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Abstract— We propose a Dynamical System (DS) approach to

learn complex, possibly periodic motion plans from kinesthetic

demonstrations using Neural Ordinary Differential Equations

(NODE). To ensure reactivity and robustness to disturbances,

we propose a novel approach that selects a target point at each

time step for the robot to follow, by combining tools from con-

trol theory and the target trajectory generated by the learned

NODE. A correction term to the NODE model is computed

online by solving a quadratic program that guarantees stability

and safety using control Lyapunov functions and control barrier

functions, respectively. Our approach outperforms baseline DS

learning techniques on the LASA handwriting dataset and

complex periodic trajectories. It is also validated on the Franka

Emika robot arm to produce stable motions for wiping and

stirring tasks that do not have a single attractor, while being

robust to perturbations and safe around humans and obstacles.

The project’s web-page is https://sites.google.com/
view/lfd-neural-ode/home.

I. INTRODUCTION

We are witnessing an increased use of robotic manipula-
tors for everyday tasks in homes, offices, and factories, all
of which involve human interaction. In such cases, robots
should be be able to perform not just simple pick-and-
place tasks [1], but also complex motions such as wiping a
surface, stirring a pan, or peeling vegetables [2]. The major
challenges in these settings are: (a) learning complex tasks
from few observations (b) reactive and compliant motion
planning in a dynamic environment and (c) remaining safe
and robust to unexpected disturbances.

Learning from Demonstrations (LfD) is a widely used
framework that enables transfer of skills to robots from
demonstrations of desired tasks [2]–[4]. Typically, the ob-
servations are robot trajectories obtained through kinesthetic
teaching, wherein humans passively guide the robot through
the nominal motion. This approach has been shown to avoid
the correspondence problem and reduce the simulation to
reality gap [5]. In this setting, demonstrations are costly to
collect: hence, it is essential to learn motion plans from as
few demonstrations as possible, while still being robust, safe,
and reactive in a dynamic environment.

There are multiple approaches for learning from demon-
strations. Inverse Reinforcement Learning (IRL) and Be-
havior Cloning (BC) are popular methodologies to imitate
motion [6]–[8] by optimizing an underlying task dependent
objective function. IRL and BC require the demonstrator
to explore the task space for learning an accurate motion
policy that generalizes well: collecting the large amounts
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of data needed for these approaches is not feasible when
the demonstrator is a human. Popular imitation algorithms
such as DAgger [9] and deep imitation learning [10] are
also data-hungry (typically requiring hundreds or thousands
of demonstrations), and further provide no stability or safety
guarantees. Another imitation method based on Gaussian
Processes (GPs) is proposed in [11] that relies on time
inputs and way-points to roll out desired trajectories. Such a
framework cannot accommodate delays in accomplishing a
task, e.g., as caused by a human moving the robot, and also
cannot guarantee safety or stability.

We therefore root our methods in Dynamical System (DS)
based motion planning approaches [12]–[15] that learn a
global vector field instead of discrete way-points, and have
shown to generate adaptable motion plans with minimal
demonstrations. Prior work on LfD using DS [3], [13],
[16] have demonstrated success in providing a powerful
framework that can learn stable robotic motions while being
compliant and reactive to human interactions online. Stable
Estimator of Dynamical Systems (SEDS) [3] is a LfD method
that learns globally stable dynamical systems with respect to
a goal point using Gaussian mixture models and quadratic
Lyapunov functions. An important limitation of SEDS is
that it can only model trajectories whose distance to a
single target point decreases monotonically in time. Another
method based on SEDS is presented in [13] via a Linear
Parameter Varying (LPV) re-formulation that learns more
complex hand-drawn trajectories than SEDS, but is limited
to motions that converge to a single attractor (target).

In contrast, for robots to perform a variety of everyday
tasks, we must be able to model complex periodic motions
such as wiping a surface or stirring a pan. We propose to
learn DS based motion plans that converge to a target tra-

jectory which encodes the desired complex periodic motions,
rather than to a single target point. Stability is then guaran-
teed at task execution with respect to the error dynamics
between the robot and the target trajectory, while remaining
safe to unforeseen obstacles. To the best of our knowledge,
no prior work except for the approach proposed in [17] learns
stable periodic motions for robotic tasks which uses normal-
izing flows. However, the approach described in [17] requires
prior knowledge of whether the demonstrations depict single
attractor dynamics or limit cycle dynamics. Our approach
relies on no prior knowledge about the demonstrations, and
captures the invariant features of complex target trajectories
using the rich model class of Neural Ordinary Differential
Equations (NODEs). We then guarantee stability (in the error
dynamics) and safety at task execution by augmenting the
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nominal motion plan with corrective inputs computed using
Control Lyapunov Functions (CLFs) and Control Barrier
Functions (CBFs), respectively [18].
Contributions In summary, our contributions are given be-
low.

1) We employ a NODE based offline learning method that
captures the invariant features of complex nonlinear
and periodic motions, such as wiping and stirring,
using only a few demonstrations.

2) We propose a modular motion planner which gener-
ates a DS-based reactive motion policy by solving
a Quadratic Program (QP) online at high frequency
(1 KHz) that augments the nominal NODE-based plan
with corrective terms based on CLFs and CBFs to
guarantee stability and safety, respectively.

3) We define a novel look-ahead strategy that chooses a
target point at every time step for the robot to follow
a target trajectory instead of a single target point.

4) We show significant performance improvements over
existing methods on the LASA handwriting data set
[3], and on periodic 2D and 3D trajectories. We
further validate our approach on complex nonlinear and
periodic motions with the Franka Emika robot arm.

II. PROBLEM FORMULATION

A DS based motion plan for a robotic manipulator is
defined in terms of the state variable x → Rd, where x is
the robot’s end-effector Cartesian state relevant to the task.
The motion plan is formulated as an autonomous DS

ẋ = f(x), (1)

where f(·) : Rd
↑ Rd is a nonlinear continuous function.

The demonstrations from kinesthetic teaching is given by
D := {xi(t1), xi(t2), . . . , xi(tT )}Mi=1, where, xi(tk) is the
state of the robot at time tk, for the ith demonstration.
We have a total of M demonstrations. The discrete points
in each demonstration are sampled at time {t1, t2, . . . , tT }.
We assume that the training data trajectories D approximate
an unknown nominal target trajectory z→(t) that encodes
the task of the robot such as wiping, stirring, scooping,
etc. Our aim is to design a vector field f(x) using the
demonstrations D such that x(t) follows the target trajec-
tory z→(t). Previous work [3], [13] in the DS-based motion
planning framework has considered convergence only to a
single target. We consider convergence to a trajectory z→(t)
that can represent more complex, e.g., highly-nonlinear and
periodic motions as shown in Fig. 1.

Under nominal circumstances, i.e., in the absence of dis-
turbances or obstacles, the target trajectory z→(t) should be
viewed as the reference for the low level controller to track.
However, during deployment, the robot might not always
follow the target trajectory because of disturbances, obsta-
cles, time delays, etc. For example, consider the scenario in
Fig. 1a, where the target trajectory encodes a periodic wiping
motion, and the vector field is an unconstrained DS model (1)
learned from demonstrations D. As shown in Fig. 1a, if the
robot is perturbed by a disturbance during deployment to

(a) Using standard NODE (b) Using CLF-NODE (ours)

Fig. 1: Illustrative example of a spurious attractor when the robot’s
path is guided by a DS-based motion plan in the presence of a
disturbance (a) using NODE to encode the motion plan and (b)
using the corrected CLF-NODE.

a region where there is no training data, the learned model
commands the robot to a spurious attractor. However, the de-
sired behaviour is to continue tracking the target trajectory so
that the robot wipes the necessary space as shown in Fig. 1b.
Since we focus on stability of the error dynamics, the robot’s
path converge back to the target trajectory, instead of a single
goal point [3], [13], which enables the robot to perform
more complex and periodic motions. Ensuring robustness to
spatial and temporal perturbations is critical for deploying
robots in human-centric environments, as disturbances can
arise due to obstacles unseen in demonstrations, intentional
or adversarial disturbances caused by humans [12], [19], and
time delays in the controller [11]. This leads to our formal
problem statement:

Given a set D, design a vector field f(x) for the dynamical

system (1), such that it generates safe and stable motion

plans at deployment for scenarios possibly not seen in the

demonstrations, while ensuring that the robot’s trajectory

x(t) converges to the target trajectory z→(t).

III. PROPOSED APPROACH

We parameterize the vector field (1) of the motion plan as

ẋ = f̂(x) + u(x), (2)

where, f̂(x) is used to encode the nominal system behavior,
and u(x) is used to enforce safety and disturbance rejec-
tion properties. We learn the nominal system f̂(x) from
demonstrations D, and compute a correction term u(x) based
on control theoretic tools so that the goals of stability and
safety are met in a composable, modular, and data efficient
way. Similar to our objectives, the method proposed in [16]
generates motion plans that not only converge to a global
goal, but also has local stiff behaviours in regions around the
target trajectory. Yet, they still lack in representing complex
motions that are periodic, have high curvature and partial
divergence. We use a NODE model to represent the complex
nominal motion and a modular approach similar to [20], but,
we define a CLF with respect to a target trajectory rather than
a single goal point that is assumed in [20]. CBFs [18], [21]
are widely used in the low level controller to enforce safety
of dynamical systems, and we adopt them to generate safe
motion plans for robotic manipulation.
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Fig. 2: The control flow of our proposed pipeline. The state of the
robot is x, the low level control input are the joint torques ω , and
the desired velocity in state space is ẋref .

A schematic of the proposed control flow is presented
in Fig. 2. The blue blocks represent the offline learning
component and the green blocks are the online computation
modules. We use a neural network parameterized model f̂
that we learn from demonstrations D, but any other model
class could be used within our proposed modular framework.
Starting from an initial condition, we integrate f̂(x) for
the same time span of the task given in demonstrations
to generate a target trajectory x→(t) that approximates the
unknown nominal target trajectory z→(t). At deployment,
given an observation of the current state x, our planner
chooses the target point ω(x) that the robot should follow
using the pre-computed target trajectory x→(t). The ability
to select a target point without relying on time input, unlike
prior BC and GP-based methods [9], [11], enhances reactive
motion planning by eliminating time delay issues in the con-
trol pipeline. We estimate the nominal desired velocity f̂(x)
using our learned model. However, as illustrated in Fig. 1,
the generated motion plan from f̂ is neither guaranteed to
be stable nor safe. Hence, we compute a virtual control

input u(x) as an additive correction term that generates the
reference motion plan ẋ using (2) so that the trajectory
generated by ẋ converges to the target trajectory even in
the presence of disturbances and unsafe regions such as
obstacles. We denote the reference velocity for the low level
controller as ẋref , which in general may be different from
the real velocity ẋ of the robot. The reference velocity
ẋref is given as input to the impedance controller [22] that
computes the low level control input ε (joint torques) for
the physical robotic system. We emphasize that the virtual
control input u(x) is different from the low-level control
inputs ε given in Fig. 2, and u(x) is a component of the
motion planning DS (2).

IV. LEARNING NOMINAL MOTION PLANS USING
NEURAL ODES

We propose a neural network parameterized function class
to learn the dynamics of the motion offline from demonstra-
tions. Although existing work [16] learns stable dynamics for
motions that converge only to a single target, we aim to learn
more complex trajectories that not necessarily converge to a
single target. Since neural networks have demonstrated high
capability for accurate time-series modeling [23], we base

our approach on Neural ODEs [24], which are the continuous
limit (in depth) of ResNets [25]. We parameterize our models
of nominal target trajectories as:

dx̂(t)

dt
= fω(x̂(t)), (3)

where fω(·) : Rd
↑ Rd is a neural network with param-

eters ϑ, and x̂(t) → Rd is the state variable predicted by
fω(·) at time t. In the forward pass, given the integration
time interval [a, b] and an initial point x̂(a), the model
outputs the trajectory x̂(t) for t → [a, b]. The trajectory is
obtained by solving the differential equation in (3) using a
general-purpose differential equation solver based on fifth-
order Runge-Kutta [26]. We set fω(·) to be a Multi-Layer
Perceptron (MLP), where the inputs and outputs are in Rd.
We consider the supervised learning setup with training
data D and solve the empirical risk minimization problem

min
ω

1

MT

M∑

i=1

T∑

k=1

∥∥∥xi(tk)↓ x̂i(tk)
∥∥∥
2

2
, (4)

to learn the parameters ϑ, where the predictions of the state
x̂i(tk) are obtained by integrating (3) with initial condition
x̂i(t1) = xi(t1), ↔ i → {1, 2, . . . ,M}.1 In contrast to
previous work [16], [20] which learns a map f̂(·) using la-
beled data {x(t), ẋ(t)}, we do not assume access to velocity
measurements as they are often not easily collected and/or
noisy [28], [29]. Fitting a map to noisy measurements lead to
aggressive trajectories at inference that are not desirable for
the low-level controller. From our results presented in Fig. 1
and Section VI, we observe that the NODE model generates
smooth trajectories utilizing only state variables x(t) to learn
fω and not their derivatives ẋ(t). While such a NODE-
based vector field will behave reliably near the training data,
unanticipated disturbances or obstacles during deployment
might deviate the robot to regions of the state-space where
the learned vector field is unreliable, as shown in Fig. 1a. We
present a method that computes a correction term to ensure
robust and safe tracking of the learned target trajectory.

V. ENFORCING STABILITY AND SAFETY VIA VIRTUAL
CONTROL INPUTS

Safety and stability with respect to obstacles and changes
in the environment, as illustrated in Fig. 1, are central
for tasks in Human-Robot Interaction. Artificial Potential
Fields (APFs) [30], [31] have been widely used for obstacle
avoidance, but are prone to oscillations and are slow in real-
time [30]. A DS based modulation strategy is presented
in [32], [33] to avoid obstacles that are limited to convex
shapes. We use the CBF based approach that can handle
dynamic and multiple non-convex obstacles without sacrific-
ing real-time performance, and is a generalization of both
the modulation strategy [32] and APFs [30]. Prior work on
CLFs [20] for motion generation of robotic manipulators
focused only on point-to-point reaching motions, but we
integrate them into our learned NODE model for complex

1A binomial checkpoint method is used during training for solving (4)
as implemented in [27].
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periodic motions and present a unified framework that guar-
antees both stability and safety in real-time.
A. Preliminaries on Safety and Stability

We begin with a review of control theoretic tools that pro-
vide sufficient conditions for stability and safety of nonlinear
control affine dynamical systems:

ẋ = g(x) + h(x)u, (5)

where, x → X ↗ Rd and u → U ↗ Rm are the set of
allowable states and control inputs, respectively. The DS-
based motion plan (2) is a nonlinear control affine DS with
m = d, g(x) = f̂(x) and h(x) = I .

We first define safety with respect to a safe set C ↘ X for
the system (5). The safe set C is defined as the super-level
set of a function B(·) : Rd

↑ R:

C = {x → X : B(x) ≃ 0}. (6)

Our objective is to find a control input u such that the states x
that evolve according to the dynamics (5) always stay inside
the safe set C. Such an objective is formalized using forward

invariance of the safe set C. Forward invariance and CBFs
are defined as follows [18].

Definition 1: The safe set C is forward invariant if for
every initial point x(0) = x0 → C, the future states x(t) → C

for all t ≃ 0.
Definition 2: Let C be the super-level set of a continuously

differentiable function B(·) : Rd
↑ R as given in (6). Then,

B is a Control Barrier Function (CBF) for the dynamical
system (5) and safe set C if there exists an extended class
K↑ function ϖ(·) that satisfies

sup
u↓U

⇐xB(x)↔ (g(x) + h(x)u) ≃ ↓ϖ(B(x)), ↔ x → X .

(7)

The set of all control inputs that satisfy the condition in (7)
for each x → X is

K(x) := {u → U : ⇐xB(x)↔ (g(x) + h(x)u) ≃ ↓ϖ(B(x))}.
(8)

The formal result on safety follows from [18].
Theorem 1: Let B be a Control Barrier Function (CBF)

for a safe set C and a nonlinear control affine system (5).
Let u(x) → K(x) be a locally Lipschitz feedback control
law. Then, the following holds: x(0) → C =⇒ x(t) → C for
all t → [0, tmax). If the set C is compact, then, C is forward
invariant, i.e., tmax = ⇑, and C is asymptotically stable, i.e.,
limt↗↑ x(t) → C for all x(0) → X .

A Control Lyapunov Function (CLF) V (·) is a special case
of a CBF. In particular, for V (·) : Rd

↑ R↘0 a positive
definite function, if we set B(·) = ↓V (·) and define the
singleton safe set C = {0}, then Theorem 1 states that any
control law u(x) → K(x) with B(·) = ↓V (·) and C = {0}
will asymptotically stabilize the system (5) to the origin:
see [18] for more details.

Since the inequality in (8) is affine in u, they can be
included in efficient optimization-based controllers for con-
trol affine systems. We present such an optimization-based
planner in Section V-B that has strong stability and safety

guarantees as claimed in Theorem 1, but, with respect to a
target trajectory as opposed to a single attractor.

B. Computing the Virtual Control Input

We now show how to incorporate CLFs and CBFs into the
DS-based motion plan (2) to generate safe and stable motions
that converge to a target trajectory, not just a single attractor
that is presented in prior work [3], [13]. In particular, we use
the learned NODE fω to generate a nominal motion plan, and
compute u(x) using CLFs and CBFs to enforce stability and
safety, resulting in a motion plan of the form:

ẋ = fω(x) + u(x), (9)

where x is the state of the robot, and u(x) is the virtual
control input.

1) Stability using Control Lyapunov Functions: We utilize
CLFs described in Section V-A to generate a motion plan
that always converge to the target trajectory x→(t) even in the
presence of disturbances. We note that x→(t) is different from
the unknown target trajectory z→(t) introduced in Section I.
Previous work [20] have utilized CLFs only for convergence
to a single target point. In contrast, we present a framework
that integrates Neural ODEs for rich behaviors, CLFs to
ensure convergence to a target trajectory x→(t), and CBFs
for safety. To that end, we first define the error e(t) between
the robot state and the target trajectory: e(t) = x(t)↓x→(t).
For ease of notation, we drop the explicit dependence on
time t, and write e, x, and x→ for the current error, state,
and target point at time t, respectively. From (9), the error
dynamics are given by

ė = ẋ↓ ẋ→
⇒ ė = fω(x)↓ ẋ→ + u(x). (10)

The error dynamics (10) define a nonlinear control affine
system (5), where the state of the system is e, and u(x) is
the control input. Hence, by Theorem 1, if there exists a
CLF V (·) = ↓B(·) for the error dynamics (10), then, any
feedback virtual control law u(·) that satisfies

⇐e(t)V (e)↔ (fω(x)↓ ẋ→ + u(x)) ⇓ ↓ϱ(V (e)), ↔ e → Rd

(11)
will drive the error asymptotically to zero, where ϱ(·)
is a class K↑ function for CLF, which is introduced to
differentiate from ϖ(·) in Definition 2 for the CBF. During
online motion planning, given the current state of the robot x
and information about the target trajectory x→, we compute
the minimal control effort u(x) that satisfies (11) by setting

u(x) = argmin
v

∥∥v
∥∥2
2

s.t. ⇐eV (e)↔ (fω(x)↓ ẋ→ + v) ⇓ ↓ϱ(V (e)),
(12)

where ϱ(·) defines how aggressively the robot tracks the
target trajectory. We describe how we choose x→ and ẋ→ in
detail in Section V-B.3. The optimization problem (12) is a
quadratic program with a single affine inequality and has a
closed form solution [20]. The Lyapunov function we use is
V (e) = ⇔e⇔22, but, note that any positive definite function is a
valid CLF. The presence of the virtual actuation term v makes
the optimization problem (12) always feasible. We refer the
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reader to Fig. 1 to differentiate between the paths generated
by only fω(·), and by (9) using the correction term u(·). We
refer to this approach as the CLF-NODE.

2) Safety using Control Barrier Functions: We build on
the framework in Section V-A by integrating CBFs into the
virtual control input computation to guarantee safety for
the generated motion plan. We define safety with respect
to a safe set C ↘ X as described in Section V-A for the
system (9). From Theorem 1, if there exists a CBF B(·) for
the dynamics (9), then, any feedback control law u(·) that
satisfies

⇐xB(x)↔ (fω(x) + u(x)) ≃ ↓ϖ(B(x)), ↔ x → X (13)
will render the system (9) safe, where, ϖ(·) is an extended
class K↑ function. At inference, the DS-based motion plan
is still given by (9), but the virtual control input u(x) is
computed such that it satisfies the CBF condition in (13) for
the dynamics ẋ and a given CBF B(·) for the safe set C.

In cases where an obstacle obstructs the robot moving
along the nominal trajectory, the robot should automatically
avoid the obstacle, but converge back to complete the desired
task when possible. However, this may lead to a conflict
between preserving safety and stability: during the obstacle
avoidance phase, the CLF constraint in (12) may be violated
as the robot takes safety preserving actions that increase
tracking error. We prioritize safety and adapt the approach
proposed in [18] for balancing these competing objectives
to our setting, and solve an optimization problem with
the CBF condition (13) as a hard constraint and the CLF
condition (11) as a soft constraint. Given the current state of
the robot x and the target point x→, the optimization problem
that guarantees a safe motion plan is

(u(x), ) = argmin
{v,ε}

∥∥v
∥∥2
2
+ ςφ2

s.t. ⇐xB(x)↔ (fω(x) + v) ≃ ↓ϖ(B(x))

⇐eV (e)↔ (fω(x)↓ ẋ→ + v) ⇓ ↓ϱ(V (e)) + φ

(14)

where φ is a relaxation variable to ensure feasibility of (14)
and is penalized by ς > 0. The problem in (14) is a
parametric program, where the parameters of interest are
{x, x→, ẋ→

}. We abuse notation and denote the optimal virtual
control input u(x) for (14) to be u→(x, x→, ẋ→) which will be
used in the next section. Problem (14) is a QP that we solve
efficiently in real-time using OSQP solver [34]. Multiple
CBFs and CLFs can be composed in a way analogous to
problem (14) to represent multiple obstacles of complex
non-convex shapes as given in Section VI. We refer to this
approach as the CLF-CBF-NODE.

3) Choosing a Target Point: As shown in Fig. 2, we
first integrate the learnt model fω(·) offline to generate the
target array T := {x→(tk)}Tk=1 from a given initial condition
x→(t1). The target array T is exactly the target trajectory
x→(t), but only at time steps {tk}Tk=1. Given an observation
of the current state of the robot x at time t, and the target
array T , we select the next target point x→ for the robot
to follow using the map ω(x) defined in Algorithm 1. We
remove the direct dependence of the target point x→ on time t,
which leads to a more reactive motion plan that adapts to

Algorithm 1: Choose target point
Input: T := {x→(tk)}Tk=1, fω(·), x,N
Output: ω(x)
m ↑ argmink

∥∥x↓ x→(tk)
∥∥
2

;
TN := {x→(tm), x→(tm+1), . . . , x→(tm+N↑1)};
Solve (14) with parameters {x, y, fω(y)} for each y ↔ TN ;
ω(x) ↑ argminy↓TN

∥∥u→(x, y, fω(y))
∥∥2
2

;

both the time delays that are often present during online
deployment, and to unforeseen perturbations of the robot
away from the nominal plan, e.g., due to human interaction
or obstacle avoidance. The look-ahead horizon length N is
used to construct the array TN , consisting of N future points
starting at the current target state x→(tm). We choose the
target point ω(x) from TN that results in the smallest norm
of virtual control input when solving (14) for all y → TN . We
use a forward looking horizon N to ensure the robot moves
forward along the target trajectory, which is illustrated in the
video submission. To the best of our knowledge, this is the
first time that the norm of the correction input u(·) is used as
a metric for choosing an appropriate nearest neighbor point
in motion planning. We use ẋ→ := fω(ω(x)), since ω(x) → T

and we obtained the target array T by integrating fω(·).
VI. EXPERIMENTAL VALIDATION AND RESULTS

A. LASA handwriting dataset

We validate our approach on the LASA handwriting data
set [3] that contains 30 2D nonlinear motions. Each motion
set has 7 demonstrations: we use 4 as the training set, and
the remaining 3 as the test set. In Fig. 3, we compare the
performance of our NODE model with two existing DS-
based learning approaches: SEDS [3] and LPV-DS [13] using
the mean and variance of Dynamic Time Warping (DTW)
distance [35]. DTW distance measures the dissimilarity be-
tween the demonstrations and the corresponding reproduc-
tions starting from the same initial condition. We note that
although SEDS and LPV-DS use velocity data for regression,
which our approach does not have access to, the mean of the
DTW distance for our NODE approach is approximately half
of the existing methods [3], [13]. We illustrate disturbance
rejection in Fig. 4a using CLF-NODE and obstacle avoidance
in Fig. 4b using CLF-CBF-NODE with a circular obstacle
and a non-convex obstacle. The barrier function B(·) is
defined to be less than zero inside the obstacles, and we
choose linear ϱ(·) and ϖ(·) functions.
B. Periodic trajectories

We validate our approach on handwritten 2D periodic
motions of the letters I, R, O and S given in [17] and 3D
periodic trajectories that encode three wiping tasks as given
in Figs. 5e, 6a, and 6b. We compare our method with Imita-
tion Flow (IFlow) [17] and a Gaussian Process (GP) [11]
based approach, since SEDS and LPV-DS compared in
Section VI-A model trajectories that converge only to a
single attractor. IFlow is based on normalizing flows that
learns stable motions using prior knowledge on whether
the underlying dynamics of the demonstrations has a single
attractor or a limit cycle, but our approach requires no prior
knowledge. We present the DTW distance in Fig. 5a, training
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(a) Train data set (b) Test data set

Fig. 3: Comparison of DTW distance on the LASA data set.

(a) Worm with disturbance (b) Spoon with obstacles

Fig. 4: Illustration of (a) disturbance rejection using CLF-
NODE and (b) obstacle avoidance using CLF-CBF-NODE.
time in Fig. 5b and execution time in Fig. 5c. The execution
time is the computation time for a single forward pass of
the model to generate the entire trajectory from a given
initial point and the time span of the demonstration. We
also compare the trajectory reproductions for the R shape
in Fig. 5d, and for the spiral wiping task by the Franka
robot arm in Fig. 5e. The IFlow approach is not able to
learn the complex motion for spiral wiping, but our NODE
approach learns with high accuracy and lesser computation
time. The execution time comparison in Fig. 5c is plotted in
log scale and we note that our approach (NODE) has much
lesser execution time, which is important for real-time robot
experiments. Although the GP based method [11] learns
complex trajectories with comparable accuracy and training
time to NODE, the execution time is much smaller and they
rely on time inputs for desired roll outs with no capability
to generate safe and stable motion plans. All computations
are performed on Google Colab.
C. Robotic experiments

We validate our approach on the Franka robot arm per-
forming complex periodic motions: wiping a mannequin
with a towel (Fig. 6a) and wiping a white board with
an eraser (Fig. 6b). We use the passive DS impedance
controller [36]. We used 2 demonstrations for the mannequin
task, and 3 demonstrations for the board wiping task. Each
demonstration had between 300 and 600 data samples. The
average training time (offline) is 3 ↓ 6 minutes for each
task on Google Colab. The obstacle shown in Fig. 6b at
t = 2 has markers on it that are tracked in real-time
by OptiTrack motion capture system. We observe that the
robot tracks the desired nominal trajectories while remaining
compliant to human interaction, robust to perturbations, and
safe with respect to unforeseen dynamic obstacles. The
online motion planning module runs at 1KHz that solves (14)
and implements Algorithm 1. We include the stirring task,
the effect of Algorithm 1 and some preliminary results for
full pose (position in R3 and orientation in SO(3)) mo-

(a) DTW distance (b) Training time (c) Execution time

(d) R shape (e) Spiral wiping

Fig. 5: Comparison of performance metrics and trajectory
reproductions between IFlow, GP and our approach (NODE)
on periodic trajectories.

(a) Wiping a mannequin (b) Wiping a white board

Fig. 6: The robot performing different wiping tasks with
complex periodic motions. The blue arrows denote the per-
turbations, and the purple spheres is the dynamic obstacle at
different time.
tion planning in https://sites.google.com/view/
lfd-neural-ode/home and the video submission.

VII. CONCLUSION & FUTURE WORK
We propose a modular DS-based motion planner using

NODE with an additive CLF and CBF-based correction term
that guarantees stability and safety on the error dynamics
for convergence to a target trajectory, rather than a single
attractor. We validate our approach on complex non-linear
and periodic handwritten motions and on the Franka robot
arm for wiping and stirring tasks.

Our robot experiments are limited to the Cartesian end-
effector position: future work will address this by extending
our approach to higher dimensions such as (a) orientation
in SO(3) and position in R3 of the end-effector [15], [37],
[38], (b) full pose of end-effector in SE(3) [39], and (c) joint
space [40] that can include joint limits and avoid collision
with arm links. Future work will also incorporate the CLF-
CBF NODE approach with end-to-end learning frameworks
using image observations [41], [42].
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