
Accelerating Zero-Knowledge Proofs Through
Hardware-Algorithm Co-Design

Nikola Samardzic*
MIT CSAIL

nsamar@csail.mit.edu

Simon Langowski*
MIT CSAIL

slangows@mit.edu

Srinivas Devadas
MIT CSAIL

devadas@mit.edu

Daniel Sanchez
MIT CSAIL

sanchez@csail.mit.edu

Abstract—Zero-Knowledge Proofs (ZKPs) are a cryptographic
tool that enables one party (a prover) to prove to another (a
verifier) that a statement is true, without requiring the prover to
disclose any data to the verifier. ZKPs have many use cases,
such as letting clients delegate computation to servers with
cryptographic correctness guarantees, while enabling the server
to use secret data in these computations. ZKP applications
span verifiable machine learning (ML) and databases, online
auctions, electronic voting, and blockchains. While ZKPs are
already widely used in blockchains, the prohibitive costs of proof
generation limit them to proving very simple computations.

We present a novel accelerator, NoCap, that lever-
ages hardware-algorithm co-design to achieve transformative
speedups. NoCap generates proofs 586× faster than a 32-core
CPU, and 41× faster than PipeZK, a state-of-the-art ZKP
accelerator. We leverage recent algorithmic developments to
achieve these speedups: we identify and combine two recent hash-
based ZKP algorithms, Orion and Spartan, which have similar
performance on CPUs to the ZKPs targeted by prior accelerators,
but are much more amenable to hardware acceleration. Though
these algorithms result in larger proofs, we show that the end-
to-end speedups (including prover time, proof transmission, and
verification time) more than justify this size increase.

We contribute a novel hardware organization to exploit these
acceleration opportunities: NoCap is a programmable vector
processor with functional units tailored to the needs of hash-based
ZKPs. We also contribute a co-designed implementation of the
Spartan+Orion ZKP tailored to accelerators, with optimizations
that improve parallelism and reduce memory traffic. As a result,
NoCap achieves speedups that enable new use cases for ZKP.

Index Terms—Zero-Knowledge Proofs, hardware acceleration,
verifiable computation

I. INTRODUCTION

Zero-Knowledge Proofs (ZKPs) are an emerging family of
cryptographic tools that enables one party (prover) to prove
to other parties (verifiers) that a statement is true, without
requiring the prover to disclose any data to verifiers. Fig. 1
illustrates how ZKPs work. The prover generates a small proof
of a statement and publishes it. Any verifier can download the
proof and verify the statement cheaply. The prover can also
restrict the proof so that it is only verifiable by a single verifier.

ZKPs are a powerful tool with myriad applications. The
prover can convince the verifier that an arbitrary computation
has been performed correctly; for example, clients can delegate
computation to a server (e.g., transactions on a shared database),
and the server can prove that it executed the clients’ computation

*The first two authors contributed equally to this work.

T
r
u

s
t

b
a

r
r
ie

r

Prover
ZKP Accelerator

Small proof that

prover has !𝒘 s.t.

𝑓 !𝒙, !𝒘 = 0.

𝑓 ⋅,⋅ , "𝒙

"𝒘
Verifier

Verifier

Verifier

Legend

𝑓 ⋅,⋅ : statement

)𝒙: public input

)𝒘: private input

(i.e., private witness)

Fig. 1: ZKPs allow a prover to convince other parties, called
verifiers, of a statement f , possibly requiring private input w
from the prover.

correctly [84]. Further, the prover can convince the verifier that
the prover has data that produces a specific output; for example,
a server can use ZKPs to prove to clients that a (secret) machine
learning model achieves a certain accuracy [90]. Other ZKP
applications include electronic voting [94], online auctions [33],
static program verification [30], blockchains [2, 4, 56, 62, 89],
and cryptocurrencies.

ZKPs currently see limited use, e.g., for simple computations
in blockchains, as their performance overheads greatly limit
their applicability to the above areas. ZKPs suffer from
extremely slow proof generation: in commonly used ZKPs,
producing a proof for a given computation is 5–6 orders of
magnitude slower than executing the computation itself when
using a CPU, which limits ZKPs to verifying very simple
computations. This has sparked efforts to accelerate proof
generation, including using ASICs [92], FPGAs [5, 41, 79],
and GPUs [52]. Recently, over $100M has been invested to
develop and deploy ZKP accelerators [26, 77, 79, 88].
A full-system approach to accelerate ZKPs: In this paper,
we present a novel ZKP accelerator that achieves transformative
speedups, 586× over a 32-core CPU and 41× over prior ZKP
accelerators, enabling new ZKP use cases.

To achieve these high speedups, we take an end-to-end
systems design approach: instead of focusing on ZKP schemes
accelerated by prior work, we identify a new family of ZKP
schemes that make better tradeoffs between prover and verifier
costs for many ZKP applications.

Concretely, prior work is focused on accelerating ZKPs
based on elliptic-curve cryptography, like Groth16 [39]. These
schemes produce tiny proofs (hundreds of bytes) that are cheap
to verify, but proof generation is hard to accelerate. In particular,
elliptic-curve operations are so computationally demanding
that speedups are limited, even with hardware acceleration. For
example, PipeZK [92], the state-of-the-art ASIC accelerator,

uses Groth16 and outperforms a CPU by 5–15×. These
speedups are insufficient to counter the high overheads of ZKPs.
We identify that combining Spartan [70] and Orion [86]—two
recently proposed hash-based ZKP components—makes for
proof generation that performs similarly on a CPU but is much

more amenable to acceleration. However, this comes at the
expense of larger proofs (megabytes). We show that for many
applications, i.e., those where each proof is verified by one or
a few clients, trading prover speed for proof size is the right
tradeoff (Sec. III).
NoCap accelerator: Based on these insights, we design
NoCap,1 an accelerator for hash-based ZKPs. Proof generation
comprises several complex algorithms that continue to evolve,
so we build a programmable architecture that accelerates the
primitive operations shared by these components.

NoCap is a vector processor with functional units tailored to
the primitives used by ZKPs, including modular arithmetic on
64-bit integers, number-theoretic transforms (NTTs), crypto-
graphic hashing, and shuffles. NoCap features high-bandwidth
memory and an on-chip banked register file. We synthesize
NoCap’s building blocks using 14nm technology, and find that
a chip with modest area, 46 mm2, and power, 62 W, suffices
to achieve high performance.

We evaluate NoCap on a wide range of applications. Our
algorithm-accelerator co-design yields high speedups: NoCap
is gmean 586× faster than a 32-core CPU that has significantly
higher area and power budgets, and is 41× faster than PipeZK.
These transformative speedups enable new applications, such
as real-time verifiable databases.

Because all hash-based schemes build on the same primitives,
NoCap is able to accelerate all hash-based ZKPs. To our
knowledge, it is the first hash-based ZKP accelerator.
NoCap enables new use cases for ZKPs: NoCap’s high
speedups broaden the use cases for ZKPs. As a concrete
example, consider secure photo modification. A camera can
create a (hardware) signed image to verify its authenticity.
Suppose a user wants to modify this image in some allowable
way, e.g., cropping, with another photo editing program. The
user can then prove that the cropped image is a descendant of
the original, without revealing the original, and has not been
modified further. For a 256KB image, this would take over 12
minutes to prove on a CPU, but with NoCap a proof takes just
over a second, and verification takes only 0.2 seconds.

NoCap also enables real-time verified databases. The Lit-
mus [84] cryptographically verified database achieves high
throughput (thousands of transactions per second), but does
so by batching over 80 thousand transactions at a time and
using pipelined provers, which causes very high verification
latencies, over 100 seconds. Though verification cost is small,
a 100-second latency is untenable for many use cases, like
financial transactions. Reducing batch size to achieve 1-second
transaction latency (including computation, proof generation,
and verification) reduces Litmus’s throughput to only 2 transac-

1NoCap is so named because it erases the prover’s performance cap in
ZKPs, and after the slang phrase, as ZKPs prevent the server from lying.

tions/second. NoCap can achieve 1-second transaction latency
with a throughput of 1,142 transactions/second (Sec. VIII).

As NoCap allows for proofs about much larger programs,
we can enable additional applications in privacy-preserving
data analysis. For example, one can prove that differentially-
private (DP) training was carried out correctly [72], reducing
the required 100 hours of computation to less than 30 minutes.
Other examples include showing that a machine learning model
was applied to the data correctly [24, 50, 83]. As demand for
even larger use cases grows, acceleration of ZKPs will become
increasingly important.

In summary, our key contributions are:
• The observation that a combination of two recent ZKP

primitives, Spartan and Orion, enable ZKPs with very high
degrees of hardware acceleration (Sec. III).

• A novel programmable accelerator, NoCap, that accelerates
the key primitives used by these ZKPs (Sec. IV).

• A high-performance implementation of Spartan+Orion
targeting NoCap that achieves high data reuse, high
arithmetic intensity, and scales to proofs for very large
programs (Sec. V).

• A detailed synthesis and performance-based evaluation of
NoCap, showing transformative speedups using an ASIC
with modest cost (Sec. VI–Sec. VIII).

II. BACKGROUND

As Fig. 1 shows, ZKP is a cryptographic tool that allows a
prover to convince a verifier that for a given function f(·, ·) and
public input x̄, the prover knows a private input (a.k.a., witness)
w̄, such that f(x̄, w̄) = 0 (this can be trivially generalized to
prove that a function evaluates to an arbitrary value).

Functions f verified by ZKPs are arithmetic circuits. These
are directed acyclic graphs where each node is an addition or
multiplication (modulo some prime) and each edge (also called
wire value) represents an intermediate value between operations.
For example, the arithmetic circuit in Fig. 2 (left) implements
the function f(x̄, w̄) = x0 + w0 + x1 ∗ w1 + x1 ∗ w1 ∗ w2.

The most studied and widely used of ZKPs are zk-
SNARKs [17] (zero-knowledge, succinct, non-interactive
arguments of knowledge), because they have attractive prop-
erties: (1) zero-knowledge means the verifier does not learn
anything about the private witness w̄; (2) succinctness means
that proof size and verifier compute costs are small (regardless
of the complexity of f), (3) non-interactive means a verifier
and prover need not communicate to check and generate the
proof. For these reasons, we focus on accelerating zk-SNARKs.

A. zk-SNARK structure and design space

Fig. 2 shows the general structure of a common class of
zk-SNARKs. zk-SNARKs generate proofs by reducing the task
of proving f(x̄, w̄) = 0 for an arbitrarily complex f (e.g., the
circuit on the left of Fig. 2) into one of proving the correctness
of one or a few polynomial evaluations.

As Fig. 2 shows, there are three main steps in doing this:
First, the prover constructs a system of equations whose

correctness implies that f(x̄, w̄) = 0 (1 in Fig. 2). This

+ *

x0 x1w1
w0

+ *

w2

+

Az0

z1

z2

z3

B = C

Polynomial IOP (Spartan)

R1CS is satisfied if

𝑔 𝑟 = 𝑎 for some

polynomial 𝑔(⋅). Prove 𝑔 𝑟 = 𝑎.

1

2

3

Wants to prove

 𝑓 "𝒙, "𝒘 = 0.

A
ri
th
m
et
iz
at
io
n

(R
1C
S)

Polynomial Commitment

Scheme (Orion)
z4 = 𝑓 "𝒙, "𝒘

𝑓 "𝒙, "𝒘 = 0 if z satisfies:

NoCap Accelerator

CPU sends

wire values

CPU computes

𝑓)𝒙,)𝒘 and stores

all intermediates zi

Preprocess
A B C

z1

Circuit 𝑓 ⋅,⋅ Sparse matrices

encoding 𝑓(⋅,⋅)

0 1

2 3

4 ̅𝑧

̅𝑧 ̅𝑧 ̅𝑧

0

Fig. 2: Anatomy of a zk-SNARK.

process is called arithmetization. Arithmetization also involves
a circuit-preprocessing step (0 in Fig. 2), which constructs
matrices or polynomials (depending on the arithmetization)
that only depend on the circuit being computed (f(·, ·)), and
not on the inputs (x̄ and w̄); therefore, the cost of this
preprocessing is amortized by all runs of the same circuit,
and is not accelerated by NoCap. In NoCap’s design, the CPU
is tasked with preprocessing and computing all intermediate
wire values required to compute f(x̄, w̄) (zi’s in Fig. 2). These
wire values are then sent to NoCap (z̄ in Fig. 2) and NoCap
performs the rest of the proof.

Second, the prover constructs a polynomial (g in Fig. 2)
with the property that the system of equations is satisfied if
the evaluations of the polynomial at random points take on
specific values (2 in Fig. 2). This is called the polynomial

Interactive Oracle Proof (IOP).
Third, the prover proves the correctness of these polynomial

evaluations via a polynomial commitment scheme, an algorithm
that enables the prover to cheaply convince the verifier of values
a polynomial takes at any point (3 in Fig. 2).

Finding a zk-SNARK that is secure, performs well, and is
amenable to hardware acceleration is challenging. This is be-
cause many zk-SNARKs can be constructed by combining any
set of compatible components: an arithmetization, a polynomial
IOP, and a polynomial commitment scheme. Moreover, any
zk-SNARK can work with many fields (i.e., types of arithmetic
operations), each of which has non-obvious tradeoffs between
arithmetic performance and cryptographic security.

Given this complex design space, the cryptographic com-
munity has focused on ZKPs that are efficient on CPUs. But
hardware acceleration has different tradeoffs than CPUs, so to
leverage their potential, it is crucial to use accelerator-friendly
ZKPs. To our knowledge, we are the first to co-design an
accelerator and ZKP.

The seminal work of Groth16 [39] showed how to create
the smallest possible proofs resulting in the fastest verifi-
cation times. Subsequent work removed the strong trusted
setup assumption from Groth16, generally resulting in longer
verification times, proof sizes, and sometimes proving costs:
Pinocchio [60], Hyrax [82], Libra [85], Plonk [32], and Hy-
perplonk [22], are ZKPs with new IOPs, but use the same
polynomial commitment scheme as Groth16, called KZG [44].

From an acceleration perspective, the KZG polynomial
commitment scheme has the largest computational cost of these
ZKPs. Thus, any ZKP that uses KZG will suffer from the same
computational bottlenecks. Hence, our focus on hash-based
(as opposed to curve-based) ZKPs. Specifically, we consider
works like Orion [86], Ligero [7], FRI [81], Orion+ [22], and
Brakedown [36] that instead use error-correcting codes to
construct the polynomial commitment scheme.

The three components that form the zk-SNARK we acceler-
ate are (1) the R1CS arithmetization [13], (2) the Spartan
IOP [70], but with (3) the Orion polynomial commitment
scheme [86]. R1CS is common to many zk-SNARKs, but
Spartan and Orion are recent, and we are the first to combine
them. In Sec. III, we characterize this novel combination, show-
ing how it enables high end-to-end speedups and comparing
it with the zk-SNARK accelerated by prior work. We discuss
all acceleration-relevant details of these components in Sec. V,
when we discuss how to map them to NoCap, although we
first briefly touch on the codesign with Spartan and Orion.

The Spartan algorithm shows how to prove a set of R1CS
constraints using the sumcheck protocol and a polynomial
commitment scheme (PCS). In order to build a zkSNARK,
Spartan needs to be combined with a PCS. The Spartan authors
evaluate several PCSs: Hyrax [82], Libra [85], vSQL [93],
Virgo [91], Brakedown [36], and Shockwave [36]. Each of these
compositions is correct and produces different computational
tradeoffs; see [70] for details. We considered other alternative
methods of constructing a zkSNARK, such as Plonk [32]
or Bulletproofs [21]. We chose Spartan since the sumcheck
protocol is highly amenable to acceleration, whereas the other
protocols are more data-movement-bound.

The Orion PCS has been proposed as a replacement for
Brakedown [86]; this makes the composition with the Spartan
IOP straightforward, even though prior work has not evaluated
Spartan+Orion. The key insight in Orion is a new proof
composition technique, which uses a second (smaller) ZKP to
show that the result of the first ZKP is valid. This composition
reduces proof size and verifier time. Specifically, the fastest
combination evaluated in Spartan, Spartan+Hyrax, is slower
than Spartan+Orion in both proving and verification time.

Orion’s original implementation uses linear-time error-cor-
recting codes, which are typically based on expander graphs [20,
73]. But codes based on expander graphs are hard to accelerate:
the expander graph can take several gigabytes, and encoding a
message requires traversing many neighbors in this graph,
resulting in serialized, data-dependent accesses to off-chip
memory. These codes would make NoCap memory-bound
and greatly limit speedups. To address this problem, we use
Reed-Solomon codes [66], which are much more accelerator-
friendly. Recent work has developed the transformation, called
Shockwave [36], of substituting an expander-graph code by a
Reed-Solomon code; we apply it to this problem.

Finally, the Spartan+Orion scheme has two advantages over
elliptic-curve ZKPs beyond faster proofs. First, Spartan+Orion
is post-quantum secure (specifically, it is “plausibly quantum-
secure”, i.e., secure against quantum computers given the

current understanding of their capabilities [36, 86]), whereas
Groth16 is not. Second, Spartan and Orion are transparent,
meaning they do not require a third party to perform trusted
setup (in contrast, Groth16 does require trusted setup). This
means that Spartan+Orion belongs to the subset of zkSNARKS
known as zkSTARKs [12], reducing deployment complexity.

B. R1CS arithmetization

The first step in Fig. 2 is to convert a circuit into R1CS form.
R1CS or the rank-1 constraint system is a set of quadratic
equations that encode constraints of the circuit f(·, ·). The
translation of a circuit to an R1CS system happens in steps
0 and 1 in Fig. 2. The vector z̄ is the vector of

wire values of the circuit for a particular input x̄ and w̄

(z̄ = (x0, x1, w0, w1, w2, z0, z1, z2, z3, z4) in Fig. 2).
The matrices A, B and C are computed during preprocessing

and do not depend on the inputs x̄ and w̄. In particular, A is
constructed so that the i-th element of the vector Az̄ stores the
left input to the i-th gate (for example, the zeroth element of
Az̄ is x0). Therefore, roughly, A is a matrix representation of
the permutation that, when applied to the wire values z̄, yields
a vector whose i-th element is the left input to the i-th gate.
Similarly, B and C are constructed so that the i-th element of
vectors Bz̄ and Cz̄ store the right input and the output of the
i-th gate, respectively. Since A, B, and C usually just encode
permutations, they are very sparse (O(1) non-zeros per row).

R1CS is the most-commonly used arithmetization and it is
used by the ZKPs of prior accelerators [52, 92].

III. ZKP ALGORITHMIC TRADEOFFS

With respect to performance, the three key characteristics of
a zk-SNARK are (1) the time required for the prover to generate
a proof (i.e., proof generation time), (2) the time required for
the verifier to verify the proof (i.e., verification time), and (3)

the size of the proof. zk-SNARKs make different tradeoffs
between these metrics, and it’s important to consider all these
factors when analyzing performance.

We now analyze the end-to-end performance of the zk-
SNARK targeted by prior work, Groth16 [39], and the zk-
SNARK we accelerate, Spartan+Orion. We consider a scenario
where prover and verifier communicate over a 10 MB/s con-
nection, which allows us to analyze how proof size impacts
end-to-end execution time.

Table I compares the execution times of the two zk-SNARKs
on both CPUs and hardware accelerators for a R1CS circuit
with 16 M constraints. We use a 32-core CPU for these
experiments; we also report Groth16’s performance on an
NVIDIA V100 GPU using GZKP [52]. We compare the state-
of-the-art PipeZK [92] accelerator for Groth16, and NoCap for
Spartan+Orion. Execution time is broken down into the time
taken by the prover, time to send the proof to the verifier, and
time for the verifier to check the proof. Hardware acceleration
affects only the prover time.

Since PipeZK was designed for an older technology node,
for fairness, we scale it up so that it is iso-resource with NoCap:
it has the same area in the same technology node, frequency,

Execution time (seconds)

zkSNARK Prover HW Prover Send Verifier Total

Groth16 CPU 53.99 0.00 0.01 54.00
Groth16 GPU 37.44 0.00 0.01 37.45
Groth16 PipeZK 8.02 0.00 0.01 8.03
Spartan+Orion CPU 94.20 0.81 0.13 95.14

Spartan+Orion NoCap 0.15 0.81 0.13 1.09

TABLE I: Analysis of end-to-end performance for different zk-
SNARKs and prover hardware combinations: time taken by
the prover, verifier, and to send proof assuming a 10 MB/s
link between prover and verifier. We compare the Groth16
and Spartan+Orion zk-SNARKs on a CPU and their respective
accelerators, on a proof with 16 M R1CS constraints. Proof size
for Groth16 is 0.2KB. Proof size for Spartan+Orion is 8.1MB.

and memory bandwidth (Sec. VII). However, PipeZK leaves

part of the proof to the CPU, and this CPU portion bottlenecks

PipeZK’s performance, so this scaling does not help end-to-end
performance.

Table I shows that Groth16 is completely dominated by proof
generation, which takes four orders of magnitude longer than
send and verification—54 s on the CPU vs 10 ms. And even
with PipeZK, proof generation takes 8 s.

Spartan+Orion achieves a slightly longer proof generation
time, 94.2 s on a CPU. Note that proof size and verification time
are four and one order of magnitude larger than Groth16, respec-
tively; this is due to the differences in verifier algorithms and
large constant factors. Specifically, proof size and verifier time
in Spartan+Orion are both O(log2N) with N constraints [86],
so for larger computations, verification costs become better
amortized. But even for this modest case, proof generation
cost still dominates on the CPU, and proof transmission and
verification are a tiny fraction of overall time.

Furthermore, NoCap drastically accelerates Spartan+Orion’s
proof generation, by 586× in this case. Proof size and
verification time remain unchanged, so proof generation now
takes a modest 14% of total time. Even with Spartan+Orion’s
larger proofs and higher verification time, this is a good tradeoff

for most use cases: end-to-end performance is 7.4× better
than PipeZK’s. As we will see later (Sec. VIII-F), end-to-end
speedups grow with larger computations, as proof size and
verification time grow much more slowly than prover time.

This shows that NoCap is far better for use cases where
either the number of verifiers is relatively small, verifier
costs are not relevant, or high proving throughput is critical.
For use cases with many verifiers (e.g., public blockchains),
Spartan+Orion may make verification cost too onerous. In
this case, these overheads could be reduced by combining
NoCap with an additional recursive proof, a technique used
with some applications of blockchains to zero-knowledge virtual
machines [63]. We leave such combination to future work.
Disentangling algorithmic efficiency, software efficiency,

and acceleration potential: Table I shows that the CPU
versions of Groth16 and Spartan+Orion take roughly the same
proof time, so it may seem puzzling why NoCap achieves much
higher speedups than prior work. There are three key factors
that contribute to this: (1) Spartan+Orion is algorithmically

more efficient than Groth16, requiring far fewer computations;
however (2) implementation inefficiencies and other operations
that can be done cheaply in an accelerator squander these
algorithmic gains on the CPU; and finally, (3) PipeZK is CPU-
bound because it does not accelerate the entire proof:
1. Spartan+Orion is algorithmically more efficient: Groth16
and Spartan+Orion perform very different computations. For
example, Groth16 operates on 381-bit modular integer values,
while Spartan+Orion uses the Goldilocks-64 field, so comparing
their efficiency directly is complicated. To do this, we focus on
critical operations. In these accelerators, multipliers take most
of the area, because multiply operations do most work. So a
good proxy for computation is the number of 64-bit multiplies
done in both algorithms.

By this metric, Spartan+Orion performs 4.94× fewer 64-

bit multiplies than Groth16. This means that, if we had two
accelerators that had the same multiply throughput and were
multiplier-bound, the Spartan+Orion one would be 4.94× faster.
2. Spartan+Orion is less efficient than Groth16 on the CPU,
squandering the above 4.94× efficiency. Note that we are using
highly optimized CPU implementations that are vectorized
and parallelized, and the Spartan+Orion CPU implementation
includes our optimizations, which improve performance by over
2× vs. just combining existing codebases (Sec. VIII details
these contributions).

Two factors contribute to this inefficiency. First, when run
serially, the Spartan+Orion CPU version performs 4.66× fewer
multiplies per second than Groth16. This difference stems from
control overheads and other operations that, while cheap on an
accelerator, take instructions on the CPU, leaving the critical
resource (multipliers) underused. Second, the Spartan+Orion
CPU version exploits less parallelism than Groth16: at 32
cores, Spartan+Orion achieves only 2.7× parallel speedup,
while Groth16 achieves 5.0×. Combining these factors, Spar-
tan+Orion proofs are 4.66/4.94/(2.7/5.0)=1.74× slower than
Groth16.

This also explains why NoCap achieves such large speedups
over the CPU: it has much higher multiplier throughput, it uses
specialization to avoid inessential overheads that leave CPU
multipliers underutilized, and it exploits parallelism better.
3. PipeZK is CPU-bound: Finally, NoCap is 53× faster than
PipeZK in the previous example because PipeZK accelerates
only part of the proof. For the part of the proof that PipeZK
handles, PipeZK runs in 1.43s and achieves a 32× speedup
over the CPU, but the non-accelerated part caps speedup to
6.7×. Note how, discounting the portion of Groth16 that
PipeZK offloads to the CPU, the ratio of PipeZK’s and NoCap’s
execution time is 9.5×. Much of this difference stems from the
4.94× difference in work among proof schemes; the remainder
is due to architectural differences.

IV. NOCAP ARCHITECTURE

Fig. 3 shows an overview of NoCap. NoCap is a wide-
vector processor with functional units (FUs) that accelerate
the primitive operations used by hash-based ZKPs. NoCap has
an explicitly managed memory hierarchy with decoupled data

+ *

Bank

+ *

Bank

+ *

Bank

…

M
e

m
.

ct
rl

+ *

Bank

+ *

Bank

+ *

Bank

…

+ *

Bank

+ *

Bank

+ *

Bank

…

…

M
e

m
.

ct
rl

H
ig

h
-b

a
n

d
w

id
th

 m
e

m
.

B
e

n
e

š
n

e
tw

o
rk

… …

H
a

sh
 u

n
it

N
T

T

…

#

#

16 x 128 = 2,048 PEs (lanes)

1
2

8
 l

a
n

e
s

… …

Fig. 3: NoCap architecture and physical organization overview.

orchestration [61]: data is fetched ahead of its use into the
8 MB register file to hide memory latency. NoCap is a statically
scheduled architecture, leveraging the regular structure of ZKPs
to achieve high utilization with minimal control overheads.

We first describe NoCap’s ISA and data types (Sec. IV-A),
then its FUs and pipeline (Sec. IV-B) and memory system
(Sec. IV-C). We then discuss how NoCap is integrated with a
host processor (Sec. IV-D) and how NoCap can be leveraged
to accelerate other ZKPs (Sec. IV-E). Sec. V details how to
efficiently map Spartan+Orion to NoCap.

A. Vector ISA and data types

Data types: NoCap operates on k-element vectors, where k

is a power of two between 27 (128) and 216 (64K). Each
element is a 64-bit integer modulo the Goldilocks64 prime [40],
p = 264−232+1. This prime has an efficient modular reduction
algorithm using only additions and bitshifts, which makes
compute operations more efficient, especially multiplies.
Instruction set: NoCap supports the following vector com-
pute operations: element-wise modular adds and multiplies,
forward and backward NTTs, SHA3 hashing, and two types
of permutations of vector elements: structured vector rotates
and grouped interleavings.

NoCap supports vector loads and stores to move data between
the register file and main memory, and a small number of
control-flow instructions, described next.
Static scheduling: ZKPs are regular programs, and can be
expressed as dataflow graphs, where all computations are known
a priori. Each ZKP always performs the same computation for
a given function f , regardless of its inputs (x̄ and w̄).

NoCap exploits this by adopting static scheduling [9, 18, 37,
53, 59], similar to VLIW architectures [31]: each instruction
has a fixed latency, which is exposed to the compiler. The
compiler schedules instructions at the appropriate cycles to
respect data dependencies and avoid structural hazards. To
cope with variable main-memory latency, NoCap assumes the
worst-case latency, and buffers requests that are satisfied earlier.

Unlike VLIW, we adopt a distributed control approach, where
each FU and component has its own instruction stream. This
reduces code size over VLIW and avoids centralized instruction
scheduling. Each instruction stream has two types of simple
control instructions: delay instructions allow waiting for a
specified number of cycles before issuing the next instruction

(so that components can be scheduled cycle-accurately), and
simple branches that allow implementing loops with a fixed
number of iterations. Each branch specifies a trip count and
a (limited) negative offset; it is taken for that count, then not-
taken. Since ZKPs have many regular loops, this helps keep
code size small. Code is prefetched to small on-chip instruction
buffers (similar to the CDC6600 [78]), then dispatched to FUs.

Static scheduling enables high throughput with little control
overhead. NoCap’s distributed control approach is similar to
that of some recent accelerators in other domains, like fully
homomorphic encryption [67, 68] and circuit simulation [29].

In terms of the hardware-software interface, distributed
control is an implementation detail that can be abstracted away.
We specify programs as in a VLIW machine, specifying the
operations that start each cycle in a single instruction template.
Then, a program transforms this into separate instruction
streams (branches are replicated in every stream).

B. Pipeline and functional unit microrarchitecture

NoCap’s FUs are fully pipelined, and can produce and
consume a new chunk of vector elements every cycle. There
are six types of FUs: the modular adder, modular multiplier,
and hash FUs perform element-wise vector operations, while
the NTT, and shuffle FUs are not element-wise.

ZKPs demand very different throughputs from these oper-
ations. To provide balanced performance, these FUs have a
heterogeneous number of lanes: the register file and modular
multipliers and adders have 2,048 lanes, but the hash and shuffle
FUs have 128 lanes, and the NTT FU has 64 lanes. FUs with
fewer than 2,048 lanes can still produce and consume wide
vectors, but do so at lower throughputs.

The width of these units are sized based on two factors:
the amount of reuse they achieve, and how frequently they
are used. The hash and shuffle FUs sized to match HBM
bandwidth (1 TB/s, i.e., 128 elements/cycle), since most of
their input operands are loaded from memory, so more lanes
would not help throughput. The multiply and add FUs are
2,048 elements wide because they are frequently used and
can achieve significant reuse of operands during sumcheck
recomputation (Sec. V-A). Conversely, the NTT FU has 64
lanes because it is used relatively infrequently, and it is a deep
pipeline that consumes substantial area per lane.

Fig. 3 shows how NoCap’s physical organization accomo-
dates FUs with different lane widths. Main memory and the
hash, shuffle and NTT FUs are laid vertically, over 128 lanes
(the NTT FU can process one of the two input lanes). The
2,048-lane FUs are laid out in a 16×128 grid of PEs. Each PE
contains one multiplier, adder, and register file bank. Vectors
are stripped across PEs so that the i-th PE holds elements i,
i+ 2048, i+ 2 · 2048, etc. of each vector. Pipelined row links

connect the 16 PEs in each row with a lane of the shuffle, hash,
and NTT units, as well as the HBM memory.
NTT FU: We implement a pipelined NTT FU following the
four-step algorithm [8], similar to F1’s design [67]. The NTT
FU works at a throughput of 64 elements per cycle, and
performs forward and inverse NTTs on vectors of up to 64×

64 = 212 elements. The building blocks of this FU are two
64-point NTT pipelines and a 64× 64 SRAM-based transpose
unit. ZKPs need to perform NTTs on much larger vectors;
this is done using repeated passes through the NTT unit via
multiple applications of the four-step NTT algorithm (Sec. V).
Hash FU: The SHA3 [16] hash unit hashes at a throughput of
1 KB per cycle (i.e., 128 elements per cycle). The SHA3 hash
algorithm takes two 256-bit values and outputs a 256-bit result.
Thus, this FU reinterprets each group of four consecutive 64-bit
elements as a 256-bit input. The NoCap hash instruction takes
two equal-sized vectors and produces one output vector of the
same size, where the first 256 bits of the output are the SHA3
hash of the concatenation of the first 256 bits of the two input
vectors, and so on.
Shuffle FU: The shuffle FU is implemented with a 128-wide
Beneš network [14], which supports arbitrary permutations.
This network is used for two purposes. First, to support
fast sparse matrix-dense vector multiplication (SpMV) in
Spartan+Orion (Sec. V). Second, this network enables some
structured permutations on vectors wider than 128 elements by
leveraging NoCap’s physical organization, as explained below.

Beneš network routing is complicated, but because all
dependencies in ZKP are known at compile time, we determine
the network’s routing control bits at compile time, and embed
them in the instruction (Sec. IV-A). The Beneš network requires
∼ N log

2
N bits of control state for an N -element network.

This means that instructions for setting the Beneš network
control state occupy 7 bits per 64-bit element.
Implementing wide permutations: NoCap must support two
kinds of permutations on wide vectors: cyclic shifts and
grouped interleavings. Grouped interleavings include putting
even-indexed elements in the first half of the vector and
odd-indexed elements in the second half; more generally,
grouped interleavings entail grouping even-indexed groups
of 2G-element contiguous chunks to the first half, with odd-
indexed groups going to the second half. Cyclic rotations are
used for folding in sumcheck, a key kernel in many hash-based
ZKPs including Spartan+Orion (Sec. V). Grouped interleavings
are used to compact hashes into adjacent vector lanes.

These permutations are not performance-critical, so we
implement them using several passes through the shuffle
network combined with reads and writes to different register
banks in each PE row. For example, a rotation by 520=8+512
is implemented as a rotation by 8 in the 128-wide shuffle FU,
combined with writing the result 4 PEs ahead from the source
in each row, which implements a rotation by 128×4=512.

C. Memory system

NoCap has an 8 MB heavily banked on-chip register file.
Because computation is entirely known at compile time, we
leverage decoupled data orchestration [61]: loads are scheduled
independently of compute operations, fetching data explicitly
well ahead of its use. This allows us to hide memory latency.

NoCap uses 1 TB/s high-bandwidth memory (HBM) and
compute is sized to fully use memory bandwidth on common
ZKP tasks (Sec. VIII). HBM bandwidth is 48× smaller than

register file bandwidth. Despite our new contributions to reduce
memory traffic (Sec. V), many of Spartan+Orion’s operands
are too large to keep on-chip and reuse in several algorithms
is limited. In Sec. VIII-D, we show that decreasing memory
bandwidth drastically limits performance.

D. System integration

NoCap is meant to be connected to one or multiple host
CPUs, e.g., over PCIe. The host CPU first loads the program
for the function f(·, ·) that should be verified into NoCap’s
memory, along with the precomputed circuit-dependent sparse
matrices A, B, C. (Multiple such programs, corresponding
to different functions, can be preloaded.) Then, the host CPU
sends the wire values (z̄; Fig. 2) for the function, which initiates
proof generation. PCIe 5.0 supports 64 GB/s bandwidth [3],
more than enough to keep NoCap busy.

E. Generality

NoCap can support any hash- or LWE-based SNARK proto-
col, as they all build on the same primitives: hashing, NTTs, and
modular multiplies and adds. These include Brakedown [36],
STARKs [62], and lattice-based SNARK schemes [6, 43]. By
being programmable, NoCap should be applicable to future
algorithmic advances in hash-based zk-SNARKs.

V. MAPPING SPARTAN+ORION TO NOCAP

The Spartan+Orion ZKP relies on several complex crypto-
graphic algorithms. However, we observe that all these algo-
rithms are built on a small number of low-level computations
that we call tasks. In turn, these tasks can be implemented with
the few primitive operations that NoCap FUs implement. Tasks
are large, so we execute them serially (one at a time) without
meaningful performance degradation. Our implementation
exploits abundant parallelism within each task.

Fig. 4 shows the relationships between high-level algorithms,
low-level tasks, and primitive operations: each arrow A → B

denotes that A uses B. Fig. 4 also shows the percentage of
execution time (in a CPU) that each task spends.

This taxonomy makes it easy to understand Spartan+Orion’s
performance and to reveal optimization opportunities: in this
section, we focus on the tasks, presenting each task and
discussing how we map it to NoCap. While understanding
the cryptographic algorithms in Fig. 4 is crucial to implement
Spartan+Orion, they are not needed to understand its perfor-
mance, so we do not consider them further. Interested readers
can refer to [7, 11, 35, 91] for details.

Before diving into these tasks, note that the execution time
percentages in Fig. 4 show that achieving high speedups
requires accelerating all tasks. For example, the CPU spends
2% of time on SpMV; this may seem low, but if we delegated
SpMV to the CPU, this would limit speedups to 50×, far below
NoCap’s 586× speedup.

A. Key tasks

We now describe five families of tasks that are used in
Spartan+Orion (Fig. 4). Hash-based zk-SNARKs make heavy

SNARK =

Poly. arith.

(7%)

R-S Code

(18%)

Sumcheck

(69%)

Merkle tree

(3%)

LigeroZKVPD

Virgo

GKR

Subcomponents

Tasks

Primitives Vec. Mul. Vec. Add Vec. Hash NTT

Components

SpMV

(2%)

Vec. Shuf.

FRI LDT

Spartan Orion+

Fig. 4: Cryptographic components of Spartan+Orion, along
with tasks (w/ CPU runtime percentages) and computational
primitives that implement them. Each arrow A→B denotes “A
uses B”.

use of these tasks. By using Reed-Solomon codes, the verifier
can be fast as it only needs to check a fraction of the values.
By using Merkle trees, the proof can be succinct. Finally, the
sumcheck protocol enables the verifier to check statements
about polynomials (note ZKPs encode arithmetic circuits using
polynomials) in logarithmic time and space.

Reed-Solomon codes: An error-correcting code transforms
a message m into a (slightly longer) codeword c. If a few
elements of the codeword become corrupted, it is still possible
to recover the original message. In ZKPs, this property is instead
used to check that the message is well-formed by verifying
the codeword.

Following the best parameters in Shockwave [36], a message
vector of n finite field elements is encoded into a codeword of
4n elements. The codeword is verified by checking only 189
of the elements; this is independent of n, which is important
for achieving fast verification.

We implement the Reed-Solomon code using the NTT
primitive. First, the n-element message is extended with zeros
to length 4n. Then, a NTT (on 4n elements) is applied.

The NTTs used in Reed-Solomon codes are much larger
than the maximum supported by NoCap’s NTT FU (i.e., 212).
But this NTT FU can still be leveraged to implement larger
NTTs. Specifically, n-element NTTs (for n > 212) are done
by viewing the input to the NTT as a matrix of elements with
dimensions 212 × n

212
. The NTT is performed row-wise and

column-wise on this matrix. In practice, this means the NTT
is applied to blocks of 212 consecutive elements, and then the
matrix is transposed. Applying this recursively enables NTTs
of arbitrary length. Transposes are done on-chip when possible,
then through main memory when the vector does not fit in
the register file (which holds 220 elements). One transpose
involving off-chip memory is sufficient for an input R1CS size
of up to 236, well above our maximum target.

Finally, Reed-Solomon codes are linear functions: they have
the property that the codeword of m1 +m2 will be c1 + c2,
where ci is the codeword for mi and the addition is in the
finite field. To create a succinct proof, codewords are combined
together, utilizing the vector arithmetic units.

Merkle tree: A cryptographic hash function h(x) produces
a small (fixed-size) output for any input. Cryptographic hash

functions (e.g., SHA [15]) involve multiple steps of computation
to make them computationally intractable to reverse.

We use dedicated hash functional units to implement hash
functions. These hash functions are used to create a crypto-
graphic structure known as a Merkle tree [54]. First, the finite
field elements are packed and hashed into the leaves of a binary
tree. Then, each node is updated to the hash of the values of its
two children. We implement the tree with our vector hashing
unit: hashing the nodes in the largest layers in parallel, and
by applying the grouped interleavings to rearrange data when
computing the layers smaller than our vector size.
SpMV: Sparse-matrix dense-vector multiplication (SpMV)
computes y = Ax where A is a sparse matrix and x is a
dense vector. Spartan performs SpMV on very large matrices
and vectors that do not fit on-chip (roughly as many elements
as there are R1CS constraints, or 8 GB at 230 constraints).

Specifically, Spartan applies SpMV to the same vector using
three matrices. These sparse matrices are A, B, and C from
Fig. 2, i.e., the ones computed during the preprocessing of the
circuit f(·, ·). These matrices have two helpful properties: (1)

they are limited-bandwidth matrices, i.e., most of their non-
zeros are in a narrow band around their diagonal, (2) they are
known at compile-time. We use the first property to achieve
good reuse of the vector, and the second to achieve this reuse
without a cache, by finding a good schedule at compile-time.

Prior work has shown how to efficiently map SpMV to vector
processors [10, 64]; we leverage these techniques in NoCap.
We compute SpMV with an output-stationary dataflow [75],
producing the output vector y sequentially. To do this, we load
the chunks of the input vector x that contribute to each chunk
of y, use the flexible Beneš network to align x elements to the
locations of y they contribute to, stream the sparse matrices
and multiply them with the aligned x elements to produce
partial products, and finally accumulate these partial products
to produce a chunk of y. Because the sparsity pattern of the
matrices is known, their non-zeros are stored in the right order
to produce the partial products. This avoids storing or loading
matrix coordinates, as is common in compressed sparse formats.

This approach enables NoCap to saturate memory bandwidth,
while at the same time minimizing the amount of off-chip data
fetched: the input vector achieves good reuse, while each sparse
matrix is read exactly once.
Sumcheck DP algorithm: The sumcheck algorithm is used to
check the prover’s claims about the evaluation of polynomials.
The input to the first sumcheck will be three sparse-matrix
vector products: Az̄, Bz̄, and Cz̄, where z̄ stores the wire
values from the circuit evaluation. These vectors are “mapped”
to polynomials by interpreting each entry as the evaluation on
a corresponding point. Specifically, for an 2L length vector, we
view the element in index i as the evaluation of a L-variable
polynomial where the L variable correspond to the bit pattern
of i. The sumcheck protocol produces a succinct L-size proof
of a 2L size polynomial statement in this form. Listing 1
shows the dynamic programming algorithm for implementing
sumcheck for a L-variable polynomial [76, 85]. This algorithm
is what NoCap spends most time on, so we will explain our

1 def sumcheckDP(A[0:(1<<L)]) \

2 -> result[0:L][0:2], rx[0:L]:

3 for i in range(1, L+1):

4 let s = (1<<(L-i))

5 # sum of evaluations

6 let y0, y1 = 0

7 for b in range(s):

8 if i > 1:

9 # Update DP arrays

10 A[b] = A[b] *(1-rx[i-1]) + A[b+2*s]*rx[i-1]

11 A[b+s] = A[b+s]*(1-rx[i-1]) + A[b+3*s]*rx[i-1]

12 y0 += A[b]

13 y1 += A[b+s]

14 result[i][0:2] = [y0, y1]

15 # Create random challenge

16 rx[i] = HASH(result[i])

17 return result, rx

Listing 1: The sumcheck dynamic programming algorithm
for proving the value of

∑
b∈{0,1}L A(b).

optimizations and architecture mapping in detail.
The protocol operates in L rounds, condensing a polynomial

of size 2i to 2i−1 in round i. In a round, we first do some
vector arithmetic, which we implement accordingly. Then, we
sum the values in the array, which we do with the standard
reduction technique of summing the values in parallel with a
binary tree structure, and using cyclic shifts to sum the values
within a vector. Then, the sum(s) are hashed into the hash unit.
The output of this hash is used in the next iteration.

Unfortunately, the array A is too large to store on-chip. The
main bottleneck in this protocol becomes loading of the DP
array on each iteration. However, for the sumchecks we run
in Spartan+Orion, we noticed the form of A can often be
compressible, in the sense that the evaluations that form the
elements of A can be derived from a more compressed format.

Specifically, the initial circuit for a ZKP can be considered
to have N gates with approximately N intermediate wires (one
intermediate wire corresponding to the output of each gate).
This circuit description is translated into an R1CS form with
approximately N nonzero entries in each of the matrices A,
B, and C, where A lists the left input wires, B the right input
wires, and C the output. These steps are ordinarily performed
once, and the resulting output A, B, C (now of size 3N) reused
throughout the computation. Recomputing the sparse matrix
vector products Az̄, Bz̄, and Cz̄ on demand requires loading
2N values—the circuit and z̄—instead of 3N . We use the
values of rx[1], rx[2], ..., rx[i-1] to fast-forward to the
needed values of A for iteration i directly, without requiring
additional memory accesses. This allows us to use NoCap’s
large computational throughput to lower memory bandwidth.
Because of the sequential data pattern in sumcheck, we can
stream the three outputs in parallel (for Az̄, Bz̄, and Cz̄) by
streaming the circuit and z̄ from memory. The key insight
is that for even larger sumchecks (which can be up to size
18N), we can always recompute everything from the smaller
N -size circuit and witness. This circuit is streamed in 61-bit
elements: for each operation, we keep track of the operation
type (add or multiply) as well as the address of the operand
node. By storing the address relative to the current node, we

Building block Area [mm2]

NTT FU 1.80
Multiply FU 6.34
Add FU 0.96
Hash FU 0.84
Total Compute 9.95

Reg. file (2,048× 4 KB banks) 6.01
Beneš network 0.11
Memory interface (2× PHY) 29.80
Total memory system 35.92

Total NoCap 45.87

TABLE II: Area of NoCap, and breakdown by building block.

can compress this representation to 61 bits per node.
While on a CPU it is more logical to compute these values

once and reuse them, on the accelerator, as the bottleneck is
data movement, recomputation makes sense. By recomputing
the inputs, we are able to reduce the memory usage across all
sumcheck by 31%. This recomputation uses many intermediates,
which is why NoCap requires an 8 MB scratchpad.

Sumcheck algorithms for more complicated statements sim-
ply add more vector operations to each iteration. The data access
pattern remains the critical bottleneck despite the increase in
operations, and our key optimization of recomputing A from
smaller data applies.
Polynomial arithmetic: Finally, Spartan+Orion has some
operations that rely on polynomial addition and multiplication.
Polynomial addition is trivial: polynomial coefficients are stored
in vectors and added element-wise with vector units.

Polynomial multiplication is more complicated, because it
requires convolving the coefficients of the input polynomials.
This is efficiently done using NTTs: coefficients are transformed
to the NTT domain, multiplied element-wise, and an inverse
NTT transforms this result back to the coefficient domain [8]
(this is analogous to how FFTs enable efficient convolutions).
We use NoCap’s NTT units for this purpose.

VI. NOCAP IMPLEMENTATION

We have implemented NoCap’s building blocks in RTL, and
synthesized them in a commercial 14nm process. We target a
1 GHz frequency. We use a commercial SRAM compiler for
register file banks.

Table II shows a breakdown of area by component. 13% of
area goes to the register file, 21% to FUs, and 64% to two
HBM PHYs. We assume 512 GB/s of bandwidth per PHY; this
is similar to the NVIDIA A100 GPU. We use prior work to
estimate the HBM2E PHY area [28, 65] and power [65].

VII. METHODOLOGY

Modeled system: We evaluate NoCap as configured in Table II.
We hand-schedule all tasks from Sec. V except SpMV; these
tasks are simple and regular, so this takes modest effort. We
automate the scheduling of SpMV, by producing a stream of
instructions specific to each benchmark as described in Sec. V.
We then implement a simple linker program that composes
these parameterized tasks to implement the Spartan+Orion

prover. Tasks are executed one at a time, following program
order. A simulator executes this program, keeping track of
the FU and memory bandwidth usage of each task. This
cycle-level simulator models the timing of each task by using
timing models for the functional units and main memory. The
simulator also collects activity factors for all units, which we
then combine with per-event energies from RTL synthesis
(Sec. VI) to compute power.
Baseline: Our software baseline is a parallelized Orion im-
plementation from the original authors [74]; we use the
multicore branch of Spartan’s codebase for the Spartan IOP [55].
We enhance this baseline by using Goldilocks64 and Reed-
Solomon codes, as presented in Sec. V. This matches NoCap’s
implementation and improves CPU performance by over 2×.
For Groth16’s CPU version, we use the libsnark parallel imple-
mentation [69]. We use a 3.5GHz AMD Ryzen Threadripper
3975WX CPU, which has 32 cores and 64 threads.

Finally, we optimistically scale the area and frequency of
PipeZK to our 14nm technology and have it match NoCap’s
area; we also use the same memory bandwidth as NoCap.
PipeZK [92] uses the MNT4-753 curve for their headline results.
We use the BLS12-381 curve for PipeZK instead, because it is
4–10× faster while still achieving 128 bits of security. PipeZK’s
execution time is bottlenecked by the MSM G2 phase, which
is offloaded to the CPU; therefore, our scaling of area and
frequency does not bring any improvements to PipeZK’s end-
to-end performance. We measure PipeZK’s MSM G2 phase
using the same CPU that we use for our CPU baseline.

A. Parameters

We target 128 bits of security for both Groth16 and Spar-
tan+Orion and statements with up to 230 R1CS constraints.

As explained in Sec. IV, Spartan+Orion uses fast 64-bit
modular arithmetic through the Goldilocks64 field. This re-
quires repeating several parts of the protocol to achieve 128-bit
soundness. First, we run all sumchecks 3 times. For the multiset
hash function in Spartan, we run 4 separate instantiations (i.e.,
different γ values). Finally, in Orion’s polynomial commitment,
we use 4 random vectors to do the proximity test. We follow
the observation made by prior work that these can reuse the
same columns resulting in a smaller proof [36].

We use Reed-Solomon codes instead of expander graphs
in Orion. The Reed-Solomon code blowup factor is 4, so the
number of Orion column queries is 189. This also results in
smaller proofs and verifier times, as the expander graph required
1,222 column queries. We set the number of rows in the Orion
matrix to 128, as in the original implementation [74].

For zero knowledge, we compute and commit to a random
masking polynomial to hide the witness w̄ [71], as in protocol 5
of Orion [86]. However, as the time is dominated by sumcheck,
achieving zero knowledge in this way is very cheap.

B. Benchmarks

For benchmarks, we use scaled-up versions of ZKP circuits
used by PipeZK [92] and include one additional database
application [84]. Table III lists these benchmarks and their

Benchmark R1CS Size Proof [MB] V time [ms]

AES [92] 16.0M 8.1 134.0
SHA [92] 32.0M 8.7 153.7
RSA [92] 98.0M 10.1 198.0
Litmus [84] 268.4M 10.9 222.4
Auction [33] 550.0M 12.5 276.1

TABLE III: Number of R1CS constraints, proof size, and CPU
verification time for our benchmarks.

characteristics, including circuit size (in number of R1CS
constraints), proof size, and verifier time.

We use scaled-up ZKP benchmarks that perform 100–1,000×
more work than the original versions in order to show NoCap’s
performance improvements. Prior systems use small circuits
due to prover overheads, but since NoCap supports higher
throughput, very small circuits would be dominated by fixed
overheads, like sending wire values.
AES is a cryptographic primitive with several applications,
mainly in encryption. A zero-knowledge proof of the AES
circuit can be used to prove that a ciphertext is well-formed
(useful for malicious security applications), or to show a third
party that a ciphertext decrypts to a particular message (without
revealing the decryption key). For example, it could be used to
selectively decrypt an end-to-end encrypted message without
revealing the contents of any other messages encrypted with
the same key. The zero knowledge is important because simply
revealing the key would allow any message to be decrypted.
The original benchmark proves the AES evaluation for a 128-bit
block; instead, we use a circuit for 1,000 blocks, corresponding
to the encryption of a 16 KB message.
SHA is a hash function that can also be used to prove an entity
has data (e.g., code) that corresponds to a specific SHA. In a
ZKP, this can be used to show ownership of a digital object,
without revealing the digital object. The zero knowledge is
important because someone could make a copy of the digital
object if they see it. For example, someone can prove one
has the source code to a proprietary binary without revealing
anything about the source. Instead of proving the SHA hash
of 512 bits of data (as in PipeZK), we use a circuit for 1,000
512-bit hash blocks, equivalent to hashing a 64KB file.
RSA performs many of the same functions as AES. Since RSA
operates on large prime fields, typically primes of 2,048 bits,
the size of message per evaluation is larger. For one instance,
the function can correspond to a 256-byte message, and for
1,000× to a 256 KB message.
Auction implements a verifiable sealed-bid auction [33]. This
circuit enables trustless private auctions. In particular, this
circuit enables an auctioneer to prove to all auction participants
that the rules for determining the auction winner have been
used correctly, without revealing any information about the
losing bids. This benchmarks an auction with 100× the bids
and is thus 100× larger than in prior work [92].
Litmus is a database management system that provides crypto-
graphic proofs of transactional correctness, including atomicity
and serializability [84]. We benchmark YCSB transactions [42].
In the original paper, the circuit is divided into separate

subcircuits to allow parallel proving. Instead of proving one
large circuit, the computation in each subcircuit is proved
in parallel. This does not reduce prover work, but it does
improve parallelism. However, the verifier must then check
that the outputs of each subcircuit are consistent with the input
to the next. Overall, this parallelism improves the prover’s
wall-clock time, but imposes 100× overhead on the verifier.
Thus, we do not apply this optimization; NoCap achieves high
parallelism for a single proof. The benchmark consists of 10,000
transactions that access two random rows, reading or writing
to them with equal probability.

VIII. EVALUATION

A. Performance

Table IV compares the performance of NoCap and the
CPU on our benchmarks; both run the Spartan+Orion ZKP. It
reports execution time for each (lower is better) and NoCap’s
speedups over the CPU (higher is better). NoCap achieves very
large speedups, gmean 586×. Speedups are consistent across
benchmarks, from 560× to 622×.

These speedups open new use cases of ZKPs. For example,
assuming a 1s transaction latency target, proving database
transactions in software achieves a measly throughput of 2
transactions/second. NoCap increases throughput to 1,142 trans-
actions/second, making real-time-verifiable databases practical.

Table IV also reports PipeZK’s execution times, and NoCap’s
speedups over PipeZK. NoCap again achieves large speedups,
gmean 41×, ranging from 25× to 53×.

As discussed in Sec. III, these speedups come from acceler-
ating all parts of the protocol (unlike PipeZK, which leaves part
of the proof to the CPU), and from using a zk-SNARK that
is algorithmically more efficient (even though this efficiency
does not translate into speedup on the CPU).

B. Performance breakdown

Fig. 5 shows NoCap’s power breakdown per hardware
component. We show the average for AES, but the breakdown
and total power are essentially identical across benchmarks.
Although runtime numbers change with the number of R1CS
constraints (i.e., the size of each benchmark’s circuit), all
components scale linearly with the number of R1CS constraints
for the relevant range (220 to 230 R1CS constraints).

We see that 13% of power goes to FUs, 44% to the register
file, and 42% to high-bandwidth memory. Total power is 62 W.

Fig. 6(a) shows the runtime breakdown across tasks
(Sec. V-A) of the Spartan+Orion SNARK for CPU and NoCap.
Like for power, we do not show per-benchmark breakdowns
because the breakdowns look identical in this range of circuit
sizes. We see that both CPU and NoCap spend the majority
of runtime (∼70%) in the sumcheck protocol. The remaining
time is spent on Reed-Solomon codes (9% for NoCap, 19%
for CPU), polynomial arithmetic (12% for NoCap, 6% for
CPU), building Merkle trees (5% for NoCap, 3% for CPU),
and running sparse matrix vector multiply (0.5% for NoCap,
2% for CPU). The CPU breakdown shows that all tasks must be

Proving time on NoCap CPU vs. CPU PipeZK vs. PipeZK

AES 151.3 ms 94.2 s 622× 8.0 s 53×
SHA 311.0 ms 188.4 s 605× 16.0 s 51×
RSA 1.3 s 753.6 s 578× 49.1 s 37×
Litmus 2.6 s 1,507.2 s 571× 134.6 s 50×
Auction 10.8 s 1.7 h 560× 275.8 s 25×

gmean 586× 41×

TABLE IV: Proof generation time for NoCap, CPU (running Spartan+Orion)
and PipeZK, and NoCap’s speedups over CPU and PipeZK.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Sizing ratio

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
gm

ea
n

pe
rf.

HBM BW
Reg. file size
Hash
Arithmetic
NTT

Fig. 7: NoCap parameter sensitivity study.

0.0 0.2 0.4 0.6 0.8 1.0

FU Reg. File HBM

Fig. 5: Power breakdown for NoCap across FUs, reg. file, and
memory (HBM) for a 16M-constraint statement.

0.2 0.4 0.6 0.8 1.0
Runtime breakdown

(a)

NoCap runtime
CPU runtime

Sumcheck
R-S code

Poly. arith.
Merkle tree

SpMV

0.2 0.4 0.6 0.8 1.0
Traffic breakdown

(b)

NoCap traffic

Fig. 6: Breakdown of (a) CPU and NoCap runtime, and (b)
NoCap memory traffic across tasks.

accelerated to achieve high speedups. The NoCap breakdown
shows that NoCap accelerates these tasks well.

Fig. 6(b) shows the breakdown of memory traffic by task
for NoCap. While we recompute sumcheck values multiple
times to reduce memory traffic (Sec. V), Fig. 6 shows that
sumcheck’s traffic is still dominant (55%), while 25% goes
to polynomial arithmetic, 9% to building Merkle trees and
Reed-Solomon codes each, and 1% to sparse matrix vector
multiply. All tasks achieve limited reuse, which leads to traffic
breakdown roughly matching that of runtime. Overall utilization
of compute resources is 60%.

C. Effect of protocol optimizations

So far, we have evaluated a combination of Spartan+Orion
that includes three new optimizations over the original im-
plementations: using the narrower Goldilocks64 field, using
Reed-Solomon codes, and using recomputation in sumcheck
(Sec. V). Our software version uses the first two optimizations,
while NoCap uses all three.

In the CPU version, switching to the narrower field improves
performance by 1.7×, and using Reed-Solomon codes instead
of an expander graph improves CPU performance by a further
1.2×. Recomputing sumcheck inputs improves NoCap’s per-
formance by 1.1× (and sumcheck performance by 31%), but
it slightly hurts performance on the CPU (by 1%), because the
CPU is not memory-bound. This is why we leave recomputation

0 50 100 150 200 250 300
Design Area [mm^2]

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
gm

ea
n

Pe
rf.

NoCap config
1TB/s
2TB/s
Pareto frontiers

Fig. 8: NoCap’s design space along with the Pareto frontier in
orange and the chosen NoCap configuration.

off in the CPU version. Overall, these improvements yield a
2.1× speedup on the CPU.

D. Sensitivity study

Fig. 7 illustrates the relative importance of each hardware
building block on NoCap’s gmean performance on our bench-
marks. Specifically, Fig. 7 sweeps the compute throughput
of each FU individually: hash FU, arithmetic (i.e., add and
multiply FU), and NTT FU. We also scale the HBM memory
bandwidth and register file size.

We see that performance is most sensitive to raw arithmetic
throughput. Other FUs contribute significantly to performance
up to our chosen parameters for NoCap.

Increasing register file size has negligible impact on per-
formance, but decreasing register file size leads intermediates
in the sumcheck recomputations described in Sec. V to spill,
drastically degrading performance.

Fig. 7 also shows that we balanced the choice of hardware
parameters well: scaling any one building block brings small
benefits, while reducing performance of any one of them quickly
leads to performance degradation.

E. Design space

Fig. 8 shows how NoCap’s performance changes with area:
we sweep on-chip storage size, and throughputs of all the FUs
independently. We see two different scatter plots: one for 1 TB/s
HBM (blue) and one for 2 TB/s (green). Fig. 8 also shows
the performance vs. area Pareto frontier for both the 1 TB/s
and 2 TB/s HBM. We see that our chosen configuration makes
a good tradeoff between performance and area, because the
Pareto curve flattens out for areas larger than that we chose.

Prover Send Verifier Total vs. PipeZK

AES 0.1 0.8 0.1 1.1 7.4×
SHA 0.3 0.9 0.2 1.3 12.1×
RSA 1.3 1.0 0.2 2.5 19.6×
Litmus 2.6 1.1 0.2 4.0 34.1×
Auction 10.8 1.2 0.3 12.3 22.4×

gmean 16.8×

TABLE V: Per-benchmark end-to-end runtime in seconds for
NoCap along with end-to-end speedups vs. PipeZK.

F. End-to-end performance

Table V shows end-to-end runtime for NoCap, with speedups
versus PipeZK. Table V is similar to Table I: It shows proof
generation (Prover), time to download the proof assuming a
10 MB/s link (Send) and verification time (Verifier); the end-
to-end total runtime is set to the sum of these three. Speedups
versus PipeZK refer to the end-to-end runtime speedups.

While Spartan+Orion’s proofs and verification times are
larger than Groth16 (Sec. III), we see that NoCap’s fast proof
generation more than makes up for the difference. Speedups
are high across applications, and grow the larger the circuit is,
as proof generation time becomes more dominant.

IX. ADDITIONAL RELATED WORK

A. Prior work on ZKP acceleration

PipeZK [92] is a ZKP accelerator ASIC, and GZKP [52]
is a GPU ZKP implementation. Both target the Groth16
SNARK [39], which, as we have shown in Sec. III and Sec. VIII
has limited acceleration potential. Specifically, Sec. VIII shows
that PipeZK is 41× slower than NoCap.

B. Alternative hardware platforms

As we saw, prior work has also implemented key building
blocks of hash-based ZKPs on GPUs and FPGAs [1, 51, 57],
but neither platform can approach NoCap’s performance, due
to bottlenecks that we explain below.
GPUs do not offer sufficient modular arithmetic throughput [23,
27, 34, 38, 47]: Prior work shows that GPUs can implement
a large 224-element Goldilocks 64 NTT at a throughput of
at most 125 GB/s [58]. This implementation saturates the
GPU’s compute resources, indicating it can perform about
200 Goldilocks 64 multiply-adds per cycle. This is 10×
off of NoCap’s multiply-add bandwidth. Looking at end-to-
end benchmarks, assuming linear scaling (which is generous),
GZKP [52] would run the Auction benchmark in 513s, or
47.5× slower than NoCap.
FPGAs do not have sufficient on-chip logic to implement all
of Spartan+Orion’s components at sufficient throughput. For
example, a high-end Xilinx Alveo U55C FPGA Card [87] would
have 1,000 multipliers exhaust its hardware resources, while
running at a frequency that is at least 3× off NoCap’s [80].

C. Related accelerators

Recent accelerators for fully homomorphic encryption
(FHE) [45, 46, 48, 67, 68] achieve high speedups over CPUs
by leveraging similar principles to NoCap: modular vector

arithmetic, NTT, static dataflow scheduling, and a focus on
reducing data movement.

While NoCap has similarities with these designs, it also
has significant differences. It requires new FUs (like the
Benes network); it lacks FUs that are common in FHE
accelerators (e.g., change-of-RNS-base and automorphisms);
it uses heterogeneously sized FUs; it uses wider modular
integers with a fixed field (Goldilocks64, whereas several of
these accelerators use 28–36-bit modular integers); and it is a
much smaller chip due to the memory-bound nature and reuse
opportunities in hash-based ZKPs, which are quite different
from FHE algorithms.

Ultimately, NoCap shares similarities with FHE accelerators
because FHE and hash-based ZKPs both consist of computa-
tions on large polynomials with modular integer coefficients.
This suggests that a future architecture could integrate these
mechanisms to efficiently accelerate ZKPs, FHE, and other
cryptographic protocols that rely on the same primitives.

X. CONCLUSION AND FUTURE WORK

ZKPs enable cryptographically verifying both the correctness
of computation and the knowledge of data that has arbitrary
properties. But the large compute overheads of ZKP proof
generation constrain its applicability to narrow domains. NoCap
addresses this challenge by accelerating ZKP by three orders
of magnitude. Our key contribution is to leverage hardware-
algorithm co-design by exploring a class of ZKPs that perform
similarly to conventional ones on a CPU, but are much more
amenable to acceleration. These speedups enable new use cases,
such as real-time verifiable databases.

Even with NoCap, ZKPs are still costly, and additional
acceleration will unlock more use cases. We believe a com-
bination of hardware architecture and algorithmic techniques
will be needed to achieve substantial speedups. Specifically,
recursive [19], incremental [25], or folding-based [49] zero-
knowledge proofs are exciting recent developments that can
enable large performance and scalability gains. A simplified
view is that these schemes break a computation into several
parts, and create a small individual proof for each. Then, a final
proof shows that all of the individual proofs are correct, thus
verifying the whole computation. These techniques would allow
designing accelerators that are less memory-bound because they
target small individual proofs, achieving higher throughput than
NoCap cheaply, while still scaling to very large programs.
Moreover, large proofs could be parallelized across many
accelerators, with little communication among them, which
would enable rack-scale ZKP accelerator systems.

ACKNOWLEDGMENTS

We thank Elaine Shi for suggesting that we look into Orion
and Spartan. We thank Aleksandar Krastev, Axel Feldmann,
Courtney Golden, Fares Elsabbagh, Hyun Ryong Lee, Maggie
Du, Yifan Yang, Joel Emer, and our anonymous reviewers for
their helpful feedback. This work was partially supported by
NSF grant 2330065 and by a Wistron research grant.

REFERENCES

[1] “FPGA SNARK Prover,” https://github.com/bsdevlin/fpga_snark_prover,
2020.

[2] “Aztec network,” https://aztec.network/, 2023.
[3] “PCI-SIG Specifications,” https://pcisig.com/specifications, 2023.
[4] “StarkWare,” https://starkware.co/, 2023.
[5] K. Aasaraai, E. Cesena, R. Maganti, N. Stalder, J. Varela, and K. Bowers,

“CycloneNTT: An NTT/FFT architecture using quasi-streaming of large
datasets on DDR-and HBM-based FPGA platforms,” Cryptology ePrint

Archive, 2022.
[6] M. R. Albrecht, V. Cini, R. W. Lai, G. Malavolta, and S. A. Thyagarajan,

“Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively
composable,” in Proc. of the Annual International Cryptology Conference

(CRYPTO), 2022.
[7] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:

Lightweight sublinear arguments without a trusted setup,” in Proc. of the

2017 ACM SIGSAC conf. on Computer and Communications Security

(CCS), 2017.
[8] D. H. Bailey, “FFTs in external of hierarchical memory,” in Proc. of the

1989 ACM/IEEE conference on Supercomputing, 1989.
[9] G. Barany, “Register reuse scheduling,” in 9th Workshop on Optimizations

for DSP and Embedded Systems (ODES-9), 2011.
[10] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplica-

tion on throughput-oriented processors,” in Proc. of the conf. on high

performance computing networking, storage and analysis (SC), 2009.
[11] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Fast reed-

solomon interactive oracle proofs of proximity,” in Proc. of the 45th intl.

colloquium on automata, languages, and programming (ICALP), 2018.
[12] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-

parent, and post-quantum secure computational integrity,” Cryptology

ePrint Archive, 2018.
[13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs

for C: Verifying program executions succinctly and in zero knowledge,”
in Proc. of the 33rd Annual Cryptology Conference (CRYPTO), 2013.

[14] V. E. Beneš, Mathematical theory of connecting networks and telephone

traffic. Academic Press, 1965.
[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak

specifications,” Submission to NIST (round 2), vol. 3, no. 30, 2009.
[16] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, R. Van Keer, and

B. Viguier, “Kangaroo twelve: Fast hashing based on keccak,” in Proc.

of the 16th intl. conf. on Applied Cryptography and Network Security

(ACNS), 2018.
[17] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable

collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proc. of the 3rd Innovations in Theoretical Computer

Science Conference, 2012.
[18] G. E. Blelloch, P. B. Gibbons, and Y. Matias, “Provably efficient

scheduling for languages with fine-grained parallelism,” Journal of the

ACM (JACM), vol. 46, no. 2, 1999.
[19] D. Boneh, J. Drake, B. Fisch, and A. Gabizon, “Halo infinite: Recursive zk-

SNARKs from any additive polynomial commitment scheme,” Cryptology

ePrint Archive, 2020.
[20] J. Bootle, A. Chiesa, and J. Groth, “Linear-time arguments with sublinear

verification from tensor codes,” in Proc. of the 18th intl. conf. on the

Theory of Cryptography (TCC), 2020.
[21] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,

“Bulletproofs: Short proofs for confidential transactions and more,” in
Proc. of the 2018 IEEE symp. on Security and Privacy (SP), 2018.

[22] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyperplonk: Plonk with
linear-time prover and high-degree custom gates,” in Proc. of the

Annual International Conference on the Theory and Applications of

Cryptographic Techniques (EUROCRYPT), 2023.
[23] L. Chen, S. Covanov, D. Mohajerani, and M. Moreno Maza, “Big

prime field FFT on the GPU,” in Proc. of the 2017 ACM International

Symposium on Symbolic and Algebraic Computation (ISSAC), 2017.
[24] S. Chen, J. H. Cheon, D. Kim, and D. Park, “Verifiable computing for

approximate computation,” Cryptology ePrint Archive, 2019.
[25] W. Chen, A. Chiesa, E. Dauterman, and N. P. Ward, “Reducing partici-

pation costs via incremental verification for ledger systems,” Cryptology

ePrint Archive, 2020.
[26] CoinDesk, “Crypto startup fabric systems raises $13m seed round to

provide blockchain hardware,” https://www.coindesk.com/business/2022/

10/13/crypto-startup-fabric-systems-raises-13m-seed-round-to-provide-
blockchain-hardware/, 2022.

[27] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator
library,” in Proc. of the 2nd intl. conf. on Cryptography and Information

Security in the Balkans (BalkanCryptSec), 2016.
[28] S. Dasgupta, T. Singh, A. Jain, S. Naffziger, D. John, C. Bisht, and

P. Jayaraman, “Radeon RX 5700 Series: The AMD 7nm Energy-Efficient
High-Performance GPUs,” in Proc. of the IEEE Intl. Solid-State Circuits

Conf. (ISSCC), 2020.
[29] M. Emami, S. Kashani, K. Kamahori, M. S. Pourghannad, R. Raj, and

J. R. Larus, “Manticore: Hardware-accelerated RTL simulation with static
bulk-synchronous parallelism,” 2023.

[30] Z. Fang, D. Darais, J. P. Near, and Y. Zhang, “Zero knowledge static
program analysis,” in Proc. of the 2021 ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2021.
[31] J. A. Fisher, “Very long instruction word architectures and the ELI-

512,” in Proc. of the 10th annual Intl. Symp. on Computer Architecture

(ISCA-10), 1983.
[32] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations

over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge,” Cryptology ePrint Archive, 2019.

[33] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on
the ethereum blockchain,” in International Workshops on Financial

Cryptography and Data Security (FC), 2018.
[34] J.-Z. Goey, W.-K. Lee, B.-M. Goi, and W.-S. Yap, “Accelerating number

theoretic transform in gpu platform for fully homomorphic encryption,”
The Journal of Supercomputing, vol. 77, 2021.

[35] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computation:
interactive proofs for muggles,” Journal of the ACM (JACM), vol. 62,
no. 4, 2015.

[36] A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby, “Brakedown:
Linear-time and field-agnostic SNARKs for R1CS,” in Proc. of the Annual

International Cryptology Conference (CRYPTO), 2023.
[37] J. R. Goodman and W.-C. Hsu, “Code scheduling and register allocation

in large basic blocks,” in Proc. of the Intl. Conf. on Supercomputing

(ICS’88), 1988.
[38] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli,

“High performance discrete fourier transforms on graphics processors,”
in SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting, 2008.
[39] J. Groth, “On the size of pairing-based non-interactive arguments,” in

Proc. of the 35th Annual International Conference on the Theory and

Applications of Cryptographic Techniques (EUROCRYPT), 2016.
[40] M. Hamburg, “Ed448-goldilocks, a new elliptic curve,” Cryptology ePrint

Archive, 2015.
[41] F. Hirner, A. C. Mert, and S. S. Roy, “PROTEUS: A tool to generate

pipelined number theoretic transform architectures for FHE and ZKP
applications,” Cryptology ePrint Archive, 2023.

[42] C.-C. Huang, A. Cidon, I. Cetindil, I. Zhang, J. Li, R. Agarwal, and
C. Kozyrakis, “YCSB++: Benchmarking and performance debugging
advanced features in scalable table stores,” in Proc. of the 2nd ACM

Symposium on Cloud Computing (SoCC), 2012.
[43] Y. Ishai, H. Su, and D. J. Wu, “Shorter and faster post-quantum designated-

verifier zkSNARKs from lattices,” in Proc. of the 2021 ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2021.
[44] A. Kate, G. M. Zaverucha, and I. Goldberg, “Polynomial commitments,”

University of Waterloo, Tech. Rep., 2010.
[45] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “SHARP: A short-

word hierarchical accelerator for robust and practical fully homomorphic
encryption,” in Proc. of the 50th annual Intl. Symp. on Computer

Architecture (ISCA-50), 2023.
[46] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, “ARK:

Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” in Proc. of the 55th annual IEEE/ACM

intl. symp. on Microarchitecture (MICRO-55), 2022.
[47] S. Kim, W. Jung, J. Park, and J. H. Ahn, “Accelerating number theoretic

transformations for bootstrappable homomorphic encryption on GPUs,”
in Proc. of the IEEE Intl. Symp. on Workload Characterization (IISWC),
2020.

[48] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn, “BTS:
An accelerator for bootstrappable fully homomorphic encryption,” in
Proc. of the 49th annual Intl. Symp. on Computer Architecture (ISCA-49),
2022.

https://github.com/bsdevlin/fpga_snark_prover
https://aztec.network/
https://pcisig.com/specifications
https://starkware.co/
https://www.coindesk.com/business/2022/10/13/crypto-startup-fabric-systems-raises-13m-seed-round-to-provide-blockchain-hardware/
https://www.coindesk.com/business/2022/10/13/crypto-startup-fabric-systems-raises-13m-seed-round-to-provide-blockchain-hardware/
https://www.coindesk.com/business/2022/10/13/crypto-startup-fabric-systems-raises-13m-seed-round-to-provide-blockchain-hardware/

[49] A. Kothapalli, S. Setty, and I. Tzialla, “Nova: Recursive zero-knowledge
arguments from folding schemes,” in Proc. of the Annual International

Cryptology Conference (CRYPTO), 2022.
[50] T. Liu, X. Xie, and Y. Zhang, “zkCNN: Zero knowledge proofs for

convolutional neural network predictions and accuracy,” in Proc. of

the 2021 ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2021.
[51] T. Lu, C. Wei, R. Yu, C. Chen, W. Fang, L. Wang, Z. Wang, and W. Chen,

“cuZK: Accelerating zero-knowledge proof with a faster parallel multi-
scalar multiplication algorithm on GPUs,” Cryptology ePrint Archive,
2022.

[52] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang, M. Gao, Y. Zhang,
H. Shen, and W. Hu, “GZKP: A GPU accelerated zero-knowledge proof
system,” in Proc. of the 28th intl. conf. on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-XXVIII), 2023.
[53] L. Marchal, B. Simon, and F. Vivien, “Limiting the memory footprint

when dynamically scheduling dags on shared-memory platforms,” Journal

of Parallel and Distributed Computing, vol. 128, 2019.
[54] R. C. Merkle, “A digital signature based on a conventional encryption

function,” in Conference on the theory and application of cryptographic

techniques, 1987.
[55] Microsoft, “Spartan: High-speed zkSNARKs without trusted setup,” https:

//github.com/microsoft/Spartan, 2022.
[56] Mina Protocol, “Decentralized, scalable and secure blockchain,” https:

//minaprotocol.com/, 2023.
[57] N. Ni and Y. Zhu, “Enabling zero knowledge proof by accelerating zk-

SNARK kernels on GPU,” Journal of Parallel and Distributed Computing,
vol. 173, 2023.

[58] A. Ş. Özcan and E. Savaş, “Two algorithms for fast gpu implementation
of ntt,” Cryptology ePrint Archive, 2023.

[59] E. Ozer, S. Banerjia, and T. M. Conte, “Unified assign and schedule: A
new approach to scheduling for clustered register file microarchitectures,”
in Proc. of the 31st annual IEEE/ACM intl. symp. on Microarchitecture

(MICRO-31), 1998.
[60] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly

practical verifiable computation,” Communications of the ACM, vol. 59,
no. 2, 2016.

[61] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proc. of the 24th intl. conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XXIV), 2019.
[62] Polygon Hermez, “Scalable payments: Decentralised by design, open for

everyone,” https://hermez.io/.
[63] Polygon Labs, “The go fast machine: Adding recursion to Polygon

zkEVM,” https://polygon.technology/blog/the-go-fast-machine-adding-
recursion-to-polygon-zkevm.

[64] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna, “SIGMA: A sparse and irregular GEMM accelerator with
flexible interconnects for DNN training,” in Proc. of the 26th IEEE intl.

symp. on High Performance Computer Architecture (HPCA-26), 2020.
[65] Rambus Inc., “White paper: HBM2E and GDDR6: Memory solutions

for AI,” 2020.
[66] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, 1960.

[67] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable accelerator for
fully homomorphic encryption,” in Proc. of the 54th annual IEEE/ACM

intl. symp. on Microarchitecture (MICRO-54), 2021.
[68] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,

S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “CraterLake:
a hardware accelerator for efficient unbounded computation on encrypted
data.” in Proc. of the 49th annual Intl. Symp. on Computer Architecture

(ISCA-49), 2022.
[69] SCIPR Lab, “libsnark: a c++ library for zksnark proofs,” https://github.

com/scipr-lab/libsnark, 2017.
[70] S. Setty, “Spartan: Efficient and general-purpose zkSNARKs without

trusted setup,” in Proc. of the Annual International Cryptology Conference

(CRYPTO), 2020.
[71] S. Setty and J. Lee, “Quarks: Quadruple-efficient transparent zkSNARKs,”

Cryptology ePrint Archive, 2020.
[72] A. S. Shamsabadi, G. Tan, T. I. Cebere, A. Bellet, H. Haddadi, N. Papernot,

X. Wang, and A. Weller, “Confidential-DPproof: Confidential proof

of differentially private training,” in Proc. of the 12th International

Conference on Learning Representations (ICLR), 2024.
[73] D. A. Spielman, “Linear-time encodable and decodable error-correcting

codes,” in Proceedings of the twenty-seventh annual ACM symposium

on Theory of computing, 1995.
[74] Sunblaze-ucb, “Orion: Security via side-channel assisted reverse engi-

neering,” https://github.com/sunblaze-ucb/Orion, 2022.
[75] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of

deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, 2017.

[76] J. Thaler, “Time-optimal interactive proofs for circuit evaluation,” in
Proc. of the 33rd Annual Cryptology Conference (CRYPTO), 2013.

[77] The Block, “Ethereum scaling startup scroll closes $50
million funding round at $1.8 billion valuation,” https:
//www.theblock.co/post/217340/ethereum-scaling-scroll-50-million-
funding-round-1-8-billion-valuation, 2022.

[78] J. E. Thornton, “The CDC 6600 project,” Annals of the History of

Computing, vol. 2, no. 4, 1980.
[79] Ulvetanna, “Accelerating the zero-knowledge revolution,” 2023. [Online].

Available: https://www.ulvetanna.io/
[80] Ulvetanna, “FPGA architecture for Goldilocks NTT,” 2023.

[Online]. Available: https://www.ulvetanna.io/news/fpga-architecture-for-
goldilocks-ntt

[81] A. Vlasov and K. Panarin, “Transparent polynomial commitment scheme
with polylogarithmic communication complexity,” Cryptology ePrint

Archive, 2019.
[82] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-

efficient zkSNARKs without trusted setup,” in Proc. of the 2018 IEEE

symp. on Security and Privacy (SP), 2018.
[83] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient

conversions for Zero-Knowledge proofs with applications to machine
learning,” in Proc. of the 30th USENIX Security Symposium (USENIX

Security 21), 2021.
[84] Y. Xia, X. Yu, M. Butrovich, A. Pavlo, and S. Devadas, “Litmus: Towards a

practical database management system with verifiable acid properties and
transaction correctness,” in Proc. of the 2022 intl. conf. on Management

of Data (SIGMOD), 2022.
[85] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra: Succinct

zero-knowledge proofs with optimal prover computation,” in Proc. of

the Annual International Cryptology Conference (CRYPTO), 2019.
[86] T. Xie, Y. Zhang, and D. Song, “Orion: Zero knowledge proof with linear

prover time,” in Proc. of the Annual International Cryptology Conference

(CRYPTO), 2022.
[87] Xilinx, “Alveo U55C data center accelerator card,” 2023. [Online].

Available: https://www.xilinx.com/products/boards-and-kits/alveo/u55c.
html

[88] Yahoo Finance, “Alan howard-backed cryptography investor raises
new fund,” https://finance.yahoo.com/news/alan-howard-backed-
cryptography-investor-110000056.html, 2022.

[89] Zcash, “Zcash is cash for the new age,” https://z.cash/, 2023.
[90] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs

for decision tree predictions and accuracy,” in Proc. of the 2020 ACM

SIGSAC Conference on Computer and Communications Security (CCS),
2020.

[91] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial
delegation and its applications to zero knowledge proof,” in Proc. of the

2020 IEEE symp. on Security and Privacy (SP), 2020.
[92] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,

D. Zhou, M. Gao, and G. Sun, “PipeZK: Accelerating zero-knowledge
proof with a pipelined architecture,” in Proc. of the 48th annual Intl.

Symp. on Computer Architecture (ISCA-48), 2021.
[93] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,

“vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases,” in Proc. of the 2017 IEEE symp. on Security and Privacy

(SP), 2017.
[94] Z. Zhao and T.-H. H. Chan, “How to vote privately using bitcoin,” in

Proc. of the 17th Intl. Conf. on Information and Communications Security

(ICICS), 2016.

https://github.com/microsoft/Spartan
https://github.com/microsoft/Spartan
https://minaprotocol.com/
https://minaprotocol.com/
https://hermez.io/
https://polygon.technology/blog/the-go-fast-machine-adding-recursion-to-polygon-zkevm
https://polygon.technology/blog/the-go-fast-machine-adding-recursion-to-polygon-zkevm
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/sunblaze-ucb/Orion
https://www.theblock.co/post/217340/ethereum-scaling-scroll-50-million-funding-round-1-8-billion-valuation
https://www.theblock.co/post/217340/ethereum-scaling-scroll-50-million-funding-round-1-8-billion-valuation
https://www.theblock.co/post/217340/ethereum-scaling-scroll-50-million-funding-round-1-8-billion-valuation
https://www.ulvetanna.io/
https://www.ulvetanna.io/news/fpga-architecture-for-goldilocks-ntt
https://www.ulvetanna.io/news/fpga-architecture-for-goldilocks-ntt
https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html
https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html
https://finance.yahoo.com/news/alan-howard-backed-cryptography-investor-110000056.html
https://finance.yahoo.com/news/alan-howard-backed-cryptography-investor-110000056.html
https://z.cash/

	Introduction
	Background
	zk-SNARK structure and design space
	R1CS arithmetization

	ZKP Algorithmic Tradeoffs
	NoCap Architecture
	Vector ISA and data types
	Pipeline and functional unit microrarchitecture
	Memory system
	System integration
	Generality

	Mapping Spartan+Orion to NoCap
	Key tasks

	NoCap Implementation
	Methodology
	Parameters
	Benchmarks

	Evaluation
	Performance
	Performance breakdown
	Effect of protocol optimizations
	Sensitivity study
	Design space
	End-to-end performance

	Additional Related Work
	Prior work on ZKP acceleration
	Alternative hardware platforms
	Related accelerators

	Conclusion and Future Work
	Acknowledgments
	References

