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We propose two optimal phase-estimation schemes that can be used for quantum-enhanced long-baseline
interferometry. By using distributed entanglement, it is possible to eliminate the loss of stellar photons during
transmission over the baselines. The first protocol is a sequence of gates using nonlinear optical elements,
optimized over all possible measurement schemes to saturate the Cramér-Rao bound. The second approach
builds on an existing protocol, which encodes the time of arrival of the stellar photon into a quantum memory.
Our modified version reduces both the number of ancilla qubits and the number of gate operations by a factor of
two.
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I. INTRODUCTION

Classical long-baseline interferometry has become a
widely accepted method of determining stellar distances or
imaging light sources [1,2]. The central idea is to measure the
coherence of the starlight incident at two or more telescopes as
a function of their separation, then use the van Cittert–Zernike
theorem [3,4] to extract information about the source. This has
led to many significant advances, including the first observa-
tion of a black hole using radio telescopes [5,6], exoplanet
angular diameter estimation [7], and pulsar proper motion
measurements [8]. However, there are fundamental limits to
such classical interferometric techniques in the optical fre-
quencies, such as quantum shot noise [9] and stellar photon
loss during transmission through the long baselines.

Quantum-enhanced telescopy aims to overcome these
difficulties by employing concepts from quantum informa-
tion theory [10], some of which have been implemented
in experiment, including long-distance entanglement distri-
bution [11,12], quantum logic gates [13,14], and quantum
memories [15,16]. Therefore, it became attractive to design
interferometric setups using these quantum resources. The
development of quantum repeaters [17,18] motivated the ex-
ploration of nonlocal setups to enable reliable, long-distance
distribution of entangled quantum states. The assumption of
having long-distance entanglement as a resource was explored
in several spatially nonlocal schemes of quantum-enhanced
telescopy [19–21]. A spatially local scheme for a pair of
telescopes does not allow bringing the light collected by
the telescopes physically together or distributing entangled
quantum states between the telescope locations. For weak
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thermal light sources such as starlight, spatially local schemes
such as heterodyne detection will always provide less in-
formation about the source when compared to the nonlocal
proposals [22]. Therefore, there has been increased interest in
nonlocal schemes.

The first nonlocal scheme was given by Gottesman et al.
[19]. They suggested the pioneering proposal of overcom-
ing the problem of transmission losses in the long baselines
by establishing a quantum repeater link [17] between the
telescopes, but this scheme requires a high rate of entan-
glement distribution, making it experimentally challenging.
Essentially, one needs a distributed photon ready to interfere
with every possible spectral-temporal mode of the starlight,
which is extremely inefficient since nearly all these modes
are unoccupied. Khabiboulline et al. [20,21] showed that
one can significantly reduce the needed rate of entangle-
ment generation by implementing local quantum processing
with appropriate quantum memories [23]. In the conceptually
simplest scheme, they effectively proposed a quantum nonde-
molition measurement that identifies which spectral-temporal
mode contains a stellar photon, without determining which
telescope received the photon.

In this paper, we introduce two optimal phase estimation
schemes that can be applied to long-baseline interferometry.
We describe the general two-telescope setup and define what
makes a measurement scheme optimal. We focus on two
classes of protocols: unary protocols, where for each run of
the measurement setup one has access only to the quantum
state provided by the stellar source within a single time bin,
and nonunary protocols, where for each run of the experiment
one has access to the state provided by the stellar source
across multiple time bins. The nonunary protocols often op-
erate on the assumption that at most one of these time bins
is occupied, and we will also make this assumption here. The
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unary protocols will likely be more feasible to demonstrate
experimentally in the near future (such as in the laboratory
with an artificial source imitating the star or by looking at
a fairly bright astronomical object) as they only require the
manipulation of the stellar state incoming within a single time
bin. However, in order to work with all the available stellar
photons (which only sparsely occupy the arriving modes),
they require an extremely high entanglement distribution rate.
The nonunary protocols have the advantage of requiring a
significantly lower entanglement distribution rate, but they
require more complicated quantum operations in order to
manipulate the incoming stellar state for multiple time bins.
Since both classes of protocols come with advantages and
disadvantages, we consider improvements to both of them.

For unary protocols, we show how the idea of Gottesman
et al. can be altered to improve the precision of the phase
estimate by a factor of two by using nonlinear gate opera-
tions. For nonunary protocols, we consider a modification to
the Khabiboulline et al. scheme that reduces the number of
required resources and quantum operations by half. Both pro-
posed protocols can be used to determine the time of arrival
of the star photon, while keeping the which-path information
ambiguous. This is important since projecting a given stellar
photon to a single path results in losing all the interference
and, hence, all information about the visibility, which is the
parameter we want to estimate. It is also possible to merge
both of our protocols to achieve a significantly lower error
rate in the unary protocol, as demonstrated in Appendix A.

II. SETUP

To explain the basic principle of our procedures, we will
consider the case where there are two telescopes that can
receive the stellar photons. For weak sources, the average
photon number per mode ε is much less than one, so we model
the source as a weak thermal state [22],

ρstar = (1 − ε)|0L0R〉〈0L0R|
+ ε

2
(|1L0R〉〈1L0R| + |0L1R〉〈0L1R|

+ V∗|1L0R〉〈0L1R| + V|0L1R〉〈1L0R|) + O(ε2), (1)

where |1L0R〉 corresponds to one photon coming to the left (L)
telescope and zero photons coming to the right (R) telescope,
and similar for the other terms. The state (1) represents a
theoretical model of incoming stellar radiation, where one
assumes that the probability of getting more than one stellar
photon at the telescopes is negligible.

We assume that ε is a known, small [24] parameter that can
be estimated by other methods that are less sensitive to noise
[2,22]. Observe that if Eq. (1) is valid, but the telescopes re-
ceive photons from sources other than the one of interest, then
the information about these sources will be encoded within
the visibility function. For example, the constant background,
when Fourier transformed, becomes a sharp peak near the
origin.

The goal of the measurement scheme is often supported
by an ancilla state that is interacted with the incoming stellar
state (1). The goal is to extract information about the visibility
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FIG. 1. Generalized setup for quantum-assisted telescopy.
Modes 1 and 3 couple the starlight to the left and right laboratories,
respectively.

V from the incoming state. In the end, the probabilities of
possible measurement outcomes should depend on V .

One can treat each mode as a single-rail optical qubit,
where the computational basis states are the absence (0) and
presence (1) of a photon. The protocol’s goal is to determine
the complex visibility V , which depends on the source intensity
distribution and is a function of the baseline connecting two
telescopes. Given the visibility as a function of baseline, one
can use the van Cittert–Zernike theorem to determine the
intensity profile of the source [3,4]. For all protocols, we will
consider both a point source, for which V = e−i�, as well as
an extended source, for which V = ge−i�, where g is a real
and positive amplitude.

The star photons can arrive at two distant telescopes with
separate laboratories at their locations, as shown in Fig. 1.
The laboratories share a known ancilla quantum state |�a〉
as a resource. We allow local operations and measurements
within each laboratory, as well as classical communication
between the laboratories, but we do not allow the distribution
of stellar photons between the two laboratories. By definition,
this prevents the loss of stellar photons that otherwise occurs
during transmission over long baselines, and which limits
existing long-baseline interferometry methods.

III. FISHER INFORMATION

To quantify and compare the information obtained by spe-
cific measurement schemes, we use the Fisher information
f (�, g). It quantifies the information one obtains about the
parameters to be estimated per measurement act. According to
the Cramér-Rao bound, the inverse of the Fisher information
matrix sets a lower bound on the covariance matrix describing
the phase and amplitude estimation problem [25,26]. The
upper bound on the Fisher information (FI) of a quantum
measurement on the stellar photon state (1), optimized over
all possible measurement schemes, is given by the quantum
Fisher information (QFI).

The Fisher information (FI) matrix is given by

f (�, g) =
∑
k

1

pk

⎛
⎝

(
∂ pk
∂�

)2 ∂ pk
∂�

∂ pk
∂g

∂ pk
∂g

∂ pk
∂�

(
∂ pk
∂g

)2
⎞
⎠, (2)

where pk is the probability of obtaining measurement outcome
k. f (�, g) quantifies the information one obtains about the
parameters to be estimated per measurement act.
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It quantifies the sensitivity of a given measurement scheme,
and it saturates quantum Fisher information (QFI) if the mea-
surement scheme is optimal, i.e., if the scheme extracts the
most possible information about the estimated parameter. The
QFI has matrix elements

hi j (�, g) = Tr

[
ρstar

LiL j + LjLi
2

]
, i, j ∈ {g,�}, (3)

where Li is the symmetric logarithmic derivative (SLD) corre-
sponding to parameter i, defined by

Liρstar + ρstarLi
2

= ∂iρstar. (4)

This relation is satisfied by

L� = ig

(
0 −e−i�

ei� 0

)
,

Lg = 1

1 − g2

(−g e−i�

ei� −g

)
, (5)

using the basis |1L0R〉 and |0L1R〉.
If one forbids physically bringing the stellar modes to-

gether (e.g., due to loss associated with long baselines), then
the quantum-enhanced schemes offer an advantage over the
ones known from classical telescopy. As shown in [22], for
any scheme without the resource of shared entanglement be-
tween the telescopes, the FI scales with ε2. Such scaling is
achieved in heterodyne and homodyne detection. However,
for state (1), QFI scales with ε, not ε2; FI can achieve such
scaling only if entangled states are available.

We define any protocol whose FI saturates the QFI,
f (�, g) = h(�, g), as an optimal measurement scheme. It is
not always possible to saturate this bound in the multiparam-
eter case, as is the case for this particular system, since the
SLD matrices do not commute on the support of ρstar [27].
Therefore, we will focus on estimating the phase � (by setting
g = 1). We will present two protocols that are optimal for this
single-parameter case. We will denote the single-parameter FI
and QFI by f (�) and h(�).

The pioneering nonlocal scheme of Gottesman et al. pre-
sented in [19] has a FI of f (�) = h(�)/2, so although it has
certain advantages over classical interferometry, it is not an
optimal scheme. This result reflects the fact that only half
the star photons are used for the estimation in that particular
scheme. We propose a protocol that uses all the star photons
and thus gives twice the precision in the estimate of �. The
improvement of FI is also achieved in the two-parameter case
where V = ge−i�. However, this improvement does not make
the protocol saturate QFI, as should be expected for the rea-
sons described before.

IV. NOT-BASED PROTOCOL

The protocol of Gottesman et al. [19] uses only linear
optical elements to achieve half of the quantum Fisher infor-
mation. We show, in Appendix B, that this is, in fact, the best
one can get with the ancilla from their proposal and linear
optical elements. To achieve an optimal measurement scheme,
we propose the use of nonlinear components. In this case, we
make use of an optical NOT gate in the Fock basis. That is,
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FIG. 2. Circuit representation of the nonlocal phase-estimation
protocol. We assume a phase shift of i upon reflection at the beam
splitter.

performing the gate results in flipping the state of the mode,
i.e., a photon in the mode is either created if there is no incom-
ing photon or destroyed if there is a single incoming photon.
We emphasize that in this paper, we assume the existence of
such a gate which is allowed by quantum mechanics, but cur-
rently there is no known theoretical proposal or experimental
realization of it.

We consider a four-mode protocol and provide both labo-
ratories with the ancilla state

|�a〉 = 1√
2
(|1204〉 + eiδ|0214〉), (6)

where the modes 2 and 4 are associated with a single-photon
entangled state, and δ is a tunable phase. The subscripts in-
dicate the modes indicated in Fig. 2; modes 1 and 2 reach
laboratory L, and modes 2 and 4 reach laboratory R. The
total state received by both laboratories is then ρ0 = ρstar ⊗
|�a〉〈�a|.

The state ρ0 undergoes the series of operations shown
in Fig. 2 and is measured in the number basis. The parity
checks verify whether the total number of photons within
a single laboratory is even or odd. If they return the same
result, then the stellar photon has arrived, otherwise it has
not (see Appendix C for more detailed calculations). If both
laboratories obtained an even (e) result, the probabilities of
possible outcomes are

p(11021304, e, e) = p(01120314, e, e) = ε

8
[1 − cos(� + δ)],

p(11020314, e, e) = p(01121304, e, e) = ε

8
[1 + cos(� + δ)],

(7)

and if both the parity check results were odd (o),

p(11021304, o, o) = p(01120314, o, o) = ε

8
[1 + cos(� − δ)],

p(11020314, o, o) = p(01121304, o, o) = ε

8
[1 − cos(� − δ)].

(8)

The results for which the parity measurements do not agree
should be discarded, as they correspond to the cases where no
stellar photon arrived. Each parity check can be implemented
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with a pair of CNOT gates and an ancillary qubit (a more
detailed explanation is given in Appendix C). For an extended
source, one replaces cos(� ± δ) → Re{Ve∓iδ}.

Equations (7) and (8) then allow one to estimate the relative
phase shift �. Classical communication between the laborato-
ries is required to determine which coincidence occurred after
all the measurements are performed.

We can determine whether the protocol described in this
section is optimal by evaluating the FI f using (7) and (8)
and then comparing it to the QFI. For the phase-estimation
problem, the resulting FI is f (�) = ε, which saturates QFI.
It shows that this protocol is an optimal measurement of the
relative phase shift �, and gains twice as much information
per stellar photon as the protocol using only linear elements.
A similar improvement is also achieved in the case of single-
parameter estimation of the visibility amplitude g (more
details in Appendix D). Finally, for the complex visibility V
estimation problem, our protocol achieves an improvement in
FI over the Gottesman et al. procedure, which is quantified in
Appendix D; however, the QFI is not saturated.

A possible error is the loss of the entangled ancilla cor-
responding to |0204〉 in the input. Such an error cannot be
identified by a single detection event since it leads to a set
of results similar to the one corresponding to the procedure
without error, However, it can be identified by examining
the frequency of the (0005) and (1015) events: if the er-
ror is introduced, the latter events occur more often. This
detection scheme works only if the error appears on a re-
current basis. We perform a more detailed error analysis in
Appendix C.

The NOT-based protocol offers an improvement over the
proposal of Gottesman et al., but it requires NOT quantum
gates and the ability to perform a parity check for optimal per-
formance. Implementing the protocol optically would require
deterministic nonlinear optical gates, beyond what is currently
available. Moreover, the nonlinear NOT gates and the parity
checks need to be extremely reliable, otherwise the errors
dominate the signal used for the visibility estimation. The
errors can be reduced if one introduces additional elements
that verify the arrival of the stellar photon without destroying
the visibility information. More details are provided in Ap-
pendix A. Even though our proposal makes use of elements
that are beyond what is currently feasible, we hope it will
stimulate research in developing the required NOT gates and
parity checks, as they would also have applications beyond
our proposal. Encouraged by the rapid development of quan-
tum information processing both in theory and experiments,
we hope that our proposal will be possible to achieve in the
future.

In the event that the optical setup remains infeasible, an-
other approach (motivated by recent developments in quantum
transduction [28,29]) is to use nonphotonic ancilla qubits that
are easier to manipulate, and to transduce them into photonic
qubits before the beam splitters in Fig. 2.

The protocol of Gottesman et al. can be used as a reference
to determine the validity of using the NOT-based protocol.
For the latter protocol, observe that if one removes the parity

check and the NOT gates, one recovers the original protocol
of Gottesman et al. However, introducing new elements to
the circuit can introduce new types of errors. The NOT-based
protocol can be considered as a valid improvement only if the
errors are small enough that one can extract more information
about the visibility from each stellar photon when compared
to the Gottesman et al. protocol. We analyze the influence of
errors due to the new elements in Appendix A.

V. MODIFIED QUANTUM MEMORY PROTOCOL

Even though our NOT-based protocol is an optimal phase
measurement scheme, it requires a copy of the ancilla state
for each possible time bin (more precisely, for each possible
temporal mode within the duration of the measurement and
over the bandwidth of the collected starlight); this requires a
large amount of resources and is experimentally infeasible.
Khabiboulline et al. [20] proposed an optimal phase mea-
surement scheme that encodes the arrival time of the star
photon in a quantum memory, for which the amount of re-
quired resources scales logarithmically with the number of
time bins. We propose a modification to their scheme that both
simplifies it and reduces the required resources by half, which
is potentially critical for the practical implementation of these
ideas.

Consider the modes provided by the star as single-rail
qubits, where the logical 0 and 1 denote the absence or pres-
ence of a single photon in a mode. Suppose we can measure
them in an arbitrary basis. If we know the star provided a
photon, then the optimal phase measurement is achieved when
we directly measure both stellar modes. One measurement
is done in the X basis, spanned by |±〉 = 1√

2
(|0〉 ± |1〉), and

the other mode is measured in the rotated basis spanned by
|±δ〉 = 1√

2
(|0〉 ± eiδ|1〉). Given the setup in Fig. 1, performing

the X basis measurement on mode 1 and rotated basis mea-
surement on mode 3 results in the probabilities conditioned
on the stellar photon arrival,

P(+,+δ ) = P(−,−δ ) = 1
4 [1 + cos(� + δ)],

P(+,−δ ) = P(−,+δ ) = 1
4 [1 − cos(� + δ)], (9)

where P(±,±δ ) indicates the probability of result ± in labo-
ratory L and ±δ in laboratory R.

The Fisher information for this set of probabilities saturates
the QFI, so this is also an optimal phase measurement scheme.
For extended sources, one replaces cos(� + δ) → Re{Ve−iδ}.

The measurement on the stellar photon has an issue: we
cannot tell if the star provided a photon since the lack of arrival
of the stellar photon can lead to the same results as in (9). We
need to know whether or not the photon has arrived and, if it
has, then we must know when it happened. This is achieved
by the procedure shown in Fig. 3.

Suppose that within time T , we expect at most one pho-
ton to arrive from the star. We divide T into N short time
bins of length τ , corresponding to temporal modes, so that
T = Nτ . To perform binary encoding of the time bin, we
need 2 log2(N − 1) ancilla qubits, each prepared in the state
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FIG. 3. Scheme of the modified version of Khabiboulline’s pro-
tocol for N = 7 time bins. CZk (i) indicates a sequence of controlled
phase gates with k target qubits (ancilla) corresponding to the ith time
bin.

|�+〉, where |�±〉 = (|00〉 ± |11〉)/√2 are maximally entan-
gled Bell states. The first qubit from each pair is distributed
to laboratory L and the second qubit to R. The next step is to
pass the ancilla through a set of controlled phase gates (CZ)
that depends on the time bin, where

|0c0t 〉 CZ−→ |0c0t 〉, |0c1t 〉 CZ−→ |0c1t 〉,
|1c0t 〉 CZ−→ |1c0t 〉, |1c1t 〉 CZ−→ −|1c1t 〉 (10)

performs a standard phase shift gate Z on a target qubit when
the state of the control qubit is 1. The index c denotes the
control qubit and t denotes the target qubit. A Z gate acting on
one of the qubits in a Bell pair can be used to switch between
Bell states, Z|�±〉 = |�∓〉. In our case, the star supplies the
control qubits for the gates and the ancilla supplies the target
qubits. If the star photon arrives during the nth time bin, then
the sequence of gates

⊗2 log2(N−1)
i=1 Zni is performed on the

locally available ancilla qubits, where ni is the ith digit of
the integer n written in binary (see Appendices E and F for
explicit examples).

This encodes the time-bin information into the Bell states.
A similar process was used in [20], but using an extra set
of intermediary memory qubits which are the targets of a
similarly modified CNOT gate before encoding the time-bin
information into the Bell states.

Similarly to the protocol of Khabiboulline et al. [20], this
protocol achieves a significant improvement in the entangle-
ment cost when compared with the unary protocols. If within
N time bins one expects to get at most one stellar photon, then
one needs 
log2(N + 1)� entangled qubit pairs to perform the
protocol given in this section, where 
·� is the ceiling function.
On the other hand, unary protocols require N entangled qubit
pairs. An example of resource costs for the modified protocol
is given in Appendix G.

However, our modified protocol reduces the number of
ancilla qubits and gates by half when compared to the pro-
posal given in [20], by eliminating the intermediary memory
qubits. This advantage can be achieved only if both parties are
capable of performing the measurements of the stellar photon
modes for all time bins and storing the results classically. It is
necessary since parties must know when the stellar photon has

arrived prior to the visibility measurement. Only then are they
capable of selecting the result that is useful in the visibility
estimation. We note that the scheme requires classical (not
quantum) memory.

Finally, the protocol described in this section can serve
as a subroutine for other unary protocols if performed for a
single time bin. In Appendix A, we consider the advantages
of merging the modified quantum memory protocol and the
NOT-based protocol.

VI. CONCLUSIONS

We have proposed two quantum-enhanced long-baseline
interferometry schemes that offer improvements over two
prior proposals. The Gottesman et al. protocol [19] cannot
be improved if one is limited by the ancilla, linear op-
tics, and measurements in the photon number basis, but the
development of nonlinear photonic gates or quantum trans-
ducers enables us to improve it and achieve an optimal
phase-estimation scheme. Such a protocol achieves the max-
imum allowed value of Fisher information, but (similar to
the Gottesman et al. proposal) it consumes one copy of the
ancilla state for each time bin. This linear scaling of resources
was improved to logarithmic by Khabiboulline et al. by using
binary encoding to store the time of arrival of the stellar
photon. We have modified their scheme to reduce the number
of ancilla qubits and gate operations by half. This is done by
encoding the time-bin information directly into the Bell-state
ancilla qubits, using controlled phase gates instead of using
intermediary memory qubits with controlled NOT gates.
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APPENDIX A: GATE ERRORS IN THE NOT-BASED
PROTOCOL

We consider the errors introduced by the gates in the NOT-
based protocol with the assumption that other elements of the
circuit (beam splitters, detectors, distribution of the entangled
ancilla) work ideally. Our goal is to analyze the influence of
elements of our circuit that are not present in the protocol
of Gottesman et al. The analysis will be performed for the
scheme depicted in Fig. 2 in the main body of the paper.

Denote by p the probability that the parity check is per-
formed correctly, and by q the probability of performing the
NOT gate without an error. We assume that with probability
(1 − q), the gate leaves the state unmodified.

The setup can result in several different scenarios, which
can be labeled by the parity of the incoming global state
and various combinations of the parity checks and NOT gates
working correctly or failing. For a stellar point source, the
incoming global state given assuming the stellar photon has
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FIG. 4. Scheme of the NOT-based protocol with the modified quantum memory protocol included as a subroutine.

arrived is

|ψ0〉 = 1√
2
(ei�|1103〉 + |0113〉)

⊗ 1√
2
(|1204〉 + eiδ|0214〉)

= 1

2
(ei�|11120304〉 + eiδ|01021314〉

+ ei(�+δ)|11020314〉 + |01121304〉). (A1)

After the final equal sign, the first line corresponds to the
correct parity results of (even, even) and the second line to
(odd, odd). The probability of receiving an (even, even) state
and performing all the parity checks and NOT gates success-
fully is (ε/2)p2q2. The probability of receiving an (odd, odd)
state and performing the parity checks successfully is (ε/2)p2,
where the q2 factor is missing since the NOT gates are not
performed when the local parity result is odd. The probability
of receiving the stellar photon and performing all the local
operations correctly on it is

P+ = ε

2
p2q2 + ε

2
p2 = ε

2
p2(1 + q2). (A2)

This corresponds to the fraction of events where the informa-
tion about the stellar phase φ is extracted correctly.

If the stellar photon has not arrived, then the incoming
stellar state is |0103〉, resulting in the global state

|ψ0〉 = 1√
2
(|01120304〉 + eiδ|01020314〉). (A3)

The kets in the above equation correspond to the parity mea-
surement of (odd, even) and (even, odd).

Caution must be taken when performing the protocol since
there are possible scenarios in which the errors in the parity
checks and NOT gates lead to output measurement results
included in Eq. (7), corrupting the result of that equation.
The first scenario when it can happen corresponds to the
input parity state (odd, odd) and performing all parity checks
and NOT gates incorrectly. This happens with the probability
(ε/2)(1 − p)2(1 − q)2.

The second fraudulent scenario occurs for the incoming
parity state of (even, odd), performing the parity measurement

in the right laboratory incorrectly (the measured parities are
even, even), and failing to perform the NOT gate in the right
laboratory. The probability of such an event is (1 − ε)p(1 −
p)q(1 − q). The third fraudulent scenario is symmetric to the
second one, but for the incoming parity state of (odd, even).

The probability of confusing a fraudulent event for a cor-
rect one is

Pf = ε

2
(1 − p)2(1 − q)2 + (1 − ε)p(1 − p)q(1 − q). (A4)

The ratio of the events valid for the visibility estimation to
the fraudulent events is

P+
Pf

=
ε
2 p2(1 + q2)

ε
2 (1 − p)2(1 − q)2 + (1 − ε)p(1 − p)q(1 − q)

,

(A5)
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FIG. 5. Contour plot of P′
+ defined by Eq. (A6) for η = 1. The

protocol of Gottesman et al. is outperformed only in the region of
the plot for which the values exceed 0.5, as indicated by the green
color. The performance of the Gottesman et al. protocol is matched
along the dotted line. For η < 1, all the values on the plot are reduced
by a factor of η.
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FIG. 6. Contour plot of log10[P
′
f /(P

′
+ + P′

f )], with P′
+ and P′

f

defined in (A6) and (A7). The Gottesman et al. protocol can be
outperformed for p and q values to the right of the dotted line.

and it goes to zero in the weak thermal light regime ε → 0.
For reasonable values of p and q, the protocol is highly
susceptible to errors since the overwhelming majority of the
events included in the visibility estimation is fraudulent.

The protocol can be improved if one includes an efficient
measurement verifying the arrival of the stellar photon. This
can be done by merging the NOT-based protocol with the
modified quantum memory protocol performed for one time
bin at the cost of distributing an additional entangled Bell pair
per time bin, as shown in Fig. 4. It allows one to postselect
on the stellar photon arrival events, and therefore discard the
fraudulent events that can be potentially confused for the ones
that are valid for the visibility estimation. Such fraudulent
events correspond to the second term in (A4). As discussed in
the previous section, the modified quantum memory protocol
requires performing the CZ gates; we will denote by η the
probability that such gate works correctly and by (1 − η) the
probability that the gate leaves the state unchanged.

If one postselects the events when the stellar photon has
arrived, then the probability of including the proper events for
the visibility estimation becomes

P′
+ = ηp2(1 + q2)

2
, (A6)

and the probability of confusing a fraudulent event for a valid
one is

P′
f = η(1 − p)2(1 − q)2/2. (A7)

The new scheme outperforms the original Gottesman et al.
protocol if one uses more than half of the stellar photons to
determine the visibility; the possible values of p and q for
which this is possible are indicated in Fig. 5. For these values,
the ratio of the fraudulent events to the events that are valid
for visibility estimation is negligible (see Fig. 6).

FIG. 7. Scheme of generalized Gottesman et al. protocol. The an-
cilla and measurements are kept the same as in the original proposal.
We restrict this analysis to the local operationsUL andUR.

APPENDIX B: GOTTESMAN ET AL.
PROTOCOL—LIMITATIONS OF THE ANCILLA

AND LINEAR OPTICS

Consider the setup given in Fig. 7. Modes 1 and 3 are
supplied by the star, and modes 2 and 4 are the ancilla
given by

|�a〉 = 1√
2
(|1204〉 + eiδ|0214〉), (B1)

where the indices indicate the relevant modes. We require that
the measurements are performed in the photon number basis,
and that the manipulations of modes are local, i.e., the black
boxes evolve the input state according to a unitary operation
U = UL ⊗UR. Here, UL acts only on modes 1 and 2, and UR

acts on 3 and 4. Assume that UL and UR represent sets of
linear optical elements that do not change the local number
of photons, but are otherwise arbitrary.

For simplicity, we will take the star to be a point source
that either supplies the vacuum or a single photon, in the state

ρ = (1 − ε)|0L0R〉〈0L0R| + ε|�1〉〈�1|, (B2)

where

|�1〉 = 1√
2
(ei�|1103〉 + |0113〉). (B3)

It is possible to filter out the vacuum events since in those
cases the two meters will detect exactly one total excitation,
which comes from the ancilla, since the protocol preserves
photon number. For the |�1〉 events, we can take the input
state of the circuit to be

|�1〉 ⊗ |�a〉 = 1
2 (e

i�|11120304〉 + eiδ|01021314〉
+ ei(�+δ)|11020314〉 + |01121304〉). (B4)

Applying theU operator gives

|�〉 = 1
2 (e

i�UL|1112〉 ⊗ |0304〉 + eiδ|0102〉 ⊗UR|1314〉
+ ei(�+δ)UL|1102〉 ⊗UR|0314〉
+UL|0112〉 ⊗UR|1304〉), (B5)
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PARITY CHECK |0⟩ CNOT GATE
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FIG. 8. (a) Symbolic representation of the parity check.
(b) Quantum circuit that performs the parity check. (c) Circuit repre-
sentation of the CNOT gate.

where we assume that UL and UR leave the vacuum un-
changed. Regardless of the choice of UL and UR, the set of
results due to the first and second terms will not overlap with
the results due to the other terms because of the different
numbers of photons. Since ei� acts as a global phase shift for
the first term, it will not affect the probabilities of the mea-
surement results. Therefore, the first and second terms will
not provide any information about �, and we can postselect
on the final two terms containing one photon. Note that it is
possible to do so because the first two terms correspond to
observing two excitations in one laboratory and no excitations
in the other one.

The final two terms in (B5) can have �-dependent interfer-
ence fringes after performing UL and UR. Evaluating the QFI
from these terms results in h = 1, which should be corrected
for the fact that the probability of observing the corresponding
events is ε/2 [where ε is the probability that the star supplies
a single photon to the receivers, and 1/2 is the probability of
observing an event due to the final two terms in (B4) given
that a photon has arrived]. Therefore, the upper bound on
the Fisher information, corresponding to the best choice of
UL and UR, is ε/2. This is exactly the value obtained for the
Gottesman et al. protocol.

We conclude that the Gottesman et al. protocol cannot
be improved if we restrict ourselves to setups as in Fig. 7,
with an ancilla given by (B1), using only linear optics and
measurements in the number basis. Any improvement to the
Gottesman et al. protocol requires breaking one of these re-
quirements in order to extract information about � from all
the terms in (B5). In our first protocol (Fig. 2), we used non-
linear elements that enable us to perform the NOT gates. Even
though our scheme offers improvements over the Gottesman
et al. protocol, it is a challenge to develop a physical operation
that applies these gates.

APPENDIX C: NOT-BASED PROTOCOL: PARITY CHECK
AND EXAMPLE CALCULATION

The parity check used within the NOT-based protocol can
be performed with a pair of CNOT gates and an ancilla qubit,
as indicated in Fig. 8. Suppose that we want to perform the
parity check on qubits A and B by the setup given in Fig. 8(b).
We initialize the ancilla qubit in the state |0〉. If both A and
B are in an even state (|0A0B〉 or |1A1B〉), then the state of the
ancilla qubit remains unchanged after the CNOT gates. If they
are in an odd state (|1A0B〉 or |0A1B〉), then the state of the
ancilla qubit is flipped from |0〉 to |1〉. The measurement of

the ancilla qubit in the number basis returns the parity of the
qubits A and B.

We will perform an example calculation for the NOT-based
protocol by taking the star to be a point source that either
sends a vacuum state or a single photon to the observer.
The diagram of the setup is given in the NOT-based protocol
section in the main body of the paper. As we noted, the
parity checks will require an additional ancilla qubit within
each laboratory. We will denote these qubits by the indices 0
(laboratory L) and 5 (laboratory R)

If the star sends the vacuum (modes 1 and 3 in state |0〉),
then the input state is

1√
2
(|000112030405〉 + eiδ|000102031405〉). (C1)

Here we use mode 0 to perform a parity check of modes 1
and 2, and mode 5 for parity check of modes 3 and 4. After
the CNOT gates performed within the parity check, the state
becomes

1√
2
(|100112030405〉 + eiδ|000102031415〉). (C2)

Observe that within both kets, the states of modes 0 and 5
do not agree. Therefore, the parity measurement results per-
formed within both laboratories will not agree if the star has
not provided the photon.

If, instead, the star supplies the photon, the input state is
1
2 (e

i�|001112030405〉 + eiδ|000102131405〉
+ ei(�+δ)|001102031405〉 + |000112130405〉). (C3)

Performing the CNOT gates within the parity checks modifies
that state to

1
2 [(e

i�|11120304〉 + eiδ|01021314〉) ⊗ |0005〉
+ (ei(�+δ)|11020314〉 + |01121304〉) ⊗ |1015〉]. (C4)

The states of the qubits 0 and 5 agree within all kets in the
state above. Therefore, the parity check results should agree if
the stellar photon has arrived. The next step is to perform the
measurements of qubits 0 and 5 that return the parity results
and postselect one of the states in the round (·) brackets. If
the local parity measurement results returned even (|0〉0, |0〉5),
then the NOT gates are performed on the qubits 2 and 4. It
results in the following state of modes 1–4 after the parity
checks:

1√
2

(
ei(�±δ)|11020314〉 + |01121304〉

)
, (C5)

where (+) corresponds to the results |1015〉, and (−) to |0005〉.
Passing it through the beam splitters results in

1

2
√
2

[(
1 − ei(�±δ))(|01121304〉 − |11020314〉)

+ (
1 + ei(�±δ)

)
(|11021304〉 + |01120314〉)

]
. (C6)

From the equation above, we can compute the probabilities of
the possible measurement results. The resulting probabilities
would be conditioned on the stellar photon arrival. To recover
the unconditioned probabilities, one should multiply them by
ε: the probability of the stellar photon arrival. For the ancilla
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qubits used for parity checks, we will associate the result 0
with an even (e) event and 1 with an odd (o) event,

p(11021304, e, e) = p(01120314, e, e) = ε

8
[1 + cos(� − δ)],

p(11020314, e, e) = p(01121304, e, e) = ε

8
[1 − cos(� − δ)],

p(11021304, o, o) = p(01120314, o, o) = ε

8
[1 + cos(� + δ)],

p(11020314, o, o) = p(01121304, o, o) = ε

8
[1 − cos(� + δ)].

(C7)

The protocol will not work properly if the entangled ancilla
photon is lost (corresponding to 0204 in the input state). If
both stellar and entangled ancilla photons have not arrived
(corresponding to the input state |000102030405〉), then the
following results can occur with equal probabilities:

p(11021304, o, o|0star, 0ancilla )
= p(01120314, o, o|0star, 0ancilla )
= p(11020314, o, o|0star, 0ancilla )

= p(01121304, o, o|0star, 0ancilla ) = 1 − ε

4
, (C8)

where, by (0star, 0ancilla ), we have explicitly indicated that
these probabilities are conditioned on the stellar and ancilla
photon not arriving. We observe that the set of possible
measurement results for the properly performed procedure
overlaps the set of possible results corresponding to the error
of the entangled ancilla photon not arriving. We conclude
that it is impossible to identify this error based on a single
detection event.

However, it should be possible to identify it if the error
occurs frequently within the measurement series. Suppose that
the procedure is performed correctly with probability η and
the error of not supplying the entangled ancilla photon hap-
pens with probability (1 − η). We assume that η is a known
parameter since it denotes the probability of proper distribu-
tion of a known entangled state, and it should be possible to
estimate it by other techniques.

Consider the results of the parity measurements. Based on
(C7) and (C8), the probabilities of (o, o) and (e, e) events are

p(o, o) = ηε

2
,

p(e, e) = ηε

2
+ (1 − η)(1 − ε). (C9)

The ηε/2 terms result from the proper operation of the pro-
cedure. The (1 − η)(1 − ε) term results from introducing the
error. We conclude that one can identify the error of the loss
of the entangled ancilla photon by comparing the frequency
of (0005) and (1015): if the error is introduced, then the fre-
quency of the latter events is higher. After introducing the
error, Eq. (C8) becomes

p(11021304, e, e) = p(01120314, e, e) = ηε

8
[1+ cos(� − δ)],

p(11020314, e, e) = p(01121304, e, e) = ηε

8
[1− cos(� − δ)],

p(11021304, o, o) = p(01120314, o, o)

= ηε

8
[1 + cos(�+δ)] + (1 − η)(1 − ε)/4,

p(11020314, o, o) = p(01121304, o, o)

= ηε

8
[1 − cos(� + δ)]+(1 − η)(1 − ε)/4,

(C10)

resulting in Fisher information

f (�) = ηε

2

(
1 + 2a

ηε − b

a2 − b2

)
, (C11)

where we introduced the parameters a = 2 − 2ε − 2η + 3εη
and b = ηε cos2(� − δ). For η = 1 (no error), this expres-
sion returns f (�) = ε, as it should. We note that despite
introducing the error, the amount of information obtained per
measurement can be still quantified by the Fisher information.

As discussed in the main text, in the analysis of an extended
source, one replaces in Eq. (C10) cos(� ± δ) → Re{Ve∓iδ},
where the visibility is a complex number, V = ge−i�. In such
case, the visibility estimation comes down to estimating the
amplitude and phase of the oscillations in Eq. (C10).

Another way to avoid the influence of the ancilla photon
loss error is performing a procedure verifying the arrival of
the stellar photon before performing the NOT-based protocol.
That would allow one to identify and discard the (0star, 0ancilla )
events, making the NOT-based protocol more robust against
the error introduced by the loss of the ancilla photon.

An example of a procedure verifying the stellar photon
arrival is the modified quantum memory protocol performed
for one time bin, which one can consider as a subroutine
performed before the NOT-based protocol. Then the NOT-based
protocol enables the visibility measurement. The disadvantage
of this method is that it requires distributing an additional
Bell pair to the telescopes. We assume that in the future, one
should be capable of doing so reliably by using a network
of quantum repeaters. Moreover, that method of verification
of the stellar photon arrival requires performing one more
CZ gate. Suppose that this gate is performed correctly with
probability η and leaves the state unchanged with probability
1 − η. After verifying the stellar photon arrival, the protocol
can be continued only if the stellar photon is detected. That
requires the presence of the stellar photon and proper opera-
tion of the CZ gate. Therefore, introducing the CZ gate will
not introduce events that can be confused for the ones that
contain valid information about the visibility. Given that the
arrival of a stellar photon was detected, one continues with
the original CNOT-based protocol to determine the visibility.
Including the modified quantum memory protocol before the
NOT-based protocol reduces the Fisher information by a factor
of η.

Finally, we should consider the events for which the stellar
photon arrives and the entangled ancilla photon is lost. In this
case, the results of the measurement on the 0 and 5 modes will
be different from each other (one gets either 0015 or 1005),
and such events are not taken into account when estimating
the visibility. The protocol still works, but it only extracts
information about the visibility from the stellar photons that
arrive when an entangled ancilla is also present. The Fisher
information is therefore reduced by a factor of η, which is then
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the probability that the arriving stellar photon will be used for
parameter estimation.

APPENDIX D: MULTIPARAMETER FISHER
INFORMATION IN NOT-BASED PROTOCOL

AND GOTTESMAN ET AL. PROTOCOL

We consider the elements of the Fisher information matrix
for the NOT-based protocol and the Gottesman et al. protocol.
There are eight types of events that provide information about
the visibility in the NOT-based protocol. In the case of esti-
mating both amplitude and phase of the visibility, the event
probabilities are

p1 = p2 = ε

8
[1 + gcos(� + δ)],

p3 = p4 = ε

8
[1 − gcos(� + δ)],

p5 = p6 = ε

8
[1 + gcos(� − δ)],

p7 = p8 = ε

8
[1 − gcos(� − δ)]. (D1)

The gcos(� ± δ) elements were from Re{Ve∓iδ} =
gcos(� ± δ). Probabilities 1–4 arise from the events, where
both parity checks return the odd result. Observe that these
probabilities are exactly the same as the probabilities of
events that provide information about the visibility in the
Gottesman et al. protocol. Therefore, the Fisher information
of their procedure is

fG(�, g) =
4∑

k=1

1

pk

⎛
⎝

(
∂ pk
∂�

)2 ∂ pk
∂�

∂ pk
∂g

∂ pk
∂g

∂ pk
∂�

(
∂ pk
∂g

)2
⎞
⎠, (D2)

and its elements are

fG,11 = εg2 sin2(� + δ)

2[1 − g2 cos2(� + δ)]
,

fG,22 = ε cos2(� + δ)

2[1 − g2 cos2(� + δ)]
,

fG,12 = fG,21 = εg sin(� + δ) cos(� + δ)

2[1 − g2 cos2(� + δ)]
. (D3)

The NOT-based protocol extracts information from the events
where the stellar and ancilla photon landed at the same tele-
scope, which is not the case for the Gottesman et al. protocol.
Such events return the even results for both parity checks, and
corresponds to the 5–8 indices in Eq. (D1). In other words,
the NOT-based protocol extracts information from all events
included in Eq. (D1), while the Gottesman et al. protocol
extracts information only from events denoted by indices 1–4.
Calculating the Fisher information for the NOT-based protocol
is done as in Eq. (D2), but the summation goes from 1 to 8. It
results in

fNOT,11 = fG,11 + εg2 sin2(� − δ)

2[1 − g2 cos2(� − δ)]
,

fNOT,22 = fG,22 + ε cos2(� − δ)

2[1 − g2 cos2(� − δ)]
,

FIG. 9. Schematic representation of Khabiboulline’s protocol for
N = 3 time bins.

fNOT,12 = fG,12 + εg sin(� − δ) cos(� − δ)

2[1 − g2 cos2(� − δ)]
,

fNOT,21 = fNOT,12, (D4)

which quantifies the improvement in Fisher information over
the Gottesman et al. protocol.

In the case of single-parameter estimation of g, the protocol
cannot be made optimal in terms of achieving the quantum
Fisher information even if one has a perfect knowledge of �.
In such case, QFI is 1/(1 − g2) and FI is given by the fNOT,22

element in Eq. (D4). QFI is saturated only when � = δ = 0,
which is almost never the case.

APPENDIX E: UNMODIFIED QUANTUM MEMORY
PROTOCOL: EXAMPLE CALCULATION

We first summarize the protocol proposed by Khabi-
boulline et al. The ancilla state is

|�a〉 = |0 . . . 000〉M,L|0 . . . 000〉M,R⊗
⊗ |�+〉 . . . |�+〉|�+〉|�+〉. (E1)

Given that the total measurement time is T = Nτ , we have
4 log2(N + 1) qubits, where N is the number of time bins to
be examined and τ is the width of the time bin. A quarter
of them are prepared in the state |0 . . . 000〉M,L and located
in one of the local laboratories denoted by L, and another
quarter |0 . . . 000〉M,R is located in laboratory R. We will
call them memory qubits. The Bell pairs |�+〉 [consisting
of 2 log2(N + 1) qubits] are distributed to the laboratories,
with each laboratory receiving one qubit from each pair. The
procedure for N = 3 is summarized in Fig. 9.

We then use a modified controlled NOT CX gate, whose
action is dependent on the time bin during which the star
photon arrived. The modes supplied by the star act as control
qubits, and the memory provides the target qubits. The CX
gate follows the pattern

No photon arrival : |0〉|0 . . . 000〉M → |0〉|0 . . . 000〉M,

Arrival in time bin 1 : |1〉|0 . . . 000〉M → |1〉|0 . . . 001〉M,
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Arrival in time bin 2 : |1〉|0 . . . 000〉M → |1〉|0 . . . 010〉M,

Arrival in time bin 3 : |1〉|0 . . . 000〉M → |1〉|0 . . . 011〉M,

...

Arrival in time bin N : |1〉|0 . . . 000〉M → |1〉|1 . . . 111〉M.

(E2)

This gate performs the encoding step: the arrival time bin is
encoded in binary in the memory qubits.

For simplicity, suppose that the star emits a photon in
the third time bin and is a point source, so V = e−i�, and the
phase � is the parameter to be estimated. The state of the
emitted photon is given by

|�star〉 = 1√
2
(ei�|1L0R〉 + |0L1R〉). (E3)

The combined state of the stellar photon and the ancilla is
|�star〉 ⊗ |�a〉. Performing the CX gate results in the state

|� ′〉 = ei�√
2
|1L0R〉|0 . . . 011〉M,L|0 . . . 000〉M,R

⊗ |�+〉 . . . |�+〉|�+〉|�+〉

+ 1√
2
|0L1R〉|0 . . . 000〉M,L|0 . . . 011〉M,R

⊗ |�+〉 . . . |�+〉|�+〉|�+〉. (E4)

The next step is to perform a set of standard CZ gates. Each
memory qubit acts as a control and is assigned a correspond-
ing locally available Bell-state qubit as the target (see Fig. 9).
Performing the CZ gates results in the state

|� ′′〉 = ei�√
2
|1L0R〉|0 . . . 011〉M,L|0 . . . 000〉M,R

⊗ |�+〉 . . . |�+〉|�−〉|�−〉

+ 1√
2
|0L1R〉|0 . . . 000〉M,L|0 . . . 011〉M,R

⊗ |�+〉 . . . |�+〉|�−〉|�−〉, (E5)

which transfers the time-bin information from the memory
qubits to the Bell pairs. Note that the Bell pairs form a separa-
ble state with the other qubits. One can distinguish between
|�+〉 and |�−〉 by using local measurements and classical
communication since they can be rewritten in the X basis as

|�+〉 = (| + −〉 + | − +〉)/
√
2,

|�−〉 = (| + +〉 + | − −〉)/
√
2. (E6)

If the result of an X measurement gives the same result in
both laboratories, then we have the state |�−〉, otherwise
we have |�+〉. This allows the parties to determine the time
bin during which the photon arrived. It also allows us to
determine which memory qubits were affected by the CX gate.
The other memory qubits can be traced out. After measuring
the Bell pairs and tracing out the irrelevant memory qubits,

the analyzed state is

|� ′′′〉 = 1√
2
(ei�|1L0R〉|11〉M,L|00〉M,R

+ |0L1R〉|00〉M,L|11〉M,R). (E7)

The star photon mode is decoupled from the memories by
the measurement in the X basis. In any order, all but one of
the memory qubits are measured in the X basis, and the final
memory qubit is measured in the rotated basis spanned by
|±δ〉 = 1√

2
(|0〉 ± eiδ|1〉). If n− denotes the number of times

the X measurements return the |−〉 result, then the probabili-
ties of the measurement results in the rotated basis are

P(±δ ) = 1
2 [1 ± (−1)n− cos(� + δ)]; (E8)

for an extended source, this becomes

P(±δ ) = 1
2 [1 ± (−1)n−Re{Ve−iδ}]. (E9)

APPENDIX F: MODIFIED QUANTUM MEMORY
PROTOCOL: EXAMPLE CALCULATION

Suppose the star provides a photon in the state (E3), which
arrives at the telescopes in the third time bin. The combined
state of the star photon and the ancilla qubits is

1√
2
(ei�|1L0R〉 + |0L1R〉) ⊗ |�+〉...|�+〉|�+〉|�+〉. (F1)

Performing the modified controlled phase gate results in

1√
2
(ei�|1L0R〉 + |0L1R〉) ⊗ |�+〉...|�+〉|�−〉|�−〉. (F2)

Both laboratories measure the ancilla qubits in the X basis
and establish the time bin during which the star photon ar-
rived. After these measurements, the star photon is left in the
state (E3). The stellar photon provides us with two single-rail
qubits which we can rewrite in different bases. Rewriting the
state of the qubit in laboratory L in the X basis and the qubit
in R in the rotated basis gives

|�star〉 = 1√
2

[
cos

(
� + δ

2

)
(|+,+δ〉 − |−,−δ〉)

+ i sin

(
� + δ

2

)
(|+,−δ〉 − |−,+δ〉)

]
, (F3)

which results in the probabilities

P(+,+δ ) = P(−,−δ ) = 1
4 [1 + cos(� + δ)],

P(+,−δ ) = P(−,+δ ) = 1
4 [1 − cos(� + δ)]. (F4)

APPENDIX G: MODIFIED QUANTUM MEMORY
PROTOCOL: EXAMPLE OF RESOURCE ESTIMATION

Suppose that one needs to examine the state of stellar
modes arriving within N = 7 time bins. In that case, the proto-
col requires three Bell states to perform the binary encoding.
If the star photon arrives within the third time bin, then the
ancilla is modified to

|�+〉|�+〉|�+〉 → |�+〉|�−〉|�−〉, (G1)
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where the first two Bell states have been flipped in accordance
with the binary representation of n = 3 (011). The states |�+〉
and |�−〉 can be distinguished by local measurements and
classical communication by measuring both qubits in the X
basis; if the results are the same, then the measured state is
|�−〉, otherwise it is |�+〉. Applying the same procedure to
all ancilla pairs returns the time bin during which the star
photon arrived. If no photon arrived, then the ancilla remains
unchanged. The next step is to measure the star photon modes
for all time bins in the X (mode 1) and rotated (mode 3)
bases. After both laboratories complete the measurement on
the ancilla, they communicate the result to each other to estab-
lish within which time bin the stellar photon has arrived. For
that time bin, the possible stellar photon mode measurement
results are described by the probabilities (E8) and (E9). These
probabilities saturate the QFI in the case of a measurement of
a point source, i.e., the phase measurement. The same is not
true for an extended source, for the reasons discussed before.

For example, if N = 100, then one needs 100 distributed
entangled pairs to perform a unary protocol, but only 7 en-
tangled pairs to perform the NOT-based protocol, the same
scaling as in the protocol of Khabiboulline et al. Of course,
in a practical stellar interferometry experiment, one needs to
determine the coherence between the stellar photon modes
at many baselines, and each coherence measurement re-
quires analysis of 100–1000 photons. If we consider stellar
photons with bandwidth of 10 GHz, there will be ∼106

of these (around 600 nm) every second (∼108 temporal
modes with an occupancy of ∼0.01, comparable to a typ-
ical blackbody source in visible light range), or ∼104 in
the ∼10 ms data acquisition time needed to beat turbulence
fluctuations of the relative phase. Thus, our terrestrial source
will need to produce and distribute matching-bandwidth pho-
tons at a rate ∼108 s−1 in order to have 100 coincidental
events in 10 ms. This is definitely challenging, but not
infeasible.
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