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Abstract—Robots interacting with humans must be safe,
reactive and adapt online to unforeseen environmental and
task changes. Achieving these requirements concurrently is a
challenge as interactive planners lack formal safety guarantees,
while safe motion planners lack flexibility to adapt. To tackle
this, we propose a modular control architecture that generates
both safe and reactive motion plans for human-robot interaction
by integrating temporal logic-based discrete task level plans
with continuous Dynamical System (DS)-based motion plans.
We formulate a reactive temporal logic formula that enables
users to define task specifications through structured language,
and propose a planning algorithm at the task level that
generates a sequence of desired robot behaviors while being
adaptive to environmental changes. At the motion level, we
incorporate control Lyapunov functions and control barrier
functions to compute stable and safe continuous motion plans
for two types of robot behaviors: (i) complex, possibly periodic
motions given by autonomous DS and (ii) time-critical tasks
specified by Signal Temporal Logic (STL). Our methodology
is demonstrated on the Franka robot arm performing wiping
tasks on a whiteboard and a mannequin that is compliant to
human interactions and adaptive to environmental changes.

[. INTRODUCTION

There is a growing presence of robot assistants in house-
holds, workplaces, and industrial plants. In such applications,
robots should adapt to environmental changes and safely
interact with humans while performing a diverse range of
tasks that conform to sequential and time-critical behaviors.
Existing end-to-end frameworks [1]-[3] have demonstrated
robots performing diverse tasks, while model-based meth-
ods [4], [5] focus on predefined motions that are stable and
safe. However, they do not address the following challenges
jointly: (i) formal guarantees on safety and satisfying task
specifications, and (ii) reactivity to online environmental
events and unforeseen disturbances — which are critical for
deploying robots in human-centric environments.

Consider the scenario in Fig. 1, where the robot is wiping
a whiteboard. We want the robot to switch between periodic
wiping motions on the left and right side of the board as com-
manded by the user. If the camera detects a blue stain, then
the robot should wipe that off quickly. If there is an external
perturbation where the robot drops the eraser, then it should
pick it up and continue the wiping motion. This involves
switching between different motions (left and right wiping),
reacting to environmental events (stain), time-critical tasks
(wiping stain), and human interactions (eraser dropped).

1Farhad Nawaz, Shaoting Peng, Nadia Figueroa and Nikolai Matni are
with the GRASP Lab, University of Pennsylvania, PA 19104, USA. 2Lars
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The key challenge for robots in such interactive scenarios
is maintaining safety and compliance while reacting to
online environmental events and switching between tasks. To
alleviate this, we develop a computationally efficient online
planning strategy that generates safe and reactive motions
for human-robot interaction, by integrating a 200 Hz discrete
planner based on temporal logic and a 1 KHz continuous
Dynamical System (DS)-based planner.

Task specifications: At the task level, one way to de-
scribe desired robot behaviors is via temporal logic spec-
ifications [6], previously used in a variety of tasks such as
cooking [7], mobile manipulation [8], search and rescue mis-
sions [9]. Such specifications allow robots to understand and
interpret commands involving temporal relationships using
structured language. For example, a high-level specification
for the scenario in Fig. 1 can be given as

(left — wipe left) and (right — wipe right) and
(blue stain — wipe stain in 5 seconds) and
(no eraser — pick up eraser) . (1)

Specifications like (1) are typically satisfied by integrating
high-level discrete actions and low-level continuous motions
via formal methods for control [10]-[12]. Such methods
compute a control signal for predefined scenarios but lack
reactivity to online events and disturbances. Here, we focus
on reactive planning, i.e., the robot should adapt its behav-
iors depending on the changing environmental observations
online. Prior work using Signal Temporal Logic (STL) [13]
relies on computationally intensive mixed-integer linear pro-
grams [14], [15] for online adaptation, while methods based
on Linear Temporal Logic (LTL) [9], [16]-[18] require com-
putationally taxing planners on discrete transition systems.
To tackle such computational burdens and inflexibility, we
instead translate STL specifications into constraints on the
continuous motion level enforced via efficient Quadratic
Programs (QPs) for real-time planning as in [19].

Discrete task plan: We adapt ideas from [20], and
formally define controllable and uncontrollable propositions
in Section III-A to integrate high level reactive temporal logic
specifications with continuous low level motions. Intuitively,
controllable propositions, highlighted in blue in (1), represent
robot behaviors that can always be controlled by appropri-
ate choice of motion planners. Uncontrollable propositions,
highlighted in red in (1), are discrete environmental events
that cannot always be controlled by the robot. We define a
reactive temporal logic formula in Section III-B that builds
upon controllable and uncontrollable propositions. We then
construct a Biichi automaton [21] using existing tools [22]
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Fig. 1: Periodic wiping motion on the (a) right side and (b) left side of the board, (c) wiping the blue stain detected by a camera, (d) eraser
dropped because of human perturbation and (e) robot picks up the dropped eraser.

and employ it within a discrete task planner that decides
the sequence of desired behaviors the robot should follow to
always satisfy the task specification, despite environmental
changes such as the blue stain and perturbation in Fig 1.

Continuous motion plan: We integrate our discrete task
planner with a continuous DS-based motion planner that
executes each desired robot behavior. While our method
is agnostic to the underlying DS motion policy, we focus
on two types that encapsulate diverse tasks: (i) nominal
motions given by an autonomous DS, and (ii) time-critical
tasks specified by STL. Nominal motions could either be
provided as a library of autonomous DS, or learned from
demonstrations [7], [23]. We utilize our prior work [24]
that uses Neural ODEs and tools from Lyapunov theory
to learn nominal (possibly periodic) motions from only 3-4
demonstrations while also guaranteeing safety and stability.
We model time-critical tasks as STL specifications and time-
varying Control Barrier Functions (CBFs) [19]. Since our
prior work [24] also uses CBFs for safety and Control
Lyapunov Functions (CLFs) for stability, we endow robots
the capability to follow both time-critical behaviors and
complex nominal motions in a single framework by solving
an efficient QP online. Thus enabling the robot to react to
environmental events and follow the desired behavior, guar-
anteeing task satisfaction even in the face of disturbances.

Contributions: First, we adapt the notion of controllable
propositions from [20] to model more general continuous
time robot behaviors such as nominal DS-based motions
and time-critical STL tasks. We use such propositions as the
basic building blocks of a reactive temporal logic formula to
represent task specifications in structured language. Second,
we propose a discrete task planning algorithm running online
at 200 Hz that decides the sequence of robot behaviors to
execute to satisfy the task specification despite environmental
changes online. Third, we integrate our task planner with
a continuous DS-based motion planner that uses CLFs and
CBFs to follow nominal motion plans and satisfy time-
critical STL tasks in the presence of unforeseen disturbances,
by solving a QP online at 1 KHz. Finally, we validate our
approach on the Franka robot arm that performs reactive
wiping tasks on a whiteboard and human mannequin using
environmental observations from a RealSense camera, while
also being compliant to human interactions.

II. PRELIMINARIES

We introduce the background to define our reactive tem-
poral logic specification, and tools from control theory to

satisfy time-critical tasks and guarantee disturbance rejection.
Let z € X C R? and v € U C R™ be the state and control
input for the nonlinear control affine dynamical system

i = f(@) + g(@)u, @)
where, f:R? — R?% and g : R — R,
A. Linear Temporal Logic and Biichi Automaton

We use LTL to specify in structured language the desired
reaction of the robot to discrete environmental events. Con-
sider a finite set of atomic propositions AP, where each
p € AP can either be true or false. An LTL formula ¢
is constructed using the following syntax.

pu=true | p|-p |1 Aps | 0iUps 3)

The symbol ::= means that ¢ in (3) is assigned to be one
of the expressions from the right hand side separated by

vertical bars |. The different symbols mean the following:
- is negation, A is conjunction and U is the until operator
that expresses that ¢ should be true until 2 becomes true,
where @1, o are well-defined LTL formulas.

The set of discrete environmental observations and robot
behaviors that dictate the LTL formula ¢ is given by AP.
The specification ¢ is a combination of Boolean and tem-
poral operations between the elements of AP. For example,
consider a task where the robot should add oil to a pan once
the pan is hot. The set AP = {hot, 0il} which corresponds
to whether the pan is hot (hot = 1) and oil is poured on the
pan (oil = 1). The LTL formula is ¢ := G (hot = Foil),
where G denote always and F' denote eventually [11].

An input signal is defined as o : Z+ — {0, 1}1471, which
is a discrete time signal that represents the boolean values of
the propositions AP. We are interested in signals that satisfy
a task specification . The symbol (o, k) F ¢ indicates that
the signal o satisfies a formula ¢ at time step k. We refer
the reader to [19] for details on LTL semantics.

Biichi automaton: A Biichi automaton [12] is a tool that
gives a formal way of deciding whether signals satisfy LTL
specifications. Given ¢, we can construct a nondeterministic
Biichi automaton B, = (S, so, AP, A, F), where S is a finite
set of states, sp € S is the initial state, AP is the finite set of
atomic propositions, A C S x {0, 1}/4” — S is a transition
relation such that (s’,d, s”) € A indicates a transition from
s’ to s when the input label is d € {0,1}/4"], and F C
S is a set of accepting states. Given an input signal o :
Z+ — {0,1}/4%1, a run of the Biichi automaton B, is an
infinite state sequence s := {sq, $1, S2, . ..} that satisfies the
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transition relation (s;,o (%), s;+1) € A for each i € Z*. An
accepting run on By, is a sequence s for which inf(s)NF # 0,
where inf(s) is the set of states that appear infinitely often
in s. If the sequence s is an accepting run on B, then the
input signal o satisfies ¢ [12].

B. Signal Temporal Logic and Control Barrier Functions

We use STL to specify time-critical tasks, time-varying
CBFs to satisfy STL tasks and CLFs to enforce stability.

Instead of atomic propositions in LTL, predicates p
describe truth values in STL using a predicate func-
tion h(x):p=true < h(z) >0 and p = false oth-
erwise, where z € R? is the robot state. The syntax and
semantics of STL closely resemble those of LTL, but can
encode explicit quantitative time constraints. We direct the
reader to [19] for details on STL syntax and semantics.

Control Barrier Functions: We use time-varying
CBFs [19] to satisfy STL specifications. Satisfying a time-
critical task specification is defined as the forward invariance
of time-varying safety set C(t) C X V t > 0 for the
system (2). The set C(t) is defined as the super-level set of
a continuously differentiable function B : R? x R>o — R:
C(t) = {x € X : B(x,t) > 0}. Our objective is to find a
control input u such that the states = that evolve according
to the dynamics (2) always stay inside the set C(t). Such
an objective is formalized using forward invariance of the
set C(t). The safe set C(t) is forward invariant for a given
control law w if for every initial point x(0) € C(0), the future
states x(t) € C(t) for all t > 0. A continuously differentiable
function B : R? x R>o — R is a time-varying CBF for (2)
if there exists an extended class K function (-) such that
for all (z,t) € X x Rx,

OB(z,t)
sup ———
uel Ox

B(x,t
WBED 5 (Bl
“4)
The set of all control inputs that satisfy the condition
in (4) f%)r each (z,t) € X X Ry¢ is K(z,t) := {u € U :
Pt (f() + gla)u) + 2250 > —y(B(x,1))}.

The formal result on forward invariance using time-
varying CBFs follows from [19].

Theorem 1: Let u(z,t) € K(z,t) be a feedback control
law that is Lipschitz in z and piecewise continuous in t.
Then, the set C(t) is forward invariant for the control law
u(zx,t) if B(x,t) is a time-varying control barrier function.

STL specifications can be enforced via time-varying CBFs
following the construction from [19]. For example, consider
the STL formula ¢ ::= Fjg 5)||z — 2| < e which specifies
that eventually (F'), the robot x should be e-close to a target
point z* within the time interval [0, 5]. Similar to [19], we
can define a CBF B(z,t) = ~(t) — ||z(t) — «*||, where
~(t) defines the rate at which the robot reaches z* such
that ¥(5) = €,7(0) = [|z(0) — ™.

We use time-independent CBFs and CLFs to guarantee
safety and stability of nominal motion plans given by au-
tonomous DS models, which is detailed in prior work [24],
[25]. The difference between a time-independent CBF de-
fined in [25] and the time-varying CBF is the presence of

(f (z) + g(x)u) +

the term % in (4), which makes constraint satisfac-

tion more difficult if % < 0. A Control Lyapunov
Function (CLF) V : R% — R>¢ is a special case of a time-
independent CBF B : R? — R with B(-) = —V/(-) and
the time-independent safe set C = {0}, where Theorem 1
guarantees asymptotic stability: see [25] for more details.

III. PROBLEM FORMULATION

We first define a reactive temporal logic formula to de-
scribe the task specification using structured language, and
formally write the problem statement.

A. Controllable Propositions

We introduce a general notion of controllable propositions
that is adapted from [20] to model discrete events in our task
specification that depend only on the state signal z(t). Prior
work [20] model only STL tasks, but we also focus on au-
tonomous DS-based motions and describe how observations
from the continuous time state signal x translate to a discrete
time signal o of LTL in Section II-A.

We define a generalized version of the predicates g
described in II-B as controllable propositions.

Definition 1: The truth value of a controllable proposi-
tion p.(t) at time ¢ is defined below using a tuple (£, M, Q),
where £ : P x R>o — Q is an operator from the space of
state signals P = {z | # : R>g — R?} and time R>( to
a space of signals @ = {y | y : R>9g — RY} in cartesian
space R?, M : P x R>g — 22, where 22 is the power set

of Q.
pelt) = {true < L(x,t) € M(z,t)

false < L(x,t) ¢ M(z,t) ©)

Intuitively, the operator £ describes the current behavior
of the robot relevant to p.(t) at time ¢, M describes the
desired behavior relevant to p.(t), and Q is the space
of signals that is applicable for the controllable propo-
sition p.. For the example in Fig. 1, we represent all
motions in 3D (d = 3) and wiping motions as autonomous
DS i(t) = f(z(t)) so that ¢ = d, L(x,t) = & for all ¢ > 0
and M(z,t) ={y | y:Rso = R3 s.t. y(t) = f(z(t))}.

We can model STL tasks using controllable
propositions. First, for the predicates p defined in
Section II-B, ¢=1, L(z,t)=hox for all t > 0
and M(x,t) ={y | y:Rso = Rst y(t) >0} for all
x € P. Then, an STL specification Fjggllz —2*| <€
can be modeled as L(x,t)=hox for all t>0,
where  h(z(t)) = —||z(t) —2*||+¢, ¢ = 1 and
Mz, t)={y | It €t,t +5] s.t. y(t') >0} VzeP.

We denote the propositions p. in Definition 1 as control-
lable because their truth value entirely depends on the state
signal = which can be controlled by u in (2), but we do not
state any formal equivalence to controllability [26]. While
the notion of controllable propositions is in general abstract,
we focus on nominal DS-based motions and STL tasks.

Continuous to discrete time: We consider a finite set
of controllable propositions A, where each p.(t) € A, can
either be t rue or false as defined by (5). An LTL formula
can be defined with appropriate syntax and semantics as
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given in Section II-A with AP = A.. However, the signal o
in Section II-A that dictate the boolean values of AP is
a discrete time signal, but controllable propositions depend
on the continuous time state signal z. In practice, we fully
observe the state x(t) at each continuous time ¢ > 0, but
update the boolean values of the controllable propositions
only at discrete times ¢, where k € Z*. We connect the
different time scales by denoting {¢,%1,. .., } to be a possi-
bly irregular sampling of the continuous time interval [0, 00)
with to = 0, where each ¢ corresponds to the discrete time
step k. We define a controllable signal o, : 7+ — {0, 1}14c]
such that for all & € Z%*, o.(k) depends on the state
signal x at time t;. Now we can use a Biichi automaton
as described in II-A for any signal o, : Zt — {0, 1}l to
verify satisfiability of LTL formulae over A..

B. Reactive temporal logic

We define the syntax of a Reactive Temporal Logic (RTL)
formula that the robot should satisfy, using LTL formulae
over controllable and uncontrollable propositions. Such a for-
mula describes how the robot should react to environmental
events by following different desired behaviors. In addition
to A, described in III-A, we define uncontrollable proposi-
tions A, that represent discrete environmental observations
which cannot always be controlled by the robot, such as lefs,
right, blue stain, no eraser described in Section I. The truth
values of A, are determined by both the state signal = and
an observed uncontrollable signal o, : Z+ — {0,1}A«,
The syntax of RTL formulas ¥ is

UVi=9 [Gle=T0) |G =T) [T AT, (6)

where, ¢ is an LTL formula defined in (3) with AP = A,
@ is an LTL formula with AP = A,, and G indicates the
always operator [11]. Our work always focus on reacting to
environmental observations represented by 4, by following
a desired behavior dictated by .A.. The semantics of W
follow that of LTL in Section II-A with AP = A, U A,
and A. N A, = (). We can construct Biichi Automaton By
to verify if an input signal o : Z* — {0,1}/47| satisfies
U. Similar to Section II-A, the symbol ([o.,0,],k) F ¥
indicates that the controllable signal o. and uncontrollable
signal o, satisfies a formula W at time step k € Z*. For
example, consider a simple reactive cooking task where
the robot should keep stirring a pan if it is hot. Otherwise,
the robot should increase the temperature of the stove
by pressing a button. The RTL specification would be
U := G(hot = stir) A G(—=hot = F(press button)), where
A, = {hot}, A, = {stir, press button}.

C. Task and Motion Plan

Given a set of nominal autonomous DS and an RTL
specification ¥, we aim to develop a reactive planning
strategy to satisfy ¥ while being adaptive to environmental
events and stable with respect to disturbances. We use a DS-
based motion plan for a robotic manipulator defined as

i = fe (@) +u(z, ), (7)

where, fn(t) (x) encodes a nominal mo-
tion n(t) € {1,2,...,N} at time t, while u(z,t) is an

auxiliary control signal used to satisfy the task specification
and enforce disturbance rejection properties. We assume
that the N autonomous dynamical systems D = {f;}
that govern the nominal motions are given to us; these
may, for example, be learned from demonstrations [24].
We choose u(z,t) and n(t) for the robot to follow at each
time step based on the discrete controllable signal o, that
satisfy W, which further depends on the uncontrollable
signal o,. We model the controllable signal as following
low level continuous motions and assume that the robot can
follow at-most one motion at a given time, since we allow
switching online between different motions.

We are given an RTL specification ¥ and a set of nominal
autonomous dynamical systems D specifying a DS-based
family of motion plans (7). Our task is formalized in the
following problem statement:

Develop a reactive control strategy such that at each
discrete time ty, and for any uncontrollable signal o,
the solution x(t) to (7) generates a controllable sig-
nal {o.(k),o.(k +1),...} such that ([o.,0.),k) E ¥ for
all t, > 0.

The above problem statement requires the robot to react
online to uncontrollable environmental changes given by o,
while also adapt to unforeseen external disturbances via the
auxiliary input u(z,t).

IV. PROPOSED METHODOLOGY

We present our modular control architecture that integrates
a discrete task planner to satisfy the specification ¥ and a
continuous DS-based motion planner to reject external dis-
turbances while adapting to dynamic environmental changes.
Unlike prior approaches [3]-[5] that do not jointly show
reactivity to online environmental events and stable task
execution, we propose a single framework that demonstrates
reactive robot tasks with formal stability guarantees for
physical robot interaction. We will use CLFs and CBFs
described in Section II-B for our parameterization (7), which
is a control-affine dynamical system (2) for the time period
when n(t) is constant with f(z) := fn(t)(x) and g(x) := 1.

A schematic of the proposed control flow is presented in
Fig. 2. The blue blocks represent the offline components
and the green blocks are the online planning modules.
The autonomous DS models fl(x) could either be given
by a library of motion primitives [27], or can be learned
from demonstrations [23], [24]. The user specifies a reactive
temporal specification W that the robot should satisfy and
we construct the corresponding Biichi automaton By using
automated tools [22]. At deployment, given an observation of
the external environmental events, our task planner decides
the type of robot behavior p,, € A, to follow at each time
step using By so that U is satisfied. The details of the task
planner on how to decide p,, are given in Section IV-A.
Then, the motion planner computes the reference velocity
Tref to follow p,, based on (7) using the virtual control
input u(x,t), which enforces disturbance rejection properties
and satisfies STL specifications included in W. We denote
the reference velocity for the low level controller as Zyef,
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Fig. 2: The control flow of our proposed pipeline. The state of the
robot is z, the low level control input are the joint torques 7, and
the desired velocity in state space iS Tryef-

which in general may be different from the real velocity
@ of the robot. The reference velocity Z,.f is given as
input to an impedance controller [28] that computes the low
level control input 7 (joint torques) for the physical robotic
system. We emphasize that the virtual control input u(x, t) is
different from the low-level control inputs 7 given in Fig. 2,
and u(z,t) is a component of the motion planning DS (7).

A. Task Planner

We propose Algorithm 1 that outputs the behavior p,,, the
robot should follow at each time step to satisfy ¥, even when
the environmental events are dynamically changing.

Description of Algorithm 1: Given a task specification U,
we construct the Biichi automaton By = (S, sg, AP, A, F)
using Spot 2.0 [22]. We denote s and s’ to be the current
and previous state of the automaton, respectively, and k is
the current discrete time step. Lines 2-15 are implemented
online at 200 Hz in the task planner block of Fig. 2. In
line 6, we form a directed graph G(S, E) from By, which
is implemented only at K = 0 or if there is a change in
the values of the uncontrollable propositions o, (k). The
nodes of G is S, while the edges E reflect valid transitions
on the automaton that comply with the current value of
uncontrollable propositions o, (k), i.e., for all s;,s2 € S,
(s1,82) € E if and only if there exists a p € {0, 1}/! such

Algorithm 1: Task Planner
Initialize:
By = (S, so, Ac U Ay, A, F) + Automaton(V);
s« 5o, k< 0;

1 while rask running do

[cc(k), ou(k)] + UpdateSensor();

s €451 (5, oo (k), ru(k)],5) € A};

if k=0 or oy(k) # ou(k — 1) then

70, so +s;

G(S, E) < Graph(Bw, o (k));

{s0, 81, 82, ...} < ShortestPath(G, so, F);

else

L-IE- - - N N

if s # s’ then
| jei+ 1
end

—
=l

—
oy

end
Pm < pe(k), where p.(k) € A. such that
(s5, [Pl 0u(K)], s541) € A and pllpe(K)] F true;
14 s’ s,k k+1;
15 MotionPlan(p.y, );
16 end

-
w N

that (s1, [p,0u(k)],s2) € A. In line 6, we plan a shortest
path on G(S, E) using breadth-first search [29] that reaches
an accepting state in F and stays there infinitely often. Such a
path always satisfies W as described in Section II-A. If there
is no change in the values of uncontrollable propositions,
we implement lines 9-11 so that the robot moves along the
path, where index j represents the progress along the path to
satisfy W. Finally, in line 13, we decide the type of motion
plan p,, to be implemented.

Decide motion plan p,,: Let the shortest path ob-
tained in line 6 be w = {sg,s1,82,...}, where
so =35, (sj,[pl,0u(k)],sj41) €A for all j € Z*, and
p) € {0, 1} is the value of controllable propositions when
transitioning from s; to s;4q. Although there could be
multiple such p/, we observed from our experience that the
transitions on the shortest path will have exactly one p
for each unique o, (k). In line 13, we denote p.(k) € A.
to be the controllable proposition that is true in pi,
where pJ is the label of the transition along the path that
satisfies W. We thus choose the type of motion plan p,,
to be the current controllable proposition p.(k) that has
to be true to move along the shortest path. For example,
the automaton By is given in Fig. 3 for the specification
U := G(h=s) ANG(—h = F(p)) described in Section III-
B, where h := hot, s:= stir, p:= press button. If the
initialization is such that sp = 0; h = 1,s = 1,p = 0,
then the shortest path is just the self-transition 0 — 0. Then,
from the label of the transition 0 — 0 and oy, (k) = {h, —p},
the motion plan to be implemented is p,, = s so that the
robot follows the behavior stir. If h = 0 while the robot
is stirring (s = 1), then the system transitions to state 1.
Now, the shortest path is computed again and the path is
1 —+ 0 — 0. From the label of the transitions 1 — 0 — 0
and A = 0, the motion plan to be implemented is p,, = p
so that the robot follows the behavior press button. In the
next section, we describe how the desired behavior p,, is
achieved by implementing a DS-based motion plan.

Remark: In this work, we assume that for each uncontrol-
lable signal o, there exists a possibly different controllable
signal o, that satisfies the given RTL specification ¥. Fur-
thermore, we assume that at each discrete time step k, if
ou(k) # ou(k) and T, (1) = ou(7) for all 7 # k, then
there exists a controllable signal @, such that 7.(i) = o.(7)
for all ¢ < k and ([7.,7,], k) E ¥. This assumption asserts
the existence of a possibly different controllable signal that
satisfies W, even if the uncontrollable propositions change
online. Without this assumption, there might not exist a
controllable signal that satisfies W if the environmental ob-
servations represented as uncontrollable propositions change
at task execution. Such scenarios are known as deadlock
modes [30], where a supervisory signal [31] is required to
recover the system, which we reserve for future work.

B. Motion Planner

Given the output p,, of the discrete task planner at each
time step k, we solve a QP online at 1 KHz that (i) guarantees
satisfaction of STL specifications, and (ii) enforces safety
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Fig. 3: Automaton By for ¥ := G(h = s) A G(—h = F(p)),
where !p = —p.

and stability properties while following nominal motions
given by autonomous DS. We also propose a simple yet
efficient switching strategy so that robots switch between
different behaviors when reacting to environmental obser-
vations, unlike previous approaches [14], [15] that solve
expensive optimization problems to re-plan.

1) Nominal motion plans: We compute safe and stable
motions that converge to a nominal target trajectory which
is generated from an autonomous dynamical system. Al-
though one could assume that the set of nominal dynamical
systems D are given to the user from an existing library
of motion primitives [27], we use the CLF-CBF-NODE
from our prior work [24] that learns from demonstrations
DS models f; for each behavior i € {1,2,...,N} that
includes complex, possibly periodic motions. For example,
the stir behavior mentioned in the previous section can
be represented by a periodic trajectory x7(t) using a DS
model & = f; (z) that is learned from demonstrations.

CLF-CBF-QP: We abuse notation and use z*(t) and f(t)
to denote the target trajectory and the autonomous DS for a
single nominal motion, but the method is the same for any
other nominal motion. Let the error be e(t) = z(t) — z*(t),
and for ease of notation, we drop the explicit dependence on
time t, and write e, x, and x* for the current error, state, and
target point at time ¢, respectively. The control-affine error
dynamics is ¢ = f(x) — i* + u(z) from (7). The explicit
dependence of u(x) and f () on time is removed since we
focus only on time-independent CBFs to model safety sets,
and CLFs for the time period when n(t) is constant. In the
next section, we describe how we switch between different
behaviors. Then, by Theorem 1, if there exists a CLF V' for
the dynamics ¢, then, any feedback control law u(z) € K(z)
will drive the error asymptotically to zero. Similarly, if there
exists a time-independent CBF B corresponding to a safety
set C C X for the dynamics (7), then, any feedback control
law u(z) € K(x) will render the system safe. We combine
both the properties of safety and stability and solve the below
QP to compute u(z), where we prioritize safety over stability.

Given the current state of the robot z and the target
point z*, the QP that guarantees a safe motion plan is

(u(x),-) = arg min Hv”i + An?

. m
s.t. 81;(;) (f(x) + v) > —y(B(x)) ®)
avie) '

(f@) =" +v) < —a(V(e) +m.

where « is a class K function, 7 is a relaxation variable to
ensure feasibility of (8) and is penalized by A > 0. We use
Algorithm 1 from our prior work [24] to choose z* and ©* =

f (2*) that ensures tracking of complex periodic trajectories
in-spite of external disturbances. If the safety specifications
do not disturb the nominal motion, then n = 0 in (8), which
guarantees stability.

2) STL tasks: We use time-varying control barrier func-
tions to satisfy time-critical tasks specified by STL [19]. For
example, consider the STL task ¢ ::= I, pllz — 2% < €
which encodes that the robot’s end-effector position = should
eventually be e close to a goal point =* within the time
interval [a,b]. Such a task ¢ could represent the press
button behavior mentioned in Section IV-A, where the robot
should be in close proximity to the button within the time
interval [a,b] so that the button is pressed and the pan
remains hot. A CBF for ¢ is B(x,t) = €2 — ||z —2*||? +~(¢),
where () controls the rate at which the robot reaches z*
such that v(b) = 0, B(x, a) > 0. For example, we can use

~(t) = max{0, W(t —b)} so that B(x,a) = €2 If
there exists a control law u(z,t) so that the solution of (7)
satisfies B(x(t),t) > 0 for all ¢t € [a, b], then ¢ is satisfied.
Since 7(¢) is monotonically decreasing until ¢ = b, the size of
the set C(t) defined in Section II-B will decrease until ¢ = b
and the control law u(z,t) € K (x,t) will drive the state x
e-close to z*. We can formulate a QP similar to [19] and
compute u(x,t) that renders the set C(¢) forward invariant
for the dynamical system (7) with the CBF B(x, t):

u(z,t) = arg min H’UH;
v

s.t. > —v(B(z,t))

©))
The above problem is always feasible if B(x,t) is a valid
CBF and [19] presents a closed-form expression under the
additional assumption that B(x,t) is either non-decreasing
or non-increasing in t. Both problems (8) and (9) are QPs
that we solve efficiently in real-time using OSQP solver [32].

3) Switching between behaviors: The RTL specification
requires the robot to switch between different behaviors
depending on the changing environmental observations. Con-
sider a scenario from our running example in Fig. 3, where
the pan is hot (h = 1) at all time ¢t < ¢1, but is not hot
enough (h = 0) at time ¢5 > t;. Then, the robot would
be performing the stirring motion at time ¢t < t¢; which
involves commanding the virtual control u(x) computed
from (8) with f = fn(t) modeling the stirring motion.
Now, at time to, since h = 0, the robot should follow the
press button behavior to satisfy W, which could be satisfied
by commanding u(z,t) from (9). This scenario involves
switching between two types of motion planning strategies
that correspond to p,,, = s and p,,, = p.

Mixing strategy: We propose a mixing strategy that
connects two successive motion planners when the robot
has to switch between behaviors so that there is a smooth
transition. Let the robot follow a behavior a € A, during
the time ¢ < ¢; and that it has to switch to behavior b € A,
when time ¢ > ¢1. Let the nominal vector field be f, () for
behavior a and f,(x) for behavior b. Let the virtual control
input be u,(x,t) for behavior ¢ and uy(x,t) for behavior

OB(z,t) ( .

9Bz,
o fa (@) -H)) + 9B(x,t)

ot
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b. Then, thp commanded reference velocity at time ¢; is
Tref(t1) = fa(x) + uq(x, t1). We define the mixing strategy
when the robot switches from behavior a — b at time t; as

(1= B®)inrlts) + 8(1) (folw) + (1))

)
. t—1t
1
max(O,mm(7 AL )),

where At is the during for which the mixing strategy is
implemented. The mixing factor 5(¢) linearly increases from
0 to 1 over the time interval ¢t € [t1,t; + At] so that
the commanded reference velocity smoothly varies from
Zref(t1) (behavior a) to dnf(t; + At) (behavior b). If we
increase At, the robot will take longer to switch between
behaviors and vice-versa.

fbref(t) -

B(t)

V. EXPERIMENTAL RESULTS

We demonstrate our method on a Franka robot arm per-
forming two experiments: (i) wiping a whiteboard and (ii)
wiping a mannequin, both while adapting to environmental
changes and being compliant to human interactions.

A. Wiping a whiteboard

The task execution by the robot using our method is given
in Fig. 4, for the same scenario that was introduced in
Fig. 1. On a high level, the robot should switch between
two different nominal wiping motions, react to the envi-
ronment by wiping off any stain on the board, and adapt
to external disturbances such as the eraser being dropped
off from the end effector. The uncontrollable propositions
are (i) eraser = 1 & the end-effector is holding an eraser,
(ii) stain = 1 < there is a stain on the whiteboard,
(iii) left = 1 < nominal wiping motion on the left side
of the board and (iv) right = 1 & a different wiping
motion on the right side of the board. The boolean values
for left and right are controlled by the user using a GUI,
the stain is detected by an Intel Realsense camera that
returns the bounding box of the stain, and we assume the
eraser is dropped if the gripper of the end-effector is open.
The controllable propositions that model different desired

Sym.| Bool rom Description

Wq w, = 1 & @(t) = Wiping motion by nominal autonomous
fa (z(t)) DS fa, a € {left, right} indicates the side

on the board.

Wyain | Weain = 1 < @(t) = Motion to wipe off the detected stain online
fium(z(t)) given by a nominal autonomous DS fyin

Sp Sp = 1 < | The end-effector should eventually (F)
Flo,tgllz(t) —zs|| < | be € close to the stain x5 within time
€ interval [0, ¢5].

ep ep = 1 < | The end-effector should eventually be e \
Flotollz(t) — x|l < €| close to the eraser e, within [0, t]. =

TABLE I: Controllable propositions (Whiteboard)

behaviors are given in Table I. The RTL specification that
the robot should satisfy is

U= G ((eraser and left and —stain) = wier) and

G ((eraser and right and —stain) = Wrign)) and
((eraser and stain) = s,) and (—eraser = ep,) and
G ((eraser and stain) = (sp U Wsain)) -

B. Wiping a human mannequin

We present the experimental details of another wiping
task, this time on a human mannequin, where the robot
motions are given in Fig. 5. The robot should switch between
two different nominal motions on the legs and the hands,
wipe the back if the human gestures in that region, and
wet the towel at regular intervals where a human squeezes
the towel after wiping. The uncontrollable propositions are:
(1) leg =1 < wipe the legs, (ii) hand =1 < wipe the
hands, (iii) back =1 < human gesturing on the back,
(iv) wet = 1 < towel is wet, and (v) human = 1 < human
is inside the workspace to squeeze the towel. The boolean
values for leg and hand are controlled by the user using
a GUI, the human gesture on the back is detected by an
Intel Realsense camera, and the human being inside the robot
workspace is detected by Optitrack markers on the human
hand. We assume that the towel becomes dry, i.e., wet = 0,
every 30 secs. The controllable propositions are given in
Table II, and RTL specification is

U= wet and leg and —back) = wyeg) and

G((

G ((wet and hand and —back) = Whana)) and

G ((wet and back) = wyaek) and G (—wet = dp,) and
a

human and wet) = b,) and G ((—human and wet) = true).

Implementation details: For both the experiments, we use
Spot 2.0 [22] to construct the automaton By that has
43 states, 269 transitions for the whiteboard task; and
64 states, 510 transitions for the mannequin task. The nomi-
nal DS f, in Table I and II are learned from 3 demonstrations
for each motion using Neural ODEs [24] that efficiently
capture periodic motions. For wiping off the stain (wggin),
we generate a nominal trajectory online modeled as fstain
that covers the bounding box of the detected stain, and the

Eraser

Nominal Pick-up gy

Stain
Detection

Fig. 4: Whiteboard wiping: (a) switching between nominal motions (b) going to

the stain position (c) wiping off stain (d) human perturbation and eraser pick up.

Symbol [ Boolean condition

Wwa

Description

Wiping _motion on @ €
{leg, hand, back} given by a
nominal DS fu
The end-effector should even-
wally (F) be e-close to the
dip position x4 within the
time interval [0, t4].

The end-effector should even-
tually be e-close to the bowl
position x;, within [0, t;]

w, = 1 &
i(t) = fa(a(t)

4, = 1 =
Flogllz(t) — @all < ¢

Shih
tions

by = 1 &
Flo,yllz(t) — o]l < ¢

TABLE II:
tions (mannequin)

Controllable proposi- Fjg 5. Mannequin wiping: (a) switching between nominal motions (b) going to the back (c) wiping
the back (d) dipping the towel in water (¢) human squeezing the wet towel and (f) continuing wiping.
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trajectory is tracked using CLFs. We compute the time within
which the robot should satisfy STL tasks as t* = Hgﬂ(oi));w*”,
where (t*,2%) € {(ts,2s), (te; ), (ta, Ta), (ty, ) }» 0y is
analogous to a uniform velocity for the robot and x(0)
is the state when the robot starts to follow the rel-
evant behavior. We satisfy the STL tasks using time-
varying CBFs as described in Section IV-B.2 with
l2(0)—a" |3 (e —e™*")

g and € = 5 cm. Such
—e

~(t) = max < 0,

an exponential v function generates a motion plan that is
faster at the beginning with smoother convergence to the
target point z*, when compared to a linear + function
which is typically used in prior work [19], [20]. We use
At = 0.67 secs for the mixing strategy that generates smooth
switching behaviors while also reacting quickly to environ-
mental changes. Additional experiment videos and code-base
is available at https://sites.google.com/view/
rtl-plan-control-hri.

VI. CONCLUSION & FUTURE WORK

We propose a modular reactive planner which integrates
discrete temporal logic based plans and continuous DS-based
motion plans that guarantees task satisfaction and stability
while adapting to unforeseen disturbances and external obser-
vations. We demonstrate our method on the Franka robot arm
for reactive wiping tasks involving safe human interactions.

One limitation of our work is not incorporating deadlock
scenarios [30] when robots cannot make task progress. Our
future work aims to address such issues by integrating
Large Language Models [33] into LTL specifications that
can act at a high level as a supervisory control [31]. Future
work will also investigate planning strategies to satisfy task
specifications on SO(3) and SE(3) manifolds.
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