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Abstract

We adopt the deep learning method CASI-3D (convolutional approach to structure identification-3D) to infer the
orientation of magnetic fields in sub-/trans-Alfvénic turbulent clouds from molecular line emission. We carry out
magnetohydrodynamic simulations with different magnetic field strengths and use these to generate synthetic
observations. We apply the 3D radiation transfer code RADMC-3D to model 12CO and 13CO (J = 1−0) line
emission from the simulated clouds and then train a CASI-3D model on these line emission data cubes to predict
magnetic field morphology at the pixel level. The trained CASI-3D model is able to infer magnetic field directions
with a low error (10° for sub-Alfvénic samples and 30° for trans-Alfvénic samples). We further test the
performance of CASI-3D on a real sub-/trans- Alfvénic region in Taurus. The CASI-3D prediction is consistent with
the magnetic field direction inferred from Planck dust polarization measurements. We use our developed methods
to produce a new magnetic field map of Taurus that has a three times higher angular resolution than the
Planck map.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar magnetic fields (845);
Convolutional neural networks (1938); Molecular clouds (1072); Magnetohydrodynamics (1964)

1. Introduction

Magnetic (B-) fields are ubiquitous in the universe (e.g.,
Crutcher 1999; Han 2017). They are one of the major
components regulating the motion and evolution of the
interstellar medium (ISM; Crutcher 2012; Federrath 2015).
Although gravity and turbulence also play important roles in
the formation of structures in the ISM (Padoan & Nor-
dlund 1999; Elmegreen & Scalo 2004; McKee & Ostri-
ker 2007), recent studies indicate that magnetic fields are also
very important over a wide range of regimes and scales (Li
et al. 2009; Clark et al. 2014; Zhang et al. 2019). However,
measuring B fields is challenging. The observations of
magnetic fields are divided into two main types of measure-
ment. One is the plane-of-sky (POS) component, which is
usually traced by polarized thermal dust emission (Rao et al.
1998; Planck Collaboration et al. 2016), starlight polarization
(Davis & Greenstein 1951; Fosalba et al. 2002), and
synchrotron emission (Beck & Graeve 1982; Jansson &
Farrar 2012). The other is the line-of-sight (LOS) component,
which is normally resolved by Zeeman splitting (Troland &
Heiles 1986; Crutcher et al. 2010) and Faraday rotation
(Burn 1966; Hutschenreuter et al. 2022).

Although we have multiple approaches to trace POS B fields,
their study remains challenging. For example, starlight
polarization is limited by the lines of sight along which stars
are present and detectable. The polarized thermal dust emission
is considered to be caused by radiative torques (RATs)
produced by anisotropic radiation flux with respect to the
magnetic field (Hoang & Lazarian 2008), which imposes other
conditions related to the presence of such flux. Moreover, both

methods only trace the projected POS magnetic field direction
and are not capable of distinguishing the POS B fields for
different gas components on the LOS.
Approaches to studying B fields based on theories of

interstellar magnetohydrodynamic (MHD) turbulence and
turbulent reconnection have also been developed (Goldreich
& Sridhar 1995; Lazarian & Vishniac 1999). Goldreich &
Sridhar (1995) examined the effects of the interaction among
shear Alfvén waves and found that turbulent eddies become
elongated along the magnetic field direction in the limit of
strong Alfvén turbulence, where the perturbed velocity is much
smaller than the Alfvén velocity, i.e., sub-Alfvénic. Based on
this crucial principle, a method to trace the direction of
magnetic fields by using spectroscopic data has been devel-
oped, i.e., the velocity channel gradient technique (VGT4,
Lazarian & Yuen 2018; Heyer et al. 2020). VGT examines
maps of line emission from the gas in small velocity ranges and
measures the gradient in intensity of this emission in small
patches, i.e., “subblocks.” Then the plane of the sky magnetic
field direction is assumed to be in the direction perpendicular to
this gradient.
VGT has been examined in numerical simulations and

synthetic spectroscopic data (Yuen & Lazarian 2017; Lazarian
& Yuen 2018) and tested on observational data (Hu et al. 2019;
Liu et al. 2022). However, Yuen & Lazarian (2017) pointed out
that the gradient calculation requires subblock averaging to
obtain a robust result and this averaging process limits the
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resolution that can be achieved to determine B-field morph-
ology. Furthermore, it remains somewhat unclear about the
accuracy of the VGT method in different situations of
application. For example, Clark et al. (2019) pointed out that
the gas emission in the velocity channel maps, such as the H I
21 cm line, is not dominated by velocity fluctuations, but rather
by density fluctuations, which implies that the fundamental
assumption of VGT is not valid any more. In addition, when
self-gravity is important, then the velocity structures will be
influenced by additional effects that would lead to VGT
analysis yielding inaccurate results (e.g., Luk et al. 2022).
Nevertheless, while the importance of velocity fluctuations on
the gas emission in thin velocity channels is still under debate,
a number of simulations have demonstrated that magnetic fields
can play an important role in shaping the morphology of gas
emission in velocity channel maps (Soler et al. 2013; Inoue &
Inutsuka 2016; Soler & Hennebelle 2017). Moreover, an
increasing amount of observational evidence shows that the
morphology of the ISM is regulated by magnetic fields,
including the atomic cold neutral medium (Clark et al.
2014, 2015) and molecular gas (Soler 2019; Heyer et al.
2020), including via polarized dust emission (Soler et al. 2017).
Consequently, we introduce a deep learning method, i.e., via
convolutional neural networks (CNNs), to examine the
morphology of spectroscopic data and infer the magnetic field
directions in simulations and observations of the ISM.

CNNs have gained increasing popularity among astronomers
and are widely used for a variety of tasks, including galaxy
morphology prediction (Dieleman et al. 2015), exoplanet
detection (Pearson et al. 2018), and stellar feedback bubble
identification (Van Oort et al. 2019). CNNs learn the
morphology and extract the feature of objects by applying a
series of kernels to convolve with the input data. CNNs are
proficient at identifying and outlining objects from the input
data. Xu et al. (2020a, 2020b) developed a convolutional
approach to structure identification-3D (CASI-3D) based on
CASI-2D (Van Oort et al. 2019) to identify stellar feedback
bubbles and protostellar outflows in position-position–velocity
(PPV) molecular line spectral cubes. Xu et al. (2020a, 2020b)
trained CASI-3D on synthetic molecular line spectral cubes and
applied it to real observations. They identified all previously
visually identified feedback structures in nearby molecular
clouds (Xu et al. 2022). Bai et al. (2021) applied CNNs to infer
the radial component and the transverse magnetic field of the
Sun from 2D photospheric continuum images and achieved a
low uncertainty ∼10%. This demonstrates the ability of CNNs
to infer magnetic fields based on the morphology of emission
and/or absorption. Peek & Burkhart (2019) applied CNNs to
distinguish between sub-Alfvénic and super-Alfvénic turbu-
lence from the Fourier phase space of a density slice from

simulations and achieved a high accuracy >98%. This work
indicates that there is a significant amount of information in
images, e.g., in Fourier phase space, compared to just a single
power spectrum. The results from Peek & Burkhart (2019) and
Bai et al. (2021) indicate that CNNs are able to retrieve more
information, e.g., magnetic fields information at the pixel level,
from PPV cubes.
In this paper, we adopt the deep learning method CASI-3D to

infer the orientation of magnetic fields in sub-/trans-Alfvénic
turbulent clouds from molecular line emission. We describe
CASI-3D and how we generate the training set from synthetic
observations in Section 2. Here we also introduce the CO
observations and Planck dust polarization data. In Section 3,
we evaluate our CNN models in predicting the orientation of
magnetic fields on synthetic observations and present the
performance of CNN models on real observations. We
summarize our results and conclusions in Section 4.

2. Data and Method

2.1. Magnetohydrodynamics Simulations

We conduct ideal MHD simulations with ORION2 (Li et al.
2012) to model sub- and trans-Alfvénic turbulent clouds. The
simulation box is 5× 5× 5 pc3 with periodic boundary conditions
and without self-gravity. The magnetic field is initialized along the
z-direction. We treat the gas as an isothermal ideal gas with an
initial cloud temperature of 10 K. The three-dimensional Mach
number is 10.5, which places the simulated cloud on the line
width–size relation, R0.721D pc

0.5s = km s−1 (McKee &
Ostriker 2007). The calculations use a base grid of 2563.
We conduct simulations with two sets of virial parameters

( )R GM5 vvir
2a s= : αvir= 1, which corresponds to a mean

H-nuclei density of nH= 1046 cm−3 and total mass of 3767Me,
and αvir= 2, which corresponds to a mean H-nuclei density of
nH= 523 cm−3 and total mass of 1884Me. Furthermore, for each
value of αvir we run two sets of simulations with different mass-to-
flux ratios μΦ=Mgas/MΦ= 2πG1/2Mgas/(BL2), μΦ = 1 and 2,
which yields an Alfvén mach number between 0.6 and 1.7,
indicating a sub-/trans-Alfvénic turbulent cloud. We initialize the
density and velocity fields by driving the simulation gas for two
Mach crossing times without gravity, but adding random large-
scale perturbations with Fourier modes 1� k� 2 (Mac
Low 1999). We list the physical properties of the simulations in
Table 1.

2.2. Training Sets

We apply the publicly available radiative transfer code
RADMC-3D (Dullemond et al. 2012) to model 12CO (J= 1− 0)
and 13CO (J= 1− 0) line emission of the turbulent clouds. We
adopt the simulation density, temperature, and velocity
distributions as the RADMC-3D inputs. In the radiative transfer,
we assume that H2 is the only collisional partner of CO. We
take 62 as the fiducial abundance ratio between 12CO and
13CO and 10−4 as the abundance ratio between 12CO and H2.
Figure 1 shows the synthetic 13CO (1−0) integrated intensity

and the POS magnetic field direction of the MHD simulation
with different Alfvén mach numbers. Since the magnetic fields
are initialized along the z-axis in these MHD simulations, the
POS magnetic field directions viewed along the z-axis are less
ordered. To reduce the impact of the turbulence dominant
pattern rather than that regulated by magnetic fields, we rotate
the turbulent box following Euler angles (α, β, γ) and conduct

Table 1
Physical Properties of the Simulationsa

Model αvir A μPhi Nseed

Turb1 1 1.24 2 2
Turb2 1 0.62 1 2
Turb3 2 1.75 2 2
Turb4 2 0.87 1 2

Note.
a Model name, virial parameters, Alfvén mach number, mass-to-flux ratio, and
the number of different turbulent driving patterns.
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Figure 1. Synthetic 13CO (1−0) integrated intensity overlaid with the direction of magnetic fields. Three columns are three different viewing directions. Four rows
represent simulations with different Alfvén mach numbers, as labeled.
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the radiative transfer from the new axes. We choose three sets
of Euler angles (15°, 15°, 15°), (30°, 30°, 30°), and (45°, 45°,
45°). Figure 2 shows the synthetic 13CO integrated intensity
and the POS magnetic fields directions of the MHD simulations
rotated by Euler angles of (45°, 45°, 45°).

To enhance the diversity of physical and chemical conditions
for the training set, we generate synthetic observations where
both 12CO and 13CO abundances are reduced by a factor of 10.
We also increase the training set by considering thin clouds
with thicknesses between 0.7 and 5 pc using the same method
in Xu et al. (2020a). We also conduct synthetic observations
with different physical scales, i.e., a “zoomed-in” synthetic
observation with an image size of 2.5 pc× 2.5 pc, and 1.25
pc× 1.25 pc, and a zoomed-out synthetic observation with an
image size of 5 pc× 5 pc. In addition to the different image
sizes, we resample the synthetic observations with two different
velocity resolutions: at low resolution with an interval of 0.25
km s−1; and at high resolution with an interval of 0.125 km s−1.
Additionally, we rotate the images randomly from 0° to 360°
and randomly shift the central velocity of the cubes from −3 to
+3 km s−1. Considering the optically thick emission of 12CO,
we adopt 13CO emission as the training set for CASI-3D, which
better outlines the morphology of the clouds. It is worth noting
that the CASI-3D model cares about the relative intensity of the
data cube and does not require the data cube from a specific
molecule. It is able to handle spectroscopic data from different
molecules or atoms.

We then derive the magnetic field directions of the gas at
each velocity channel from the simulation data. We first bin the
LOS gas into velocity channels and calculate the mass-
weighted magnetic field direction in each channel. The input
data for CASI-3D model is the PPV 13CO data cube, and the
target is the corresponding PPV magnetic field directions. In
total we generate 11,540 synthetic cubes: 6924 as a training set,
2308 as a test set, and 2308 as a validation set.

2.3. CASI-3D: Inferring Orientation of Magnetic Fields

In this section, we introduce a new CASI-3D model to predict
the orientation of magnetic fields from molecular line emission.
We adopt the same CNN architecture, CASI-3D, from Xu et al.
(2020a). CASI-3D is an autoencoder with both residual networks
(He et al. 2016) and a “U-net” (Ronneberger et al. 2015). We
adopt the same hyperparameters as Xu et al. (2020a, 2020b).

2.4. Observations

2.4.1. 12CO and 13CO Data

The 12CO (J= 1− 0) and 13CO (J= 1− 0) lines were
observed simultaneously in surveys of Taurus between 2002
and 2005 using the 13.7 m Five College Radio Astronomy
Observatory (FCRAO) Telescope (Narayanan et al. 2008). The
12CO and 13COmaps are centered at α(2000.0)= 04h32m44 6,

( )2000.0 24 25 13. 08d =  ¢  covering an area of 98 deg2. The
main beam of the antenna pattern has an FWHM of 45″ for
12CO and 47″ for 13CO. The data are obtained on the fly, but
they are resampled onto a uniform 23″ grid (Ridge et al. 2006).
The Taurus data has an rms antenna temperature of 0.28 K for
12CO and 0.125 K for 13CO. There are 80 and 76 channels with
0.26 and 0.27 km s−1 spacing for 12CO and 13CO, respectively.
The velocity range of the Taurus data spans −5.1–14.9 km s−1.

2.4.2. Planck 353 GH Dust Polarization Map

We adopt the data from the Planck 3rd Public Data Release
(Planck Collaboration et al. 2020). We infer the magnetic field
orientation from the dust polarization angle:

( ) ( )U Q
1
2

arctan 2 ,
2

, 1Bf
p

= - +

where Q and U are the Stokes parameters of polarized dust
emission, and arctan 2 is the two arguments arctangent function
that returns the angle in the range (-π,π). The maps of Q and U
are initially at 4¢ 8 resolution in HEALPix format with an
effective pixel size of 1¢ 07.

3. Results

3.1. Evaluation of CASI-3D Performance on Synthetic
Observations

In this section, we use the synthetic data to assess how
accurately magnetic field orientations can be determined from
molecular line emission.
We evaluate the performance on the test samples with

different Alfvén mach numbers that are not included in the
training set. Figure 3 shows the performance of CASI-3D to
infer the orientation of magnetic fields on four clouds with
different Alfvén mach numbers. The “true” magnetic field
directions are derived by a mass-weighted averaging of the
POS magnetic field direction along each LOS. It is worth
noting that CASI-3D predicts the POS magnetic field direction at
each velocity channel. We average the CASI-3D predicted POS
magnetic field on each LOS by emission intensity weighting.
In addition, we evaluate the POS magnetic field direction

calculated from the VGT method. We follow the same strategy
in Soler et al. (2019) and Heyer et al. (2020) to calculate the
gradient of the intensity of each velocity channel. The magnetic
field direction is estimated here as the angle of the vector
normal to the gradient vector, i.e., B,VGT Gradient 2

F = F + p .
Similarly, we average the VGT predicted POS magnetic field
on each LOS by emission intensity weighting. As discussed in
Luk et al. (2022), the VGT inferred POS magnetic field
direction might be significantly different depending on the
choice of velocity range. To make fair comparison in this work,
we do not choose specific velocity ranges, but include all
channels for the result from VGT and CASI-3D.
As shown in Figure 3, CASI-3D is able to predict the

magnetic field orientation with high accuracy in sub-Alfvénic
clouds. When the magnetic field becomes weaker, the cloud
transitions to being trans-Alfvénic, where turbulence plays a
more significant role in modifying the morphology of the cloud
as well as the magnetic field lines. Although CASI-3D is still
able to correctly infer roughly half of the magnetic field
direction in trans-Alfvénic clouds, it fails at some places where
magnetic fields are not the major factor regulating the
morphology of the cloud. On the other hand, VGT predicts
the magnetic field directions with a lower accuracy, even in
sub-Alfvénic clouds. VGT is likely sensitive to the local
intensity fluctuations, which might not truly catch the larger
scale morphology. This is the reason why VGT requires large
block smoothing on the intensity before calculating, which
yields a much lower resolution than that from machine-learning
approaches.
To better visualize the prediction of a full PPV cube, we

show the channel-by-channel prediction by CASI-3D on a trans-
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Figure 2. Same as Figure 1, but on a rotated simulation with Euler angles of (45°, 45°, 45°).
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Figure 3. Performance of CASI-3D and VGT to infer the orientation of magnetic fields of four clouds with different Alfvén mach numbers. The background is the
integrated 13CO emission. The black lines indicate the true POS magnetic field directions derived from simulations. The gray lines in the middle column indicate the
POS magnetic field directions predicted by CASI-3D. The gray lines in the right column indicate the POS magnetic field directions calculated by VGT.
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Figure 4. Performance of CASI-3D and VGT to infer the orientation of magnetic fields across multiple velocity channels on a trans-Alfvénic cloud with 1.24A = .
The background is the 13CO emission at each velocity channel. The black lines indicate the true POS magnetic field directions at each velocity channel. The gray lines
in the middle column indicate the POS magnetic field directions predicted by CASI-3D. The gray lines in the right column indicate the POS magnetic field directions
calculated by VGT.
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Alfvénic cloud with 1.24A = in Figure 4. It is obvious that
even at the same location the magnetic field direction can be
different at different velocities. Neither CASI-3D nor VGT is
able to perfectly infer the magnetic field direction at each
velocity. However, it is noticeable that CASI-3D prediction has
more agreement with the true direction than that of VGT,
indicating better performance of CASI-3D than VGT.

To quantify the performances of CASI-3D and VGT, in
Figure 5 we present scatter plots between the true magnetic
field directions (ΦTrue) and the predicted ones by CASI-3D
(ΦCASI) and by VGT (ΦVGT). The scatter between ΦTrue and
ΦCASI is smaller and closer to the one-to-one line than that
between ΦTrue and ΦVGT. We also show the histogram of the
angle difference between ΦTrue and ΦCASI, denoted as
δCASI−3D, and also the histogram of the angle difference
between ΦTrue and ΦVGT, denoted as δVGT. It is obvious that
δCASI−3D has a smaller dispersion than δVGT for all different
Alfvén mach numbers. The dispersion of δCASI−3D is the
smallest for sub-Alfvénic regions, but becomes larger for trans-

Alfvénic regions. We summarize the statistical results in
Table 2.
We further examine the performance of CASI-3D on synthetic

observations of other simulations (Cho & Lazarian 2003;
Burkhart et al. 2009) run by a different code (Cho &
Lazarian 2002) in the Appendix. We find that CASI-3D is able
to robustly predict magnetic field directions across different
sub-Alfvénic simulations with low uncertainties (15°).

3.2. CASI-3D Performance on a Trans-Alfvénic Region in
Taurus

In this section, we evaluate the CASI-3D performance in the
analysis of observational data by comparing the CASI-3D
prediction with the dust polarization predicted magnetic field
direction. As we discussed above, our CASI-3D model is mainly
trained on sub- and trans-Alfvénic clouds. Consequently, we
aim to find a sub- and trans-Alfvénic region with molecular line
emission data as our test sample. The Taurus striations, which
were first presented by Goldsmith et al. (2008) and discussed

Figure 5. First column: scatter plots between the true magnetic field directions ΦTrue and the CASI-3D predicted directions ΦCASI for the four clouds with different
Alfvén mach numbers, as labeled in each row. Second column: scatter plots between the true magnetic field directions ΦTrue and the velocity channel gradient (VGT)
predicted directions ΦVGT. Third column: histogram of the angle difference between ΦTrue and ΦCASI. Fourth column: histogram of the angle difference between ΦTrue
and ΦVGT.
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by Heyer et al. (2016), are likely sub-Alfvénic. Heyer et al.
(2016) proposed that the striations are caused by either the
Kelvin–Helmholtz instability or magnetosonic waves propagat-
ing, both of which are common in sub-Alfvénic clouds.

Figure 6 shows the 12CO integrated intensity of the Taurus
striations. We downsample the 12CO data by a factor of 3 to
match the pixel resolution of Planck. We also show the
magnetic field orientation inferred from Planck dust polariza-
tion in Figure 6. We apply the CASI-3D model to the 12CO cube
of this sub-Alfvénic region as described in Section 2.4.1. We
show the integrated CASI-3D prediction that is averaged over
each line of sight by emission weighting in Figure 6. We also
show the predicted magnetic field directions by VGT in
Figure 6.

It is clear that the CASI-3D prediction agrees with the dust
polarization inferred magnetic direction at most locations.
There are some localized regions of misalignment where the
dust polarization inferred magnetic direction changes signifi-
cantly. CASI-3D is not sensitive to these small scale fluctuations.
CASI-3D predicts the magnetic field direction of each pixel by
learning the morphology from it and its surroundings.
Consequently, CASI-3D tends to predict a smoother magnetic
field direction without sharp fluctuations, which is a limitation
of this machine-learning method. On the other hand, the
prediction by VGT has a larger deviation from the dust
polarization inferred magnetic direction.

To quantify the performance of CASI-3D and that of VGT, in
Figure 7 we present scatter plots between the dust polarization
inferred magnetic direction ΦPlanck and the predicted ones by
CASI-3D ΦCASI, and by VGT ΦVGT. It is clear that the scatter
between ΦPlanck and ΦCASI is closer to the one-to-one line than
that between ΦPlanck and ΦVGT. We show the histogram of the
angle difference between ΦPlanck and ΦCASI, denoted as
δCASI−Planck, and also the angle difference between ΦPlanck and
ΦVGT, denoted as δVGT−Planck. It is clear that CASI-3D
prediction is closer to the dust polarization inferred magnetic
direction. The dispersion of δCASI−Planck is 9°.5, which is much
smaller than the dispersion of δVGT−Planck, which is 28°.5.

It is worth noting that there are effects that can lead to ΦPlanck
yielding an inaccurate estimate of magnetic field direction in
CO-emitting molecular gas due to the contaminating effects of
polarized dust emission from atomic regions or “CO-dark”

molecular regions along the LOS. It has long been known that
such regions contain dust. For example, Joncas et al. (1992)
found spatial correlations between H I emission and infrared
circus in filamentary clouds. Planck Collaboration et al. (2011)
carried out a more systematic study on the correlation between
dust emission and H I emission over 800 deg2 at high Galactic
latitudes, and found that dust emission at lower column
densities (�2× 1020 cm−2) is well correlated with H I
emission. This indicates that in such diffuse regions the
hydrogen is predominantly in the neutral atomic phase where
12CO is absent, but dust still exists. Moreover, it is also known
that there are significant amounts of molecular gas that are dark
in 12CO emission (Grenier et al. 2005; Xu et al. 2016) due to

Figure 6. Performance of CASI-3D and VGT to infer the orientation of magnetic fields of the sub-Alfvénic region in Taurus. The background is the integrated 12CO
emission. The black lines indicate the POS magnetic field directions calculated from Planck dust polarized emission. The gray lines in the middle column indicate the
POS magnetic field directions predicted by CASI-3D. The gray lines in the right column indicate the POS magnetic field directions calculated by VGT.

Figure 7. Upper left: scatter plot between the Planck dust polarization inferred
magnetic field directions ΦPlanck and the CASI-3D predicted directions ΦCASI for
the sub-Alfvénic region in Taurus. Lower left: scatter plot between the Planck
dust polarization inferred magnetic field directions ΦPlanck and the VGT
predicted directions ΦVGT. Upper right: histogram of the angle difference
between ΦPlanck and ΦCASI. Lower right: histogram of the angle difference
between ΦPlanck and ΦVGT.
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photodissociation of CO (e.g., Hollenbach & Tielens 1999) or
destruction by cosmic rays (e.g., Bisbas et al. 2015, 2021). Xu
et al. (2016) found that the dark molecular gas fraction can be
up to 80% at AV∼ 1 mag in local Galactic clouds. Thus, perfect
agreement between dust polarization based and 12CO based B-
field measurements is not expected in general due to LOS dust
contamination. This effect could help explain the systematic
offset of about −13° that is seen between ΦCASI and ΦPlanck.

3.3. CASI-3D Performance on the Full Taurus 12CO and
13COMap

In this section, we apply our CASI-3D model to the full
Taurus 12CO and 13COmap. We compare the CASI-3D
predicted magnetic field directions with the dust polarization
predicted magnetic field directions.

Figures 8 and 9 show the performance of CASI-3D to predict
magnetic field directions on the full Taurus 12CO and

13CO emission data. We also show the magnetic field directions
inferred by VGT for comparison. Note that our current CASI-3D
model is only trained on sub- and trans-Alfvénic turbulent
simulations, which do not include self-gravity. Consequently, if
there is self-gravity or other dynamical processes, such as
feedback or large-scale converging gas flows, CASI-3D is not
able to correctly infer the direction of magnetic fields.
However, if CASI-3D predicted magnetic field directions are
similar to those inferred by Planck dust polarized emission, it is
likely that this region is closer to the trans-Alfvénic regime,
indicating relatively strong magnetic field strengths. We
highlight some of these regions in red boxes in Figures 8 and
9, where CASI-3D inferred magnetic field direction is very
similar to that inferred from Planck dust polarized emission.
To better evaluate the performance of CASI-3D we show the

angle difference between the CASI-3D predicted magnetic field
directions and those inferred by Planck dust polarized emission
in Figures 10 and 11. In most regions, the angle difference

Figure 8. Performance of CASI-3D and VGT to infer the orientation of magnetic fields of the full Taurus map. The background is the integrated 12CO emission. The
black lines indicate the POS magnetic field directions calculated from Planck dust polarized emission. The gray lines in the left panel indicate the POS magnetic field
directions predicted by CASI-3D. The gray lines in the right panel indicate the POS magnetic field directions calculated by VGT. The red boxes highlight some regions,
where CASI-3D inferred magnetic field direction is similar to that by Planck dust polarized emission.

Figure 9. Same as Figure 8, but for 13CO.
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between the CASI-3D predicted magnetic field directions and
those inferred by Planck dust polarized emission, denoted as δ
(CASI− Planck), is less than 20°, as shown in the shadowed
region in Figures 10 and 11. This indicates that self-gravity is
likely not dominant in these regions. On the other hand, in the
upper right panel of Figures 10 and 11, we notice that in some
regions the magnetic field directions inferred by CASI-3D are
dissimilar (�45°), even perpendicular, to those inferred by dust
polarization. This is likely caused by self-gravity or large-scale
gas flows, where the gas morphology is not particularly
regulated by magnetic fields (e.g., Otto et al. 2017; Luk et al.

2022). It is worth noting that not all high column density
regions show large differences between CASI-3D predicted
magnetic field directions and those inferred by Planck dust
polarized emission. As shown in the scatter plots in Figures 10
and 11, a significant amount of pixels with small δ
(CASI− Planck) also have strong integrated intensities.
The magnetic field directions inferred by CASI-3D on 12CO

and 13CO are mostly consistent, especially in the red boxes in
Figures 8 and 9. This demonstrates the robustness of machine
learning to handle different molecular emission data. Although
12CO is optically thick near the central velocity channels, CASI-

Figure 10. Upper left: integrated 12CO emission overlaid with gray shadows indicating the location where CASI-3D predicted magnetic field directions are similar to
those inferred by Planck dust polarized emission. Upper right: angle difference between the CASI-3D predicted magnetic field directions and those inferred by Planck
dust polarized emission. Lower left: distribution of the angle difference between the CASI-3D predicted magnetic field directions and those inferred by Planck, and the
angle difference between velocity channel gradient (VGT) inferred magnetic field directions and those inferred by Planck. Lower middle: scatter plot between the
Planck dust polarization inferred magnetic field directions ΦPlanck and the CASI-3D predicted directions ΦCASI. Lower right: scatter plot between the Planck dust
polarization inferred magnetic field directions ΦPlanck and the VGT predicted directions ΦVGT. The color in the scatter plots indicate the integrated intensity of 12CO at
each pixel.

Table 2
Statistical Results of the Performance of CASI-3D and VGT

Model A
δCASI−3D δVGT

(° ) (° )

Mean Median Dispersion Mean Median Dispersion
Turb1 1.24 −6.1 −5.2 15.8 7.6 7.9 28.3
Turb2 0.62 −6.3 −6.2 4.8 14.6 14.2 23.0
Turb3 1.75 18.6 18.4 28.7 13.8 15.3 35.1
Turb4 0.87 −1.8 −1.5 2.8 15.8 15.7 16.1
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3D is still able to capture their morphology to infer the magnetic
field directions (however, for discussion of the effect of optical
depth, see, e.g., Heyer et al. 2020; Luk et al. 2022). When
comparing the magnetic field directions inferred by VGT and
that by Planck dust polarized emission, we notice significant
fluctuations on small scales. This in turn proves that VGT
likely requires large subblock averaging to obtain a robust
result. Consequently, it is almost impossible to derive a high-
resolution magnetic field map by VGT, but possible by CASI-
3D. The current Taurus 12CO and 13CO observation has a pixel
resolution of 23″, which is three times higher than that of the
Planck dust emission map (1 07). In the future, we will apply
the CASI-3D model to the FUGIN (FOREST Unbiased Galactic
plane Imaging survey with the Nobeyama 45 m telescope)
project (Umemoto et al. 2017), which will yield maps that are a
factor of 9 higher resolution than those from Planck.

4. Conclusions

We have trained the deep learning method CASI-3D to predict
the orientation of magnetic fields in sub- and trans-Alfvénic
turbulent clouds from molecular line emission. We have tested
the CASI-3D performance on synthetic test samples and real
observational data. Our main findings are as follows:

1. CASI-3D is able to predict the magnetic field directions
from molecular line emission at a pixel level with higher
accuracy than that from VGT for sub- and trans-Alfvénic
clouds.

2. CASI-3D achieves higher accuracy in sub-Alfvénic clouds
(10°) than that in trans-Alfvénic clouds (30°). This is
consistent with our intuition, where stronger magnetic
fields play a more important role in regulating the
morphology of clouds.

3. CASI-3D is able to infer the magnetic field direction of a
sub-Alfvénic region in Taurus from 12CO emission. The
prediction is consistent with the Planck dust polarized
emission inferred magnetic field directions, which has a
systematical offset of −13° and a dispersion of 9.5°.

4. We have applied CASI-3D to the full Taurus 12CO and
13COmaps, yielding B− field morphology information at
a three times higher angular resolution than the Planck-
derived map. We find that in many regions CASI-3D
inferred magnetic field directions are similar to those
inferred from Planck dust polarized emission. This
implies that much of the Taurus region is in the sub-
Alfvénic regime, i.e., subject to relatively strong,
dynamically important magnetic fields.
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acknowledges support from an ESO Ph.D. studentship. J.C.T.
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discussions. The authors acknowledge Research Computing at
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Figure 11. Same as Figure 10, but for 13CO.

12

The Astrophysical Journal, 942:95 (15pp), 2023 January 10 Xu, Law, & Tan



resources and technical support that have contributed to the
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Appendix
Examination of CASI-3D Performance on Different

Simulations

In this section, we evaluate the performance of CASI-3D on
the synthetic observations of the simulations from Cho &
Lazarian (2003) and Burkhart et al. (2009). The simulations
adopt a second-order-accurate hybrid essentially nonoscillatory
(ENO) scheme (Cho & Lazarian 2002) to solve the ideal MHD
equations in a periodic box. The turbulence is driven
solenoidally at wave scale k equal to about 2.5, which is
different to our simulation in Section 2.1. In our simulations,
we drive turbulence with 1� k� 2, and 2

3
of the total power is

in solenoidal motions and the rest 1
3
is in compressive motions.

This indicates no bias of imposing solenoidal or compressive
modes (Dubinski et al. 1995). We adopt the run with 7S =

and 0.7A = . We assume a kinetic temperature of 20 K,
which yields a sound speed of 0.27 km s−1 and a turbulent
velocity of 1.86 km s−1. We assume a mean density of
523 cm−3, which is the same as our runs. This indicates a mean
magnetic field strength of 12 μG. We conduct radiative transfer
following exactly the same process as Section 2.2 to generate
12CO and 13CO emission.
Figure 12 shows the performance of CASI-3D to infer the

orientation of magnetic fields on the synthetic 12CO data of
ENO simulations. We present scatter plots between the true
magnetic field directions ΦTrue and the predicted ones by CASI-
3D ΦCASI, and by VGT ΦVGT in Figure 13. We also show the
channel-by-channel prediction by CASI-3D in Figure 14. To
sum up, the dispersion of δCASI is 10°.3, which is much smaller
than the dispersion of δVGT, which is 24°.7 on the synthetic
ENO data sets. CASI-3D performs robustly in predicting
magnetic field directions across different simulations, which
provides confidence to apply CASI-3D to other observa-
tional data.

Figure 12. Performance of CASI-3D and VGT to infer the orientation of magnetic fields on the synthetic 12CO data of ENO simulations.

Figure 13. Upper left: scatter plot between the true magnetic field directions ΦTrue and the CASI-3D predicted directions ΦCASI for the synthetic 12CO data of ENO
simulations. Lower left: scatter plot between the true magnetic field directions ΦTrue and the VGT predicted directions ΦVGT. Upper right: the histogram of the angle
difference between ΦPlanck and ΦCASI. Lower right: the histogram of the angle difference between ΦPlanck and ΦVGT.
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Figure 14. Performance of CASI-3D and VGT to infer the orientation of magnetic fields across multiple velocity channels on the synthetic 12CO data of ENO
simulations. The background is the 12CO emission at each velocity channel. The black lines indicate the true POS magnetic field directions at each velocity channel.
The gray lines in the middle column indicate the POS magnetic field directions predicted by CASI-3D. The gray lines in the right column indicate the POS magnetic
field directions calculated by VGT.
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