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Abstract—Electrical capacitance tomography (ECT) is a non-
optical imaging technique in which a map of the interior
permittivity of a volume is estimated by making capacitance mea-
surements at its boundary and solving an inverse problem. While
previous ECT demonstrations have often been at centimeter
scales, ECT is not limited to macroscopic systems. In this paper,
we demonstrate ECT imaging of polymer microspheres and
bacterial biofilms using a CMOS microelectrode array, achieving
spatial resolution of 10 microns. Additionally, we propose a deep
learning architecture and an improved multi-objective training
scheme for reconstructing out-of-plane permittivity maps from
the sensor measurements. Experimental results show that the
proposed approach is able to resolve microscopic 3-D structures,
achieving 91.5% prediction accuracy on the microsphere dataset
and 82.7% on the biofilm dataset, including an average of 4.6%
improvement over baseline computational methods.

Index Terms—tomography, 3-D, capacitance, ECT, CMOS,
biofilm, deep learning, transposed convolution

I. INTRODUCTION

Electrical capacitance tomography (ECT) is an imaging
technique that estimates the internal distribution of permittivity
in a volume by measuring capacitance between electrodes
placed at its boundary [16]. It is closely related to electrical
impedance tomography (EIT), which estimates the conduc-
tivity distribution using impedance measurements [7]. Both
of these techniques are useful in applications where there is
spatial contrast in conductivity or permittivity, including organ
and tissue imaging [1], [8], [25], [30], [31], neural imaging and
neural activity monitoring [3], [4], [29], and industrial process
monitoring of fluid flows [17], [23].

The physics of the ECT problem, in 2-D, are managed
by the Poisson PDE in Eq. 1, where σ(x, y) represents the
permittivity distribution and u(x, y) represents the electric
potential [2]. Mutual capacitance Cij between electrodes i, j
is evaluated by the integral in Eq. 2, where Vij is the potential
difference between the two electrodes, and S is the path
enclosing the sensing electrodes. The problem of estimating
the capacitance given the permittivity distribution is referred
to as the forward problem [10]. Conversely, estimating the
permittivity distribution from boundary capacitance measure-
ments is referred to as the inverse problem.

∇.(σ(x, y)∇u(x, y)) = 0 (1)
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The inverse problem of ECT is a non-linear and severely
ill-posed problem, without unique numerical solutions [33].
Therefore, regularization priors are often used to impose an
additional constraint on the estimated solution [22]. Traditional
algorithms solve the inverse problem by minimizing a least
squares objective with an additional regularization term for
an initial permittivity distribution through an iterative solver
[5], [33], [34]. However, iterative algorithms are sensitive to
noise in the capacitance measurements which makes them
more susceptible to divergence. Prior work demonstrates
that deep learning models can be more robust to experi-
mental noise and can provide accurate image reconstruc-
tions [37], [38], [39], [32].

Previous demonstrations of ECT have often resolved
centimeter-scale targets. If it could be appropriately minia-
turized, one appealing application of ECT would be for 3-D
visualization of cell cultures [12], [19], [24]. Optical confocal
microscopy is a powerful tool for biologists to image the 3-
D structure of complex cell cultures [26]. However, confocal
imaging can be prohibitively expensive for routine use, usually
relies on fluorescent labeling, and its intense light excitation
introduces tradeoffs between the frame rate and risks of
photobleaching and phototoxicity.

Here we propose a microscale capacitance tomography
system using a 512× 256 CMOS sensor array [13]–[15],
achieving the highest-resolution ECT reported to date (10µm).
We apply deep learning to approximate the ECT inverse opera-
tor, using training data as a regularization prior to the ill-posed
inverse problem. The proposed system enables imaging of
micro 3-D structures of cell cultures with a high reconstruction
accuracy. We present results for two experimental datasets
of microscopic objects: polymer microspheres and bacterial
biofilms. The ECT data are trained and evaluated using ground
truth images acquired from 3-D confocal microscopy.

II. METHODOLOGY

A. Capacitance Tomography Hardware

The tomography is implemented using measurements from
an integrated CMOS microelectrode array described in [15].
This chip has a 512× 256 planar array of microelectrodes
on a 10µm× 10µm rectangular grid. In one of its operating
modes, the chip can efficiently measure the mutual capacitance



Fig. 1: Overview of the tomography system. (a) Illustration of the one-sided planar ECT detection using the CMOS sensor. The sample, above
the sensor, has a permittivity value ε1 distinct from the background permittivity ε0. (b) Image reconstruction network, based on transposed
convolution. The input is a matrix of pairwise capacitance measurements acquired from the CMOS sensor. The output is a 100× 200µm
cross-sectional image that represents the permittivity distribution σ(z, y).

between any two pixels in the array [13], [14]. Fig. 1(a)
illustrates the one-sided planar detection using the sensor,
where electrodes are only placed at the bottom boundary. Each
capacitance Cij represents fringing electric fields through the
sample, and thus the permittivity and geometry of materials
near the sensor influence these measurements. Samples to be
imaged are placed on the chip surface in a liquid or gel
electrolyte, as illustrated in Fig. 2(a). An image of the sensor
is shown in Fig. 2(b).

B. Image Reconstruction Network

Fig. 1(b) illustrates the architecture of the image reconstruc-
tion network. The input is an m×n matrix containing pairwise
capacitance measurements, where m is the number of spatial
offsets considered when measuring the mutual capacitance val-
ues and n is the number of electrodes. Each entry in the matrix
corresponds to the mutual capacitance Cij between electrodes
i and j. For example, the first row contains n capacitance
values measured between adjacent electrodes, and the second
row contains measurements between electrodes separated by 2
positions. In this study, we only use capacitance measurements
with |i−j| ≤ 5. To make the input matrix compatible with the
transposed convolution layer, we reshape it to a 3-D feature
map of size (w, h, c) = (1, 1, num measurements). The input
3-D feature map is then repeatedly up-sampled by a factor of
2 until it reaches the spatial resolution of the predicted cross-
sectional image (w, h, c) = (200, 100, 1), which represents
the permittivity distribution σ(z, y) of the medium above the
CMOS sensor.

The boundary capacitance measurements are up-sampled
through a series of five transposed convolution blocks. Each
block contains a transposed convolution layer, batch normal-
ization layer, and a ReLU activation, except for the last block
where sigmoid activation is used to constrain the output per-
mittivity to be in the range [0, 1]. The transposed convolution
layer contains a learnable kernel that is used to reconstruct a
high-resolution output from a low-resolution input [9]. Batch
normalization is used for training stability and convergence
speed-up. Additionally, a residual connection is added between
the block input and output through a 1x1 convolution kernel.

C. Loss

The loss function is important in training deep learning
algorithms as it defines the optimization landscape and has

a significant impact on the model convergence [35]. Class
imbalance, where the foreground permittivity occupies a sig-
nificantly smaller region relative to the background pixels,
poses a challenge in training. As noted by [39], distribution-
based loss functions like the focal loss [18] can help address
the class-imbalance issue. However, region-based losses and
compound losses have been shown to consistently provide bet-
ter performance than distribution-based losses [35]. Therefore,
we propose a compound loss function, shown in Eq. 3, that
combines a distribution-based loss (Focal Loss LFL), a region-
based loss (Dice Loss LDice [36]), and a pixel-to-pixel loss
(Smooth L1 Loss LSmoothL1 [11]). The weighting parameters
(λ1, λ2, λ3) define the tradeoff between the different loss-
objectives and are learned during training.

L(y, ŷ) = λ1LSmoothL1(y, ŷ) + λ2LFL(y, ŷ) + λ3LDice(y, ŷ) (3)
Each loss component in Eq. 3 represents a different ob-

jective that the model aims to optimize. The smooth L1
loss measures the absolute difference between the predicted
and ground truth images, with added smoothing to make
it differentiable and less sensitive to outliers. It addresses
pixel-level differences and equally penalizes the error in the
foreground and background pixels. The focal loss is a modified
cross-entropy loss that dynamically scales during training to
help the model focus on the hard-to-predict examples. This
is done by adding a scaling factor that decays to zero as the
model confidence increases in the easy-to-predict examples.
Dice loss is used to emphasize the spatial agreement and
boundary delineation between the predicted and ground truth
images by maximizing the overlap region between the two
images.

III. EXPERIMENTAL RESULTS

In order to obtain both ECT data and confocal 3-D images
of the same objects, we sealed samples on the sensor with
optically transparent windows, as shown in Fig. 2(a). The
confocal images are useful as a ground truth for training the
inverse algorithms, as well as for qualitative and quantitative
comparisons of the reconstructed sample geometry. Using
this setup, we performed experiments with both polymer
micropheres and bacterial biofilms.

A. Polymer Microspheres
A sample containing 30µm purple fluorescent polystyrene

microspheres (Spherotech Inc., IL, USA) was positioned over
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Fig. 2: (a) Experimental samples were mounted to allow both ECT
measurements as well as 3-D optical images from a confocal micro-
scope. (b) The CMOS microelectrode array has 131,072 electrodes
on a 10 micron grid. (c) A dataset with a B. subtilis biofilm showing
the confocal max projection (right) and one mutual capacitance image
measured using a spatial offset of 1 (left).

the CMOS array. As shown in Fig. 2(a), a 500µm deep well
was created around the CMOS sensor with a stack of two
25µL adhesive chambers (Gene Frame, Thermo Scientific).
Microspheres were added to a buffered Minimal Salts Glycerol
Glutamate (MSGG) media in a 10× dilution, along with
agarose flakes. The mixture was autoclaved and 50µL of the
hot solution was pipetted into the well, covering the sensor.
The well was then sealed with a 22 mm× 22 mm coverslip,
and the solution was allowed to solidify into a 2% agarose
gel which immobilized the microspheres. Finally, the edges of
the assembly were sealed with a fast-setting silicone elastomer
(EcoFlex 5, Smooth-On, Inc.) to prevent the gel from drying
which would introduce distortions during the imaging process.

Due to the sparse distribution of the polymer microsphere on
the chip surface, we obtained a limited number of capacitance
and confocal cross-sectional image pairs (16 different pairs).
Therefore, we augmented our dataset with a synthetic dataset
of 5,975 capacitance and cross-sectional image pairs generated
using pyEIT [20], which runs finite element electrostatic
simulations that solve the PDE in Eq. 1. The synthetic dataset
was mainly used for training, while the experimental dataset
was used for testing. In order to make the model more robust
to the noise present in the experimental data, the simulated
capacitance values were perturbed with a Gaussian noise
ϵi ∈ N (0, 0.03) during training. Fig. 3 shows the model
predictions on the experimental microsphere testing dataset.
The results demonstrate the system’s ability to accurately
predict the shape and location of the microsphere from the
experimental ECT measurements, despite being trained solely
on synthetic data.

B. Bacterial Biofilm

To further develop the tomography capabilities, we aimed
to produce 3-D maps of biomass within bacterial biofilms.
Bacillus subtilis biofilms were grown on 500 µm-thick sub-
strates of 1.8% agarose MSGG media for roughly 24 hours. A
biofilm was cut out along with a thin supporting agarose pad
and transferred onto the CMOS sensor. Before transferring

(a)

(b)
Fig. 3: Image reconstruction of polymer microspheres (a) Confocal
microscopy ground truth. (b) ECT model prediction.

the biofilm, the sensor was treated with poly-L-lysine to
improve cell adhesion. The biofilm was sealed with a glass
coverslip and fast-setting silicone elastomer to prevent drying,
and mounted on a confocal microscope (Stellaris 5, Leica).
An illustration of the completed device is shown in Fig. 2(a).

From the experimental biofilm dataset shown in Fig. 2(b),
we generated 6,400 capacitance and confocal cross-sectional
image pairs, which were divided into 80% training, 10% val-
idation, and 10% testing. Fig. 4 shows the model predictions
on the testing set. The results indicate that the system can
accurately predict the biofilm thickness, shape, and depth from
the experimental ECT measurements.

Predictions were performed independently on
100µm× 200µm meshes. However, we can reconstruct
larger areas by simply stitching the predicted local meshes
together. Fig. 5 shows the model predictions along a linear
array of 200 electrodes (2 mm total length), demonstrating
the system’s ability to resolve larger millimeter-scale features
in the biofilm.

C. Baselines

We compare the reconstructions of the proposed model
on the microsphere and biofilm testing datasets with one
more traditional algorithm (iterative Tikhonov) and three deep
learning algorithms which include the fully-connected auto-
encoder (FNN-AE) presented in [38], the permittivity pre-
diction network presented in [39] which is composed of two

(a)

(b)

Fig. 4: Reconstructed permittivity images of sections of a bacterial
biofilm (a) Confocal ground truth. (b) ECT model prediction.



TABLE I: Comparison to prior electrical capacitance tomography (ECT) systems.
[38] [39] [32] [27] [12] This Work

Imaging Domain Circular Circular Circular Planar Planar Planar
Reconstruction Algorithm FNN-AE FNN+CNN-AE self-attn+UNet Tikhonov Linear Back-projection TCNN+MOL

Imaging Application 3D Objects 3D objects Cryogenic Fluids 3D objects Yeast cells Bacterial biofilms
Electrode Size cm scale cm scale cm scale mm scale (6x6 mm2) mm scale (1.4x0.8mm2) µm scale (10x10µm2)

Array Size 8 electrodes 16 electrodes 8 electrodes 16 electrodes (4×4) 34 electrodes 131,072 electrodes (512×256)

(a)

(b)

Fig. 5: Reconstruction of a larger-scale cross-sectional image of a B.
subtilis biofilm spanning 2 mm. (a) Confocal ground truth. (b) Model
prediction, stitched together from ten 200µm windows.

fully connected networks and a post-processing convolutional-
based auto-encoder (FNN+CNN-AE), and the self-attention
and UNet-based model (self-attn+UNet) presented in [32].
Quantitative comparisons are performed using mean squared
error (MSE), and a set of perceptual metrics including struc-
tural similarity index measure (SSIM), peak signal-to-noise-
ratio (PSNR), cross-correlation (CC), and intersection over
union (IoU). Quantitative results are shown in Table. II and
qualitative comparisons are displayed in Fig. 6. Judged by the
IoU, the overall accuracy is 91.5% for the microsphere dataset,
and 82.7% for the biofilm dataset.

The Tikhonov algorithm provides a good estimate for the
location of the shallow bead, but fails to recognize sharp
boundaries and to predict the deeper bead. This is because
for planar electrodes, changes at the boundary are very subtle
for relatively deep objects [6], and the Tikhonov algorithm
converges to a sub-optimal reconstruction. The FNN-AE falls
into a local minimum mainly because fully connected layers
are not suitable for the task. While the predictions are im-
proved by the post-processing CNN-AE, the FNN+CNN-AE
also fails to predict the deeper bead. The self-attn+UNET can
correctly capture the presence of the two beads, however, it
underestimates the diameter of the deep bead. This is because
the self-attn+UNet model is trained with the MSE loss, which
is known to produce blurred/smeared predictions [21]. By

TABLE II: Quantitative comparison to prior work using the micro-
sphere (Ω1) and biofilm (Ω2) datasets.

Dataset MSE ↓ SSIM ↑ PSNR ↑ CC ↑ IoU ↑

Tikhonov Ω1 0.315 0.040 5.014 0.207 0.485
Ω2 0.115 0.569 9.395 0.171 0.362

FNN-AE
[38]

Ω1 0.026 0.422 15.732 0.238 0.485
Ω2 0.145 0.678 8.360 0.447 0.591

FNN+CNN-
AE [39]

Ω1 0.017 0.930 17.452 0.679 0.765
Ω2 0.124 0.656 9.043 0.615 0.685

self-
attn+UNet [32]

Ω1 0.005 0.914 22.681 0.898 0.679
Ω2 0.071 0.784 11.478 0.694 0.775

TCNN+MOL
(Ours)

Ω1 0.004 0.975 23.036 0.910 0.915
Ω2 0.056 0.799 12.473 0.781 0.827

(a) Ground Truth (b) Tikhonov (c) FNN-AE

(d) FNN+CNN-AE (e) self-attn+UNet (f) TCNN+MOL (Ours)

Fig. 6: Qualitative comparison to prior algorithms, using a scene of
two microspheres simulated using pyEIT [20].

incorporating a region-based loss that enhances the spatial
alignment between the predictions and the ground truth images
and a distribution-based loss that addresses the class-imbalance
problem, our proposed model (TCNN+MOL) can predict the
shape and location of both the shallow and deeper beads [28].

D. Ablation Study

To analyze the effectiveness of the proposed approach,
we conduct an ablation study on training the model with
different combinations of the loss objective (Table III). In this
experiment, the model was trained for 20 epochs on the biofilm
dataset. We see the lowest CC when the model is trained with a
per-pixel loss function (LSmooth L1). CC is improved by adding
the focal loss as it helps address the class imbalance issue.
The dice loss further improves performance by maximizing
overlap between the predictions and the ground truth.

TABLE III: Ablation on the loss function

Loss Cross Correlation (CC)

LSmooth L1 0.7363
LSmooth L1 + LFL 0.75104
LSmooth L1 + LFL + LDice 0.76320

IV. CONCLUSION

We have presented a microscale electrical capacitance to-
mography (ECT) system using a CMOS biosensor that can
predict the 3-D structure of objects over a large field of view.
We proposed a deep learning architecture and a multi-objective
training scheme for reconstructing out-of-plane images from
the sensor array data. We demonstrated the effectiveness of
the proposed approach by imaging polymer microspheres and
bacterial biofilms. Compared to prior demonstrations (Table I),
this work uses significantly smaller electrodes and achieves
finer spatial resolution. Microscale ECT can be applied to a
wide range of biomedical applications including low-cost non-
optical label-free 3-D monitoring of cell cultures.
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