


Therefore, an ASV is required to perform semantic inference

from its ego-centric perspective.

While higher-level maneuver intention approaches, like

inferring rule violations by obstacles [9], [10] have been in-

troduced, there are some limitations affecting the overall nav-

igation safety: vehicles tend to take passive actions according

to occurrences of the obstacles’ rule violations, rather than

preemptive actions. Moreover, these works assume homo-

geneous traffic behaviors (same as an ego-vehicle and same

across obstacles), which is unrealistic. In practical situations,

proactive and large actions are essential to reduce uncertainty

and mitigate risks associated with hidden intentions to align

with key principles such as COLREGs [5], [11].

To address the challenges outlined above, we present

an innovative approach termed active learning-augmented

intention-aware obstacle avoidance designed for handling

single- or multi-obstacle encounters, without the ego ASV’s

explicit communication as to other vehicles’ intentions. Thus,

the proposed approach aligns with the fundamental principle

of the maritime convention, i.e., proactive action, denoted in

[5], enabling the ego-vehicle to exhibit good seamanship and

avoid risky situations, even in stand-on status. Specifically,

the main contributions of this paper are:

• topological modeling of passing based on maritime nav-

igation’s inherent conceptual topology and implementa-

tion of LSTM-backbone-based intention classification;

• a novel multi-objective local planner that includes an

active strategy to increase information gain in uncertain

encounters about the passing intention of obstacles,

while ensuring collision avoidance; and

• implementation in Robot Operating System (ROS) with

comprehensive analysis through extensive Monte Carlo

simulations, experiments in the ocean with a real

ASV, and a real-world accident case study successfully

demonstrating safe and real-time collision avoidance.

This work represents a first effort to include in collision

avoidance strategies the reduction of uncertainty regarding

the intention of other obstacles, with the overall goal to

improve the ASV navigation safety.

II. RELATED WORK

Several methods appeared in the literature for obstacle

avoidance, primarily for ground robots [3], [12]–[14], and

some in the maritime domain [10], [15], [16]. Here we focus

on those methods that aim to predict the intentions of other

vehicles, given that such information is fundamental for safe

navigation as discussed in the previous section.

Many studies employ intention-awareness primarily

through predictions of vessel trajectory, including learning-

based approaches like Recurrent Neural Networks (RNNs)

[6], Variational RNN [17], Bayesian modeling based on a

Gaussian Process [18], and Dual Encoder-based model [19].

However, two key issues persist: (1) predictive accuracy

often exhibits significant offsets (on the order of hundred

meters for ships), necessitating more semantic-level pre-

dictions for decision-making; and (2) data and predictions

primarily adopt a global perspective, lacking an ego-centric

perspective, which is critical for ASV’s on-board collision

avoidance decision-making.

Other common approaches are the motion- and goal state-

focused intent inference, primarily focusing on COLREGs

compliance [9]–[11], [16], [20]. The COLREGs compliance

introduces some inherent challenges for those methods due

to: (1) rule ambiguity: intention inference on collision avoid-

ance logic (give-way or stand-on) as a binary value was pre-

dicted and updated based on a pairwise relationship between

vehicles [16]. A recent work introduced a Dynamic Bayesian

Network to calculate the probability of rule-compliance in

the velocity space [10]. However, these approaches utilize

an unclear classification of encounter situations (e.g., a

geometric boundary for head-on vs. crossing is not explicit

as denoted in [11]) due to the inherent ambiguity of the rules,

such that the intention inference can vary depending on the

interpretation. (2) reciprocal and homogeneous assumption:

intention information was used and allowed an ego-vehicle

to relax COLREGs [9], but all obstacles were assumed

to follow homogeneous behaviors and did not have state

uncertainty. Cho et al. [20] used a reciprocal evasive algo-

rithm proportional to the inference of the rule compliance

by obstacles. The previous work with homogeneous setup

raises the need for algorithms that can handle heterogeneity:

homogeneous behaviors, which are rarely observed in reality,

could potentially fail to meet proactive requirements of the

rule, because the ego ASV waits for others’ compliance.

Our study’s primary insight is to focus on high-level (topo-

logical) passing intention for active intention-aware obstacle

avoidance, distinguishing our approach from previous efforts,

including ours [21], [22]. This strategy is enhanced by a

real-world data-driven, learning-based prediction model. The

marine domain’s unique characteristics and its rules of the

road prompt us to question, “How will other vehicles pass

with respect to my vehicle, and how can I safely navigate

past them by my action?” This ego-centric and topolog-

ical perspective differs from conventional trajectory-level

predictions, i.e., sequences of geometric points. Moreover,

we do not assume that an ego-vehicle and other obstacles

utilize a reciprocal algorithm for evasion. To create a more

realistic scenario, we consider obstacles that exhibit either

cooperative or non-cooperative behaviors, which may differ

from the ego vehicle’s behavior. In previous research [21], we

explored efficient local avoidance from a relative ego-centric

viewpoint for a ship domain, while addressing multiple

obstacles sequentially. On the other hand, in [22], we pro-

posed holistic multiple obstacle avoidance, though without

considering the passing intentions of other ships and collision

avoidance decision-making, accordingly. In this study, our

proactive actions prioritize safety in line with the primary

principles of maritime navigation and follow its semantic

and topological interpretations of collision avoidance.

III. PROPOSED APPROACH

The proposed approach evaluates desirable actions (head-

ing, speed) to avoid obstacles in congested traffic while

obtaining information gain to actively reduce uncertainty







2) Multiple encounters: To extend the information gain of

obstacle passing to multi-encounter scenarios, we extend the

obstacle clustering proposed in our previous study [22]. A

cluster is defined as a group of static and dynamic obstacles

that have similar motion attributes with respect to an ego

ASV – temporal (time to CPA; TCPA), spatial (distance at

CPA; DCPA), and angular (relative bearing) similarity –

such that the ego ASV should not enter an obstacle’s domain

as well as narrow areas between obstacles. With multiple

obstacles in a cluster, the proposed algorithm calculates the

information gain as follows:

Ĩ(PCk

t+1) =
∑

Oi∈Ck

αi ∗ Ĩ(P
Oi

t+1) (5)

where Oi is a member obstacle in a cluster Ck and αi is a

weight coefficient for Oi. For each obstacle Oi, αi is:

αi =
tr(cov(wi

x,w
i
y,w

i
θ,w

i
v))

trmax(cov(w
j
x,w

j
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j
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j
v))

(6)

where w
i ∼ N (0, σi) is a noise vector with the standard

deviation of pose x, y, heading, and speed of Oi ∈ Ck

represented by σi
x, σ

i
y, σ

i
θ, σ

i
v , cov(·) is a covariance matrix,

tr(·) is a trace of a matrix (the sum of the square of

variances), and trmax is a maximum trace among traces of

member obstacle Oj ∈ Ck. Oj is the obstacle with the

highest uncertainty, where j ̸= i. Intuitively, an obstacle with

greater uncertainty has a higher cost than another obstacle

with less uncertainty.

Finally, with multiple clusters, the aggregated information

gain from individual clusters is derived by extending Equa-

tion (5): Ĩ(Pt+1) =
∑

Ck
βk ∗ Ĩ(P

Ck

t+1) where βk = max(a)
and a is a vector composed of αi for Oi ∈ Ck.

D. Multi-Objective Optimization for Active Avoidance

To find the optimal heading and velocity actions θ∗, v∗

for the ASV, we extend the multi-objective optimization

we proposed in [22] to include the information gain just

described, as an additional criterion (marked in green):

(θ∗, v∗) = argmin
θ,v∈A−A′

Jd(θ, v)
︸ ︷︷ ︸

deviation

+ws Js(θ, v)
︸ ︷︷ ︸

safety

+ wi Ji(θ, v)
︸ ︷︷ ︸

information gain

(7)

The set of possible actions A is a discrete grid by a

combination of heading and speed, represented by θ ([0, 360)
with a 1◦ step) and v (ratio [0, 1] of the maximum target

speed with a 0.25 step), respectively. Within A, we define

no-go-zone action boundary A′, which is determined using

the concept of a virtual ship domain as described in our prior

research [21]. This ship domain is divided into two distinct

regions: collision boundary C, which is an area ASVs are

forbidden to enter due to it being deemed a collision, even

in cases where passing without physical contact might seem

possible; and risky boundary R, an area where ASVs may

enter but must exercise increased caution to maintain safety.

A′ is specifically defined by the margins of evasive actions

with respect to C of an obstacle.

(a) Jd(θ, v) = wf f(θ)+wf2 f2(θ)+wg g(v) is a deviation

cost from a desired goal represented by f, f2, g, respectively;

f(θ) is based on θwp, g(v) is based on vwp where θwp and

vwp is the desired heading and speed to the next waypoint,

respectively. f2(θ) is based on θtgt where θtgt is a local

target heading goal to preventing chattering [22], [33] in

relation to hysteresis, while avoiding obstacles; (b) Js is

a safety level cost based on DCPA in this study, i.e., safe

distance off at the closest approach; (c) Ji is a cost related to

the information gain about the obstacle passing intention by

Ĩ(P|θ, v) introduced in Section III-C, which is the core part

of this study, for active avoidance by intention-awareness;

and all w are related weights.

IV. RESULTS AND EVALUATION

We quantitatively evaluated our approach by running (1)

a total of 2,400 Monte Carlo simulations. We also carried

out (2) real robot experiments in the Caribbean Sea thus

including real-world disturbances and (3) real maritime ac-

cident case study. For the ego ASV during both simulation

and real-world experiments, we tested with our custom ASV

Catabot. Catabot has 2.5m length, 1.4m beam, 100m for

the sensing range, with dynamic characteristics as maximum

linear and angular speed 2.5m/s, 45 °/s, respectively. We

used a computer equipped with an Intel i7-7820X 8-core

3.6GHz processor, 32GB RAM, and NVIDIA GPU RTX

3090 Ti with 24GB VRAM. Catabot is equipped with

a NVIDIA Orin Jetson-Small Developer Kit 12-core Arm

Cortex 64-bit CPU, 32GB RAM, and 2048-core NVIDIA

Ampere architecture GPU with 64 Tensor cores. For the

neural network training, the model achieved a F1 score of

0.9256. The details about training, validating and testing can

be found in our open-sourced repository1.

A. Experimental Setup

We performed Monte Carlo simulations binned by the

set of obstacle numbers {10, 20, 30} with 100 environments

per method (1,500 runs) with additional ablation study (900
runs). The test area is within 200m×200m, while obstacles’

size, speed, and encounter directions were randomly chosen.

The start and goal positions were set as [0,−100], [0, 100],
respectively. The baseline methods are Velocity Obstacle

(VO)-based [15], and Multiple Obstacle Avoidance (MOA)-

based [22]) that have previously shown state-of-the-art per-

formance in multiple encounters. The active intention-aware

approach proposed in this paper is termed MOA+LSTM. As

a part of the ablation study, we term MOA+ by ablating

the proposed LSTM and having a prediction based only on

the current information rather than the history (Section III-

C). Furthermore, to observe the impact of information gain,

we modify VO by considering individual obstacles in Eq.

(5), (6), not as a group – we call it VO+. In summary,

we compare our proposed approach (MOA+LSTM) with

{MOA+, MOA, VO+, VO}. We tuned the essential param-

eters (Section III-D) with separate 50 scenarios.

In each scenario, we selected action schemes for other ve-

hicles, inspired by [12], as follows: (1) 80% non-cooperative

and 20% cooperative; (2) fully non-cooperative. Non-

cooperative vehicles followed a constant velocity (CV) mo-







V. CONCLUSION AND FUTURE STEPS

Our proposed active, intention-aware obstacle avoidance

method in multi-encounters can achieve safer navigation

compared to state-of-the-art approaches. This is accom-

plished by introducing topological modeling of passing based

on winding numbers, passing intention classification using

an LSTM-backbone neural network classifier trained on both

real-world AIS and synthetic data, and employing active

collision avoidance based on multi-objective optimization

covering information gain in uncertain scenarios. We employ

the proposed active intention-aware method, validated on

repetitive Monte Carlo simulations as well as a real accident

case study, and integrated into a real ASV.

Our future work is to investigate attention-based architec-

tures and various RNNs to effectively capture changes in the

motion of obstacles. This will enable ASVs to adaptively

select the motion data prediction time window and filter

the samples. Furthermore, we will expand the proposed

approach, for balancing rule compliance with an external

force- and interaction-aware planner.
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