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A B S T R A C T 
Compression in giant molecular cloud (GMC) collisions is a promising mechanism to trigger the formation of massive star 
clusters and OB associations. We simulate colliding and non-colliding magnetized GMCs and examine the properties of pre- 
stellar cores, selected from projected mass surface density maps, including after synthetic ALMA observations. We then examine 
core properties, including mass, size, density, velocity, velocity dispersion, temperature, and magnetic field strength. After 4 Myr, 
∼1000 cores have formed in the GMC collision, and the high-mass end of the core mass function (CMF) can be fit by a power-law 
d N /dlog M ∝ M −α with α $ 0.7, i.e. relatively top heavy compared to a Salpeter mass function. Depending on how cores are 
identified, a break in the power law can appear around a few ×10 M &. The non-colliding GMCs form fewer cores with a CMF 
with α $ 0.8–1.2, i.e. closer to the Salpeter index. We compare the properties of these CMFs to those of sev eral observ ed samples 
of cores. Considering other properties, cores formed from colliding clouds are typically warmer, have more disturbed internal 
kinematics, and are more likely to be gravitational unbound, than cores formed from non-colliding GMCs. The dynamical state 
of the protocluster of cores formed in the GMC–GMC collision is intrinsically subvirial but can appear to be supervirial if the 
total mass measurement is affected by observations that miss mass on large scales or at low densities. 
Key w ords: ( ma gnetohydrodynamics ) MHD – methods: numerical – stars: formation – ISM: clouds. 

1  I N T RO D U C T I O N  
Collisions between giant molecular clouds (GMCs) have been pro- 
posed as a mechanism for triggering star formation, especially cluster 
formation and massive star formation (e.g. Scoville, Sanders & 
Clemens 1986 ), with the collision quickly assembling large amounts 
of gas in a compact region. Simulations of galactic discs have 
found that these events can occur on time-scales much shorter 
( ∼ 10 − 20 per cent ) than the local orbital period (Tasker & Tan 
2009 ; Dobbs, Pringle & Duarte-Cabral 2015 ; Li et al. 2018 ), and 
it has been proposed that collisions could explain the relationship 
between the star formation rate and the gas mass surface density 
divided by orbital time, i.e. the ‘Dynamical Kennicutt-Schmidt’ 
relation (T an 2000 ; T asker & T an 2009 ; T an 2010 ; Suwannajak, 
Tan & Leroy 2014 ). Observations of molecular gas around some 
local massive young stellar clusters, in particular via the analysis of 
CO channel maps, have identified a number of candidates for cloud–
cloud collisions (e.g. Furukawa et al. 2009 ; Fukui et al. 2014 ; Fujita 
et al. 2017 ; Bisbas et al. 2018 ). 

In this paper, the eighth in a series investigating numerical models 
of magnetized GMC collisions, we present our highest resolution 
simulations to date, which enable us to identify structures that may be 
comparable with pre-stellar cores (PSCs). These have been defined 
" E-mail: chiajung.hsu@chalmers.se 

theoretically to be self-gravitating gas structures that collapse to 
a central disc that forms a single or small N multiple by disc 
fragmentation (e.g. Tan et al. 2014 ). This core mass function (CMF) 
may have a direct connection to the stellar initial mass function (IMF) 
(e.g. see re vie w by Offner et al. 2014 ). 

Our goal in this paper is to extract CMFs from our simulation 
outputs with methods that closely follow those that are used in 
observational studies. We will then compare our simulated CMFs 
with those derived in observed regions (e.g. Cheng et al. 2018 ; 
Liu et al. 2018 ; O’Neill et al. 2021 ) to examine how well or how 
poorly they agree. We also examine how the CMFs depend on 
certain simulation and analysis properties, especially colliding versus 
non-colliding GMCs, evolutionary stage, choice of dendrogram 
parameters, use of a density threshold to define material belonging 
to a core, and ALMA-like spatial filtering. 

We provide a brief summary of the initial conditions and numerical 
methods in Section 2 and then present our results in Section 3 . We 
summarize in Section 4 . 
2  N U M E R I C A L  SI MULATI ONS  
The simulations presented here are based on the model presented in 
Wu et al. ( 2017a , hereafter Paper II), with updates to the heating and 
cooling functions discussed in Christie, Wu & Tan ( 2017 , hereafter 
Paper IV). Here, we outline the main features of this set-up but refer 
the reader to these papers for more detailed descriptions. Using the 
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Figure 1. Global evolution of cloud structures. Here, the mass surface density, as viewed along the z ′ axis, is shown for the colliding (top) and non-colliding 
(bottom) cases at 2, 3, and 4 Myr (left to right). The mass-weighted magnetic field orientation is o v erlaid with the texture from line-integral-convolution method. 
Enzo magnetohydrodynamics code (Wang, Abel & Zhang 2008 ; 
Wang & Abel 2009 ; Brummel-Smith et al. 2019 ) with a simulation 
domain of (128 pc ) 3 , two molecular clouds of radius R GMC = 20 pc 
are initialized with an impact parameter of b = 0.5 R GMC . The clouds 
start with a uniform particle number density n particle = 50 cm −3 , 
which, given an adopted value of n He = 0.1 n H , corresponds to an 
H nuclei number density of n H = 83 . 3 cm −3 (previous papers in this 
series mistakenly listed n H = 100 cm −3 for this value). The density 
of ambient gas is set to be 10 times smaller than that of the GMCs, 
i.e. n H = 8 . 3 cm −3 . The clouds are embedded in a background FUV 
radiation field equi v alent to four Habings, i.e. G 0 = 4, which is 
attenuated by an approximate local density–A V relation. The cosmic 
ray ionization rate yields a primary ionization rate of 10 −16 s −1 , 
applied uniformly through the domain. A uniform magnetic field 
with strength B 0 = 10 µG is initialized with an orientation of 60 ◦
relative to the collision axis. These initial conditions were considered 
the fiducial colliding and non-colliding cases in the previous papers 
in this series, although stronger field cases have also been considered 
by Wu et al. ( 2020 ). 

As in previous papers, we consider both colliding and non- 
colliding cases. In both, each cloud is initialized with a turbulent 
velocity field with a three-dimensional power spectrum following the 
relation v 2 k ∝ k −4 and an initial sonic Mach number for the turbulence 
of M s = 23 (assuming T = 15 K). An identical velocity field to that 
used in Papers II and IV is adopted. To initialize the colliding case, 
the gas is given an additional velocity contribution of − 1 

2 sgn ( x) v rel ̂  x , 
where v rel = 10 km s −1 is the relative velocity between the clouds. 
While no additional velocity contribution is included in the non- 
colliding case, some small relative motions between the clouds do 

develop due to mutual gravitational attraction, but these do not lead 
to collision during the time frame of the simulations. 

The base resolution has been increased to 256 3 (from 128 3 in 
Papers II and IV) with 5 levels of refinement using the requirement 
that the Jeans length be resolved by 8 zones, resulting in a grid size 
of 0 . 015625 pc , i.e. 3200 au, for the most refined grid. This is a factor 
of four increase in linear resolution o v er P aper IV and a factor of 
eight increase o v er P aper II. As in Papers II and IV, the simulations 
are run to 4 Myr. 

We note some caveats and limitations of the simulations here. 
The Jeans length is not resolved for very dense structures within 
the collapse. At a temperature of T = 10 K, the Jeans length λJ = 
( πc 2 s / [ Gρ]) 1 / 2 = ( πγ kT / [ Gρµm H ]) 1 / 2 is no longer resolved by 8 
zones at a density of n H $ 6 . 69 × 10 4 cm −3 if adopting γ = 7/5. 
Ho we ver, we note that since the simulations also include magnetic 
field support, the Jeans length should be replaced by the magneto- 
Jeans fragmentation scale, λMJ = [ π ( v 2 A cos 2 θ + c 2 s ) /Gρ] 1 / 2 , which 
depends on the orientation angle θ of the perturbation relative to the 
magnetic field. For perturbations oriented along the magnetic field, 
the fragmentation scale remains the Jeans scale. For perturbations 
perpendicular to the magnetic field, and assuming the magnetic field 
strength scales as B = 10( n H / 83 cm −3 ) 1 / 2 µG (with density here 
normalized to the initial n H in the clouds), the magneto-Jeans length- 
scale is resolved by 8 zones up to densities n H $ 5 . 59 × 10 6 cm −3 . 
This suppression of fragmentation limits the amount of artificial 
fragmentation associated with under-resolving the Jeans scale. 

In addition, the simulations do not include the formation of stars 
(via star particle creation; see Wu et al. 2017b , 2020 [Paper III, 
VII]), which is a deliberate choice to focus on PSCs and since the 
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Figure 2. Two-dimensional histogram distribution of the density and temperature. The colour indicates the mass distributed in that range. Panels are the results 
from 2, 3, and 4 Myr from left to right. (a) Top: colliding case and (b) bottom: non-colliding case. 
star formation process cannot be resolved and would need to rely on 
an uncertain sub-grid model. Thus, it is possible that cores build up 
to masses and densities at which, in reality, a star would already have 
formed inside. We will check this after the fact by comparing the core 
densities achieved with those in known PSCs. Furthermore, without 
star formation there is also no protostellar feedback, especially MHD 
outflo ws and radiati ve heating, both on the scale of the core and the 
surrounding clump. We discuss later how these simulation caveats 
should be considered in the interpretation of the results. 
2.1 Core Identification Method 
Our goal is to identify cores from the projected mass surface density 
map. To facilitate comparison with observational results, we follow 
the methods of Cheng et al. ( 2018 ) (see also Liu et al. 2018 ; O’Neill 
et al. 2021 ) for identifying cores from 2D images, based on the 
dendrogram algorithm implemented in the ASTR ODENDR O package 
(Rosolowsky et al. 2008 ). In our case, we analyse images of the 
mass surface density, (, of the simulated structures. In the abo v e 
observational studies, the analysis was done on ∼1.3 mm continuum 
images. Assuming that the continuum emission is due to optically 
thin thermal emission from dust having uniform temperature and 
emissivity properties, then the 1.3 mm continuum map has direct 
correspondence with our mass surface density map. Other types 
of observational studies estimate mass surface density via dust 
extinction (e.g. Butler & Tan 2012 ), which is independent of local 

temperature, although such maps have not yet been utilized to 
estimate the CMF. 

The dendrogram algorithm requires three main parameters: min- 
imum mass surface density, minimum increment of mass surface 
density, and minimum area. In the observational study of Cheng 
et al. ( 2018 ), the level of the continuum noise in their image 
that has ∼1 ′′ resolution (i.e. a FWHM beam diameter of about 
1 ′′ ) was 0.45 mJy beam −1 . In the study of Liu et al. ( 2018 ), the 
equi v alent noise le vel for a similar angular resolution image was 
about 0.2 mJy beam −1 . In O’Neill et al. ( 2021 ), the noise levels 
range from 0.13 to 1.38 mJy beam −1 , but most of them are lower 
than 0.5 mJy beam −1 . F or the fiducial assumptions of conv ersion of 
mm continuum flux into mass surface density (i.e. dust temperature 
of 20 K; gas to refractory component dust mass ratio of 141 (Draine 
2011 ); opacity per unit dust mass of κ1 . 3mm , d = 0 . 899 cm 2 g −1 (Os- 
senkopf & Henning 1994 )), 0.45 mJy beam −1 corresponds to ( = 
0 . 122 g cm −2 . The threshold for identifying cores in the observational 
studies was 4 σ , i.e. 0 . 49 g cm −2 , with an increment of 1 σ . The 
equi v alent thresholds in the study of Liu et al. ( 2018 ) are about 
a factor of two lower. Thus, when we examine the simulated core 
populations, we will also explore the effect on the CMF from varying 
( min from our fiducial value of 0.1–0.05 g cm −2 , thus spanning the 
range of these observational studies. In the fiducial case, we adopt 
a minimum mass surface density threshold ( min = 0 . 1 g cm −2 . We 
then search for fragmentation in increments of mass surface density 
δmin = 0 . 025 g cm −2 . 
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Figure 3. A zoomed-in view of the mass surface density of a dense region produced by the GMC–GMC collision. Cores identified by dendrogram are outlined 
with black contours. (a) Top left: dendrogram parameters for core identification are set to ( min = 0 . 1 g cm −2 , δmin = 0 . 025 g cm −2 , and A min = 2 pixels. (b) Top 
right: as (a) but with dendrogram parameters set to ( min = 0 . 05 g cm −2 , δmin = 0 . 0125 g cm −2 , and A min = 2 pixels. (c) Bottom left: as (a) but with dendrogram 
parameters set to ( min = 0 . 1 g cm −2 , δmin = 0 . 025 g cm −2 , and A min = 4 pixels. (d) Bottom right: as (a), including fiducial dendrogram paraemters, but with 
the image processes to yield an ALMA synthetic observation (see text). 

For the third parameter, we require that the minimum projected 
area, A min , of each core is at least two zones at the finest grid scale, i.e. 
an area of 2 . 44 × 10 −4 pc 2 . This choice of two contiguous pixels is 
equi v alent to 3.32 arcsec 2 when the source is at 2.5 kpc (as in the case 
of G286 studied by Cheng et al. 2018 ) or 0.83 arcsec 2 for sources 
at 5 kpc, typical of the most distant IRDCs in the sample of Liu 
et al. ( 2018 ). Ho we ver, these observational studies have employed a 
minimum core angular area of 0.5 beam areas in their fiducial cases, 
i.e. about 0.8 arcsec 2 , which, especially in the case of the more nearby 
G286 source, is smaller than we can achieve with the simulations. 
Moreo v er, these observational studies can detect down to this level 
of minimum area with no shape dependence, while the minimum 
areas of the cores detected in the simulated images are pixelated to 
have an axis ratio of 2:1. 

Given that the focus of the paper is on cores identified in projection, 
we consider mass-weighted quantities, i.e. 
〈 X 〉 M = 1 

M 
∫ 

d A ∫ X ρd s , (1) 
where A is the area of the core in projection, s is the normal 
along the line of sight, and M is the total mass of the considered 
structure. We will also consider cases where the material needs 

to be abo v e a threshold density to be counted as part of a core 
structure. 
2.2 ALMA Synthetic Obser v ation 
To make more direct comparison of our simulation results with 
observational studies, we generate synthetic ALMA observations, 
which we refer to as ‘ALMA filtered’ and then perform our den- 
drogram core-finding procedure on these images. To generate the 
synthetic observations, we produce a flux map at 1.3 mm, assuming 
optically thin thermal dust emission derived from mass surface 
density maps. For simplicity, we assume a temperature of 20 K, 
which is expected to be representative of the average temperature in 
protostellar cores (e.g. Zhang & Tan 2015 ) (note that our simulations 
do not include protostellar heating). An opacity per unit dust mass 
κ1 . 3 mm = 0 . 899 cm 2 g −1 (Ossenkopf & Henning 1994 ) is adopted, 
along with a gas-to-refractory component-dust ratio of 141 (Draine 
2011 ). These assumptions for temperature, opacity, and dust-to-gas 
mass ratio are the same as those made in the observational studies 
of Cheng et al. ( 2018 ), Liu et al. ( 2018 ), and O’Neill et al. ( 2021 ) 
for conv erting observ ed 1.3 mm flux into mass surface density. We 
assume a distance of 5 kpc and adopt an ALMA Band 6 compact 
configuration with an angular resolution of ∼1.5 ′′ , which corresponds 
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Figure 4. Same as Fig. 3 but now with a zoomed-in view of a dense region in the non-colliding case. 

Figure 5. The distribution of the ratio, λ, between the minor axes ( r minor ) 
and major axes ( r major ) for cores identified in the colliding (solid lines) and 
non-colliding simulations (dashed lines) at t = 4 Myr. Blue and orange lines 
show the results before and after ALMA filtering, respectively. 
to a linear resolution of about 7500 AU, i.e. roughly twice as large 
as the spatial resolution of the finest grid in our simulations. 

Then, the ALMA-filtered images were produced using the CASA 
software (McMullin et al. 2007 ): first, synthetic visibilities were 
created with the task simobserve. To compare with realistic observa- 

tions, we assume the same phase centre as the observational set-up 
for the protocluster G286 (Cheng et al. 2018 ), which is located at 
RA = 10:38:33, Dec. = −58:19:22. We perform a 3.54 s integration 
for each pointing with a 2 GHz bandwidth. The integration time 
helps us control the noise close to 0.025 g cm −2 , i.e. the fiducial 
1 σ increment used in dendrogram. The generated visibilities were 
then imaged and cleaned with the task simanalyze. To reduce the 
computational comple xity, we hav e selectiv ely sampled multiple 
regions of 768 × 768 pixels inside the map, which is equi v alent 
to ∼144 pc 2 . To a v oid missing dense cores in this region, we ha ve 
included all subregions with pixels above a threshold of 0.1 gcm −2 , 
which is a required condition for our fiducial core identification. 
These subre gions o v erlap with each other by at least 64 cells on 
each boundary to reduce to error of edges. In each sample region, 
the task have a maximum number iteration of 1 000 000 and an 
upper threshold of cleaning of 0.84 mJy. The final output of the tasks 
reported that the major and the minor beam sizes are ∼1.89 and 
1.54 arcsec. The outputs without the primary beam correction are 
used in the analysis as it has a flat noise profile. 
3  RESULTS  
3.1 Global evolution 
Fig. 1 shows the time evolution of both the colliding and non- 
colliding cases, with snapshots of mass surface density, (, shown at 
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Figure 6. Time evolution of the core mass function (CMF) in the GMC–GMC collision simulation and its dependence on dendrogram parameters and ALMA 
filtering. Left to right: CMFs at 2, 3, and 4 Myr. First row: CMFs found using minimum mass surface density ( min = 0 . 1 g cm −2 and minimum increment 
δmin = 0 . 025 g cm −2 . The minimum area varies from A min = 1 (cyan) and 2 (blue) to 4 (orange) pixels. The error bars indicate Poisson counting uncertainties. 
Second row: as first row but using ( min = 0 . 05 g cm −2 and δmin = 0 . 0125 g cm −2 . The value of A min varies from 1 (green) and 2 (purple) to 4 (brown) pixels. 
Third row: CMFs of the original simulation data (blue) and after ALMA filtering (red). 
2, 3, and 4 Myr. As in previous papers, visualization and analysis are 
done in a coordinate frame ( x ′ , y ′ , z ′ ) that is rotated by 15 ◦ in each of 
the θ and φ directions from the collision axis, which minimizes the 
morphology of a compressed thin sheet formed from the collision of 
the uniform ambient medium. 

The colliding case forms dense gas structures, including ‘cores’ 
(see below), at relatively early times, driven initially by compression 
at the collision interface between the two clouds. At first, this 
resembles the simulations of colliding flows (e.g. Chen & Ostriker 
2018 ), where core formation proceeds in a thin sheet. Ho we ver, as 
the simulation progresses, more density substructure develops and 
the collision becomes qualitatively less like simple colliding flows. 
Especially, the dense gas concentrated by the collision becomes self- 
gravitating, further concentrating the material. On the other hand, 
the non-colliding case takes longer to develop dense structures, with 

the initial turbulent velocity field being the main cause of generating 
density enhancements and significant amounts of dense structures 
not appearing until towards the end of the simulation. 

Fig. 2 shows the temperature–density phase diagram of the 
colliding and non-colliding simulations at 2, 3, and 4 Myr. We 
see that most mass is concentrated at conditions close to those 
expected from thermal equilibrium, given our implemented photo- 
dissociation region (PDR) and molecular cloud heating and cooling 
functions. Ho we ver, we note a greater dispersion in temperatures 
at a given density in the GMC collision simulation compared to 
the non-colliding case, especially towards warmer temperatures. 
We attribute this to a greater degree of compressional heating in 
the colliding case, both from the GMC–GMC collision itself on 
large scales but also from the more rapid accumulation of gas in 
localized dense cores. We will return to this point when discussing 
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Figure 7. The core mass functions (CMFs) of the non-colliding GMCs 
simulation at 4 Myr. The CMF derived from the original simulation data 
is shown in blue. The CMF derived after ALMA filtering is shown in red. 
The error bars indicate Poisson counting uncertainties. 
the thermal properties of dense cores identified in the simulations in 
Section 3.5 . 
3.2 Core identification 
Fig. 3 shows a zoom-in of an example of high-density region formed 
in the colliding case at t = 4 Myr . The cores identified by the 
dendrogram algorithm are outlined with black contours, including 
the effects of different choices of ( min , δmin , and A min . We note 
that a significant fraction of the cores are found along large-scale 
filamentary structures and that these cores are often themselves 
filamentary with a similar orientation. We see that lowering ( min 
leads, as expected, to the identification of cores in lower ( regions 
and that these tend to be larger, more diffuse structures. The effect 
of doubling A min from the fiducial case has very little effect on 
the number and type of core identified in this region. Fig. 3 also 
shows the impact of ALMA filtering of this region, including on 
core identification. Now the effect is much more dramatic, primarily 
because large, extended structures are no longer present in the map. 
Consequences of this include that cores are smaller, less filamentary, 
and confined to denser regions. 

Fig. 4 shows the equi v alent information as Fig. 3 but now for 
a region extracted from the non-colliding case. The same general 
trends for core identification are observed. We note that the density 
structures here include very thin, elongated filaments. Cores identi- 
fied by dendrogram, especially in the case before ALMA filtering, 
can be extremely filamentary. 

To ascertain the degree to which the filtered observations suppress 
the elongated and filamentary cores within our sample, we examine 
the ratio of minor to major axes, λ = r minor / r major , with r minor and 
r major determined from the mass-surface density-weighted second 
moments. The distributions of λ for cores identified with and without 
ALMA filtering are shown in Fig. 5 . For the collision simulation, the 
mean ratios are 0.314 ± 0.245 and 0.565 ± 0.222 for the original and 
ALMA-filtered cases, respectiv ely. F or the non-colliding simulation, 
the mean ratios are 0.178 ± 0.209 and 0.460 ± 0.229 for the 
original and ALMA-filtered cases, respectively. Thus, we find that the 
distribution of λ is strongly affected by ALMA filtering. Thus, when 
measuring this quantity observationally from interferometric data, 
one should be aware of its potential dependence on the parameters 
of the observing set-up. 

3.3 Core mass function 
In Fig. 6 , we plot the CMFs found at 2, 3, and 4 Myr in the GMC 
collision simulation, exploring the effects of different dendrogram 
parameter choices and whether or not ALMA filtering has been 
applied to the projected image of the structures. We have adopted a 
binning scheme identical to that of Cheng et al. ( 2018 ); Liu et al. 
( 2018 ), and O’Neill et al. ( 2021 ), i.e. 5 bins per dex with bins centred 
on 1, 10, 100 M &, etc. The blue line represents our fiducial case, with 
( min = 0 . 1 g cm −3 , δmin = 0 . 025 g cm −3 , and A min = 2 pixels. 

As time evolves, the overall number of cores increases, i.e. with 
69, 330, and 984 cores identified at 2, 3, and 4 Myr in the fiducial 
case. The maximum mass of the cores also increases. The high-mass 
end of the CMF appears to be approximately described by a power- 
law distribution, which then exhibits a break at lower masses. This 
high-mass end of the CMF is relatively insensitive to the choice of 
dendrogram parameters. At lower masses, the CMF flattens further 
and then declines at masses below ∼ 1 M &. However, the precise 
location of the peak in the CMF depends on dendrogram parameters. 
F or e xample, comparing the first and second rows, we notice that a 
lo wer v alue of minimum density and increment causes the peak of 
the CMF to shift to smaller masses. 

Fiducial core identification in the ALMA-filtered images yields 
13, 228, and 629 cores at 2, 3, and 4 Myr, i.e. significantly smaller 
numbers than found in the original images. In the third row, we see 
that ALMA post-processing generally mo v es the peak of the CMF 
to smaller masses, i.e. close to 1 M &. In the original CMFs, a break 
is apparent around a few ×10 M &, but this feature is less clear after 
ALMA post-processing. 

In the non-colliding simulation, dense gas structures, including 
cores, take longer to form. With the fiducial method of core 
identification, we find 0, 8, and 395 cores at 2, 3, and 4 Myr. Thus, 
we focus on the CMF at 4 Myr in this simulation: Fig. 7 shows 
the original and ALMA-filtered CMFs of this case. The effect of 
ALMA filtering, where 231 cores are found, is similar to that seen 
in the colliding case, i.e. removing higher-mass cores and generally 
shifting the CMF to lower masses. 

The left column of Fig. 8 shows the time evolution of CMFs for 
both the colliding and non-colliding cases from 2 to 4 Myr, along 
with various power-law fits of the form 

d N 
d log M ∝ M −α. (2) 
The fiducial Salpeter ( 1955 ) initial mass function of stars has an 
index α = 1.35. To make direct comparison with the observational 
CMF results of Cheng et al. ( 2018 ), Liu et al. ( 2018 ), and O’Neill 
et al. ( 2021 ), we fit the power law to the range M/M & ≥ 1, whose 
index we refer to as α1 . In addition, as O’Neill et al. ( 2021 ) claim that 
there is a break around ∼ 10 M &, we also examine the power-law fits 
in the range 1 ≤ M/M & ≤ 10 (i.e. to deriv e inde x α1–10 ) and M/M &
≥ 10 (i.e. to deriv e inde x α10 ). The fitting procedure follows that of 
Cheng et al. ( 2018 ), which fits the power law in logarithmic space, 
adopts Poisson errors, sets empty bins to 0.1 with errors of 1 dex, 
and sets bins with count of 1 to have an upper error of log 2 dex and 
a lower error of 1 dex. We also make fits to ALMA-filtered images 
of the clouds. 

In addition, to ascertain to what degree the cores are affected by 
the presence of lower density gas along the line of sight, we consider 
cases where we recalculate core masses, including only gas abo v e 
a given density threshold. Note, here we still use the core contours 
identified using the full mass surface density image to make the 
comparison more direct on a core-by-core basis. Ho we ver, we note 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/1/700/7091927 by guest on 03 February 2025

art/stad777_f7.eps


GMC collisions – The CMF 707 

MNRAS 522, 700–720 (2023) 

Figure 8. The core mass functions (CMFs) of colliding (top) and non-colliding (bottom) cases. (a) Left column: CMFs of original simulations, including at 2, 
3, and 4 Myr, when sufficient cores are present. (b) Middle column: CMFs of ALMA-filtered images. (c) Right column: CMFs at 4 Myr under different density 
thresholds of n H = 10 4 cm −3 and 10 5 cm −3 , as well as the case of no density threshold for reference. In each panel, the error bars show Poisson counting 
uncertainties. The best power-law fits over various mass ranges are also shown (see text and Table 1 ). 
that the density threshold condition can make some cores disappear. 
The results for these CMFs and their power-law fits are shown in 
Fig. 8 and listed in Table 1 . 

First considering the high-mass end of the CMF, i.e. M ≥ 10 M &, 
in the colliding case at 2, 3, and 4 Myr, we find α10 = 0.779 ± 0.289, 
0.585 ± 0.091, and 0.693 ± 0.051. If ALMA filtering is applied, 
these numbers change to α10 = 0.667 ± 0.247 and 0.678 ± 0.073 
for the cases of 3 and 4 Myr that have sufficient numbers of cores 
for this analysis. If a density threshold of n H = 10 4 or 10 5 cm −3 is 
applied when assessing core mass in the non-ALMA-filtered images 
at 4 Myr, then we find α10 = 0.791 ± 0.055 and 0.763 ± 0.061, 
respectively. Thus, we find that these results for the high-end CMF 
index are fairly insensitive to these various methods and the derived 
high-end power-la w inde x is shallower (i.e. more top heavy) than the 
Salpeter index. 

For the same high-end mass range in the non-colliding case at 
4 Myr, we find α10 = 0.784 ± 0.144 in the original simulation 
data, 1.111 ± 0.352 after ALMA filtering, and 1.068 ± 0.179 and 
1.180 ± 0.265 for the density thresholds of n H = 10 4 or 10 5 cm −3 . 
Especially after ALMA filtering or applying a density threshold, we 
find the high-end CMF in the non-colliding case has a steeper index 
(i.e. fe wer massi ve cores) than the colliding case and is closer to the 
Salpeter index. 

The abo v e simulation results can be compared to the observed 
CMFs: e.g. in IRDC clumps by Liu et al. ( 2018 ), whose data imply a 
‘ra w’ CMF inde x α10 = 0.718 ± 0.409 and a ‘true’ CMF index 
α10 = 0.837 ± 0.397 (i.e. after flux and number completeness 
corrections); in massive clumps by O’Neill et al. ( 2021 ), whose data 
imply α10 = 0.907 ± 0.176 (raw) and α10 = 0.919 ± 0.151 (true). 
Direct comparison with individual regions, e.g. the study of G286 
by Cheng et al. ( 2018 ), in this mass regime is typically hampered by 
the relatively small numbers of cores leading to large uncertainties 

in the deri ved po wer-law index. Ho we ver, overall for the high-mass 
end of the CMF, we find consistency in our simulations’ results 
with the observational results from the multi-region samples of Liu 
et al. ( 2018 ) and O’Neill et al. ( 2021 ). Ho we ver, gi ven the state 
of the observational uncertainties and the relatively limited number 
of cores in this mass range in the simulated clouds (especially the 
non-colliding case), we are not able to use the results to conclude 
whether the colliding or non-colliding results are a better match to 
the observed systems. 

We next consider fits to the mass range M ≥ 1 M &. Inspecting 
these fits that are shown in Fig. 8 , we see that the CMF distributions 
are often not particularly well described by a single power law. It 
is the ALMA-filtered CMFs that appear to be best described by 
a single power law over this full mass range. Thus, the original 
simulation results without ALMA filtering yield very shallow values 
of α1 ∼ 0.2–0.4. Application of a density threshold causes a slight 
steepening of this index. The ALMA-filtered CMF index has values 
of α1 = 0.546 ± 0.066 and 0.440 ± 0.030 in the colliding case at 
3 and 4 Myr and 0.492 ± 0.074 in the non-colliding case at 4 Myr. 
The observational results o v er this mass range are much steeper in 
the case of G286 (Cheng et al. 2018 ). For IRDC clumps, the initial 
‘raw’ estimate before flux and completeness corrections has a value 
of α1 = 0.495 ± 0.100 (Liu et al. 2018 ), while for massive clumps 
it is 0.419 ± 0.067 (O’Neill et al. 2021 ). We thus see that, similar to 
the case for M ≥ 10 M &, our simulation results are consistent with 
observational measures of the CMF for M ≥ 1 M &. Ho we ver, again, 
it does not appear possible to distinguish between the colliding and 
non-colliding case via this metric. 

Finally, we consider the CMF power-law index when fit only to 
the range 1 ≤ M/M & ≤ 10. A comparison in this limited mass range 
may be important as O’Neill et al. ( 2021 ) found evidence for a break 
in the power-law behaviour of the CMF at ∼ 10 M &. The colliding 
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Table 1. Core mass function properties. 
Case #Cores Mass Power-law indices, α

M max 〈 M 〉 a 〈 M 〉 g α1 ( M/ M & ≥ 1) α1 −10 (1 ≤ M/ M & ≤ 10) α10 ( M/ M & ≥ 10) 
Colliding case 
2 Myr 69 98.5 14.7 7.33 0.074 ± 0.115 −0.286 ± 0.202 0.779 ± 0.289 
2 Myr ( M ≥ 1M &) 67 98.5 15.1 7.88 
2 Myr (ALMA) 13 8.22 2.68 1.79 0.373 ± 0.492 0.373 ± 0.492 –
2 Myr (ALMA, M ≥ 1M &) 9 8.22 3.62 3.04 
3 Myr 330 470 23.0 7.94 0.215 ± 0.039 −0.044 ± 0.092 0.585 ± 0.091 
3 Myr ( M ≥ 1M &) 312 470 24.3 9.03 
3 Myr (ALMA) 228 123 6.76 2.58 0.546 ± 0.066 0.423 ± 0.117 0.667 ± 0.247 
3 Myr (ALMA, M ≥ 1M &) 168 123 8.93 4.21 
4 Myr 984 947 24.8 7.91 0.245 ± 0.024 −0.160 ± 0.055 0.693 ± 0.051 
4 Myr ( M ≥ 1M &) 936 947 26.0 8.94 
4 Myr (n H ≥ 10 4 cm −3 ) 983 811 19.6 5.96 0.327 ± 0.024 −0.066 ± 0.053 0.791 ± 0.055 
4 Myr (n H ≥ 10 4 cm −3 , M ≥ 1M &) 890 811 21.6 7.46 
4 Myr (n H ≥ 10 5 cm −3 ) 933 808 16.7 3.66 0.398 ± 0.026 0.201 ± 0.056 0.763 ± 0.061 
4 Myr (n H ≥ 10 5 cm −3 , M ≥ 1M &) 720 808 21.5 6.61 
4 Myr (ALMA) 629 628 17.8 4.02 0.440 ± 0.030 0.320 ± 0.065 0.678 ± 0.073 
4 Myr (ALMA, M ≥ 1M &) 513 628 21.7 6.02 
Non-colliding case 
3 Myr 8 283 78.4 50.8 −0.611 ± 0.317 – −0.021 ± 0.262 
3 Myr ( M ≥ 1M &) 8 283 78.4 50.8 
4 Myr 395 227 9.95 3.59 0.406 ± 0.044 0.386 ± 0.084 0.784 ± 0.144 
4 Myr ( M ≥ 1M &) 327 227 11.9 5.08 
4 Myr (n H ≥ 10 4 cm −3 ) 395 123 7.02 2.99 0.426 ± 0.049 0.346 ± 0.082 1.068 ± 0.179 
4 Myr (n H ≥ 10 4 cm −3 , M ≥ 1M &) 314 123 8.66 4.46 
4 Myr (n H ≥ 10 5 cm −3 ) 372 70.0 4.81 2.17 0.530 ± 0.058 0.448 ± 0.084 1.180 ± 0.265 
4 Myr (n H ≥ 10 5 cm −3 , M ≥ 1M &) 269 70.0 6.41 3.64 
4 Myr (ALMA) 231 54.7 4.80 2.53 0.492 ± 0.074 0.353 ± 0.097 1.111 ± 0.352 
4 Myr (ALMA, M ≥ 1M &) 181 54.7 5.93 3.65 
Observational comparisons 
Cheng et al. ( 2018 ) (Raw) 76 80.2 2.79 1.10 1.108 ± 0.197 1.091 ± 0.249 1.084 ± 0.834 
Liu et al. ( 2018 ) (Raw) 107 178 7.31 2.86 0.495 ± 0.100 0.293 ± 0.192 0.718 ± 0.409 
O’Neill et al. ( 2021 ) (Raw) 222 277 11.8 4.56 0.419 ± 0.067 0.021 ± 0.119 0.907 ± 0.176 
∗Cheng et al. ( 2018 ) (True) 158 100 2.00 0.92 1.239 ± 0.172 1.161 ± 0.247 1.099 ± 0.834 
∗Liu et al. ( 2018 ) (True) 275 159 3.30 1.28 0.860 ± 0.106 0.979 ± 0.167 0.837 ± 0.397 
∗O’Neill et al. ( 2021 ) (True) 614 251 4.72 1.13 0.537 ± 0.062 0.392 ± 0.120 0.919 ± 0.151 
∗For the case with density threshold applied, the cores are still selected from the mass surface density map without density threshold, but then cores with 
zero mass are remo v ed. ∗∗F or the ‘True’ CMFs, core numbers and statistical properties (maximum, arithmetic mean, and geometric mean) are derived 
from the core mass functions by assuming that all cores in a bin have the same mass as the centre of the bin (see Cheng et al. 2018 ; Liu et al. 2018 ; 
O’Neill et al. 2021 ). 

case before ALMA filtering yields values of α1–10 = −0.044 ± 0.092 
and −0.160 ± 0.055 at 3 and 4 Myr, i.e. a rising function with mass. 
After ALMA filtering, these values become α1–10 = 0.423 ± 0.117 
and 0.320 ± 0.065. The non-colliding case before ALMA filtering is 
significantly steeper than the corresponding colliding case, i.e. with 
α1–10 = 0.386 ± 0.084. ALMA filtering hardly changes this value, 
i.e. it becomes α1–10 = 0.353 ± 0.097. The observational results 
(from raw CMFs) in this mass range are α1–10 = 1.09 ± 0.25 in 
G286 (Cheng et al. 2018 ), 0.293 ± 0.192 in IRDC clumps (Liu 
et al. 2018 ), and 0.021 ± 0.119 in massive clumps (O’Neill et al. 
2021 ). We see that our simulation results can match CMF properties 
in IRDCs but not in G286 and massive clumps. To summarize the 
abo v e results, in Fig. 9 we show a diagram of α1–10 versus α10 . 

For a more complete comparison with the observational CMFs, 
we plot the probability density of the CMFs in Fig. 10 . The CMFs 
are normalized by the number of cores whose masses are ≥ 1 M &, 
i.e. to a v oid the uncertainties from the lowest mass cores. The top 
set of panels shows ‘raw’ CMFs, while the bottom set shows ‘true’ 

CMFs (i.e. after flux and number completeness corrections have been 
applied). 

We next compare the simulated and observed CMF PDFs via the 
Kolmogoro v–Smirno v (KS) test. We set a lower bound of the CMFs 
to reduce the influence of low-mass cores. According to the clipped 
CMFs, we generate random samples in each bin to obtain p values by 
KS 2SAMP in the SCIPY package. The final p value of each comparison 
is then calculated by the mean value of 3000 bootstrap resamplings. 
As the small cores have higher uncertainties in the observed samples, 
we set the lower limit of the range as being the mass bin centred at 
2 . 51 M &. 

In Fig. 11 , we display the p values of the KS tests by comparing the 
simulation results against the observed CMFs. A panel is coloured 
red if the null hypothesis is not rejected ( p > 0.05), i.e. the two 
distributions may come from the same population. Otherwise, we 
colour panels in blue. These results show that there is consistency 
in the distributions, especially when our ALMA-filtered results are 
compared to the observed ‘raw’ CMFs. In the colliding case, there 
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Figure 9. Scatter plots of α10 versus α1–10 . (a) Top panel: original and 
ALMA-filtered GMC collision simulation data are shown with solid and 
dashed error bars, respectively, with colours distinguishing different times. 
The power-law indices derived from ‘raw’ and ‘true’ CMFs from observations 
are plotted with grey dotted and solid error bars, respectively. (b) Bottom 
panel: as (a) but for the non-colliding simulation. 
is a modest preference to fa v our the results from intermediate times, 
i.e. t = 3 Myr, o v er those from the final time at 4 Myr. Note that one 
must be aware of the effects of small numbers of cores, which makes 
it easier to achieve consistency: this is especially the case for the 
ALMA-filtered colliding case at 2 Myr. In general, similar to what we 
found with the comparison of power-law indices, examples of both 
colliding and non-colliding cases of the ALMA-filtered simulations 
are consistent with the observed CMFs. 
3.4 Core sizes and densities 
Mo ving be yond the mass function, we ne xt e xamine the intrinsic 
physical properties of the identified cores. In the previous sections, 
we examined cores and their masses defined in multiple ways. Here, 
we fix dendrogram parameters to our fiducial case and examine the 
properties of the cores identified in the original simulated ( map, as 
well as in the ALMA synthetic observation. Then, we compare the 
results with observed core properties. 

In the first row of Fig. 12 , for the colliding case we plot the 
ef fecti ve radii of the cores R c ≡ √ 

A c /π , where A c is the projected 
area of cores. The results of the original simulation and those based on 
synthetic ALMA observation are plotted in blue and red, respectively. 
For a core with certain mass, the black dashed line indicates its 
maximum radius with the assumption of ( c = 0 . 1 g cm −2 . We plot 

the average mass surface densities of the cores in the second 
row . Initially , for both original and ALMA-filtered cases, the cores 
demonstrate limited variation in mass surface density, with average 
values only slightly abo v e the threshold. Therefore, the core radii are 
also close to their maximum values. As time evolves, the average 
mass surface densities gradually show a positive correlation with 
mass. If we examine only contributions from high-density gas (with 
a density threshold n H ≥ 10 5 cm −3 ) in the final states (the fourth 
column), this correlation appears stronger. 

Since the cores are defined via projection, the lack of information 
about the third dimension causes difficulties in estimating the density. 
Therefore, we estimate the number densities of the cores given an 
assumed spherical geometry, i.e. via: 
〈 n H 〉 A = 3 M c 

µH 4 πR 3 c = 3 π1 / 2 M c 
4 µH A 3 / 2 c , (3) 

where we adopt a mass per H of 2 . 34 × 10 −24 g (assuming n He = 
0.1 n H and ignoring other species). The derived volume densities 
〈 n H 〉 A of the colliding case are shown in the third row of Fig. 12 . 
Given that cores are defined by a mass surface density threshold 
and the assumption that the volume is V = 4 πR c 3 /3, there is 
a minimum volume density that varies inversely with core mass 
( n H , min ∝ M −1 / 2 

c ). We see that at early times, the derived volume 
densities are close to this minimum. Ho we ver, we find that by 
4 Myr, 〈 n H 〉 A no longer closely follows the minimum but tends to 
increase for more massive cores. Furthermore, if we apply a density 
threshold ( n H ≥ 10 5 cm −3 ) to define the core material, then this trend 
is enhanced. 

In Fig. 13 , we plot the same abo v e properties of the cores but now 
for the non-colliding case. Since the cores develop more slowly than 
the colliding case, the core radii and mean mass surface densities 
still closely follow the maximum radius and minimum mass surface 
density at 4 Myr. The volume density then shows the corresponding 
behaviour implied by this limit. Although the synthetic ALMA 
observation reduces the radii of the most massive cores and increases 
the densities, the correlation between density and mass remains 
quite weak. Similarly, applying a density threshold ( n H ≥ 10 5 cm −3 ) 
increases the densities of the cores, but the density versus mass 
relation remains quite flat. 

Comparing with the observational data for these quantities, we 
see that our simulated cores tend to have larger radii and thus lower 
densities. One potential cause of this is that the observed regions 
are typically closer than our adopted fiducial distance of 5 kpc and, 
as mentioned abo v e, the ALMA observations are thus typically 
able to resolve smaller scales that we probe in the simulations. 
Simulations with higher spatial resolution are needed to assess this 
aspect. Ho we ver, another potential issue is that the observed cores 
are already protostellar sources, i.e. with a significant protostellar 
mass and associated heating that has an effect of concentrating mm 
continuum flux that is used in the observational definition of the 
sizes. To address this aspect, one could either focus on a sample of 
pre-stellar cores that are selected from mass surface density maps, 
or one could implement sub-grid models of protostellar cores in the 
simulations that induce local heating and associated enhanced mm 
flux emission. We defer such steps for future work but discuss these 
aspects further in Section 4 . 

We also compute 〈 n H 〉 M for each core in the colliding case. This 
provides a different estimate of the density without introducing 
assumptions about the core geometry along the line of sight. To 
reduce the contribution of low-density gas along the line of sight, 
we also consider cases with density thresholds n H ≥ 10 4 cm −3 and 
n H ≥ 10 5 cm −3 . Fig. 14 compares 〈 n H 〉 A and these mass-weighted 
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Figure 10. The probability distribution function (PDF) of core mass functions (CMFs) at 2 Myr (left column), 3 Myr (middle column), and 4 Myr (right column) 
for the colliding case (each first row) and the non-colliding case (each second row). The blue lines show original simulation results and the red lines show those 
after ALMA filtering. The error bars indicate the Poisson counting errors. The top set of six panels show comparison to observational ‘raw’ CMFs from Cheng 
et al. ( 2018 ), Liu et al. ( 2018 ), and O’Neill et al. ( 2021 ). The bottom set of six panels show the observational ‘true’ CMFs, i.e. after flux and number correction, 
from these studies. 
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Figure 11. KS test p values by comparing simulation results with the ‘raw’ and ‘true’ CMFs derived from observational studies. Blue or red background 
colours indicate whether the null hypothesis is rejected or not, respectively, i.e. a blue colour indicates a significant difference between the simulation and the 
observation. The numbers in the parentheses indicate the effective core numbers in the observations and simulations. 
densities. In the case without any density threshold, the densities 
derived from the projected area tend to one order of magnitude higher 
than those derived from the full integration along the line of sight. As 
a density threshold is applied, the mass-weighted densities become 
closer to 〈 n H 〉 A , except for the cores whose density is smaller than 
10 4 cm −3 . Overall, applying a density threshold of 10 5 cm −3 yields 
a better agreement rather than that from 10 4 cm −3 . 
3.5 Cor e temperatur es 
We calculate the mass-weighted temperatures 〈 T 〉 M of the cores and 
show the results in the bottom rows of Figs 12 and 13 for the colliding 
and non-colliding cases, respectiv ely. F or cores selected from the 
original simulation data, i.e. no ALMA filtering or density threshold 
applied, in the colliding case, the core temperatures initially have 
a weak dependency on core mass. The temperatures range from 20 
to 60 K at 2 Myr, with more massive cores tending to have higher 
temperatures. As time evolves to 3 Myr, more and more cores become 
cooler, except for some rare examples of cores hotter than 50 K. 
Ho we ver, most cores are cooler than 40 K by 4 Myr. The o v erall 
mean temperatures are 44.8, 36.4, and 24.7 K at 2, 3, and 4 Myr. In the 
non-colliding case, the cores show similar behaviour, i.e. becoming 
cooler as time ev olves, b ut the massive cores still have temperatures 
> 40 K at 4 Myr. 

Ho we ver, cores identified in synthetic ALMA observation, i.e. 
from the ALMA-filtered images, show a different behaviour. Now, 
the most massive cores are cooler. This reflects the dramatic effects of 
ALMA filtering on defining cores. Application of density thresholds 
also has a large impact on derived temperatures. In Fig. 15 , we see 
that the core temperatures drop to around 20 K if a density threshold 
n H ≥ 10 4 cm −3 is applied. If applying a higher density threshold 
of n H ≥ 10 5 cm −3 , then the cores have even cooler temperatures, 
∼10 K. 

As a comparison, we list here the mean temperatures of cores 
in the three cases: all gas, n H ≥ 10 4 cm −3 , and n H ≥ 10 5 cm −3 at 
4 Myr. For these, the mean ( ± dispersion) core temperatures are 24.7 
( ±14.3), 12.6 ( ±3.6), and 11.1 ( ±2.8) K, respectiv ely. F or the non- 
colliding case, we find 32.6 ( ±13.6), 11.0 ( ± 2.3), and 9.1 ( ±1.2) K 
for these cases, respectively. We note the possibility of increased 
rates of adiabatic heating for cores that are forming more rapidly, 
which is likely to be the case in the cloud collision simulation. New 
observ ations, e.g. via high-resolution NH 3 observ ations, are needed 
to derive temperatures in the observed regions of Cheng et al. ( 2018 ); 
Liu et al. ( 2018 ), and O’Neill et al. ( 2021 ) in order to make direct 
comparisons with the core populations that we have considered for 
the CMFs. 
3.6 Core virial parameters 
To estimate the gravitational boundedness of the cores, we calculate 
the virial parameter (Bertoldi & McKee 1992 ) 
αvir = 5 σ 2 R c / ( GM) , (4) 
where σ is the one-dimensional (1D) velocity dispersion. The 
velocity dispersion is estimated by the standard deviation of the 
mass-weighted line-of-sight velocity in each core. Fig. 16 shows the 
radial velocity of each core, and Fig. 17 shows the velocity dispersion 
and the mass of the cores. We show a scatter plot for three cases: all 
gas is included, only gas with n H ≥ 10 4 cm −3 is included, and only 
gas with n H ≥ 10 5 cm −3 is included. 

In Fig. 17 , we see the velocity dispersions generally have higher 
values in the colliding case. As the density threshold is applied, the 
values shift to lower levels. The velocity dispersion can be about 
10 times smaller when a threshold of n H ≥ 10 5 cm −3 is applied, 
especially for low-mass cores. 

Fig. 18 shows the distribution of the virial parameters for the 
cores, based on the velocity dispersion measurements shown in 
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Figure 12. Core properties determined in projection for the colliding case. The columns show results at 2 Myr (first column), 3 Myr (second column), 4 Myr 
(third column) after applying density threshold of n H ≥ 10 5 cm −3 at 4 Myr (fourth column) and the observational results (fifth column). Top ro w: ef fecti ve radius 
R c = √ 

A c /π . Second row: mean mass surface density ( c = M c / A c . Third row: mean number density (see text). Bottom row: mass-weighted temperature. 
Dashed lines show limits based on the requirement that ( ≥ 0.1 g cm −3 . The blue/red lines and their error bars indicate the mean values and the standard 
deviations in each bin, whose width is set to be 0.4 dex. The observational data from Cheng et al. ( 2018 ), Liu et al. ( 2018 ), and O’Neill et al. ( 2021 ) are plotted 
in orange, gold, and green in the last column (note that there are no observational constraints on temperature). For the first three rows, the means and standard 
deviations are shown for the logarithmic quantities, while in the fourth row these are done in linear space. 
Fig. 17 . Since the velocity dispersions in the colliding simulation 
are higher, we see larger virial parameters in this case. Applying 
a density threshold tends to reduce the virial parameter values, 
with the peak being closer to unity. Nevertheless, we see the cores 
have a broad range of virial parameters. In the colliding case, 
the mean ( ±dispersion) values of log αvir are 0.96 ( ±0.54), 0.34 
( ±0.70), and 0.034 ( ±0.74) for the cases of all gas, n H ≥ 10 4 cm −3 , 
and n H ≥ 10 5 cm −3 , respectively. In the non-colliding case, the 
corresponding values are log αvir = 0.41 ( ±0.33), −0.17 ( ±0.41), 
and −0.22 ( ±0.42). For reference, each of the initial clouds has a 
velocity dispersion of σ = 5 . 2 km s −1 and a virial parameter αvir = 
6.8. 

In Fig. 18 , we see that most cores are supervirial if no density 
threshold is applied. In the colliding case, around half of the cores 
are still supervirial after the application of a density threshold. In 
contrast, more cores are subvirial after a density threshold is applied 

in the non-colliding case. To be more specific, for the colliding case at 
4 Myr, there are initially only 38 subvirial cores out of total 984 cores, 
i.e. 3.9 per cent. In the case of density thresholds of n H ≥ 10 4 cm −3 
and n H ≥ 10 5 cm −3 , the fractions of subvirial cores increase to 
330/983 (33.6 per cent) and 454/933 (48.7 per cent), respectively. If 
we further check the fraction of gravitationally bounded ( αvir < 
2) cores, these are 126/984 (12.8 per cent), 558/983 (56.8 per cent), 
and 669/933 (71.7 per cent) in the three cases. For the non-colliding 
simulation, the fractions of subvirial cores are 23/395 (5.8 per cent), 
250/395 (63.3 per cent), and 251/372 (67.5 per cent) and of bound 
cores are 164/395 (41.5 per cent), 359/395 (90.9 per cent), and 
348/372 (93.5 per cent) for these three density threshold cases. The 
fraction of unbound ( αvir > 2) cores selected with the density 
threshold of n H ≥ 10 5 cm −3 is most sensitive to whether (28 per cent) 
or not (6.5 per cent) the cores formed from a GMC–GMC collision. 
Thus, we see that a surv e y of the dynamical state of cores has 
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Figure 13. As Fig. 12 but now for the non-colliding case. 

Figure 14. Comparison of different methods for estimating the core number 
densities. Along the x -axis is the number density as estimated from the 
projected area, as in equation ( 3 ). The y -axis shows the number density 
estimated from the mass-weighted density, as in equation ( 1 ). The dashed 
line shows the one-to-one relation. 

the potential to distinguish between colliding and non-colliding 
formation scenarios. 

In Fig. 19 , we further analyse the kinematics of the cores in the 
colliding case. We follow the same columns and colours for original 
and ALMA-filtered cases as in Figs 12 and 13 . In the first row, we 
plot the radial velocities of the cores. The second ro w sho ws the 
1D velocity dispersion. We find that the velocity dispersion globally 
becomes larger due to the influence of ambient gas. If we remo v e the 
contribution of ambient gas, most small cores have small velocity 
dispersions, < 1 km s −1 , but massive cores still retain high values. 
With the velocity dispersion and the temperature in Fig. 12 , the 
Mach number M s ≡ σ/c s , where c s = √ 

γ kT /µ is the sound speed 
at that temperature, is plotted in the third row. Mach numbers show 
similar behaviour as the velocity dispersion, and more massive cores 
have higher values, especially when the density threshold is applied. 
The fourth row shows the virial parameter based on the 1D velocity 
dispersion. For this colliding case, most cores are supervirial and 
only a few are subvirial. The result does not change if cores are 
defined after ALMA filtering. Ho we ver, if the density threshold n H ≥
10 5 cm −3 is applied, about half of cores become subvirial. 

Fig. 20 shows the same properties as in Fig. 19 but now for 
the non-colliding case. The radial velocities are distributed in a 
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Figure 15. Core temperatures 〈 T 〉 M for the colliding case (top panel) and 
the non-colliding case (bottom panel) at t = 4 Myr. Cores are identified from 
all gas in the projected image. Blue circles indicate the average core tem- 
perature, including all gas. Orange circles indicate average core temperature 
contributed by cells where n H ≥ 10 4 cm −3 . Green circles indicate average 
core temperature contributed by cells where n H ≥ 10 5 cm −3 . 
similar range as that of the colliding case, but the non-colliding 
case has more discrete groupings of sub-clusters. For the velocity 
dispersion, it also shows that more massive cores tend to have higher 
velocity dispersions if a density threshold is applied. Otherwise, the 
correlation is weak. Due to the lower velocity dispersions, the Mach 
numbers have a narrower range, i.e. up to ∼5, than the colliding case. 
Most cores are also supervirial, as in the colliding case, if there is 
no density threshold applied. Ho we ver, applying a density threshold 
causes almost all cores to become subvirial. 

Comparing with the G286 data from Cheng et al. ( 2020 ), there 
are two ways to estimate the velocities and the velocity dispersions: 
(1) measurement in C 18 O(2 − 1), (2) the average of measurements 
in N 2 D + (3 − 2), DCO + (3 − 2), and DCN(3 − 2), which is expected 
to be a better tracer of denser material. These two series of data 
are plotted in orange and olive in the fifth columns of Figs 19 
and 20 . To compare radial velocities, the G286 data have been 
subtracted by the average of the population. The two distributions of 
the G286 data are narrower than both the colliding and non-colliding 
simulation cases. The G286 population also does not show a clear 
trend of increasing velocity dispersion with mass. For the velocity 
dispersion, C 18 O data fall in a similar range as the non-colliding 
case without density threshold. In contrast, the average of N 2 D + , 

Figure 16. Scatter plots of core radial velocity and mass at 4 Myr for the 
colliding (top panel) and non-colliding (bottom panel) cases. Blue dots show 
the velocity from considering all gas along the line of sight. Orange and green 
dots only calculate the velocity from the material with n H ≥ 10 4 cm −3 and 
n H ≥ 10 5 cm −3 , respectively. 
DCO + , and DCN is more similar to the results with density threshold, 
which is expected if they trace dense gas. For the virial parameters 
measured from C 18 O, Cheng et al. ( 2020 ) find that 5/74 are subvirial, 
22/74 are gravitationally bound, and 52/74 are unbound (using, for 
simplicity and consistency, the condition αvir > 2). When using the 
average of the dense gas tracers, these fractions are 20/55, 40/55, 
and 15/55, respectively. The observational result that ∼ 30 per cent 
of the cores appear to be unbound when using dense gas tracers 
is very similar to the fraction found in the GMC–GMC collision 
simulation selecting core material with the high-density threshold. 
This could be interpreted as indirect evidence in support of a cloud 
collision scenario (or other scenario involving disturbed molecular 
gas kinematics) for the triggering of star formation in the G286 
protocluster. 
3.7 Core magnetic fields 
Since magnetic fields can provide additional support to cores against 
collapse, we also examine the magnetic field properties in Figs 19 and 
20 . The fifth rows show the mass-weighted magnetic field strength 
along the line of sight ( z ′ ) inside the cores. In both colliding and non- 
colliding cases, we see the magnetic field strength is approximately 
proportional to the core mass in late stages, especially for the ALMA- 
filtered cores. The strength can range from several tens of µG to 
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Figure 17. Similar to Fig. 16 but now showing core velocity dispersion 
versus mass. 
several mG. The most massive cores in the colliding case have field 
strengths of around 2 mG. In the ALMA-filtered case, the values do 
not change much, even if the density threshold is included, showing 
that the dense gas already makes the dominant contribution. 

The mass-to-flux ratio provides a way to estimate the capability 
of magnetic fields to support the cores. The normalized mass-to-flux 
ratio can be defined as (Mouschovias & Spitzer 1976 ) 
µB = √ 

63 G M 
- B , (5) 

where - B = ∫ 
S∩ ( B ·d A > 0) B · d A is the magnetic flux of a core within 

surface S and M is the enclosed mass. Here, 1 / √ 
63 G is the critical 

value of the un-normalized mass-to-flux ratio. In projection, the 
mass-to-flux ratio can be calculated as 
µB = √ 

63 G M 
A c 〈 B los 〉 M , (6) 

where A c is the area of the core in projection and 〈 B los 〉 M is the mass- 
weighted magnetic field along the line of sight. As Zeeman splitting 
measurements of the magnetic field strength only provide the line- 
of-sight component of the field (e.g. Crutcher 1999 ), this formula 
provides a reasonable way to compare with observations. 

In the last rows of Figs 19 and 20 , we plot the mass-to-flux ratio 
along the z ′ axis. The values of mass-to-flux ratio often fall in a range 
from 10 to 100, no matter at which stage the simulation has reached 
and no matter whether the clouds are colliding or not. Even if we 
consider the application of a density threshold, the values are only 

Figure 18. Distribution of virial parameters αvir for the colliding case (top) 
and the non-colliding case (bottom). 
about a factor of two lower. Since the magnetic field flux depends on 
the line of sight, we also examine the mass-to-flux ratio as viewed 
along the x ′ and y ′ axes. Ho we ver, these sho w similar behaviour as 
our results along the z ′ axis. We conclude that the magnetic fields do 
not play an important role for supporting the cores in this simulation. 
Ho we ver, we note that these simulations are based on the weakest 
initial B -field case of 10 µG with the GMC collision series (see Wu 
et al. 2020 ). A future work will examine cores formed from GMCs 
that have stronger initial B -field strengths. 
3.8 Virial parameter of the protocluster 
In the colliding case, the two clouds have formed a large ‘protoclus- 
ter’ by the end of the simulation. The protocluster may have some 
properties reflecting the collision history. Therefore, we examine the 
virial parameter of the whole cluster. As a definition for the cluster, 
we consider that cores are included in the cluster if they are within 
a distance R cluster from the centre of mass of the cores and consider 
two cases, R cluster = R median and R cluster = 2 R median , where R median 
is the median distance of cores from the centre of mass of all the 
cores. In Fig. 21 , these two radii are displayed with green and purple 
circles, respectively. Since the number and location of cores change 
after ALMA filtering, we recompute the centre of mass and the 
cluster radii for this case. We also consider the influence of density 
thresholds in this analysis. 

We start from the core velocities that have been shown in Fig. 16 . 
The velocity distributions of the cores selected in the clusters are 
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Figure 19. The kinematic, dynamic, and magnetic properties of cores in the colliding case and compared to observed cores. From left to right: 2, 3, 4, and 4 Myr 
data with density threshold n H ≥ 10 5 cm −3 and observational data. Top row: radial velocity. Second row: 1D velocity dispersion. Third row: Mach number 
based on the sound speed derived from mean core temperature. Fourth row: virial parameter. Dashed line and dotted line indicate αvir = 1 (virial equilibrium) 
and αvir = 2 (gravitationally bound). Fifth row: magnetic field strength weighted by density. Sixth row: mass-to-flux ratio. In each panel of the first four columns, 
blue dots show cores found in the original simulation data and red dots show cores identified in the ALMA-filtered data. The solid line shows the mean value 
and the error bar shows the standard deviation. The bins are defined the same as in Fig. 12 . The mean and standard deviation of radial velocity and velocity 
dispersion are weighted by core mass. Virial parameter, magnetic field strength, and mass-to-flux ratio show the mean and standard deviation of their logarithmic 
values. 
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Figure 20. As Fig. 19 but now for the non-colliding case. 
plotted in Fig. 22 . The top row shows the distribution of cores, and 
the bottom row shows the distribution of mass. 

With the velocity of each core, we calculate the mass-weighted 
mean velocity of the cluster and its 1D velocity dispersion. Con- 
sidering within R median in the original and ALMA-filtered data, we 
obtain velocity dispersions of 2.57 and 2.50 km s −1 , respectively. 

Extending to 2 R median , we obtain 2.34 and 2.33 km s −1 in these cases. 
If the density threshold n H ≥ 10 5 cm −3 is applied, the abo v e values 
change to 2.89, 2.76, 2.63, and 2.59 km s −1 , respectively. 

The virial parameter is again estimated by equation ( 4 ), where R 
is the corresponding cluster radius. For mass, we calculate the total 
mass enclosed in the cluster and obtain 59 842 M & and 15 542 M &
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Figure 21. The selection of cluster in original simulation data (left) and ALMA synthetic observation (right). The green circle indicates the region of one 
R median (see text), and purple circle indicates the region of two R median . 

Figure 22. Histogram of radial velocity. The blue, orange, green, and red lines show the cases of 4, 4 (ALMA), 4 (n H ≥ 10 5 ), 4 Myr (ALMA, n H ≥ 10 5 ), 
respecti vely. The top ro w sho ws the distribution of the number of cores, and the bottom shows the distribution of mass. The left column shows the result of the 
cores selected by 1 R median , and the right column shows the result of the cores selected by 2 R median . 
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Table 2. Velocity dispersion and virial parameter of the protocluster. 
Model σ 1 (km s −1 ) σ vir, 1 

(km s −1 ) αvir, 1 σ 2 (km s −1 ) σ vir, 2 
(km s −1 ) αvir, 2 

4 Myr 2.573 3.224 0.637 2.344 3.314 0.505 
4 Myr (ALMA) 2.489 1.632 2.326 2.328 1.775 1.719 
4 Myr ( n H ≥ 10 5 cm −3 ) 2.892 1.737 2.772 2.634 1.440 3.346 
4 Myr (ALMA, n H ≥ 10 5 cm −3 ) 2.778 1.758 2.497 2.606 1.412 3.407 
Note. σ 1 and αvir, 1 are the velocity dispersion and the virial parameter found within R median (see text). σ vir, 1 is the 
required level of velocity dispersion for the protocluster to be in virial equilibrium. Similar definitions apply for σ 2 , 
σ vir, 2 , and αvir, 2 , which are the values calculated within 2 R median . 

for the original and ALMA-filtered data within one R median . We find 
126 414 M & and 36 785 M & for these cases out to two R median . If 
the same density threshold is applied, the values drop to 16 719 M &, 
17 875 M &, 22 973 M &, and 23 063 M &, respectively. 

The results of velocity dispersion and virial parameter are listed 
in Table 2 . We see that the 1D velocity dispersion usually becomes 
slightly smaller (by < 10 per cent) when we adopt the larger radius. 
The virial parameters also tend to be smaller if there is no density 
threshold applied, mainly because of the significant amount of mass 
at lower densities. The protocluster appears to be supervirial if 
measured from the ALMA-filtered image or with a density threshold 
applied (since then a lot of the total mass is not detected or counted). 
This is the case even though the cluster is actually subvirial in 
the original simulation. For comparison, Cheng et al. ( 2020 ) claim 
that the G286 protocluster is likely to be subvirial in its main 
substructures, while at the same time the whole cluster is close to 
virial equilibrium. Note that they inferred the total mass from single 
dish observations and so are not missing mass from interferometric 
filtering. 
4  DISCUSSION  A N D  C O N C L U S I O N S  
We have performed an analysis of the core mass function (CMF) 
arising from colliding and non-colliding giant molecular clouds, 
with a focus on cores identified by dendrogram in projected mass 
surface density maps. In our fiducial case, we set a minimum mass 
surface density threshold of ( min = 0 . 1 g cm −2 , a minimum mass 
surface density increment δmin = 0 . 025 g cm −2 , and a minimum area 
A min = 2 pixels, equi v alent to an area of 2 . 4 × 10 −4 pc 2 . We find that, 
for the colliding case, the CMF is typically relatively flat between 
1 M & and 10 M &. It can be fit, approximately, by a power law for 
M ≥ 10M &, with this index being α10 $ 0.7 after 4 Myr, which is 
top heavy compared to a Salpeter mass function that has α = 1.35. 
For the non-colliding case, cores take longer to form and do so in 
fewer numbers. At 4 Myr, we see that the CMF follows a moderately 
steeper distribution than the colliding case in all the mass ranges 
considered: for example, at 4 Myr, α10 $ 0.8. 

To understand the influence of dendrogram parameters, we also 
examined the CMFs found with different minimum mass surface 
densities, minimum mass surface density increments, and minimum 
areas. The resulting CMFs do not change significantly at the high- 
mass end. Ho we v er, these choices hav e significant influence at the 
low-mass end, i.e. < 5M &. 

Since ALMA observations tend to miss large-scale structures, we 
applied CASA simobserve and simanalyze tasks to obtain synthetic 
‘ ALMA-filtered’ observational results. W e examined these results for 
the colliding case at 2, 3, and 4 Myr and for the non-colliding case 
at 4 Myr. The general effect of ALMA filtering reduces the mass 
estimates of cores so that the CMFs have a peak at a lower mass 

around 1 M &. As a result, the power-law indices in the range from 
1 M & to 10 M & become much steeper in the colliding case, and the 
o v erall CMF is better described by a single power la w. Howev er, the 
high-mass end index remains close to the pre vious v alue, i.e. α10 $ 
0.7. ALMA filtering applied to the non-colliding simulation causes a 
steepening of the high-end index to α10 $ 1.1, closer to the Salpeter 
value, although uncertainties are larger due to smaller numbers of 
massive cores. 

Another factor that may influence the measurement of core masses 
and the CMF is the presence of low-density ambient gas, which 
contributes to the mass surface density but does not belong to the 
gravitationally bounded structure. To understand its influence, we 
fixed the contours of the cores identified in the original data and only 
counted gas along the line of sight abo v e certain density thresholds, 
considering cases of n H ≥ 10 4 and 10 5 cm −3 . We examined the 
influence of this on the CMFs at 4 Myr. Core masses, as expected, 
are reduced, and the CMF power-law indices tend to become steeper. 

We have compared our results with the CMFs from the observa- 
tional studies of Cheng et al. ( 2018 ), Liu et al. ( 2018 ), and O’Neill 
et al. ( 2021 ), which used similar methods to identify cores. Overall, 
especially for the larger samples of cores in the multi-region studies 
of Liu et al. ( 2018 ) and O’Neill et al. ( 2021 ), we can find examples 
of ALMA-filtered CMFs from both colliding and non-colliding 
simulations that are consistent with the ‘raw’ CMFs derived from 
these studies, which we consider to be the fairest comparison. While 
it is promising to find such consistency, this also means that we are 
not able to fa v our between the colliding and non-colliding scenarios. 
Future work that examines a broader variety of core properties and 
also compares to simulations that explore a wider range of parameter 
space (e.g. collision velocity and initial GMC magnetic field strength) 
will be needed for progress in this area. 

Along these lines, we have also examined the physical properties, 
other than mass, of the identified cores in our simulations. At the 
beginning of the colliding case, the core radius is proportional 
to the core mass, and the mass surface density is approximately 
constant, resulting in the estimated volume density being inversely 
proportional to the core mass. In contrast, by 4 Myr, massive cores 
have mass surface density proportional to core mass, and the volume 
density is approximately constant. Synthetic ALMA observations 
modify these results further. 

Compared with observational data, the simulated cores tend to be 
larger and have lower densities. A potential cause of this effect is 
that the star-forming regions probed by the observational studies 
are typically closer than our adopted fiducial distance of 5 kpc 
and so are able to resolve smaller scales that are probed in our 
simulations. Simulations with higher spatial resolution are needed 
to assess this aspect. Ho we ver, another potential ef fect is that the 
observed cores are already protostellar sources, i.e. with a significant 
protostellar mass and associated heating that acts to concentrate the 
mm continuum flux that is used in the observational definition of core 
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sizes. Future work can investigate this aspect by selecting samples of 
pre-stellar cores. For distant, crowded regions, one promising method 
for this is to use deuterated species, especially N 2 D + (e.g. Tan et al. 
2013 ; Kong et al. 2017 ), ideally coupled with accurate (temperature- 
independent) estimates of mass surface density that are most readily 
achieved from mid-infrared extinction mapping (Butler & Tan 2012 ). 
An alternative approach would be to implement sub-grid models 
of protostellar cores in the simulations that induce local heating 
and associated enhanced mm flux emission. Ho we ver, such models 
involve significant uncertainties in their implementation. 

Considering temperature, our simulated cores without ALMA 
filtering tend to have temperatures that grow in proportion to core 
mass. Ho we ver, ALMA filtering induces an opposite relation of 
temperature declining with mass. Applying a density threshold for 
core definition also leads to a major change, with core temperatures 
becoming much cooler, closer to 10 K. 

From the kinematic and dynamical aspect, we find that magnetic 
fields in our simulations are not lending significant support to the 
cores. Ho we ver, this may change for cases in which the initial 
GMCs are more strongly magnetized, which will be investigated 
in a future study. Most of our simulated cores are supervirial if a 
density threshold is not applied, no matter whether the cores are 
identified in the original data or after ALMA filtering. Ho we ver, 
about half of the cores in the colliding case are subvirial if the 
density threshold n H ≥ 10 5 cm −3 is applied. In the non-colliding 
case, most ( ∼ 70 per cent ) of the cores are subvirial when selected 
with this threshold. The fraction of unbound ( αvir > 2) cores selected 
with the density threshold of n H ≥ 10 5 cm −3 is most sensitive to 
whether (28 per cent) or not (6.5 per cent) the cores formed from 
a GMC–GMC collision. A comparison against observational data 
for this unbound fraction in G286, which is ∼ 30 per cent (Cheng 
et al. 2020 ), is tentative evidence in fa v our of cloud collisions being 
involved in the triggering of star formation in this system. 

On larger scales, the dynamical state of the protocluster of cores 
formed via a GMC–GMC collision is intrinsically subvirial but 
appears to be supervirial if the total mass measurement is affected 
by observations that miss mass on large scales or at low densities. 
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