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Abstract: Human behavior shapes epidemic trajectories, evolving as individuals reassess risks over time. Our
study closes the loop between epidemic status, individual risk assessments, and interactions. We developed
an agent-based model where the individuals can alter their decisions based on perceived risks. In our model,
agents’ perceived risk is proxied by their full awareness of actual risks, such as the probability of infection or
death. We conducted several simulations of COVID-19 spread for a large metropolitan city akin to New York
City, covering the period from December 2020 to May 2021. Our model allows residents to decide daily on trav-
eling to crowded city areas or stay in neighborhoods with relatively lower population density. Our base run
simulations indicate that when individuals assess their own risk and understand how diseases spread, they
adopt behaviors that slow the spread of virus, leading to fewer cumulative cases and deaths but extending the
duration of the outbreak. This model was then simulated with various vaccination strategies such as random
distribution, prioritizing older individuals, high-contact-rate individuals, or crowded area residents, all within a
risk-response behavioral framework. Results show that, in the presence of agents’ behavioral response, there
is only a marginal difference across different vaccination strategies. Specifically, vaccination in crowded areas
slightly outperformed other vaccination strategies in reducing infections and prioritizing the elderly was slightly
more effective in decreasing deaths. The lack of a universally superior vaccination strategy comes from the fact
that lowering a risk leads to more risky behavior which partly compensates for vaccination effects. The compa-
rable outcomes of random versus targeted vaccinations highlight the importance of equitable distribution as
another key focus in pandemic responses.

Keywords: Agent-Based Model, SARS-CoV-2, Vaccination Policy, Behavioral Modeling, Epidemic, Infectious Dis-
ease Dynamics

Introduction

The COVID-19 pandemic has resulted in significant global mortality. As of June 2024, there have been approx-
imately 800 million reported cases and around 7 million deaths worldwide (World Health Organization 2024).
Vaccination emerged as a pivotal strategy in controlling the spread of the virus and mitigating its impacts. The
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administration of the COVID-19 vaccines in late 2020 was estimated to have prevented approximately 20 million
deaths globally in the first year (Watson et al. 2022).

Despite variations in vaccine administration guidelines by region, there is a common approach to prioritizing
individuals based on their risk levels. Typically, the highest priority groups include older adults, individuals
with significant comorbidities, individuals with immunocompromising conditions, and frontline health work-
ers (World Health Organization 2022). The constrained initial vaccine supply sparked a global discussion on pri-
oritizing high-risk groups to maximize the pandemic’s burden reduction (Lipsitch & Dean 2020). This is particu-
larly pertinent in densely populated urban environments like New York City, which have been severely affected
by the pandemic, where identifying an effective vaccine distribution strategy that incorporates individuals’ re-
sponses to risk remains crucial yet insufficiently addressed.

Various studies have examined optimal vaccination strategies, yet ongoing debate persists regarding the most
effective approach to prioritize vaccinations. Several studies, often employing age-stratified compartmental
models, suggest prioritizing older adults (Moore et al. 2021), specifically those over 60 (Bubar et al. 2021), due to
their diminished immunity and increased vulnerability to infection. Conversely, some individual-level models
advocate for prioritizing vaccinations among superspreaders - those with high rates of contact with others - or
based on social network metrics to mitigate transmission (Manzo & van de Rijt 2020; Vermeulen et al. 2021).

One area of improvement in model-based examination of vaccination policies is to incorporate change in hu-
man behavior through the course of pandemic. Most current models treat change in human behavior as an
external factor without accounting for the nuanced evolution of individuals’ risk responses during a pandemic
(Cuevas 2020; Kerr et al. 2021; Manzo & van de Rijt 2020; Shamil et al. 2021; Silva et al. 2020; Vermeulen et al.
2021). In other words, the simulated individuals do not alter their decisions endogenously (i.e., within the
model) based on changes in perceived risks (Bruch & Atwell 2015). However, the combined estimation of both
behavioral and disease parameters is essential in these epidemic models (Osi & Ghaffarzadegan 2024), given the
simulation outcomes are sensitive to whether human responses to risk are endogenously modeled, reflecting
the diverse ways individuals actually react to diseases in real-life (Mao 2014; Martinez-Moyano & Macal 2013).

Our overall goal in this study is to examine pandemic trajectories in the presence of behavioral responses, and
the implications for vaccination strategies. Our study, conceptually, follows some recent models that incorpo-
rated human behavioral responses, mainly demonstrating a reduction in contact rates in response to increasing
number of cases (LeJeune et al. 2024; Rahmandad 2022). However, such models are typically compartmen-
tal, utilizing differential equations to simulate dynamic interactions within the population (Andrade et al. 2024;
Rahmandad et al. 2021). To account for stochasticity and capture the detailed heterogeneous attributes among
individuals, our study extends prior research by introducing an agent-based model (ABM) that not only con-
siders general behavioral responses but also focuses on the heterogeneity of individual risk perceptions and
their evolution throughout a pandemic. This approach is particularly tailored to the complex social and demo-
graphic fabric of a major urban center - New York City. Our model is calibrated using specific data on New York
City’s population structure and pandemic dynamics, providing a tailored analysis that offers more insights for
urban public health strategies. Moreover, by investigating multiple vaccination strategies - ranging from ran-
dom distribution to targeted approaches prioritizing vulnerable groups such as older adults and those with
high contact rates in crowded urban areas, our model provides a critical evaluation of strategy effectiveness in
real-time, addressing gaps left by broader models which do not account for local demographic variables and
detailed epidemic progression timelines.

The first purpose of our study is to evaluate the impact of integrating behavioral response into epidemic con-
trol models, specifically examining how incorporating risk perception influences outcomes such as peak daily
infection rates, total infections, and overall mortality. The second purpose is to compare which vaccination pri-
oritization strategies within the risk perception framework most effectively mitigate these epidemic outcomes.
The third purpose tests the feasibility and comparative effectiveness of random vaccination in crowded areas
versus prioritizing individuals with high average daily contacts, especially given the challenges associated with
obtaining accurate individual-level contact data (Nunner et al. 2022). This research is especially relevant for
understanding vaccine rollout strategies during the initial stages of distribution.

Method

We develop an agent-based model tailored for epidemic trajectory and vaccination strategies of New York City.
Known for its high population density and as a major global epicenter of the COVID-19 pandemic, New York
City serves as an ideal archetype of populated urban areas for this study. The model is specifically designed
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to simulate the pandemic’s progression from early December 2020, identified as the start of the city’s second
pandemic wave, until the end of April 2021, which marks the end of the wave (Figure 1). Vaccines in this model
startbecomingavailable by early January 2021, aligning with the vaccine allocation timelinein the city. Detailed
information on the vaccination timeline used in this study can be found in a later section. Given that the agents
in the model do not experience waning immunity from vaccination or infection and the model does not allow
for reinfection, it might capture a shorter wave than observed in real scenarios. To streamline the simulation
geographically, the model features a central area representing crowded areas in New York City, characterized
by high population density and serving as a center for daily activities. The remaining portions of the city map
depict areas with lower population density within the city.

Figure 2 presents an example map of the model, where the central yellow block represents the crowded regions
of New York City, symbolizing high population density and serving as a hub for daily activities. The surrounding
areas illustrate less densely populated regions, with different colored dots indicating individuals from various
age groups. This high-level abstraction consolidates all high-density areas into a single, centralized zone.

We simulate 6 scenarios and categorize them into 3 major categories: 1) a baseline model absent vaccinations,
wherein residents exhibit no risk perception and remain unresponsive to change in disease prevalence; 2) a
modified baseline model, without vaccinations, but incorporating residents’ risk assessment reflective of their
individual characteristics and the pandemic’s severity; and 3) an extension of the baseline model that integrates
4vaccination strategies alongside residents who are responsive to risk. All scenarios and descriptions are shown
in Table 1. Each scenario was repeated 100 times, and the duration of the pandemic, peak daily cases, as well
as cumulative infection and death counts were compared across scenarios. Due to the non-normal distribu-
tion of the data, Mann-Whitney U tests were employed for comparisons, which are suitable for non-parametric
analysis.

The ABMs are developed using NetLogo (Wilensky 1999), inspired by the epiDEM Travel and Control model by
Yang & Wilensky (2011)
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Figure 1: Cumulative Doses Administered and 7-Day Average of COVID-19 Cases and Deaths in New York City:
the total number of vaccine doses administered alongside the 7-day average of COVID-19 cases and deaths in
New York City from December 1st, 2020, to May 1st, 2021. This timeframe captures the significant portion of the
city’s second pandemic wave (New York City Department of Health and Mental Hygiene 2024b).
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Figure 2: Map illustration of the simulation model. The central yellow block symbolizes the consolidation of all
high-density areas within the city, while the surrounding black areas represent regions with lower population
density. The colored dots across the map denote individuals, with each color corresponding to different age
groups.

Scenario | Description Endogenous Human Risk Response | Vaccination Strategy

1 Baseline Fixed contact rate None

2 Behavioral Baseline Agents react to changing risks None

3 Random Vaccination Agents react to changing risks Limited random vaccination

4 Elderly Vaccination Agents react to changing risks Limited random vaccination
among elderly followed by
general public

5 High-Contact Vaccination | Agents react to changing risks Limited vaccination from high
to low contact number

6 Crowded Vaccination Agents react to changing risks Limited random vaccination in
crowded area followed by low-
density area

Table 1: Simulation scenarios and descriptions.

Baseline model

Agent

Each simulation employed 10,000 agents across a map of 58 by 59 patches to match the weighted average of
6.5 contacts per person (Feehan & Mahmud 2021). This contact rate arises from the population density within
the grid, where agents interact with neighbors in their own patch and adjacent patches, simulating real-world
social mixing patterns. The population characteristics were specifically calibrated to mirror those of New York
City. This calibration included aligning the proportion of agents within each age group and modeling variations
in infection probability and mortality given infection across these groups (New York City Department of Health
and Mental Hygiene 2024b; United States Census Bureau 2024). Model parameter values are reported in Table
2.

Virus

We focused on the lota and Alpha variants as representative strains, given their prevalence as the dominant
circulating variants in New York City during the simulation period (Annavajhala et al. 2021). Consequently, the
basic reproduction number (R) employed in our study was set at 3.0 (Davies et al. 2021; Petersen et al. 2020),
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and the average infection probability was derived by dividing Ry by the product of the infectious period and
the average number of contacts at the onset of each simulation. Owing to the inherent stochastic nature of the
ABMs, there existed a degree of variability in the distribution of agents within each simulation. This variability,
though slight, led to minor differences in the infection probability across simulations.

SEIRDV Framework

The schematic representation of the agent-based model with decision pathways, behavioral dynamics, and
health status transition of an agent on each day can be found in Figure 3. Within each simulation scenario,
agents can transition through six distinct, non-overlapping health statuses: susceptible, exposed, infectious, re-
covered from infection, dead, and vaccinated (SEIRDV). At the beginning of the simulation, 0.05% of the agents
were designated as infectious, mirroring the actual proportion of initial infection cases in New York City (New
York City Department of Health and Mental Hygiene 2024a), thereby facilitating the onset of the pandemic wave.
The rest of the agents were categorized as susceptible. We acknowledge that in a real-world scenario, some in-
dividuals may have recovered from prior exposures and gained a certain level of resistance. However, due to
the complexity and uncertainty in estimating the exact numbers and the degree of resistance of such individ-
uals, they were not included in this initial categorization. This simplification and its implications are further
discussed in the later section. Upon infection, an agent transitions into the exposed stage, undergoing a latent
period of 5 days (Wu et al. 2022), followed by a subsequent infectious phase lasting an additional 7 days (Kahn
et al. 2022). Post this period, the agent is considered to have recovered from the infection. During the exposed
and infectious stages, agents may either recover early or recover at the normal rate, or die, outcomes deter-
mined by the agent’s individual recovery probability and susceptibility to mortality. It is assumed that in all
simulations, agents once recovered from an infection would acquire complete immunity against reinfection for
the remainder of the simulation. Additionally, the simulations operate on a closed population model without
the introduction of new susceptible agents and death can only be attributed to infection.

Perceive high
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(Formula 1)
Yes | Pz 1 — pa
A
Goto | _ _Atriskof _ _ | Gotoless Stay in the
crowded area infection crowded area same position
End of
the da

Different contact rate based
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[ Doad Jox
[ 1

1 1
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Figure 3: Schematic representation of the agent-based model: panel A illustrates the decision pathways and
behavioral dynamics of an agent for each day of the simulation; panel B displays the compartment diagram of
the agent-based model, which outlines the transitions between different health states of the agent throughout
the simulation. For detailed descriptions of the parameters used, refer to Table 2.
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Mixing Mechanism

Within each simulation, agents make daily decisions about visiting the crowded area based on their individual
gathering tendencies. To quantify the shift in population gathering patterns pre- and during the pandemic,
the gathering tendency for each age group was determined by calculating the ratio of the average number of
contacts during the pandemic to the pre-pandemic average for each specific age group, obtained from Feehan
& Mahmud (2021).

Agents move randomly within the simulation map, stepping into adjacent blocks either within crowded zone or
the lower density region at every time step. Any agents located within the same or adjacent blocks—eight sur-
rounding patches—are considered to have a one-time contact with each other during that time step. After each
time step, agents in the crowded area have a 50 percent chance of either remaining crowded or relocating to a
random location outside the crowded area. This probability is chosen to balance the complexity of modeling
diverse motivations for staying in or leaving crowded places with the need for computational simplicity. It re-
flects a simplified assumption to take account of the variability in human behavior in environments like schools
and offices, where patterns for stay and presence vary. In addition, agents have the option to stay-in-place at
the beginning of each time step; by remaining stationary throughout its duration, they are effectively protected
from both acquiring and spreading the infection to other agents.

Table 2: Primary analysis model parameters.

Parameter Description Value Reference
Population Number of agents in the simulation | 10,000 Feehan & Mahmud
size (2021)
Age structure | Proportion of agents by age group, | <10 years: 0.118 United States Cen-
with each agent randomly assigned | 10-19 years: 0.112 sus Bureau (2024)
an integer age within their group 20-29 years: 0.149
30-39 years: 0.159
40-49 years: 0.127
50-59 years: 0.126
60-69 years: 0.106
70-79 years: 0.064
>T79 years: 0.038
Vaccination The three vaccination stages by | Stage 1:40,0.2% Governor of New
stage start date and daily vaccination rate | Stage 2: 60, 0.4% York (2021a,c,b)
Stage 3: 105, 0.7% New York City De-
partment of Health
and Mental Hygiene
(2024a)
D1 Probability of stay-in-place p1~ Defined empirically
N(0.05, (0.0125)*)110,0.1) (1)
D2, Probability of going to the i =1:0.628 Feehan & Mahmud
crowded area i = 2:0.642 (2021)
(gathering tendency) i =3:0.713
1 = 1: <25years i = 4:0.688
1 = 2: 25-34 years 1 =5:0.619
1 = 3: 35-44 years
i = 4: 45-64 years
1 = 5: >64 years
D3 Probability of leaving the crowded | 0.5 Defined empirically
area
D4 Probability of early recovery 0.05 Defined empirically
Ry Basic reproduction number 3.0 Davies et al. (2021),
Petersen et al. (2020)
8 Infection risk per contact ri X U’i—oc)
7 Relative infection risk i=1:09 Roy et al. (2022)
1 = 1: 0-18 or <64 years 1 =2:1.2
¢ = 2: 19 to 64 years
c Average contact number 6.5 Feehan & Mahmud
(2021)
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Contact num- | Contact number by age group i = 1: Poisson(6.231) Feehan & Mahmud
ber i =1: <19years i = 2: Poisson(6.857) (2021)
i = 2:19-24 years i = 3: Poisson(7.793)
1 = 3:25-34 years 1 = 4: Poisson(8.756)
i = 4: 35-44 years 1 = 5: Poisson(6.335)
i = 5: 45-64 years i = 6: Poisson(3.227)
1 = 6: >64 years
o Rate from exposed to infectious 1/tiatent
y Rate of normal recovery to inocu- | 1/t sectious
lated
tiatent Latent period 5 Wu et al. (2022)
Linfectious Infectious period 7 Kahn et al. (2022)
i Mortality rate i = 1:0.0057% New York City De-
i = 1: <10years i = 2:0.0129% partment of Health
1 = 2:10-19 years 1= 3:0.0291% and Mental Hygiene
i = 3:20-29 years i = 4:0.0654% (2024a)
¢ = 4: 30-39 years 1 = 5:0.1475%
1 = 5: 40-49 years 1 = 6:0.3322%
i = 6: 50-59 years i = 7:0.7484%
i = 7:60-69 years 1 = 8:1.6862%
1 = 8: 70-79 years 1 = 9:3.7988%
1= 9: >T9years
n Risk perception threshold 0.005 Defined empirically
€ Personality effect i=1: Czeisler et al. (2020)
i = 1: responsive agent (86.7%) €1 ~ N(—n, (2n/3)?)
i = 2: unresponsive agent (13.3%) =2
e2 ~ N(n,(2n/3)*)

Modified baseline model with risk response

While the modified model largely retained the structure of the baseline model, it additionally integrated agents’
risk perception, influencing their decision to gather in crowded areas during each time step. This integration
aims to more accurately capture the nuanced behaviors observed during outbreaks, reflecting how individuals
assess risks based on a combination of personal and environmental factors (Attema et al. 2021; Cusack 2021;
Mertens et al. 2020).

To emulate real-life decision-making and risk assessment behavior, the model’s dynamic risk response mech-
anism considered several interconnected factors. The current infection case prevalence (prevalence(t)), rep-
resenting the observable risk level within the community, and the average number of contacts per agent in
the crowded area (contact . owded(t)), quantifying potential exposure, are environmental risk experienced by
individuals at each time step (Yildirim et al. 2021). These are complemented by individual factors, including in-
fection probability (3) and age stratified death vulnerability upon infection (), which tailor the risk assessment
to personal susceptibilities (Dryhurst et al. 2020; Stangier et al. 2022).

Additionally, psychological factors further enriched this model - specifically, the risk perception threshold (n)
and risk tolerance personality (¢;). Each agent was assigned a risk tolerance personality (¢;), derived from a sur-
vey querying attitudes towards stay-at-home orders and nonessential business closures (Czeisler et al. 2020).
Agents were categorized as either policy supporters or non-supporters, mirroring the distribution observed in
the survey responses. This risk tolerance trait may override other parameters in determining an agent’s gath-
ering decision. For instance, policy-supporting agents with low vulnerability to death and infection may still
exhibit a high likelihood of avoiding gatherings in crowded areas, indicating that personality traits significantly
influence decisions regarding preventive behaviors (Kassas et al. 2021; Teran-Escobar et al. 2021). The risk per-
ception threshold, detailed in Table 2 is empirically defined and adjustable within the model for the manual
testing of different levels of risk responsiveness. While these parameters account for individual and environ-
mental factors influencing agents’ decisions, they are based on the assumption that agents have full awareness
of the actual risks (objective probabilities of death and exposure). In our model, these objective probabilities,
combined with environmental and psychological profiles, serve as a proxy for behavior influenced by subjec-
tive risk perception. This threshold, along with the risk tolerance personality derived from the survey data,
influences how agents respond to the risks posed by their environment and their personal health profiles.
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The ensemble of these factors summarizes the decision-making process by individuals as follows:

prevalence(t) X contact crowded(t) X 8 X w; <1+ € (1)

This inequality determines an agent’s daily decision on whether to gather in areas considered to be high-risk
based on their personalized assessment of the risk, which is influenced by both external environmental pres-
sures and their own psychological tendencies.

Vaccination model

Vaccination scenarios

To replicate real-life vaccination scenarios in New York City during the second wave of the pandemic, the mod-
ified baseline model incorporating risk response was employed, integrating four distinct vaccination policies:
1) random vaccination of agents throughout the map; 2) focused vaccination of elderly individuals aged 65 and
over; 3) vaccination of agents prioritized from those with higher to lower contact numbers; and 4) random vac-
cination of agents who gather in crowded areas, serving as a more realistic and feasible alternative to the high-
contact-number strategy. In our analysis, vaccines are modeled on an all-or-nothing basis, where we assume
individuals will immediately become fully immune after receiving vaccines. This simplification is necessitated
by the intricate dynamics of immune responses (Forni & Mantovani 2021), the diversity among vaccine manu-
facturers (Collier et al. 2021), the varied timelines for immunity development (Ainsua-Enrich et al. 2022), and
factors such as age, which influence immune response progression post-vaccination (Wang et al. 2021), further
complicating the accuracy of modeling. Each agent is eligible for only one vaccine dose, and only susceptible
agents qualify for vaccination.

Vaccination timeline

In each simulation, vaccine distribution scenarios were created to reflect the vaccination timeline and quanti-
ties consistent with those observed in New York City. The simulation features three distinct vaccination stages,
each representing significant milestones in the availability of a limited number of vaccines. The initial stage,
lasting 20 days, corresponds to the onset of vaccine allocation in mid-January to early February (Governor of
New York 2021a), marked by the most severe vaccine shortage. Here, the daily vaccination rate is 0.2%, exclu-
sively targeting a specific policy-identified population. The subsequent stage extends for 45 days, reflecting the
first major increase in vaccine availability from early February to mid-March (Governor of New York 2021c). In
this phase, the daily vaccination rate increases to 0.4%, half to the policy-targeted group and half to the general
population. The final stage, continuing until the simulation’s end, represents a further easing of vaccine limita-
tions post-April (Governor of New York 2021b), with daily vaccination rate being 0.7% at random to all eligible
recipients. In instances where the entire policy-targeted population is vaccinated on a particular day, surplus
vaccines are then randomly distributed to other eligible members of the population.

Sensitivity analysis

For the sensitivity analysis, we utilized one-at-a-time (OAT) analyses to assess the impact of various parameters
on the outcomes of different scenarios, measured as percentage differences relative to the original parameter
settings. This approach helped determine if the direction of changes was as expected and evaluated the ro-
bustness of our model in relation to vaccination scenarios selection based on measured outcome metrics. To
balance the comprehensiveness of the analysis with the time required to run the simulations, we repeated each
scenario 50 times and reduced the population size to 30% of the original, which corresponds to 3,000 individu-
als. We also proportionately scaled down the map size to maintain the average 6.5 contacts per individual. The
OAT analyses explored changes in variables such as vaccination timelines, probability of leaving crowded areas
(p3), basic reproduction number (Ry), and risk perception threshold (n). Notably, changes in vaccination time-
lines were tested only in vaccination scenarios, while adjustments to risk perception thresholds were tested in
all scenarios with behavioral response. Detailed descriptions of these parameter adjustments are documented
in Table 3.
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Results

The simulation results revealed differences in average outbreak duration, peak daily cases, time to peak, cu-
mulative infections, and cumulative deaths across all scenarios (Table 4 and Figures 4, 5, 6). Incorporating risk
perception significantly altered these outcome metrics compared to the baseline. While statistical tests indi-
cated significant differences in specific metrics among the vaccination scenarios (Table 5), the practical signifi-
cance of these differences may be limited due to their marginal numerical values. Detailed descriptions of these
outcome metrics across scenarios are provided in the following sections.

Peak daily cases

Without vaccination or risk perception interventions, the baseline scenario yielded the highest average peak
daily cases at 695.20 (S D = 34.28), with the quickest onset to peak occurring at 27.65 days (SD = 1.93). Intro-
ducing risk perception interventions created a difference of over 70% in peak daily cases and nearly doubled
the time to reach the outbreak’s peak compared to the baseline scenario (Figures 4 and 5). The vaccination
strategy that prioritized individuals in crowded areas produced the lowest average peak daily cases of 155.26
(SD = 19.45), statistically significantly lower than the strategy prioritizing elderly vaccination, which resulted
in 163.21 cases (SD = 18.63, adjusted p = .004). The average time to reach the peak daily case was similar
across all vaccination scenarios.

] ] ]
] ] ]
: accination : Vaccination : Vaccination
600 | Stage1 | Stage 2 i Stage 3
| i i
" 1 1 1 i
500 [ \ ' ' I —— Baseline
/ '|I ! ! ! Behavioral
| ] | I Baseline
| | i i Random
o 400+ / \ ! ' : Vaccination
2 [ \ ! ! - Elderly
o / | ! ' ! Vaccination
Z 3001 ! ! : High-contact
0 ' ' ! Vaccination
! : ! Crowded
200 A i i i Vaccination
l". | i i ___Vaccination
! : i Stage
100 1 | i
i i
I I ]
I I I
0 | — !
: } } T ol T
0 20 40 60 80 100 120 140

Time (Days)

Figure 4: Average daily cases under all scenarios over time: mean daily case counts derived from 100 simula-
tions under a given scenario. Baseline: no vaccination and without behavioral response; behavioral baseline:
no vaccination and with behavioral response. Scenarios with vaccination policies are within the behavioral re-
sponse framework. Elderly vaccination: vaccination prioritizing elderly; High-contact vaccination: vaccination
prioritizing individuals with high contact number; and crowded vaccination: random vaccination in crowded
areas. The figure was trimmed after simulation day 140 because there were no additional waves beyond this
point and case numbers remained close to 0.
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Figure 5: Average daily cases under scenarios other than baseline over time.

Cumulative infections

The baseline scenario’s average cumulative number of infections was 9,874.53 (SD = 18.80), and the appli-
cation of risk perception in response to the progression of the outbreak led to an approximately 30% lower
number of infections of 7,056.89 (SD = 254.96). Vaccination strategies in addition to the risk perception made
a difference of over 10% in the average cumulative number of infections, with similar outcomes among them.
The vaccination of individuals in crowded area resulted in the lowest average cases at 5,767.84 (SD = 423.19),
significantly lower than all other scenarios (adjusted p < .001). Additionally, prioritizing the elderly for vaccina-
tion led to a statistically significantly higher average of cumulative infection cases, at 6,123.78 (SD = 368.29),
compared to all other vaccination approaches (all adjusted p < .001). It is worth to note that the average cu-
mulative infections yielded between random vaccination and prioritizing high-contact individuals has no sta-
tistically significant difference (adjusted p = .478), as shown in Figure 6.
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Figure 6: Cumulative infections and deaths under all scenarios: box plots on the left and right display average
cumulative infection counts and average cumulative death counts, respectively, both derived from 100 simu-
lations for each scenario. Baseline: no vaccination and without behavioral response; behavioral baseline: no
vaccination and with behavioral response. Scenarios with vaccination policies are within the behavioral re-
sponse framework. Elderly vaccination: vaccination prioritizing elderly; High-contact vaccination: vaccination
prioritizing individuals with high contact number; and crowded vaccination: random vaccination in crowded
areas. Pairwise comparisons are performed using Mann-Whitney U tests. All p values are adjusted using Holm-
Bonferroni method to account for multiple testing. A 2-tailed adjusted p < .05 was considered as the threshold
for statistical significance.

Cumulative deaths

Integrating behavioral responses into the baseline model led to a significant difference in average cumulative
deaths by over 35%, baseline and behavioral baseline yielded 304.14 (SD = 17.00) and 195.35 (SD = 16.72),
respectively. Among the vaccination strategies, prioritizing the elderly achieved nearly 30% lower in cumula-
tive deaths (139.92; SD = 17.33) compared to the behavioral baseline without vaccination, marking the lowest
average cumulative deaths and statistically significant compared to all other vaccination scenarios (adjusted
p < .001). However, no significant differences were observed in average cumulative deaths between the sce-
nario prioritizing vaccination ofindividuals in crowded areas and random vaccination or prioritizing vaccination
for high-contact individuals (both adjusted p = .213).
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Wave duration

Across all scenarios examined, the baseline scenario exhibited the quickest outbreak spread, with an average
duration of 65.39 days (SD = 3.87) and integrating risk perception without vaccination significantly slowed the
virus’s spread, extending the average wave duration to 245.75 days (SD = 58.79). The introduction of various
vaccination strategies yielded similar average durations across four distinct scenarios, ranging from 125.95 to
127.79 days (Figure 5), with no significant differences observed between them.

Sensitivity Analysis

Figure 7 presents line plots illustrating the percentage changes in outcome metrics under various scenarios due
to parameter adjustments, with the expected trends confirming the model’s robustness. Toimprove readability,
we have included representative outcome plots (cumulative infections, cumulative deaths, and outbreak dura-
tion) in the main content, while the remaining plots (peak case numbers and time to peak) have been moved
to the appendix as Figure 8.

The top row of Figure 7 shows the impact of different vaccination start days on model outcomes. Earlier vac-
cination generally reduces the number of infections, deaths, and the duration of the outbreak by accelerating
the acquisition of immunity in the population. This process effectively reduces the susceptible pool and limits
the overall spread of the virus. The second row illustrates the effect of varying the likelihood of individuals leav-
ing crowded areas. A higher likelihood of avoiding crowded areas reduces infections and deaths. However, this
behavior also extends the outbreak duration, as more susceptible individuals remain uninfected for longer peri-
ods. While the infection rate is lowered, the persistence of a larger susceptible population results in a prolonged
outbreak.

The third row examines the impact of different values of RO values increase cumulative infections and deaths
but shorten the outbreak duration. This occurs because higher Ry amplifies the infection rate per contact,
leading to a faster spread through the population and a quicker depletion of the susceptible pool. Finally, the
bottom row evaluates the influence of varying the risk perception threshold. Higher thresholds, which reduce
individuals’ responsiveness to perceived outbreak risks, accelerate virus transmission. This results in higher
cumulative infections and deaths, as individuals are less likely to adopt preventive actions in response to the
outbreak.

Table 6 shows that the primary outcomes - cumulative infections and deaths—exhibit only marginal differ-
ences across vaccination scenarios, consistent with the primary analysis. Regardless of parameter variations,
prioritizing older individuals for vaccination consistently results in the fewest cumulative deaths, while target-
ing vaccinations in crowded areas effectively minimizes cumulative infections. These results underscore the
simulation’s ability to reliably predict primary outcomes across all scenarios.

JASSS, 28(1) 3, 2025 http://jasss.soc.surrey.ac.uk/28/1/3.html Doi: 10.18564/jasss.5583



4.1

4.2

Vaccination Timelines
Cumulative Infections Cumulative Deaths Duration

20

-5

% Difference
k= o 5
-
= S
T S T R S o
N : ) s

T T T T T T T T T T T T T T T
10days 5days Original 5days 10 days 10 days G5days Orginal 5days 10days 10 days Sdays Original Sdays 10 days
earler  earlier later later earlier  earler later Later earler  eadier later laner

Leaving Crowded Area Probability (ps)
Cumulative Infections Cumulative Deaths Duration
100

Baseline
Behavioral
Baseling
H : Random
Basic Reproduction Number (Rg) Vaccination

. P ) Elderl
Cumulative Infections Cumulative Deaths Duration -a— \_r,m—_;fm;m

404
50
40 4
20
25
04 20 4
]
20
-5 T
—40 4
=50 - B
=60 .
-5

% Difference
] I
A r
= L= =
! |
. ra B2
(=] = (=] L=3
w
L= =3

t ¢

0250 0375 0500 0625 0750 0250 0375 0500 0625 0750 0250 0375 0500 0625 0TS0

High-contact
Vaccination
Crowded
‘Vaccination

¢t

% Difference

wy
= (=]

150 226 300 375 450 150 225 300 375 450 150 225 300 375 450
Risk Perception Threshold (1)
Cumulative Infections Cumulative Deaths Duration

0

-5 4

% Difference
wn o o
h o o
M s L
-
@ =

-104 =10 1

3.131‘1350 n.giﬂ-rg 09115'3‘0 .algﬁ'gr" 0.011150 ﬂ.gﬁ’-'.bo .algﬂ'b'rr’ ﬁ.gﬂ':.‘vl"o 0.006’?-5 0.00?'-70 u_ﬂﬂ?-sg Q_Qﬁfb'ﬁ -J_Qﬁfat'c' U_Qﬁ@‘ag Q_Q'J-'E'c'

Figure 7: One-at-a-time analyses assess the impact of changes in vaccination timelines, probabilities of leav-
ing crowded areas, basic reproduction numbers, and risk perception thresholds on the outcomes (cumulative
infections, cumulative deaths, and duration) of simulations across all scenarios. The Y-axes represent the per-
centage change in the specific outcome relative to the original simulation. The third value on X-axes repre-
sents the original parameter value. For analyses involving changes in vaccination timelines and risk perception
thresholds, 4 scenarios with vaccination and 5 scenarios with behavioral responses are included, respectively.

Discussion

This study dynamically captures nuanced changes in individual behaviors in response to evolving pandemic
risks, specifically focusing on COVID-19’s unique transmission dynamics and societal impacts using ABM. The
model is calibrated using real-world urban population characteristics, vaccination coverage proportions, and
timelines for vaccine distribution during periods of vaccine shortages. After testing the impact of incorporating
risk perception into the model, we further use the model to evaluate the effectiveness of various vaccination
strategies. We analyze changes in the impact of vaccinations on preventing infections and deaths, as well as
shifts in optimal vaccination policies, once the model accounts for humans’ dynamic responses to risks.

This study has several findings. First, the model incorporating risk response behavior showed a different out-
break burden compared to the model without such behavior. Notably, peak daily cases were around 70% lower
in the model with risk response behavior, and the virus spread over a longer period. This was characterized
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by a doubling of the time required to reach the peak number of daily cases and an extension of the overall
duration of the wave. Furthermore, the model predicted 28.5% fewer cumulative infections and 35.8% fewer
deaths, respectively, when risk response behavior was included. This evidence demonstrates the impact of
incorporating risk-perceiving behavior in simulating and managing pandemic dynamics, further emphasizing
the value of endogenous variables alongside medical and public health measures in ABMs (Souther et al. 2023).
However, it is important to acknowledge that the validity of findings from this study hinges on the accuracy
with which human behavior is modeled. Modeling human decision-making presents significant challenges due
to its complex and dynamic nature. The assumptions about risk-perceiving behavior in this study are inher-
ently simplified representations of real-world actions. This simplification can influence the model’s outcomes,
meaning the interpretation of our results is largely contingent upon the behavioral assumptions made.

Second, the study explored a pragmatic vaccination strategy that aimed at immunizing the population with
higher daily contact numbers. Given the logistical challenges in identifying and reaching individuals with high
average daily contacts (Feehan & Mahmud 2021; Pooley et al. 2022), particularly due to geographic dispersion
(Fisk 2021), prioritizing vaccinations for individuals in crowded region was examined as a more feasible alter-
native to vaccinating high-contact individuals. This approach resulted in an outbreak progression pattern com-
parable to that of high-contact individual vaccination in terms of epidemic curve, duration, time to peak daily
cases, and cumulative deaths. However, vaccinating individuals in crowded areas slightly surpassed the high-
contact prioritization strategy with lower average cumulative cases of infection. This finding substantiates the
practicality and efficacy of targeting crowded areas for vaccination as an effective alternative to the direct vac-
cination of high-contact individuals.

Third, among the evaluated vaccination strategies, those targeting individuals with high contact rates and those
in crowded areas were slightly more effective in yielding lower cumulative infections by the end of the simula-
tions. Notably, despite the effectiveness of high-contact individual vaccination, it showed no statistically signif-
icant difference in cumulative infection cases compared to random vaccination. In addition, the comparatively
lesser efficacy of vaccinating high-contact individuals than vaccinating crowded areas can be attributed to the
rapid vaccination of those most likely to transmit the virus, leading to a swift depletion of high-contact individ-
uals susceptible to infection. Moreover, the prevalence of superspreading events in crowded areas underscores
the effectiveness of vaccinating these populations (Althouse et al. 2020). Individualsin densely populated areas,
particularly less responsive to public health measures, elevate the risk of superspreading events. Vaccination
in these areas directly mitigates this risk, as superspreading events can substantially increase transmission,
affecting individuals regardless of their contact numbers. Consequently, prioritizing vaccinations in crowded
areas not only targets a critical point of viral transmission but also contributes to the overall reduction of cu-
mulative infections by preventing potential superspreading occurrences and providing indirect protections in
the community. This strategic focus on crowded areas for vaccination efforts is thus instrumental in controlling
the pandemic’s spread.

Lastly, the strategy of prioritizing vaccinations for the elderly resulted in the lowest cumulative deaths amongall
vaccination scenarios. However, this approach also led to the highest cumulative infections compared to other
vaccination policies. The elderly population’s heightened vulnerability to severe outcomes from COVID-19 un-
derscores the importance of protecting this demographic to save lives (Chen et al. 2021). Nonetheless, their
relatively lower average daily contact rates, particularly during the pandemic (Oliveira et al. 2022), suggest a
limited role in the virus’s transmission dynamics compared to more mobile and socially active population seg-
ments. This discrepancy between reduced mortality and increased cumulative infections may be attributed
to the strategy’s focus on preventing severe disease outcomes rather than interrupting transmission chains.
While vaccinating the elderly is crucial for reducing healthcare burdens and saving lives, it does not necessarily
address the broader community transmission. This highlights a critical consideration in pandemic response
strategies: the balance between targeting vaccinations to prevent deaths and focusing on interrupting trans-
mission to reduce overall infection rates. It highlights the need for a multifaceted vaccination approach that
not only protects the most vulnerable but also considers the dynamics of virus spread within the general popu-
lation. Additionally, vaccinations in crowded areas show no significant statistical difference from high-contact
and random strategies regarding cumulative deaths. This equivalence supports the effectiveness of both tar-
geted and random vaccination approaches as viable alternatives.

Anotherimportant finding of this analysis is that although variations exist in the cumulative infection and death
counts across diverse vaccination strategies, these differences are generally marginal. This phenomenon could
be attributed to the moderating effect of the population’s risk response behavior on the outcomes of different
vaccination policies, particularly in the short term and during rapid pandemic growth. However, this hypothesis
necessitates further exploration through additional investigations and simulations to be validated. Moreover,
the exponentialincrease in vaccine availability following the initial months of the rollout may further contribute
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to the nuanced differences observed between vaccination strategies due to the rapid immunity accumulation.
This observation leads to crucial questions regarding the prioritization of vaccination efforts. If the differences
in outcomes between vaccination strategies are minimal, the focus may shift towards ensuring equitable dis-
tribution of vaccines. Without equitable access, health disparities could be further exacerbated (Jean-Jacques
& Bauchner 2021). Achieving similar vaccine coverage in all regions would align study results more closely with
real-life scenarios, highlighting the importance of protecting all population segments, especially those at higher
risk or with less access to healthcare resources.

Limitations and future directions

This study, while providing valuable insights into pandemic management through agent-based modeling, is
subject to several limitations. First, the model calibration using New York City data relies on publicly available,
largely estimated datasets. This reliance may not fully capture the detailed outbreak progression or accurately
represent contact matrices across different age groups. Despite these constraints, the overall findings remain
qualitatively robust, supported by a comprehensive sensitivity analysis.

Second, our model operates under a set of assumptions that may limit its real-world applicability. All non-
infectious agents are categorized as susceptible duringinitialization, excluding individuals who may have gained
partial immunity from previous exposures. This simplification overlooks certain dynamics of herd immunity
and disease resistance. The model also assumes perfect immunity post-vaccination or recovery and does not
account for vaccine hesitancy or potential viral mutations, which could influence the effectiveness of public
health interventions. Additionally, the model assumes that agents are fully aware of the actual risks (objective
probabilities of death and exposure), using this objective awareness as a proxy for subjective risk perception.
While this assumption simplifies the modeling process, it does not account for how individuals may misinter-
pret or respond differently to risk due to incomplete information and personal biases.

Third, the model’s treatment of spatial heterogeneity and human mobility is simplified. The assumption that
agents decide to remainin or exit crowded locations with a fixed 50% probability does not fully capture the spec-
trum of human decision-making influenced by personal and contextual factors. This reduction in complexity
may affect the model’s ability to mimic real-world interactions and mobility patterns accurately.

Future research should aim to address the identified limitations and expand the model’s applicability and ac-
curacy. To better capture the epidemiological nuances, subsequent research could integrate a full range of im-
munity level based on past infections and vaccination histories. This enhancement would refine the predictive
accuracy and depth of disease modeling, making it more reflective of real-world conditions. Exploring the im-
pact of demographic and geographic variations on pandemic management strategies also presents a promising
avenue for future work. Research could investigate how different population densities or age structures influ-
ence the effectiveness of public health strategies. For example, modeling strategies in cities with varying age
demographics or in rural versus urban settings could provide insights into tailored pandemic responses. Ad-
ditionally, extending the model to other phases of the pandemic or to other infectious diseases with different
parameters, such as influenza, could further validate its utility. Incorporating Geographic Information Systems
(GIS) to simulate more realistic human mobility patterns and virus transmission in metropolitan settings could
enhance the model’s predictive capabilities, as demonstrated in recent studies (Goenka et al. 2024; Karic et al.
2024). Such advancements would not only improve the model’s accuracy but also broaden its applicability to
global public health challenges.

Conclusion

This study employed an agent-based model to elucidate the interplay between epidemic status, individual risk
assessments, and interactions. The simulation results highlight the significance of representing individual be-
havioral responses in pandemic modeling. While our approach simplifies real-world behaviors, it demonstrates
how such representations can significantly influence the effectiveness of different vaccination strategies. Our
findings indicate that the choice of vaccination strategy should align with specific desired outcomes: priori-
tizing vaccinations for individuals in crowded areas minimizes both cumulative infection cases and peak daily
cases, whereas prioritizing the elderly reduces cumulative deaths. While no single vaccination strategy out-
performs all others across every metric, and most of the variations are marginal, both targeted strategies and
random vaccination have yielded commendable and comparable results. Therefore, when targeted vaccina-
tion strategies require significant resources, such as identifying high-contact individuals, random vaccination
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emerges as a practical alternative. This further highlights the importance of equitable vaccine distribution in
real-world settings, as suggested by the model’s outcomes. Ensuring access for high-risk groups or those with
limited healthcare access reinforces the need for inclusivity in public health strategies.

@® Model Documentation

The model code, ODD (Overview, Design concepts, and Details) protocol, and instructions for running the code
are available for download from the Computational Model Library of COMSES at: https://doi.org/10.259

37/7pjw-7358
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® Appendix

Table 3: Sensitivity analysis model parameters.

Parameter Description Value Reference

Population Number of agents in the | 3,000 (originally 10,000) Defined empirically

size simulation

Ry Basic reproduction number | 1.50, 2.25, 3.75, 4.50 (origi- | Defined empirically
nally 3.0)

p3 Probability of leaving the | 0.250, 0.375, 0.625, 0.750 | Defined empirically

crowded area (originally 0.500)

n Risk perception threshold 0.00250, 0.00375, 0.00625, | Defined empirically
0.00750 (originally 0.00500)

Accelerated The accelerated three vac- | 10 and 5 days earlier and | Defined empirically

vaccination cination stages by startdate | later

plan and daily vaccination rate
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Table 4: Wave duration, peak case, time at peak case, cumulative infec-
tion cases, and cumulative death cases of the 6 simulation scenarios.

No Vaccination Vaccination with Risk Perception
Without Risk | With  Risk | RandomVac- | Elderly- High- Crowded-
Perception Perception cination Prioritizing | Contact- Prioritizing
Vaccination | Prioritizing | Vaccination
Vaccination
Average Wave Duration
Mean (SD) 65.39 (3.87) 245.75 127.79 (7.80) | 127.45(6.53) | 127.09 (7.85) | 125.95 (7.85)
(58.79)
Interquartile | 62.75-68.00 204.00- 123.00- 123.00- 122.75- 121.00-
range 281.00 133.00 133.00 132.00 130.00
Full range 57.00-75.00 135.00- 105.00- 111.00- 105.00- 103.00-
403.00 147.00 141.00 149.00 150.00
Average Peak Case
Mean (SD) 695.20 166.74 159.69 163.21 161.07 155.26
(34.28) (16.74) (17.36) (18.63) (19.02) (19.45)
Interquartile 665.75- 154.75- 149.75- 150.00- 148.75- 143.00-
range 712.00 176.25 163.00 175.50 170.00 164.00
Full range 641.00- 142.00- 130.00- 129.00- 132.00- 118.00-
772.00 207.00 210.00 206.00 216.00 211.00
Average Peak Case Time
Mean (SD) 27.65(1.93) [ 50.62(5.26) | 49.98(5.03) | 49.78 (4.51) | 48.49 (4.65) | 48.54 (4.39)
Interquartile | 27.00-29.00 47.00-54.00 47.00-52.00 47.00-53.00 45.00-51.25 45.00-51.00
range
Full range 22.00-32.00 39.00-66.00 38.00-64.00 41.00-64.00 38.00-62.00 40.00-60.00
Average Cumulative Infections
Mean (SD) 9874.53 7056.89 5923.98 6123.78 5974.62 5767.84
(18.80) (254.96) (369.54) (368.29) (398.34) (423.19)
Interquartile 9860.75- 6900.00- 5690.25- 5871.75- 5739.00- 5500.50-
range 9884.25 7100.00 5989.00 6233.50 6049.25 5918.00
Full range 9829.00- 6656.00- 5307.00- 5419.00- 5251.00- 4714.00-
9919.00 7685.00 6954.00 6885.00 6889.00 6756.00
Average Cumulative Deaths
Mean (SD) 304.14 195.35 157.76 139.92 165.87 161.55
(17.00) (16.72) (16.77) (17.33) (18.60) (17.50)
Interquartile 292.75- 184.00- 145.75- 127.00- 151.75- 150.50-
range 314.00 202.25 168.25 153.00 176.00 166.00
Full range 260.00- 165.00- 127.00- 108.00- 129.00- 113.00-
342.00 250.00 197.00 180.00 223.00 211.00
Table 5: Comparisons between scenarios in wave duration, peak case,
time at peak case, cumulative infection cases, and cumulative death
cases using Mann-Whitney U tests and Holm-Bonferroni method.
Outcome Metric Policy 1 Policy 2 U-Statistic p value adjusted P
value
Average wave dura- | Crowded High-Contact | 4369.5 123 493
tion
Crowded Baseline 10000.0 < .001 <.001
Crowded Behavioral 155 <.001 <.001
Baseline
Crowded Elderly 4248.0 .066 .330
Crowded Random 4129.5 .033 .200
High-Contact | Baseline 10000.0 <.001 <.001
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High-Contact | Behavioral 13.0 <.001 <.001
Baseline
High-Contact | Elderly 4898.0 .804 1.000
High-Contact | Random 4726.0 .504 1.000
Baseline Behavioral 0.0 <.001 <.001
Baseline
Baseline Elderly 0.0 <.001 <.001
Baseline Random 0.0 <.001 <.001
Behavioral Elderly 9986.0 <.001 <.001
Baseline
Behavioral Random 9980.5 <.001 <.001
Baseline
Elderly Random 4785.0 .600 1.000
Average Peak Case Crowded High-Contact | 3964.0 .011 .067
Crowded Baseline 0.0 <.001 <.001
Crowded Behavioral 2907.5 <.001 <.001
Baseline
Crowded Elderly 3572.0 .000 .004
Crowded Random 3962.0 .011 .067
High-Contact | Baseline 0.0 <.001 <.001
High-Contact | Behavioral 3719.0 .002 .012
Baseline
High-Contact | Elderly 4550.5 272 .817
High-Contact | Random 4984.5 971 971
Baseline Behavioral 10000.0 <.001 <.001
Baseline
Baseline Elderly 10000.0 <.001 <.001
Baseline Random 10000.0 <.001 <.001
Behavioral Elderly 5847.0 .039 .154
Baseline
Behavioral Random 6429.0 <.001 .004
Baseline
Elderly Random 5441.5 281 .817
Average Peak Case | Crowded High-Contact | 4975.5 .953 1.000
Time
Crowded Baseline 0.0 <.001 <.001
Crowded Behavioral 6217.5 .003 .027
Baseline
Crowded Elderly 5757.5 .064 .380
Crowded Random 5786.0 .054 .380
High-Contact | Baseline 0.0 <.001 <.001
High-Contact | Behavioral 6224.5 .003 .027
Baseline
High-Contact | Elderly 5779.5 .056 .380
High-Contact | Random 5845.0 .039 .309
Baseline Behavioral 0.0 <.001 <.001
Baseline
Baseline Elderly 0.0 <.001 <.001
Baseline Random 0.0 <.001 <.001
Behavioral Elderly 5530.5 .194 77
Baseline
Behavioral Random 5448.5 272 .817
Baseline
Elderly Random 5087.0 .832 1.000
Average Cumulative | Crowded High-Contact | 3184.5 <.001 <.001
Infection

JASSS, 28(1) 3,2025

http://jasss.soc.surrey.ac.uk/28/1/3.html

Doi: 10.18564/jasss.5583



Crowded Baseline 0.0 <.001 <.001

Crowded Behavioral 6.0 <.001 <.001
Baseline

Crowded Elderly 2121.0 <.001 <.001

Crowded Random 3447.0 <.001 <.001

High-Contact | Baseline 0.0 <.001 <.001

High-Contact | Behavioral 90.5 <.001 <.001
Baseline

High-Contact | Elderly 34135 <.001 <.001

High-Contact | Random 5291.0 478 478

Baseline Behavioral 10000.0 <.001 <.001
Baseline

Baseline Elderly 10000.0 <.001 <.001

Baseline Random 10000.0 <.001 <.001

Behavioral Elderly 9890.0 <.001 <.001

Baseline

Behavioral Random 9871.5 <.001 <.001

Baseline

Elderly Random 6915.5 <.001 <.001

Average Cumulative | Crowded High-Contact | 4351.5 113 213
Death

Crowded Baseline 0.0 <.001 <.001

Crowded Behavioral 792.5 <.001 <.001
Baseline

Crowded Elderly 8075.0 <.001 <.001

Crowded Random 5661.0 .106 213

High-Contact | Baseline 0.0 <.001 <.001

High-Contact | Behavioral 1199.0 <.001 <.001
Baseline

High-Contact | Elderly 8427.0 <.001 <.001

High-Contact | Random 6202.5 .003 .010

Baseline Behavioral 10000.0 <.001 <.001
Baseline

Baseline Elderly 10000.0 <.001 <.001

Baseline Random 10000.0 <.001 <.001

Behavioral Elderly 9952.0 <.001 <.001

Baseline

Behavioral Random 9471.5 <.001 <.001

Baseline

Elderly Random 2390.0 <.001 <.001

Table 6: One-at-a-time analyses assess the impact of changes in vacci-
nation timelines, probabilities of leaving crowded areas, basic repro-
duction numbers, and risk perception thresholds on the outcomes of
simulations across all scenarios.

No Vaccination Vaccination with Risk Perception
Without Risk | With Risk | RandomVac- | Elderly- High- Crowded-
Perception Perception cination Prioritizing Contact- Prioritizing
Vaccination | Prioritizing | Vaccination
Vaccination
Vaccination Timelines
Cumulative Infections, Mean (SD)
10 days | N/A N/A 1753.80 1758.94 1713.36 1675.02
earlier (201.41) (298.47) (154.44) (163.76)
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5 days | N/A N/A 1745.60 1825.14 1701.90 1635.40

earlier (381.39) (295.13) (308.75) (458.26)

Original N/A N/A 1823.58 1769.80 1792.26 1734.86
(308.32) (465.61) (288.42) (401.20)

5 days | N/A N/A 1813.60 1912.72 1880.76 1797.92

later (401.16) (299.80) (304.19) (396.66)

10 days | N/A N/A 1946.84 1953.28 1911.40 1802.64

later (301.04) (302.85) (220.22) (423.31)

Cumulative Deaths, Mean (SD)

10 days | N/A N/A 45.48 (8.56) 37.38(10.20) 48.74 (8.54) 47.32(7.22)

earlier

5  days | N/A N/A 46.52(12.11) | 38.80(9.20) | 47.16 (11.05) | 47.60 (15.26)

earlier

Original N/A N/A 47.82(10.83) | 39.48 (12.23) | 50.36 (10.38) | 48.50 (13.08)

5 days | N/A N/A 48.24 (12.66) 45.40 (10.84) 56.10 (11.80) 51.10(13.35)

later

10 days | N/A N/A 53.36 (10.40) | 47.96 (11.87) | 54.50 (10.45) | 50.96 (14.29)

later

Leaving Crowded Area Probability (p3)

Cumulative Infections, Mean (SD)
0.250 2984.90 2165.56 1888.96 1971.58 1922.22 1909.78
(3.35) (450.49) (487.45) (132.54) (308.75) (163.37)
0.375 1857.14 2204.98 1868.36 1903.02 1857.14 1847.12
(304.98) (325.42) (404.46) (404.07) (304.98) (327.58)
0.500 2958.62 2146.22 1823.58 1769.80 1792.26 1734.86
(Original) (8.36) (324.93) (308.32) (465.61) (288.42) (401.20)
0.625 1683.30 2125.16 1585.42 1730.60 1683.30 1686.96
(298.95) (319.17) (441.00) (281.29) (298.95) (303.21)
0.750 1458.72 2104.42 1608.94 1627.80 1458.72 1441.08
(347.44) (325.84) (221.62) (203.09) (347.44) (371.28)
Cumulative Deaths, Mean (SD)
0.250 91.82(8.16) | 60.60 (14.87) | 49.80 (14.53) | 47.74(9.78) | 53.20 (11.53) | 51.18 (8.59)
0.375 50.20 (10.88) 60.78 (11.02) 49.60 (13.12) 46.36 (12.18) 50.20 (10.88) 51.88 (11.67)
0.500 90.62 (9.41) | 61.56 (11.82) | 47.82(10.83) | 39.48 (12.23) | 50.36 (10.38) | 48.50 (13.08)
(Original)
0.625 48.98 (11.29) | 61.68 (11.31) | 43.00 (14.73) | 37.26 (9.61) | 48.98 (11.29) | 48.34 (10.55)
0.750 42.04 (11.62) | 61.46 (11.76) | 44.46(9.08) | 34.84(9.19) | 42.04 (11.62) | 43.40 (13.84)
Basic Reproduction Number (1)
Cumulative Infections, Mean (SD)
1.50 2566.04 1215.44 669.12 766.64 735.20 600.54
(759.61) (438.62) (361.18) (345.62) (329.41) (272.66)
2.25 2916.74 1667.32 1278.16 1354.74 1212.66 1115.44
(12.38) (431.93) (291.29) (172.67) (442.27) (328.27)
3.00 (Orig- | 2958.62 2146.22 1823.58 1769.80 1792.26 1734.86
inal) (8.36) (324.93) (308.32) (465.61) (288.42) (401.20)
3.75 2913.72 2439.36 2199.90 2222.02 2138.22 2187.22
(416.28) (50.05) (92.00) (95.99) (317.10) (101.15)
4.50 2978.66 2614.18 2425.64 2472.06 2392.00 2347.62
(4.00) (50.45) (79.77) (67.25) (347.58) (348.43)
Cumulative Deaths, Mean (SD)
1.50 76.78 (23.78) | 29.08 (11.80) | 13.98 (8.51) | 12.46 (6.72) 17.22 (8.52) 14.06 (6.83)
2.25 90.32 (7.46) 43.36 (12.94) 31.28 (9.04) 25.80 (8.30) 31.30(12.48) 29.26 (10.58)
3.00 (Orig- | 90.62(9.41) | 61.56 (11.82) | 47.82(10.83) | 39.48(12.23) | 50.36(10.38) | 48.50 (13.08)
inal)
3.75 88.84 (15.68) 70.14 (7.09) 62.98 (8.01) 55.48 (8.95) 63.44 (11.50) 64.08 (8.38)
4.50 90.96 (8.38) | 76.38 (8.63) | 68.62(7.84) | 63.64(7.91) | 71.78(12.60) | 69.42 (13.87)
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Risk Perception Threshold (7))

Cumulative Infections, Mean (SD)

0.00250 N/A 2095.30 1716.16 1755.04 1680.36 1556.98
(313.71) (180.65) (177.14) (305.01) (405.47)
0.00375 N/A 2123.58 1710.12 1876.38 1785.20 1674.30
(318.98) (328.00) (154.77) (350.67) (306.45)
0.00500 N/A 2146.22 1823.58 1769.80 1792.26 1734.86
(Original) (324.93) (308.32) (465.61) (288.42) (401.20)
0.00625 N/A 2183.62 1741.12 1831.46 1867.18 1809.04
(324.25) (472.03) (401.47) (301.15) (403.65)
0.00750 N/A 2172.16 1857.48 1843.16 1793.36 1766.66
(325.43) (407.11) (491.77) (471.34) (406.61)
Cumulative Deaths, Mean (SD)
0.00250 N/A 59.16 (11.52) | 46.20 (8.43) | 39.32(8.20) | 48.60 (10.45) | 43.10 (12.45)
0.00375 N/A 60.94 (11.89) | 45.66 (11.41) | 42.78(9.35) 51.26 (13.81) | 45.86 (10.15)
0.00500 N/A 61.56 (11.82) | 47.82(10.83) | 39.48 (12.23) | 50.36 (10.38) | 48.50 (13.08)
(Original)
0.00625 N/A 61.10 (11.88) | 46.28(13.90) | 40.54 (11.63) | 52.56 (10.72) | 50.80 (12.50)
0.00750 N/A 61.46 (11.92) 51.52 (13.80) 41.34 (12.86) 49.10 (14.86) 49.76 (12.95)

JASSS, 28(1) 3,2025

http://jasss.soc.surrey.ac.uk/28/1/3.html

Doi: 10.18564/jasss.5583




Vaccination Timelines

Peak Case Mumber Peak Case Time
10
5.0
o 54
2 254
5
£ 0.0 0
o
® 254
_5 4
-50
T T T T T T T T T T
10days 5days Original 5days 10 days 10 days 5days Original 5 days 10 days
earlier earlier later later earlier earlier later later

Leaving Crowded Area Probability (ps)
Peak Case Number Peak Case Time

50 1
100

-50

% Difference
(=]
!
w
o (=]
L .

Baseline
0250 0375 0500 0625 0.750 0250 0375 0500 0025 0750 —8— porariom
& 3 Random
Basic Reproduction Number (Rg) Vaccination
Elder!
Peak Case Number Peak Case Time - Vacci:alion
404 High-contact
Vaccination
Crowded
Vaccination

20

% Difference

=20

t

150 225 300 375 45

[=3

Risk Perception Threshold (1)
Peak Case Number Peak Case Time

o =10 4

-15 4

% Difference
i
-
o o (=] o
| i
L4 ] o o o
L i L L

0.00?'50 0.00‘375 0150500 0.006?'5 0.00150 0_00'150 0.003‘15 0_00500 0.906'35 0_00760

Figure 8: One-at-a-time analyses assess the impact of changes in vaccination timelines, probabilities of leaving
crowded areas, basic reproduction numbers, and risk perception thresholds on the outcomes (peak case num-
ber and time to peak) of simulations across all scenarios. The Y-axes represent the percentage change in the
specific outcome relative to the original simulation. The third value on X-axes represents the original parameter
value. For analyses involving changes in vaccination timelines and risk perception thresholds, 4 scenarios with
vaccination and 5 scenarios with behavioral responses are included, respectively.
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