction network and the loss function used
in training. Section IV discusses the setup for acquiring the
experimental dataset used for training and testing. Section V
discusses the experimental results obtained on the testing
datasets. Finally, in Section VII, we draw conclusions from
our findings and suggest potential future research directions.

II. CAPACITANCE TOMOGRAPHY HARDWARE

The tomography is implemented using capacitance measure-
ments from a planar CMOS microelectrode array, shown in
Fig. 2. The sensor design and operating principles are detailed
in [18], [27]. The sensor array contains 131,072 sensing
electrodes placed on a 512 x 256 rectangular grid with a
spatial resolution of 10um. In the mutual capacitance imaging
mode, the sensor can measure the capacitance between any
two electrodes in the array. Electrode pairs are specified by
their spatial separation along both row and column directions.
Numerous capacitance data sets can be gathered by adjusting
the angles and distances between the sensing electrodes, en-
abling probing of the sample from multiple angles and yielding
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Fig. 3: Mutual capacitance is measured between electrodes
at varying spatial offsets. Illustrated above is the capacitance
measurements with an (a), (b) offset vector that moves along
the rows only, (]9;] > 0,6; = 0). (c), (d) offset vector
that moves along the columns only, (§; = 0,]d;| > 0).
(c) offset vector that moves along both rows and columns,
(195] > 0,]6;] > 0). C;fj represents the capacitance measured
between two distinct points within the 2-D electrode array,
where (i, 7) and (k,) are the locations of the first and second
electrode respectively.

more information about the sample geometry, thickness, and
dielectric properties.

The one-sided planar tomography, illustrated in Fig. 1, is
performed by placing samples on the chip surface within a gel
or liquid electrolyte and measuring the boundary capacitance
at varying spatial offsets. The permittivity of the cell culture
(e1) is typically different from the permittivity of the surround-
ing electrolyte (o). The capacitance value Cj; is the result
of fringing electric fields that traverse through the sample.
The measured capacitances are primarily influenced by the

volume of the sample within tens of microns of the chip
surface, which also constrains the effective sensing depth and
effective tomography depth. The capacitance measurements
are also modestly affected by the sample’s ionic conductance
and temperature, so it is helpful to hold these parameters
constant between the training and test data.

Fig. 3 illustrates the different sets of capacitance measure-
ments acquired from the CMOS sensor by varying the spatial
distance between the sensing electrodes. The spatial distance
is specified by an offset vector (4, d;), where J; indicates the
distance between the sensing electrodes in the row direction
and d; indicates the distance in the column direction. The
measured capacitance can be categorized into three different
datasets: (1) row shift data, where the offset vector only
moves along the rows (2) column shift data, where the offset
vector only moves along the columns; and (3) diagonal shift
data, where the offset vector traverses both the rows and
columns. Fig. (3a, 3b) illustrate the row shift measurements
with |6;] > 0 and d; = 0. Conversely, the column shift data,
illustrated in Fig. (3c, 3d) has an offset vector with §; = 0
and |6;] > 0. The diagonal shift data traverses the rows
and columns simultaneously with |d;|,|d;| > 0, as illustrated
in Fig. (3e-3g). Measurements at longer offset vectors can
add more depth information as the electric field penetrates
deeper into the sample. However, the mutual capacitance also
decreases with distance, and thus only measurements with
|6; — d;] < 5 are considered. These capacitance measurements
are input to the inverse problem to reconstruct the 3-D shape
of the sample above the sensor.

III. SHAPE RECONSTRUCTION NETWORK

Deep neural networks (DNNs) are powerful and flexible
function approximators, capable of accurately representing
complex relationships within data. Different DNN architecture
are presented in [15]-[17] for solving the ECT inverse
problem. In this setup, training data act as a regularization
prior for the severely ill-posed inverse problem. However,
these studies mainly focus on predicting 2-D images rather
than 3-D shapes. In our application, we need to resolve 3-D
shapes directly from the input capacitance measurements. We
propose a 3-D architecture based on transposed convolution
that takes as an input a matrix of capacitance measurements
and outputs the predicted 3-D geometry of the cell culture.

A. Architecture

Fig. 4 illustrates the architecture of the shape reconstruction
network. The network takes as an input a matrix of boundary
capacitance measurements with dimensions m xnxr, where m
represents the number of electrodes along the rows, n the num-
ber of electrodes along the columns, and » the maximum num-
ber of spatial offsets considered when measuring the capaci-
tance. The input matrix is reshaped to num_meas x 1 x1xd,
where num_meas represents the total number of capacitance
measurements in the matrix and d represents the target depth
for the reconstructed 3-D shape. The reshaped matrix is then
up-sampled through five transposed convolution blocks until
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Fig. 4: Shape reconstruction network, based on 3-D transposed convolution. The input is a matrix of pairwise capacitance
measurements acquired from the CMOS sensor. The output is a 50m x 200pm x 100 pm cross-sectional volume that represents
the 3-D spatial permittivity distribution o(z,y, z) of the sample above the sensor.

we resolve the dimension of the predicted 3-D volume above
the sensor. The reconstructed 3-D volume spatial dimension
is set to (H, W, C) = 100um x 200um x 50um.

The network mainly consists of five transposed convolu-
tion blocks that iteratively up-sample the input capacitance
measurements. Each block contains a 3-D transposed convo-
lution layer, 3-D batch normalization, and a ReLU activation
function, except for the final block, which contains a sigmoid
activation to constrain the predicted output values within a
[0,1] range. The transposed convolution layer contains a 3-D
learnable kernel that up-samples the input feature map [29].
The 3-D batch normalization layer ensures training stability
and speeds up convergence by normalizing the layer in-
puts [30]. The ReLU activation ensures that the network can
learn the non-linear relationship between the input capacitance
and the 3-D permittivity distribution. Additionally, the final
output of each block is augmented with a residual connection
from the block’s input by a 1 x 1 transposed convolution layer
to provide an alternative path for the flow of information.

B. Loss and Training

The loss function is important in deep learning algorithms
as it guides the model during the training process and de-
fines the training objective. Choosing the appropriate loss
function is essential for ensuring the model’s convergence
during training. A significant challenge arises from class
imbalance in the permittivity maps, where foreground pixels
occupy a smaller region than background pixels. Zhu [16]
pointed out that distribution-based loss functions like focal loss
can mitigate issues caused by the class-imbalance problem.
However, studies on medical image segmentation tasks have
demonstrated that region-based losses and compound losses
perform better than distribution-based losses [31]. Therefore,
we propose a compound loss function (Eq. 3) which combines

multiple objectives that focus mainly on the foreground pixels
to help address the class-imbalance problem. Here, o defines
the confocal ground truth 3-D volume, while & defines the
predicted 3-D volume. The weighting parameters, (A1, Az, Az),
define the contribution of each loss objective and are optimized
during the training process.

L(o,6) = A Lsmootnr1 (0, 6) + A2 LFocal Loss(0, &)
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The first objective in our compound loss function is the
smooth L1 loss. This pixel-to-pixel loss function uniformly
addresses errors in the background and foreground pixels.
Defined as a piecewise function in Eq. 4, the smooth 11 loss
iterates over all voxels in the predicted and ground truth 3-
D volume. It applies a quadratic term for minor errors and
transitions to a linear term for more substantial errors, making
it less sensitive to outliers compared to the mean-squared error
(MSE) loss. The final loss value is the mean of the error across
all voxels. It is mainly used for small-scale refinements and
enhancing overall pixel accuracy.
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The second objective is the focal loss [32], which is an
enhanced cross-entropy loss function designed to address the
class-imbalance problem by modifying the loss value with a
scaling factor. The focal loss is defined in Eq. 5, where p; is the
probability of ground truth predictions, calculated by passing



the model’s output through a softmax layer. The loss down-
scaling is managed by the modulating factor a(1—p;)”, which
down-weights the loss value for well-predicted examples, thus
helping the model focus more on hard-to-predict examples.
The focusing parameter -y is used to control the rate of down-
weighting easy-to-predict examples, while o is used to control
the weighting factor for the loss across the two classes in the
predictions, which are the background and foreground pixels.

Lkocal Loss(pt) = _at(l _pt)’”‘)g(pt) (5)

The third objective is the dice loss function [33], which is a
region-based loss function that maximizes the region overlap
between the ground truth and the predictions. This encourages
the model to produce more spatially aligned predictions and
increases edge smoothness. It also helps address the class
imbalance issue by focusing on the overlap region rather than
each pixel independently. Eq. 6 defines the dice loss function.
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IV. EXPERIMENTAL DATASET

The quality of the training dataset is critical to the accuracy
of the approximation to the ECT inverse operator. To train
the networks, we designed experiments that would allow ECT
measurements of a cell culture in addition to 3-D optical con-
focal microscopy of the same sample. Data from the CMOS
sensor serve as the boundary capacitance measurements, and
the confocal microscope data is used as the ground truth
reference.

The experimental setup incorporating both ECT and con-
focal microscopy is illustrated in Fig. 5. An ~800 pm deep
well was created with a stack of four 25 uL. adhesive chambers
(Gene Frame, Thermo Scientific) surrounding the CMOS
sensor. A 1% agarose MSGG pad was prepared to match
the well depth and sensor area. Wild-type B. subtilis cells
(NCIB3610) were grown aerobically in a shaken 3mL culture
of MSGG at 37°C, until they reached mid-exponential growth
phase (~ 1.5-2 hours). The liquid culture was then inoculated
onto the agarose pad and grown into mature biofilms over a
period of 12-16 hours at 30°C. The inoculation concentrations
and growth times were varied to produce biofilms of varying
surface roughness and thickness.

The CMOS surface was primed with methanol to improve
wetting, and then exchanged with phosphate buffered saline
(PBS). The agarose pad with a mature biofilm was held on a
lem? polymer coverslip (Uncoated Polymer, Ibidi), and placed
in contact with the CMOS sensor. The edges of the sample
were then sealed with silicone elastomer (Ecofiex 5) before
being mounted on a confocal microscope (Stellaris 5, Leica).
The fluorescent dye Thioflavin T (ex/em: 450nm/492nm [34])
was added to both the agarose pad and PBS allowing cells to
be visualized.

We acquired a set of mutual capacitance images with
varying offset vectors, in addition to a 3-D stack of confo-
cal images spanning the full XY sensor area and a Z-axis

PCB

CMOS Sensor

Adhesive |

Fig. 5: Experimental dataset acquisition setup, where biofilm
samples were mounted to allow both ECT measurements from
the CMOS sensor as well as 3-D optical images from a
confocal microscope.
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Fig. 6: Two experimental datasets with B. subtilis biofilms
on the CMOS sensor array. Each sample is shown with one
mutual capacitance image (left, measured using a spatial offset
of 1) and the confocal max projection (right).

depth of 150 pm taken with a 25x/0.95NA water immersion
objective (Leica HC Fluotar). Fig. 6 shows ECT images
obtained at an offset vector of (d;,d;) = (0,+1), alongside
the maximum projection of the confocal 3-D stack on the XY
plane. The dataset was partitioned into 100 um x 200 pm
x 50 pm smaller volumes, and their corresponding boundary
capacitance measurements. This yielded 1,310 capacitance and
confocal pairs that were split into 80% training and 20% for
testing and validation. To circumvent training data scarcity, we
augmented it by sampling volumes with an overlapping stride.

V. EXPERIMENTAL RESULTS
A. 3-D Shape Reconstructions

The 3-D volume reconstruction from one local partition
incorporates capacitance measurements from a 20 x 5 array of
electrodes. Fig. 7 shows the reconstructed 3-D volumes from
the CMOS capacitance measurements on four examples from
the testing dataset. The results demonstrate the system’s ability
to resolve the cell culture’s geometry in three dimensions.
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Fig. 7: Reconstructed 3-D volumes of several portions of the B. subtilis biofilm.

Ground Truth Ground Truth Ground Truth Ground Truth
. 50 um| 50 um| 50 um| 50 pm
L L L L
B B B B
/1] /1] /1] /1]
[a) [a) [a) [a)
Row (y) Row (y) Row (y) Row (y)

ECT Prediction ECT Prediction

Depth (z)
Depth (z)

Row (y)

Row (y)

—
&

ECT Prediction ECT Prediction

Depth (z)
Depth (z)

Row (y)

(b)

Fig. 8: Maximum projection of the reconstructed 3-D volumes on the YZ plane. (a) Confocal microscopy ground truth max

projection. (b) ECT model prediction max projection.

500 pm

Fig. 9: Reconstruction of a larger-scale cross-sectional 3-D
volume of a B. subtilis biofilm spanning 2.8 mm. Model pre-
dictions were stitched together from fourteen 200 zm volumes.

Additionally, Fig. 8 compares the maximum projection of the
reconstructed volumes to the confocal microscopy ground truth
along slices in the YZ plane, showing the system’s ability to
accurately predict the biofilm sample’s geometry, thickness,

(a) Confocal Microscopy
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Fig. 10: Max projection of reconstruction of a larger-scale
cross-sectional 3-D volume of a B. subtilis biofilm spanning
2.8mm. (a) Confocal ground truth. (b) Model prediction,
stitched together from fourteen 200 zm volumes.

and location.
The 3-D reconstructions were performed independently



TABLE I: Quantitative analysis comparing previous studies with the use of the microsphere (£2;) and biofilm ({23, €23) 2-D
testing datasets, along with quantitative results from the 3-D shape reconstruction based on the 3-D biofilm testing dataset.

Dataset MSE | SSIMT PSNR{1 CC1 IoUtT MPA ¢

0 0.315 0.041 5.015 0.208 0.488  0.538

Iterated-Tikhonov Qs 0.115 0.569 9.395 0.171 0362  0.553

Qs 0.127 0.576 8.949 0.048 0.257 0.511

0 0.027 0.423 15.73 0.238 0485 0.952

Fully-connected auto-encoder (FNN-AE) [15] Q9 0.145 0.678 8.360 0.447 0.591 0.854

Qs 0.112 0.845 9.509 0.540 0.515 0.888

2-D 0 0.018 0.931 17.452  0.679 0.766  0.982
FNN+CNN autoencoder (FNN+CNN-AE) [16] Qs 0.105 0.700 9.773 0.649 0.719 0.895

Qs 0.060 0.853 12.221  0.710 0.759  0.940

Q4 0.007 0.970 21.296 0.874 0.875 0.993

self-attention encoder+UNet (self-atnn+UNet) [17] Q9 0.071 0.785 11.479 0.694 0.775 0.929

Qs 0.050 0.879 13.030 0.734 0.748  0.950

0 0.005 0.975 23.053 0911 0915 0.995

TCNN+Multi-objective-loss TCNN+MOL (Ours) Q9 0.057 0.799 12.473 0.781 0.827 0.943

Q4 0.043 0.882 13.658 0.722 0.800 0.957

s . Qs 0.048 0.859 13.230 0.806 0.829 0.952

3-D TCNN+Multi-objective-loss TCNN+MOL (Ours) Qs 0.033 0.893 14.878 0772 0843  0.967

on smaller volumes, but by stitching together multiple pre-
dictions, we can reconstruct larger sample volumes. Fig. 9
shows the orthogonal slices of the model’s predictions over a
2.8mm length, demonstrating the system’s ability to resolve
millimeter-scale spatial features in cell cultures. Comparison
with the confocal microscopy ground truth in Fig. 10 demon-
strates a good correspondence between the 2-D max projec-
tion of the model prediction and the ground truth confocal
Mmicroscopy.

B. Reconstruction Quality

In evaluating the model’s reconstruction quality, we utilize a
comprehensive set of metrics that assess the similarity between
the predicted 3-D shapes and confocal ground truth. Mean
Squared Error (MSE) is a fundamental measure that quantifies
the average squared difference between the ground truth and
reconstructed 3-D shapes. Perceptual metrics that include the
Structural Similarity Index Measure (SSIM) [35], Peak Signal-
to-Noise Ratio (PSNR), and Cross-Correlation (CC) are used
to evaluate the visual similarity between the ground truth
and the reconstructed 3-D shapes. Additionally, Intersection
Over Union (IoU) is used to assess the overlap accuracy
of the reconstructions and the ground truth. Lastly, Mean
Pixel Accuracy (MPA) calculates the average proportion of
correctly predicted pixels, providing a straightforward metric
for evaluating overall pixel-level accuracy. Table I shows the
3-D shape reconstruction quality on the biofilm experimental
data testing datasets. Here, {25 refers to the biofilm data in Fig.
6a, and 3 refers to the biofilm data in Fig. 6b. As measured
by the IoU metric, the model achieves a prediction accuracy

of 82.9% and 84.5% on the €2, and 3 testing datasets,
respectively.

Additionally, we compare the model’s reconstruction qual-
ity with four baseline methods. The first baseline is the
iterated Tikhonov, which solves the ECT inverse problem
by iteratively searching for the estimated 3-D permittivity
volume that aligns with the input capacitance measurements,
employing the Gauss-Newton algorithm for this optimization
process. The second baseline is the Fully connected Neural
Network Autoencoder (FNN-AE) introduced in [15], which
consists of two fully connected neural networks, one for
solving the forward problem and the other for solving the
inverse problem, co-trained simultaneously using the mean
square error (MSE) loss function. The third baseline is the
permittivity value prediction network presented in [16], which
also incorporates two FNNs for simultaneous resolution of
the forward and inverse problems, complemented by a post-
processing convolutional auto-encoder (CNN-AE) designed to
enhance the quality of the inverse FNN predictions. The fourth
baseline is a UNet-based architecture, presented in [17], which
incorporates a self-attention encoder for processing the input
capacitance measurements followed by a UNet network to
predict the permittivity distribution. By benchmarking against
these models, we highlight that choosing the appropriate
loss function yields more significant improvements than those
achieved by adding complexities to the network architecture.

Since the referenced baselines are designed to predict 2-
D cross-sectional images instead of 3-D shapes, we evaluate
them alongside our proposed model in a two-dimensional
setting. Table I shows the comparison results for the 2-D case
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Fig. 11: Qualitative comparison to prior algorithms, using a
scene of two microspheres simulated using pyEIT [36].

for three different datasets. The first dataset (€21) is a synthetic
dataset of microsphere beads generated from pyEIT [36]. The
remaining two datasets, (€22 and €3), are the experimental
biofilm datasets shown in Fig. 6. The comparisons show that
our model consistently improves the prediction accuracy over
the referenced benchmarks across all datasets.

We also present a visual comparison between the four
baselines and our model reconstructions on one example from
the microsphere dataset in Fig. 11, where the ground truth
cross-sectional image contains two beads in close proximity.
The Tikhonov algorithm gives an accurate estimate of where
the beads are located. However, it fails to recognize the
presence of two distinct beads and struggles with predicting
sharp boundaries between them. This limitation is attributed
to the Tikhonov penalty, which favors smooth and continuous
solutions, leading to the blurring of edges [37]. The FNN-AE
also fails to predict two distinct beads, primarily because fully
connected layers are unsuitable for the image prediction task.
While the CNN-autoencoder improves the image prediction of
the fully connected layer, the resulting FNN+CNN-AE predic-
tion smears out the two beads, muddying the sharp boundary
between them. The self-attn+UNet model significantly im-
proves image reconstruction, mainly because the UNet model
is well-suited for the image reconstruction task. However, the
predicted beads have non-smooth boundaries, mainly because
the model is trained with the MSE loss function, which leads
to less uncertainty in the predictions around the edges [38]. By
incorporating a composite loss function, our proposed model
TCNN+MOL prediction accurately captures the locations and
the number of beads and improves the smoothness of the
edges.

In Fig. 12, we present a similar comparison on one sample
from the experimental biofilm dataset. The Tikhonov algorithm
fails to converge while solving the optimization objective,
mainly due to the experimental noise in the capacitance
measurement collected from the CMOS sensor. The FNN-AE
falls into a local minimum, favoring predicting a continuous
biofilm near the chip surface, a typical pattern in the dataset.
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Fig. 12: Qualitative comparison to prior algorithms, using one
sample vertical cross-section from the biofilm testing dataset.

The FNN+CNN-AE also fails to predict discontinuity in the
biofilm. The self-attn+UNet model can predict the discontinu-
ity in biofilm but underestimates its thickness. Our proposed
TCNN+MOL model accurately captures the biofilm’s thick-
ness, location, and overall shape, highlighting the importance
of incorporating different objectives in the loss function during
training to address the class imbalance problem.

C. Ablation Study

To understand the contribution of the different capacitance
measurements to the model’s reconstruction accuracy, we
conduct an ablation study on training the model with different
combinations of the input capacitance measurements. Our
model was initially trained on the three different sets of ca-
pacitance measurements: row shift, column shift, and diagonal
shift, which were consistently ablated in this experiment to
assess their impact on the model’s reconstruction accuracy.
Table II shows the ToU value when training the model for 20
epochs with different combinations of the input capacitance
measurements. Training only with the row shift data achieves a
6% accuracy increase compared to using column shift or diag-
onal shift data alone or in combination. This suggests that the

TABLE II: Contribution of the input capacitance measure-
ments to the reconstruction accuracy.

Row Shift Column Shift Diagonal Shift IoU

v 0.7713

v 0.7174

v 0.7120

v v 0.7820

v v 0.7137

v v 0.7845

v v v 0.7870




TABLE III: Comparison to prior planar electrical tomography systems, including both capacitance and impedance tomography.

[17] [23] [24] [20] [22] [19] This Work
Imaging Domain Circular Planar Planar Planar Planar Planar Planar
Domain Shape 2-D 3-D 3-D 3-D 3-D 2D 3D
Boundary Measurement Capacitance Impedance Impedance Impedance Capacitance Impedance Capacitance
. . Laplacian Total Projected Image Linear Gauss-Newton
Reconstruction Algorithm self-attn+UNet Repularization ~ Variation Reconstruction Algorithm [39] Back-projection Least Squares TCNN+MOL
Imaging Application Cryogenic Fluids Cancer Cells Cancer Cells  Tissue Culture Yeast cells Stem Cells Bacterial biofilms
Electrode Arrangement Ring Circular Grid Circular Grid Cuboid Grid Circular Grid Rectangular Grid Rectangular Grid
Electrode Si cm scale mm scale mm scale mm scale mim scale pm scale pm scale
ec e (1.2x0.6 mm?) (0.071 mm?) (0.7854 mm?) (14x0.8mm?2)  (Spm xdmm)  (10x10pm?)
100 electrodes
. (each prediction)
Array Size 8 electrodes 16 electrodes 17 electrodes 360 electrodes 32 electrodes 16 electrodes
131,072 electrodes
(whole array)
TABLE IV: Impact of the loss function choice on the (ha traini ng objective.

reconstruction accuracy.

Loss IoU

Lsmooth L1 0.7388
Lsmooth 1.1 + LFocal Los 0.7492
Lsmooth 1 + Local Loss + Lbice 0.7706

row shift measurements have a higher fidelity than the column
and diagonal shift measurements. The lack of performance
enhancement when combining column and diagonal shift data
suggests that these measurements may contain overlapping
information, thus not significantly improving fidelity. The
highest reconstruction accuracy is achieved when training
the model with the three different capacitance measurements,
with the row shift data being the main contributor to the
reconstruction accuracy. These findings also suggest potential
areas for optimization and further research, such as improving
the noise floor on column and diagonal shift readings.
Additionally, we conduct an ablation study on the impact of
the loss function choice on the model’s prediction accuracy.
Initially, the model is trained with the smooth L1 loss function,
which equally penalizes the error in the background and
foreground pixels. Then, the smooth L1 loss is combined with
the focal loss, which penalizes errors in the foreground pixels
more than the background pixels. In the last experiment, the
smooth L1 loss and the focal loss are combined with the
dice loss function, which maximizes the area overlap between
the prediction and the ground truth. Both the focal loss and
the dice loss functions address the class-imbalance problem
where foreground pixels occupy a smaller region compared to
the background pixels. Table IV shows the IoU metric value
for the three loss configurations when the model is trained
for 20 epochs on the {23 biofilm dataset. The results show
that prediction accuracy increases as we incorporate more
objectives in the loss function, highlighting the importance
of including loss functions that address the class imbalance in

VI. DISCUSSION

It is worth highlighting that the success of these experi-
mental biofilm reconstructions does not mean that capacitance
tomography is a universally solvable problem. With a planar
electrode array, the magnitude of the electric field decreases
rapidly at larger distances from the surface, resulting in low
sensitivity to materials farther from the sensor [40]. We
benefited from the thin geometry of the bacterial biofilms,
which meant that a 100 um thick reconstruction volume was
sufficient. Achieving capacitance tomography of larger or
thicker objects would be more challenging and would likely
require sacrificing spatial resolution.

The use of an integrated CMOS sensor [18], [26] also
offered unique opportunities in this application. With a dense
10 pm electrode pitch and 512 x 256 array, a single recording
of stacked mutual capacitance images contained millions of in-
dividual measurements, creating large datasets for statistically
training and testing the reconstruction networks.

Absolute capacitance scales with electrode area, and the
10 pm pixels of the CMOS sensor were a mixed bless-
ing, yielding finer spatial resolution but smaller signals and
shallower reconstruction depths. Working in aqueous media
(e ~=78) also helped to increase the capacitance signals, com-
pared to air (e, ~1). Typical mutual capacitance values from
the CMOS sensor were 1-200 femtofarads, which is possible
to measure as long as some care is taken to preserve the
SNR. The mutual capacitance decreases for larger electrode
distances, and measurements with spatial offsets greater than
5 were near the noise floor and not used.

Labeled training and testing was made possible by align-
ment to 3-D confocal microscopy of the same samples without
removing the biofilms from the sensor. The tomographic
reconstructions were also generally simplified to be binary,
only classifying the biofilm against the background. In order
to work with more complex samples, the networks may need
to be re-designed, and it remains to be seen how well these



networks translate across different cell types, different sample
preparations, and different environments.

The media composition can also have a secondary effect on
the capacitance measurements, mainly through the influence
of salts and other ions on electrochemical double layers near
surfaces. This effect can be complex, and it also depends
on the measurement frequency [41]. In our experiments, the
frequency (6.25MHz) and the media composition were held
constant, and the biofilms were mounted and sealed after
growing to maturity. If the media were changing over time
due to evaporation or significant metabolic activity, this could
be another variable that deserves attention.

Like many deep learning systems, the tomographic networks
in this work have large numbers of parameters. In order to
enable training convergence and guard against over-fitting,
careful design of the loss function is important (see Section
III-B). One possible direction for future improvements could
be to pursue closer incorporation of physics simulations with
the learning network. We showed that the networks can be
trained using the results of finite element simulations (e.g.
Fig. 11), but the physics could be moved from being implicit
in the training data, to being explicit in the training algorithms
[42]. Expanded use of simulated datasets and physics-derived
loss functions could help to improve future performance and
broaden experimental applications, even when training data
from confocal imaging is not available.

VII. CONCLUSION

In this paper, we presented an electrical capacitance tomog-
raphy (ECT) system using a CMOS sensor array for 3-D shape
reconstruction of micron-scale objects. We introduced a deep
learning architecture for reconstructing 3-D sample volumes
from the CMOS capacitance measurements. The model was
trained with an enhanced multi-objective training scheme that
combines a pixel-wise loss function, a distribution-based loss
function, and a region-based loss function which enhanced
the 3-D shape reconstruction accuracy by 3.2% compared
training only with pixel-wise loss function. We demonstrated
our approach on an experimental dataset of bacterial biofilms,
and were able to resolve microscopic spatial structure in the
cultures. Compared to prior demonstrations of capacitance
tomography or impedance tomography (Table III), this work
achieves the finest spatial resolution on a platform with by
far the largest number of sensing electrodes. Future work may
include enhancing the 3-D shape reconstruction accuracy by
using more advanced deep learning models for solving the
ECT inverse problem, like diffusion models [43]. In parallel,
we will broaden the scope of our training dataset to encompass
a wider variety of 3-D cell cultures. Microscale ECT offers a
low-cost, label-free, and non-invasive imaging technique that is
suitable for a wide array of biomedical applications, including
tracking the geometry of cell cultures in three dimensions.
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