

TABLE I: Comparison of simulators including surface and other domains. Our simulator, compared to existing ASV simulators, includes marine radar, weather
effects affecting the sensor, and the ability to run a high number of robots.

environment
groundtruth data

capability
sensors1 physics (hydrostatic) weather (rain)

tested
total number

of agents2
base platform

Gazebo [7] General N L, C, I, G Y N C -

VRX [8] Surface N L, C, I, G Y N C Gazebo

AirSim [5] General without marine Y L, C, I, G N/A Y B Unreal Engine

CARLA [3] Urban Y L, C, I, G, R N/A Y B Unreal Engine

MARUS [9] Marine3 Y L, C, I, G Y N Unknown Unity

USV Sim [6] Surface N I, G Y N C Gazebo

AMSVS [10] Surface N L, C, I, G Y N Unknown Gazebo

CataBotSim Surface Y L, C, I, G, MR Y Y A Unity

1: supported sensor for detection and ego motion. L: LiDAR, C: camera, I: IMU, G: GPS, R: Radar, MR: Marine Radar.
2: the maximum number of of deployable agents that can supports other tasks, e.g., perception. A: > 20, B: 10 − 20, C: < 10.
3: including both underwater and surface.

high fidelity in 3D geometry and physics simulations;

• Realistic sensor simulation: Integrating a variety of sen-

sors for ASV navigation, including realistic noise effects

from environmental conditions (such as rain in LiDAR

sensors);

• Applicability for marine autonomy: Showcasing the simu-

lator’s capabilities through various scenarios, highlighting

its utility for training perception pipelines and validating

navigation planning as a core part of ASV autonomy; and

• Integration with middleware and open-sourcing: Seam-

less integration with the Robot Operating System

(ROS) [12], thereby facilitating the incorporation of ex-

isting algorithms into the simulation environment. Ad-

ditionally, we make the simulator open-source for the

community.

While additional realistic effects (e.g., bias) will be added

in the future, this first enhancement of ASV simulators will

contribute towards a faster ASV technology progress, neces-

sary for a large variety of important operations, such as marine

transportation and algal bloom monitoring.

II. RELATED WORK

Simulations have been widely used in robotics. An in-depth

survey of simulators by Collins et al. [13] explores different

physics based simulations for different areas in robotics such

as manipulators, medical robots, and soft robotics, as well

as navigation on land, aerial, and marine environments. The

authors further divide the marine robotics simulators into two

categories: simulators for surface vehicles and simulators for

underwater robots. Here we specifically discuss the simulators

in terms of capabilities provided for ASV simulation – see

Table I, showing the main characteristics being compared in

a number of popular simulators and our proposed simulator.

There are general robotics simulators, appeared in the early

2000s, first focusing on ground robots and then expanding

to other platforms. Notably, Gazebo [7] is one of the most

popular 3D simulation platforms used in robotics given its

integration with ROS. However, in its standard form, the

visual realism is limited, especially for water and grass. Fluid

dynamics simulation was also not present until Gazebo was

extended to support ASVs with the Virtual RobotX (VRX) [8].

The supported sensors include the ones already provided for

ground robots, i.e., camera, LiDAR, IMU, and GPS. There is

a limit in number of robots that can be supported in real time

given the physics engine used in Gazebo. In CataBotSim we

provide a water simulator that has physics, buoyancy, and con-

figurable wind physics to make the testing environment more

realistic. Moreover, CataBotSim is integrated with simulated

marine radar and heavy maritime traffic.

More recently, game engines have become the base to

develop robotic simulators due to the visual realism they can

provide. An early robot simulator was USARSim [14], which

is open source and built with Unreal Engine [15] for both

research and educational purposes. USARSim is designed to

be extended by users to create custom virtual robots. While the

simulator has an extensive set of sensors and actuators inte-

grated into the system, it lacks realistic hydro-dynamics since

it was greatly simplified for simulation purposes. Additionally,

USARSim is not designed to simulate ASVs. In 2017, Shah

et al. introduced AirSim [5], an open source physics based

flight simulator made with Unreal Engine, which mimics a

quadcopter in different environments. AirSim uses computer

vision techniques to annotate the virtual environments in real

time with color coded object segmentation. Similar to AirSim,

CataBotSim also provides the user with the option to annotate

the images through the Unity Perception Package [16]. Even

though AirSim is a promising start for a flight simulator, it has

limitations such as an absence of object detection, raycasting,

and a lack of realistic noise models. This could potentially

makes it difficult to gather realistic data. To eliminate these

setbacks, CataBotSim has collision based physics and an

efficient raycasting used in the simulated camera for LiDAR.

Furthermore, we added Gaussian noise to its IMU, marine

radar, and LiDAR sensor models to give more realistic data.

Another difference worth mentioning between the two systems

is that AirSim only provides a single fictional location by

default while CataBotSim provides a way to recreate physical

environments from elevation maps. This increases the number

of available environments to include any location on Earth.

From the advances in self-driving cars, CARLA [3] is an

open source driving simulator built with Unreal Engine 4.0 to

create content for testing and validating autonomous driving

approaches. CARLA provides different weather conditions

such as a sunny day, daytime rain, daytime shortly after rain,

and a clear sunset, similar to how our CataBotSim provides

adjustable weather conditions such as wind, rain, and sunlight.

Both systems also provide ground truth semantic segmentation

and depth segmentation, allowing users to represent various

camera from Unity’s Perception Package. One camera pixel’s

information is the equivalent of one raycast, allowing us to

capture hundreds of readings per frame. While this allows the

simulator to capture completely accurate ground truth data,

the Unity engine does not provide the ability to modify the

depth capture with elements like rainfall by default. With

this in mind, we have added some additional equations based

on the work of [26], [27], and [28] to simulate attenuation

due to collisions with raindrops, as shown in Fig. 5. Since

performing these calculations on the CPU would reduce the

framerate of the simulation to approximately 2 frames per

second, we instead run them through a compute shader on

the GPU, thereby keeping the framerate above 30fps.

The steps are as follows.

Step one: Calculate the number of drops, n, that would

probabilistically be in a LiDAR beam of the given length and

diameter. We can model the average number of drops in a

cubic meter with

N(D) = 8000 · exp(−4.1 ·R−0.21
·D) (1)

where R is the rate of rainfall in mm/hr and D is average drop

diameter (about 3.25 mm) [26], [28].

Next, we need to determine the average number of raindrops

in the entire beam. Since we have the distance Z to the object

from the raycast and the radius of the beam r, this is:

µ = π · r2 · Z ·N(D) (2)

To make sure this is accurate, we use a Poisson distribution

to finalize the number of drops:

p(n) = exp(−µ) · (µn/n!) (3)

where, as stated earlier, n is the number of drops being

predicted to be in the beam [26].

Step two: Calculate the Returned Intensity of the Object

(RIO) and the Returned Intensity of the Rain Drop (RIRD).

The relative power equation (a modified version of [26](2) as

discussed in [26]’s section III.A) that will be used for both

values is

Pn(z) =
ρ

Z2
· exp(−2 · α · Z) (4)

where ρ is the backscatter coefficient and α is the scattering

coefficient [26].

Let’s start with RIO. For a diffusely reflecting surface, the

backscattering coefficient ρ is

ρ =
s

π
(5)

where s is the amount of reflection (e.g., a 90% diffusely

reflecting surface should have a value of ρ = 0.9

π
) [27].

The scattering coefficient α is:

α =
n ·Qext(D,λ) · (π·D

2

4
)

π · r2 · Z
(6)

where Qext(D,λ) is the extinction efficiency for the raindrops

for a given wavelength (λ) and drop diameter [28]. [28] also

shows that for λ = 905·10−9m (the most common wavelength

for surface LiDARs) and our average drop diameter 3.25 mm,

Qext(D,λ) is approximately 2.

RIRD returns the intensity of the first raindrop hit by

the beam. Considering this, α is 0 since there cannot be

additional raindrops before the first raindrop. Additionally,

the backscatter equation for the raindrop is similar to the

extinction coefficient for the raindrops in RIO:

α =
n ·Qback(D,λ) · (π·D

2

4
)

π · r2 · Z
(7)

where Qback(D,λ) is the backscatter coefficient for a given

wavelength and drop diameter, and Z is the distance to the

first raindrop [28]. [28] once again shows that Qback(D,λ)
is approximately 2 for the previously given parameters. Z is

calculated by taking n random distances within the range of

the beam, and keeping the smallest distance.

Step three: Calculate the returned distance. We use [26]’s

logic flow to determine the final returned distance. If the

raycast hit something and there were no raindrops in the beam,

return the distance to the object. If there was at least one

raindrop in the beam, compare RIO to RIRD. If RIO is the

larger value and is bigger than a detection threshold ([26]

sets this as 0.5 · 10−5), return the distance to the object. If

RIO was less than the threshold, return no collision. If RIRD

was larger than RIO or the raycast didn’t hit anything, we

compare RIRD to the threshold instead. If RIRD was bigger

than the threshold, return the distance to the raindrop. Return

no collision otherwise.

b) Marine Radar: Differently from the current simula-

tors, we implemented a key exteroceptive sensor in the marine

domain, i.e., Marine Radar. Marine Radar is similar to LiDAR

in that the distance is calculated with a raycast. In accordance

with real-world sensor characteristics, we modeled the Marine

Radar’s scanning frequency to be slower (0.5Hz) than that of

the LiDAR (2Hz to 4Hz) for a complete 360-degree sensor

measurement. We also apply Gaussian noise to this distance

reading instead of calculating rain interference, as radar is

generally not affected by rain as the LiDAR.

c) Inertial Measurement Unit: Our IMU sensor takes the

ground truth 6DOF from Unity, but we also added Gaussian

noise to the measurements to make the sensor values more re-

alistic. We will add bias in the future. Example measurements

in varying amounts of swell can be seen in Fig. 6.

d) GPS: For more precision, instead of using a projection

system (e.g., UTM), GPS latitude and longitude (lat, lon) in

meters (latm, lonm) is calculated with the help of lookup

tables from [29] containing the size of each degree of lat and

lon as a length in meters (latheight
m

, lonwidthm). The biggest

difficulty comes from how the distance between the degrees

changes with each increase in latitude, but this is solved by

preemptively totaling up the distance to the start of each degree

of latitude and storing it in a third lookup table (latstartm).

such as [31], [32]. Fig. 10 shows an example of such a

scenario. Note that multiple ASVs can be controlled, so multi-

ASV coordination can be tested as well.

VI. CONCLUSION AND FUTURE WORK

This paper introduced CataBotSim, an open source ASV

simulator implemented with Unity and ROS, and made mul-

tiple contributions. First, CataBotSim allows the user to drive

an ASV in customizable environments and import custom or

scanned physical terrain. This is highly beneficial for testing

and validating machine learning models as it simplifies the cre-

ation of large diverse datasets without the cost of creating the

same datasets in the physical world. Second, we have added

sensors such as IMU, Cameras, GPS, LiDAR, and Marine

Radar to CataBotSim, and we have added noise and weather

effects to the sensor models to increase accuracy compared

to physical sensors. To support training of machine learning

models, the user can record sensor datasets in the csv file

format or as images in the case of segmented, depth, normal,

and color camera perception. Third, the user can simulate up to

100 additional boats by default (with the option to arbitrarily

increase this limit), as well as different weather and physics

components such as rain, wind zones, and buoyancy. All of

these attributes can be activated and deactivated via a user

friendly UI which can be configured at runtime or by a .json

configuration file. Finally, CataBotSim is fully integrated with

ROS, allowing external programs to read the current state of

the simulation as well as control all vehicles.

In the near future, we are planning to introduce more

weather conditions to our simulator. We will take advantage

of more of Unity 3D’s built-in features to improve the real-

ism of the terrain visuals since it is currently using a gray

checkerboard pattern. We will also be looking to see what

other common communication and sensor hardware exist for

ASVs that we can integrate into the simulator to increase the

types of scenarios it can handle. We plan to add options for

realistic decreased sensor accuracy such as material surface

reflectivity to affect Marine Radar and LiDAR as well as

sensor bias and drift.

REFERENCES

[1] U. Nations, Review of Maritime Transport 2021. United Nations
Conference on Trade and Development, 2022.

[2] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira, “Virtual robot
experimentation platform v-rep: a versatile 3d robot simulator,” in Simu-

lation, Modeling, and Programming for Autonomous Robots (SIMPAR).
Springer, 2010, pp. 51–62.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[4] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta et al., “Lgsvl simulator: A
high fidelity simulator for autonomous driving,” in IEEE International

conference on intelligent transportation systems (ITSC), 2020, pp. 1–6.
[5] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual

and physical simulation for autonomous vehicles,” in Field and Service

Robotics: Results of the 11th International Conference. Springer, 2018,
pp. 621–635.

[6] M. Paravisi, D. H. Santos, V. Jorge, G. Heck, L. M. Gonçalves,
and A. Amory, “Unmanned surface vehicle simulator with realistic
environmental disturbances,” Sensors, vol. 19, no. 55, p. 1068, Jan. 2019.

[7] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ international confer-

ence on intelligent robots and systems (IROS), vol. 3, 2004, pp. 2149–
2154.

[8] B. Bingham, C. Agüero, M. McCarrin, J. Klamo, J. Malia, K. Allen,
T. Lum, M. Rawson, and R. Waqar, “Toward maritime robotic simulation
in gazebo,” in OCEANS 2019 MTS/IEEE SEATTLE, 2019, pp. 1–10.

[9] I. Loncar, J. Obradovic, N. Krasevac, L. Mandic, I. Kvasic, F. Ferreira,
V. Slosic, D. Nad, and N. Miskovic, “MARUS - a marine robotics
simulator,” in OCEANS 2022, Hampton Roads, 2022, p. 1–7.

[10] P. Smith and M. Dunbabin, “High-fidelity autonomous surface vehicle
simulator for the maritime robotx challenge,” IEEE Journal of Oceanic

Engineering, vol. 44, no. 2, p. 310–319, Apr. 2019.

[11] Unity3D, “Simulating robots with ROS and unity,” https:
//unity.com/blog/engine-platform/robotics-simulation-is-easy-as-1-2-3,
[Accessed 15-03-2024].

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, vol. 3, 01 2009.

[13] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics
simulators for robotic applications,” IEEE Access, vol. 9, pp. 51 416–
51 431, 2021.

[14] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USAR-
Sim: a robot simulator for research and education,” in IEEE International

Conference on Robotics and Automation (ICRA), 2007, pp. 1400–1405.

[15] UnrealEngine, “Unreal Engine — The most powerful real-time 3D cre-
ation tool — unrealengine.com,” https://www.unrealengine.com/en-US,
[Accessed 15-03-2024].

[16] Unity Technologies, “Unity Perception package,” https://github.
com/Unity-Technologies/com.unity.perception, 2020, [Accessed 15-03-
2024].

[17] P. Namal Senarathne, W. S. Wijesoma, K. W. Lee, B. Kalyan,
M. Moratuwage, N. M. Patrikalakis, and F. S. Hover, “Marinesim: Robot
simulation for marine environments,” in OCEANS’10 IEEE SYDNEY,
2010, pp. 1–5.

[18] E. Potokar, S. Ashford, M. Kaess, and J. G. Mangelson, “HoloOcean:
An underwater robotics simulator,” in IEEE International Conference

on Robotics and Automation (ICRA), 2022, pp. 3040–3046.

[19] Unity Technologies, “Unity Perception package,” https://docs.unity3d.
com/Packages/com.unity.sensorsdk@2.0/manual/index.html, 2024.

[20] coppeliarobotics, “Robot simulator CoppeliaSim: create, compose, sim-
ulate, any robot - Coppelia Robotics — coppeliarobotics.com,” https:
//www.coppeliarobotics.com/, [Accessed 14-03-2024].

[21] P. Chang and T. Padif, “Sim2real2sim: Bridging the gap between
simulation and real-world in flexible object manipulation,” in IEEE

International Conference on Robotic Computing (IRC), 2020, pp. 56–62.

[22] arcgis, “arcgis.com,” https://www.arcgis.com/index.html, [Accessed 15-
03-2024].

[23] U. Technologies, “The New Water System in Unity 2022 LTS
and 2023.1 — Unity Blog — blog.unity.com,” https://blog.unity.com/
engine-platform/new-hdrp-water-system-in-2022-lts-and-2023-1, [Ac-
cessed 15-03-2024].

[24] Unity3D, “Rain Maker - 2D and 3D Rain Particle System for Unity
— Environment — Unity Asset Store — assetstore.unity.com,”
https://assetstore.unity.com/packages/vfx/particles/environment/
rain-maker-2d-and-3d-rain-particle-system-for-unity-34938, [Accessed
14-03-2024].

[25] O. Inc, “Ouster OS1 Lidar sensor,” https://data.ouster.io/downloads/
datasheets/datasheet-rev7-v3p1-os1.pdf, [Accessed 15-03-2024].

[26] J. P. Espineira, J. Robinson, J. Groenewald, P. H. Chan, and V. Donzella,
“Realistic lidar with noise model for real-time testing of automated
vehicles in a virtual environment,” IEEE Sensors Journal, vol. 21, no. 8,
pp. 9919–9926, 2021.

[27] C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the
influence of rain on LIDAR in ADAS,” Electronics, vol. 8, p. 89, 01
2019.

[28] M. Berk, M. Dura, J. Rivero, O. Schubert, H.-M. Kroll, B. Buschardt,
and D. Straub, “A stochastic physical simulation framework to quantify
the effect of rainfall on automotive lidar,” vol. 1, 04 2019.

[29] A. B. Moody, “American Practical Navigator, Pub. No. 9 of the United
States Defense Mapping Agency Hydrographic Topographic Center,
originally by Nathaniel Bowditch. Two volumes, 7 × 10 in (approx. 18
× 26 cm). Vol. I, 1977. Vol. II, 1975.” Journal of Navigation, vol. 32,
no. 3, p. 454–456, 1979.

[30] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[31] M. Jeong and A. Quattrini Li, “Motion attribute-based clustering and col-
lision avoidance of multiple in-water obstacles by autonomous surface
vehicle,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2022, pp. 6873–6880.
[32] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe

maritime autonomous navigation with colregs, using velocity obstacles,”
IEEE J. Oceanic Eng., vol. 39, no. 1, pp. 110–119, 2014.

	Introduction
	Related Work
	CataBotSim: A modular multi-ASV simulator
	Physics simulation and rendering
	3D Environments
	Water surface simulation
	Wind
	Rain

	Robot model and sensors
	Robot Model
	Simulation of sensors

	Simulation of maritime traffic
	Useful Tools
	Data recording

	Setting up and Running the Simulation
	Creation of an environment
	Configuring the robot

	Demonstrations for perception and navigation
	Simulator Performance
	Perception
	Navigation

	Conclusion and Future Work
	References

