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Abstract—While there are many self-driving car simulators,
there is a general lack of high-fidelity aquatic simulators that
allow testing perception and navigation pipelines for autonomous
surface vehicles (ASVs). We present an open source, user friendly,
and realistic Unity3D-based aquatic simulator for ASVs, called
CataBotSim, which includes support for multiple ASV models,
on-board sensors, such as LiDAR, Marine Radar, IMU, GPS,
and cameras, as well as a number of different objects that
can act as static or dynamic obstacles. To achieve high-fidelity
simulations, we incorporated environmental effects like rain, cur-
rents, and wind, which impact sensor measurements and/or ASV
motions as observed in real-world environments. We included
interfacing with the Robot Operating System (ROS). We also
provided tools to generate real-world scenes, create datasets,
record navigation metrics, and provide ground truth perception
data to ease robotic simulation experiments. The project code for
the CataBotSim can be found at https:/github.com/dartmouthrobotics/
catabot_unity/. A demonstration video of CataBotSim is available
at https://youtu.be/Rgfkm352hod.

I. INTRODUCTION

This paper presents a realistic simulation platform and tools
that can support the development and testing of Autonomous
Surface Vehicle (ASV) perception and navigation pipelines,
under a number of different external disturbances, sensor
noises, and scanned environments from Earth currently not
present in other available simulators (Fig. 1).

Our simulator includes water dynamics, wind physics, and
rain. We added a twin-hull ASV model controllable with two
motors with several sensors typically on-board ASV platforms
— Inertial Measurement Unit (IMU), camera, marine radar,
GPS, and LiDAR - with noise. We also added tools for
perception segmentation, terrain generation, and automatic
scenario generation with up to 100 additional ASVs.

These features augment what is currently present in the
literature and will contribute in advancing ASV’s autonomous

This work is supported in part by NSF CNS-1919647, 2144624,
OIA1923004 and NH Sea Grant.

Mingi Jeong
Department of Computer Science
Dartmouth College
Hanover, USA
0000-0002-9097-6343

Surface Vehicle Testing

Paul Sassaman
Independent
Hanover, USA
0009-0008-1000-6568

Alberto Quattrini Li
Department of Computer Science
Dartmouth College
Hanover, USA
0000-0002-4094-9793

Marine RADAR
LiDAR

Environment generation

Camera GPS
Robotic platform and sensor =

B

Environmental effects

—

Perception Navigation

Fig. 1: CataBot Aquatic Simulator Environment developed in Unity3D.

navigation, which is key to subsequent operations with high
societal impact, such as environmental monitoring and au-
tonomous transportation [1].

Realistic simulators are necessary for the development of
algorithms, especially in areas where conducting experiments
is expensive due to high logistics overhead, high-cost equip-
ment, and difficulty in testing in many different scenarios, as
is common for ASVs. Moreover, reliable simulators play a key
role for validating the safety of navigation and collecting fit-
for-purpose data, which is critical for developing and testing
autonomy. While there are a number of simulators for ground
robots [2], self-driving cars [3], [4], and aerial drones [5], the
aquatic surface simulators are comparatively more limited to
the simulators mentioned in their ability to replicate realistic
environmental and sensor conditions [6].

This paper contributes to enhancing the realism of ASV
simulators, extending its applicability across a broad spectrum
of real-world conditions. The key contributions in this paper
can be categorized as follows:

e High-fidelity and robust simulator implementation: Utiliz-
ing Unity3D [11] for simulator development to ensure the
flexibility in creating diverse realistic environments with
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TABLE I: Comparison of simulators including surface and other domains. Our simulator, compared to existing ASV simulators, includes marine radar, weather

effects affecting the sensor, and the ability to run a high number of robots.

tested
environment groundtru.t!1 data sensors’ physics (hydrostatic) | weather (rain) | total number | base platform
capability of agents?
Gazebo [7] General N LCLG Y N C -

VRX [8] Surface N L,C LG Y N C Gazebo
AirSim [5] General without marine Y L CILG N/A Y B Unreal Engine
CARLA [3] Urban Y L ,C LG R N/A Y B Unreal Engine
MARUS [9] Marine* Y L,C LG Y N Unknown Unity
USV Sim [6] Surface N I,G Y N C Gazebo
AMSVS [10] Surface N LCLG Y N Unknown Gazebo
CataBotSim Surface Y L,C L G, MR Y Y A Unity

w N e

: including both underwater and surface.

high fidelity in 3D geometry and physics simulations;

o Realistic sensor simulation: Integrating a variety of sen-
sors for ASV navigation, including realistic noise effects
from environmental conditions (such as rain in LiDAR
Sensors);

o Applicability for marine autonomy: Showcasing the simu-
lator’s capabilities through various scenarios, highlighting
its utility for training perception pipelines and validating
navigation planning as a core part of ASV autonomy; and

o Integration with middleware and open-sourcing: Seam-
less integration with the Robot Operating System
(ROS) [12], thereby facilitating the incorporation of ex-
isting algorithms into the simulation environment. Ad-
ditionally, we make the simulator open-source for the
community.

While additional realistic effects (e.g., bias) will be added
in the future, this first enhancement of ASV simulators will
contribute towards a faster ASV technology progress, neces-
sary for a large variety of important operations, such as marine
transportation and algal bloom monitoring.

II. RELATED WORK

Simulations have been widely used in robotics. An in-depth
survey of simulators by Collins et al. [13] explores different
physics based simulations for different areas in robotics such
as manipulators, medical robots, and soft robotics, as well
as navigation on land, aerial, and marine environments. The
authors further divide the marine robotics simulators into two
categories: simulators for surface vehicles and simulators for
underwater robots. Here we specifically discuss the simulators
in terms of capabilities provided for ASV simulation — see
Table I, showing the main characteristics being compared in
a number of popular simulators and our proposed simulator.

There are general robotics simulators, appeared in the early
2000s, first focusing on ground robots and then expanding
to other platforms. Notably, Gazebo [7] is one of the most
popular 3D simulation platforms used in robotics given its
integration with ROS. However, in its standard form, the
visual realism is limited, especially for water and grass. Fluid
dynamics simulation was also not present until Gazebo was
extended to support ASVs with the Virtual RobotX (VRX) [8].
The supported sensors include the ones already provided for
ground robots, i.e., camera, LiDAR, IMU, and GPS. There is
a limit in number of robots that can be supported in real time

: supported sensor for detection and ego motion. L: LiDAR, C: camera, I: IMU, G: GPS, R: Radar, MR: Marine Radar.
: the maximum number of of deployable agents that can supports other tasks, e.g., perception. A: > 20, B: 10 — 20, C: < 10.

given the physics engine used in Gazebo. In CataBotSim we
provide a water simulator that has physics, buoyancy, and con-
figurable wind physics to make the testing environment more
realistic. Moreover, CataBotSim is integrated with simulated
marine radar and heavy maritime traffic.

More recently, game engines have become the base to
develop robotic simulators due to the visual realism they can
provide. An early robot simulator was USARSim [14], which
is open source and built with Unreal Engine [15] for both
research and educational purposes. USARSim is designed to
be extended by users to create custom virtual robots. While the
simulator has an extensive set of sensors and actuators inte-
grated into the system, it lacks realistic hydro-dynamics since
it was greatly simplified for simulation purposes. Additionally,
USARSim is not designed to simulate ASVs. In 2017, Shah
et al. introduced AirSim [5], an open source physics based
flight simulator made with Unreal Engine, which mimics a
quadcopter in different environments. AirSim uses computer
vision techniques to annotate the virtual environments in real
time with color coded object segmentation. Similar to AirSim,
CataBotSim also provides the user with the option to annotate
the images through the Unity Perception Package [16]. Even
though AirSim is a promising start for a flight simulator, it has
limitations such as an absence of object detection, raycasting,
and a lack of realistic noise models. This could potentially
makes it difficult to gather realistic data. To eliminate these
setbacks, CataBotSim has collision based physics and an
efficient raycasting used in the simulated camera for LiDAR.
Furthermore, we added Gaussian noise to its IMU, marine
radar, and LiDAR sensor models to give more realistic data.
Another difference worth mentioning between the two systems
is that AirSim only provides a single fictional location by
default while CataBotSim provides a way to recreate physical
environments from elevation maps. This increases the number
of available environments to include any location on Earth.

From the advances in self-driving cars, CARLA [3] is an
open source driving simulator built with Unreal Engine 4.0 to
create content for testing and validating autonomous driving
approaches. CARLA provides different weather conditions
such as a sunny day, daytime rain, daytime shortly after rain,
and a clear sunset, similar to how our CataBotSim provides
adjustable weather conditions such as wind, rain, and sunlight.
Both systems also provide ground truth semantic segmentation
and depth segmentation, allowing users to represent various



datasets in various weather conditions and different environ-
ments so they can train and validate machine learning models.
Another driving simulator worth mentioning is LGSVL [4]
which is an open source application implemented using the
Unity3D game engine. Very similar to CataBotSim, LGSVL
has five physical sensors (LiDAR, Radar, IMU, GPS, and
Camera) and four virtual sensors (2D Ground Truth, 3D
Ground Truth, Depth camera, and Segmentation camera).
LGSVL is also integrated with autonomous driving systems
such as Autoware and Apollo. Additionally, LGSVL gives
the user the freedom to customize their modules as well as
customize sensors, which is also an option in our system
CataBotSim. These simulators for self-driving car scenarios
inspired us to use Unity for ASVs.

There have been a few underwater simulators based on
Unreal or Unity, such as MarineSIM [17] and HoloOcean
[18]. While their realism is enhanced thanks to the use of the
game engines, they cannot be directly used for water surface
simulation given the different various unique physics forces
interacting on the surface robots, such as wind and water
waves and currents.

As for realistic sensor simulations, Unity3D does offer
a sensor SDK [19]. However, it is currently only available
through a costly paid licence (approximately $450/mo). Addi-
tionally, even though there are several LiDAR models avail-
able under this SDK, it lacks LiDAR interference with rain.
CataBotSim has accurate LiDAR interaction with different rain
conditions available for free.

In summary, there are a limited number of simulators
focusing on Autonomous Surface Vehicles (ASVs) ( [6], [8]-
[10]) compared to the plethora available in other domains
(e.g., [31, [5], [7], [20]). Gazebo is predominantly used in the
marine domain ( [6], [8], [10]), with the exception of [9].
While integration with ROS at the development stage has ex-
panded their application, these simulators exhibit limitations in
some aspects of realism: (1) less photo-realistic visualization:
Gazebo’s visual effects fall short of Unity-based simulators,
posing challenges in bridging the simulation-to-reality gap
[21]; (2) constrained by real-time factor: particularly when
deploying multiple agents in a simulated environment, the
simulators struggle to operate in real-time. This computational
burden complicates the execution of crucial tasks such as
object detection and planning, necessary for real robots; (3)
lack of groundtruth generation: although they allow for testing
realistic motion of in-water objects including ASVs, the inabil-
ity to support dataset generation with ground truth restricts
their utility in validating perception tasks. Consequently, this
limitation hinders a comprehensive evaluation of the overall
autonomy pipeline. We aim at solving these limitations with
our simulator.

III. CATABOTSIM: A MODULAR MULTI-ASV SIMULATOR

We propose a multi-ASV simulator built with Unity3D,
which can accurately simulate various surface terrain types
at different elevations; various aquatic surface, wind, and
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Fig. 2: CataBotSim’s architecture.

maritime traffic conditions; marine radar, LiDAR, and IMU
sensors; and manual or autonomous control via ROS.

The advantage to using Unity3D is in its realism for ren-
dering 3D scenes and performing accurate physics by default.
Unity also provides a ROS interface layer to easily connect
the simulator’s C# scripts with external software.

Each aquatic vehicle in the simulator, whether it’s the
primary robot or simulated traffic, can be controlled directly by
the simulator or by an external ROS application. Each vehicle
also continuously broadcasts its state (position, sensor values,
etc) over ROS, allowing external software to track what is
happening in the simulator. This results in an interface that
provides seamless integration with other robotics use cases.

The simulator also contains an extensive settings menu,
allowing the user to granularly adjust features like active
sensors, what data are being recorded, how aquatic vehicles
should be controlled, and what the terrain will look like. This
settings menu can be adjusted at runtime, but it can also be
configured with a JSON file beforehand, allowing automated
simulation runs.

The overview of the architecture can be found in Fig. 2. Our
simulation framework is composed of four main components
described in the following: 1) Physics simulation and scene
rendering of aquatic surface environments, 2) Robot model
and sensors (LiDAR, Marine Radar, IMU) with optional trans-
mission to ROS, 3) Simulation of maritime traffic, and 4) tools
that can help users in easily setting up multiple simulations
and record session data.

A. Physics simulation and rendering

1) 3D Environments: Unity allows users to import 3D
models of scanned physical environments pulled from external
sources like ArcGIS [22], and they can be inserted into the
simulation with minimal effort. Unity also has robust tools
for creating custom terrain from scratch, allowing users to
simulate conditions that may not be easily accessible from
physical scans.

To simplify the creation of 3D environments by the user,
we have created a tool that combines these two elements.
The user is able to import a grayscale elevation image from
external sources, configure elements like lowest and highest



Fig. 3: The user can change the rain intensity via the program UI. Different
rain intensities and their effects on the LiDAR sensor are shown from left to
right - 0, 10, 25, and 50 mm/hr.

elevation and GPS coordinates, and then generate a 3D terrain
object. This option is more accessible to the general public
as many mapping services do not provide the ability to
download 3D models for offline use without specific software
or subscriptions.

2) Water surface simulation: We added a robust and highly
configurable water surface simulation [23], which is available
as an official extension to the Unity3D engine. This includes
physical elements like swell and current, as well as visual
elements like smoothness, foam, and refraction. Unity3D also
has a robust physics engine. This allows us to simulate
buoyancy for floating objects, making them bob and tilt with
the movement of the water’s surface. Users can also create
custom current maps which affect water visuals and floating
object physics using this extension. Note that objects, like
boats, on the water surface could hit the bottom if the area is
too shallow. Different bottom materials with different collision
behaviors will be included in the future.

3) Wind: We also added wind physics, which accurately
simulate how various intensities and directions of wind affects
the robot, boats, and other floating bodies. Wind can be set as
a global force, but it is also possible to set multiple arbitrarily
shaped zones where the wind blows in a different direction or
at a different strength. Currently, wind is not automatically
altered by the presence of physical objects like terrain or
buildings. Users must manually set the wind patterns, similar
to how water current maps work.

4) Rain: We have incorporated and modified a configurable
rain effect using [24], a free rain module from the Unity Asset
Store. This includes: 1) a visual effect that impacts camera
detection, and 2) a reflective effect that influences the intensity
of LiDAR measurements (Section III-B). Examples of various
rain intensities are presented in Fig. 3.

B. Robot model and sensors

Robots can be configured according to different motion
models and equipped with various sensors.

1) Robot Model: A configuration file defines the robot
3D model and the included thrusters. Currently, a monohull
and a catamaran style robots are provided together with our
simulator.

Fig. 4: The radar data are visualized through a minimap graphic in the bottom
right of the screen. The green beam indicates the radar’s current position, and
the green dots are radar returns.

We provide a controller that allows the user to move the
robot, either directly from the simulator interface or via ROS
velocity messages.

2) Simulation of sensors: There are a number of sensors
we implemented that can be onboard the simulated robot,
including LiDAR, Marine Radar, and IMU. These sensors are
visually represented in the 3D environment, allowing users
to see how the sensors are interacting with nearby items in
the environment. Additionally, the sensor data are represented
in a minimap (a small top down view of the world around
the robot, as shown in Fig. 4) allowing for a broader visual
understanding of the sensor results. The sensor data can also
be optionally transmitted as raw data over ROS topics.

Fig. 5: LiDAR is affected by rain intensity, specifically with higher intensities
resulting in lower visibility on average. Red lines indicate LiDAR beams that
have been “intercepted” by a raindrop before they reach an object, while green
lines successfully reached an object.

a) LiDAR: The LiDAR sensor simultaneously captures
measurements within at a set angular resolution (45 degrees
and 32 readings vertical, 360 degrees and 512 readings hor-
izontal) and maximum range (100 meters), at around 5 Hz,
e.g., matching the capabilities of the OS1 [25] LiDAR sensor.
We accomplish this efficiently by using the Pixel Position



camera from Unity’s Perception Package. One camera pixel’s
information is the equivalent of one raycast, allowing us to
capture hundreds of readings per frame. While this allows the
simulator to capture completely accurate ground truth data,
the Unity engine does not provide the ability to modify the
depth capture with elements like rainfall by default. With
this in mind, we have added some additional equations based
on the work of [26], [27], and [28] to simulate attenuation
due to collisions with raindrops, as shown in Fig. 5. Since
performing these calculations on the CPU would reduce the
framerate of the simulation to approximately 2 frames per
second, we instead run them through a compute shader on
the GPU, thereby keeping the framerate above 30fps.

The steps are as follows.

Step one: Calculate the number of drops, n, that would
probabilistically be in a LIDAR beam of the given length and
diameter. We can model the average number of drops in a
cubic meter with

N (D) = 8000 - exp(—4.1- R7%21 . D) (1)

where R is the rate of rainfall in mm/hr and D is average drop
diameter (about 3.25 mm) [26], [28].

Next, we need to determine the average number of raindrops
in the entire beam. Since we have the distance Z to the object
from the raycast and the radius of the beam r, this is:

p=m-r*-Z-N(D) )

To make sure this is accurate, we use a Poisson distribution
to finalize the number of drops:

p(n) = exp(—p) - (u"/n!) 3)

where, as stated earlier, n is the number of drops being
predicted to be in the beam [26].

Step two: Calculate the Returned Intensity of the Object
(RIO) and the Returned Intensity of the Rain Drop (RIRD).
The relative power equation (a modified version of [26](2) as
discussed in [26]’s section III.A) that will be used for both
values is

P, (z cexp(—2-a- 2) 4)

p
=2
where p is the backscatter coefficient and « is the scattering
coefficient [26].

Let’s start with RIO. For a diffusely reflecting surface, the
backscattering coefficient p is

p=- 5)
™

where s is the amount of reflection (e.g., a 90% diffusely
reflecting surface should have a value of p = 07}—9) [27].
The scattering coefficient « is:

) . (mD?
O[:n Qext(Dv)‘) ( 4 ) (6)

mor2-Z

where Q.,(D, \) is the extinction efficiency for the raindrops
for a given wavelength (\) and drop diameter [28]. [28] also
shows that for A = 905-10~m (the most common wavelength
for surface LiDARSs) and our average drop diameter 3.25 mm,
Qexr(D, A) is approximately 2.

RIRD returns the intensity of the first raindrop hit by
the beam. Considering this, a is O since there cannot be
additional raindrops before the first raindrop. Additionally,
the backscatter equation for the raindrop is similar to the
extinction coefficient for the raindrops in RIO:

n-D?
o = n: Qback(D7 A) : (T) (7

mer2-Z

where Qpuek(D, A) is the backscatter coefficient for a given
wavelength and drop diameter, and Z is the distance to the
first raindrop [28]. [28] once again shows that Qpue(D, \)
is approximately 2 for the previously given parameters. Z is
calculated by taking n random distances within the range of
the beam, and keeping the smallest distance.

Step three: Calculate the returned distance. We use [26]’s
logic flow to determine the final returned distance. If the
raycast hit something and there were no raindrops in the beam,
return the distance to the object. If there was at least one
raindrop in the beam, compare RIO to RIRD. If RIO is the
larger value and is bigger than a detection threshold ( [26]
sets this as 0.5 - 107°), return the distance to the object. If
RIO was less than the threshold, return no collision. If RIRD
was larger than RIO or the raycast didn’t hit anything, we
compare RIRD to the threshold instead. If RIRD was bigger
than the threshold, return the distance to the raindrop. Return
no collision otherwise.

b) Marine Radar: Differently from the current simula-
tors, we implemented a key exteroceptive sensor in the marine
domain, i.e., Marine Radar. Marine Radar is similar to LIDAR
in that the distance is calculated with a raycast. In accordance
with real-world sensor characteristics, we modeled the Marine
Radar’s scanning frequency to be slower (0.5 Hz) than that of
the LiDAR (2Hz to 4Hz) for a complete 360-degree sensor
measurement. We also apply Gaussian noise to this distance
reading instead of calculating rain interference, as radar is
generally not affected by rain as the LiDAR.

c) Inertial Measurement Unit: Our IMU sensor takes the
ground truth 6DOF from Unity, but we also added Gaussian
noise to the measurements to make the sensor values more re-
alistic. We will add bias in the future. Example measurements
in varying amounts of swell can be seen in Fig. 6.

d) GPS: For more precision, instead of using a projection
system (e.g., UTM), GPS latitude and longitude (lat, lon) in
meters (lat,,, lon,,) is calculated with the help of lookup
tables from [29] containing the size of each degree of lar and
lon as a length in meters (latneighs, » l0OMyiam,,)- The biggest
difficulty comes from how the distance between the degrees
changes with each increase in latitude, but this is solved by
preemptively totaling up the distance to the start of each degree
of latitude and storing it in a third lookup table (latsq,, ).
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Fig. 6: Angular velocity over time with varying amounts of swell (amplitude
— Medium: 0.62 m, Heavy: 1.25m).

latym, = latsar,, [floor(lat)] + latheign,, [floor(lat)] - (lat%1)  (8)

lon,, = lerp(lonyidm,, [floor(lat)], lonyiam,, [ceil(lat)], lat%1) - lon
)
where lerp is linear interpolation.

C. Simulation of maritime traffic

We have added the ability to simulate various types of
maritime traffic with varying shapes and sizes of boats (with
the default being a single type of boat). These boats can be
controlled by the simulation directly or they can be controlled
externally through standard ROS messages.

We added two main primitive behaviors to control each boat
as part of the maritime traffic. The first option is to move a
boat in a circle with a set radius. The alternative is to have the
boat follow a path made of an arbitrary set of points (visually
represented in the simulation by floating buoys). These points
can be manually set or automatically generated, producing
consistent or random obstacles as needed.

If an external package needs to control the position of the
boats, there are two options available here as well — a low-
level control via velocity messages or a high-level control
via waypoints. We also provide the option to broadcast each
boat’s state in the simulator through both the Odometry and
transformations TF topics to any external application that
needs the data.

D. Useful Tools

1) Data recording: In addition to transmitting sensor data
via ROS topics, the simulator can record everything to a
csv file in a time synchronous manner, which allows for
review and logging at a later time. The simulator can also
be configured to record a set of screenshots (color, depth,
normals, segmentation, or any combination of the above as
seen in Fig. 7) multiple times per second, helping learning-
based pipelines in creating datasets. It is also possible to record

Fig. 7: Unity’s perception package allows for the recording of ground
truth data from the camera. This includes variations like color (top left),
segmentation (top right), depth (bottom left), normals (bottom right), bounding
box, and more.

a single color screenshot of the simulator’s screen at any time
by hitting the Space key. We have also added the option to
stop perception at the water’s surface (as seen in Fig. 7) or to
allow perception to reach the bottom of the body of water.

Note that because the simulator is integrated with ROS,
‘rosbag’ can also be used for recording the data.

IV. SETTING UP AND RUNNING THE SIMULATION

Creating and running a simulation is simplified thanks to
the tools we provide. Here we describe the workflow.

A. Creation of an environment

Creating a terrain object from an elevation image is accom-
plished in three steps: a) set the path to a grayscale elevation
image in the settings UI, b) adjust a few positioning settings,
and ¢) click the Generate button. The results will be similar
to Fig. 8. Elevation images can be found in a wide variety of
locations, but we recommend using Esri’s official “TopoBathy”
layer in ArcGIS Online [22] as it provides a dynamic range
adjustment option that automatically scales the data between
the local minima and maxima within the current viewport.

There are a few assumptions to keep in mind when setting
up a 3D environment from an elevation image.

The first is that the water will by default always be repre-
sented as an infinite “plane”. At runtime, the water will distort
vertically to represent swell, but it is effectively a plane. We

Fig. 8: An elevation image (top left) can be converted into a Unity Terrain
(top right).



have also set the world height of the water to 0 for simplicity
and to reduce the likelihood of floating point accuracy loss.
This means that if a water source is not at sea level (e.g.,
most inland water), elements like terrain elevation min and
max will have to be adjusted accordingly. Min will always
represent how many meters the lowest point in the elevation
image is below the water’s surface level, and Max represents
how many meters the highest point is above the water.

The second assumption is in how world position is handled.
The terrain will be generated so that the bottom left corner of
the elevation image is aligned with the origin of the virtual
world. This means that all locations visible within the image
will be located at positive coordinates in the virtual world. If
the GPS coordinates of the bottom left corner are known, this
can also be set within the settings UI to provide accurate GPS
positioning of the robot within the virtual world.

B. Configuring the robot

Once the environment configuration is finalized, the user can
launch the simulator by setting the initial position of the ASV
and pressing the start button, which enables manual control of
the ASV. Any additional configuration (e.g., enabling sensors,
setting the rainfall amount, spawning random boats) can be
accomplished through the settings menu. The default settings
can also be changed by altering the file SettingsConfig.json
allowing the simulation to start in an automated way.

V. DEMONSTRATIONS FOR PERCEPTION AND NAVIGATION

We demonstrate how the simulator can aid ASV perception
and navigation pipelines. All testing was performed on an Intel
i9 desktop with an NVIDIA RTX 4070 graphics card and 64
GB of RAM. Most testing was performed in Windows 11
with the exception of the Navigation tests which were done
in Ubuntu 18.04 to test with ROS.

A. Simulator Performance

Our proposed simulator can run in real-time, and the real-
time factor remains stable even when a large number of boats
are deployed simultaneously, as demonstrated in Table II. We
measured frame rates at different combinations of the number
of spawned boats in the simulator (0-100) and the active
perception package elements (Segmentation, Depth, Normals,
and unaltered Color screenshots).

TABLE II: Comparison of Frames per Second as per use of perception
packages in our simulator. LiDAR (which also uses perception) is always
active.

Number of Boats - - Frame R ates per Se_cond .
With no perception | With Segmentation | Four perception
package active recording enabled packages active
0 55 33 15
5 54 32 14.5
10 52 30 14
20 51 29 135
50 36 28 13
100 32 24 12

Boat 0.94
[=2 t 0.96
— BoamcEoSOe
water 0.94

Fig. 9: CataBotSim’s capability of the perception task application. (top) raw
image generated in our CataBotSim environment including boats, terrain, and
water. (bottom) inference result based on the trained state-of-the-art model.

B. Perception

Users can utilize images and ground truth labels generated
by CataBotSim for the training and testing of perception tasks,
such as object detection. We employed the state-of-the-art
YOLOVS model [30] because of its rapid and precise inference
capabilities, which are highly beneficial for object detection
in the maritime domain. We formatted the ground truth to
meet the training and validation methods’ requirements. To en-
hance the diversity of data derived from CataBotSim-generated
images, we implemented augmentation strategies including
flipping, cropping, and adding noise.

As shown in Fig. 9, the state-of-the-art model effectively
detects objects, such as boats, from an egocentric view (in-
ference time approximately 20 ms). CataBotSim’s perception
capabilities are crucial for testing object tracking and the
integration of heterogeneous sensors, accommodating sensing
models and incorporating realistic environmental conditions
like rain in this study.

C. Navigation

The simulator allows users to load a number of different
obstacles and test navigation algorithms controlling an ASV,

Fig. 10: Navigation scenario with a number of different boats representing
traffic and controlled ASV. (left) view in Unity, (right) view from ROS rviz.



such as [31], [32]. Fig. 10 shows an example of such a
scenario. Note that multiple ASVs can be controlled, so multi-
ASYV coordination can be tested as well.

VI. CONCLUSION AND FUTURE WORK

This paper introduced CataBotSim, an open source ASV
simulator implemented with Unity and ROS, and made mul-
tiple contributions. First, CataBotSim allows the user to drive
an ASV in customizable environments and import custom or
scanned physical terrain. This is highly beneficial for testing
and validating machine learning models as it simplifies the cre-
ation of large diverse datasets without the cost of creating the
same datasets in the physical world. Second, we have added
sensors such as IMU, Cameras, GPS, LiDAR, and Marine
Radar to CataBotSim, and we have added noise and weather
effects to the sensor models to increase accuracy compared
to physical sensors. To support training of machine learning
models, the user can record sensor datasets in the csv file
format or as images in the case of segmented, depth, normal,
and color camera perception. Third, the user can simulate up to
100 additional boats by default (with the option to arbitrarily
increase this limit), as well as different weather and physics
components such as rain, wind zones, and buoyancy. All of
these attributes can be activated and deactivated via a user
friendly UI which can be configured at runtime or by a .json
configuration file. Finally, CataBotSim is fully integrated with
ROS, allowing external programs to read the current state of
the simulation as well as control all vehicles.

In the near future, we are planning to introduce more
weather conditions to our simulator. We will take advantage
of more of Unity 3D’s built-in features to improve the real-
ism of the terrain visuals since it is currently using a gray
checkerboard pattern. We will also be looking to see what
other common communication and sensor hardware exist for
ASVs that we can integrate into the simulator to increase the
types of scenarios it can handle. We plan to add options for
realistic decreased sensor accuracy such as material surface
reflectivity to affect Marine Radar and LiDAR as well as
sensor bias and drift.
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