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Active pH regulation facilitates Bacillus subtilis bio!lm 
development in a minimally bu"ered environment

Peter Tran,1,2 Stephen M. Lander,3,4 Arthur Prindle1,2,4

AUTHOR AFFILIATIONS See a!liation list on p. 12.

ABSTRACT Bio"lms provide individual bacteria with many advantages, yet dense 
cellular proliferation can also create intrinsic metabolic challenges including excessive 
acidi"cation. Because such pH stress can be masked in bu#ered laboratory media—
such as MSgg commonly used to study Bacillus subtilis bio"lms—it is not always clear 
how such bio"lms cope with minimally bu#ered natural environments. Here, we report 
how B. subtilis bio"lms overcome this intrinsic metabolic challenge through an active 
pH regulation mechanism. Speci"cally, we "nd that these bio"lms can modulate their 
extracellular pH to the preferred neutrophile range, even when starting from acidic 
and alkaline initial conditions, while planktonic cells cannot. We associate this behavior 
with dynamic interplay between acetate and acetoin biosynthesis and show that this 
mechanism is required to bu#er against bio"lm acidi"cation. Furthermore, we "nd that 
bu#ering-de"cient bio"lms exhibit dysregulated bio"lm development when grown in 
minimally bu#ered conditions. Our "ndings reveal an active pH regulation mechanism in 
B. subtilis bio"lms that could lead to new targets to control unwanted bio"lm growth.

IMPORTANCE pH is known to in$uence microbial growth and community dynamics in 
multiple bacterial species and environmental contexts. Furthermore, in many bacterial 
species, rapid cellular proliferation demands the use of over$ow metabolism, which 
can often result in excessive acidi"cation. However, in the case of bacterial communi­
ties known as bio"lms, these acidi"cation challenges can be masked when bu#ered 
laboratory media are employed to stabilize the pH environment for optimal growth. Our 
study reveals that B. subtilis bio"lms use an active pH regulation mechanism to mitigate 
both growth-associated acidi"cation and external pH challenges. This discovery provides 
new opportunities for understanding microbial communities and could lead to new 
methods for controlling bio"lm growth outside of bu#ered laboratory conditions.

KEYWORDS bio"lms, microbial communities, pH, bu#er, emergent behaviors

B acteria inhabit a diverse range of environmental niches and engage in speci"c 
lifestyles to thrive within their local environment. In controlled laboratory condi­

tions, bacteria primarily exist as planktonic (free-swimming) individuals, whereas in 
natural environments, bacteria often form sessile, multicellular communities known as 
bio"lms (1, 2). Bio"lms create a densely packed local environment with extracellular 
matrix (ECM) (3–5) that can give rise to complex emergent behaviors such as cell-to-
cell signaling (6, 7), macroscopic spatiotemporal organization (8–10), and metabolic 
remodeling (11, 12). Furthermore, the bio"lm structure creates a di#usion barrier 
and resulting local concentration gradients, producing habitat diversity and increased 
resilience against antibiotics (13–15). Thus, the bio"lm state confers advantages to 
individual bacteria for persisting in their local environment that are unavailable to 
planktonic cells.
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However, this dense cellular proliferation can also create unique metabolic chal­
lenges. In particular, rapidly growing bio"lm bacteria engage in over$ow metabolism 
where carbon is not completely oxidized via respiration and instead only partially 
oxidized via fermentation (16, 17). This counterintuitive strategy enables rapid growth by 
circumventing production of energy-intensive respiratory enzymes while using increased 
metabolic $ux into fermentation pathways that produce excretable byproducts such 
as lactate and acetate (16, 18). In the densely packed and di#usion-limited bio"lm 
environment, these acidic metabolites can accumulate and exacerbate metabolic stress 
on sessile bio"lm cells (19, 20). Importantly, excessively acidic conditions disrupt a cell’s 
ability to maintain functional proton motive force (PMF), increase energy expenditure 
for maintaining intracellular pH homeostasis, and impede growth via degradation of 
enzymatic activity (21–23). These e#ects may be particularly pronounced for Gram-pos­
itive bacteria that possess only a single cell membrane where the electron transport 
chain (ETC) is directly exposed to extracellular pH (24). Consequently, bio"lm cells must 
maintain pH homeostasis against increasingly acidic conditions that arise during bio"lm 
development.

These acidi"cation challenges can be masked when bu#ered laboratory media are 
employed to stabilize the pH environment for optimal bacterial growth (25, 26). In 
contrast, bacteria in nature persist in settings that often lack robust bu#ering systems 
and face signi"cant pH variation from environmental sources and heterogeneous mixing 
(1, 2, 27). Indeed, natural environments, such as the soil, ocean, and human gastrointes­
tinal tract, exhibit pH gradients that can in$uence microbial population composition 
and behaviors (28–31). It, therefore, remains unclear how bio"lms maintain growth, PMF, 
and pH homeostasis against the acidi"cation associated with bio"lm growth in such 
minimally bu#ered environments. To approach this question, we established a bio"lm 
model system with a minimally bu#ered media that preserves cellular growth while 
enabling measurement of the local pH. Our "ndings reveal that B. subtilis bio"lms use 
an active pH regulation mechanism to both facilitate bio"lm development and tolerate 
acidi"cation in minimally bu#ered conditions.

RESULTS

In the planktonic lifestyle, acidic metabolic byproducts produced via over$ow metab­
olism can freely di#use into the bulk medium, thereby minimizing local acidi"cation 
(Fig. 1a) (32, 33). In contrast, in densely packed bacterial communities known as 
bio"lms, acidic metabolic byproducts accumulate in the local environment due to 
limited di#usion (Fig. 1a) (34–36). In bu#ered laboratory media, such excessive acidi"-
cation is counteracted by an external chemical bu#er such as 3-(N-morpholino)propane­
sulfonic acid (MOPS; Fig. 1b, left) (25, 26). The external chemical bu#er allows densely 
packed bio"lms to continue proliferating despite the accumulation of acidic metabolic 
byproducts. While experimentally convenient, the common use of external chemical 
bu#ers in bio"lm experiments provokes the question of how undomesticated bio"lms 
in nature cope with largely minimally bu#ered conditions (Fig. 1b, right). Accordingly, 
we wondered whether bio"lms have active strategies for mitigating the accumulation of 
acidic metabolic byproducts.

To approach this question, we established a minimally bu#ered experimental system 
capable of tracking extracellular pH during bio"lm development. Speci"cally, we 
modi"ed the de"ned media MSgg, commonly used to grow B. subtilis NCIB 3610 bio"lms, 
by systematically varying each bu#er component while monitoring growth and bio"lm 
development. We found that reducing the MOPS bu#er concentration from 100 to 
1 mM while maintaining standard potassium-phosphate bu#er levels permitted bio"lm 
growth and development without measurable defect (Fig. 1c; Fig. S1a). To track bio"lm 
pH, we utilized 10 μM 2′,7′-bis-(carboxyethyl)-5-(and-6)-carboxy$uorescein (BCECF) free 
acid, a cell-impermeable dye whose $uorescence linearly scales with the physiologically 
relevant pH range 5 to 9 (Fig. S2). We could then grow 3610 wild-type (WT) bio"lms 
in static liquid MSgg (minimally bu#ered vs fully bu#ered) with 10 μM BCECF free acid 
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at 30°C to form liquid-air pellicles and track BCECF $uorescence over 68 h. This exper­
imental system permits the dynamic measurement of extracellular pH during bio"lm 
development in a minimally bu#ered environment.

Using this experimental system, we found that B. subtilis displays a striking two-phase 
pH dynamic during bio"lm development that is completely masked in standard MSgg 
media (Fig. 1d). Speci"cally, we observed an initial acidi"cation phase (15.0 ± 0.3 h) 

FIG 1 Modulation of extracellular pH by B. subtilis bio"lms in minimally bu#ered conditions. (a) Schematic showing bio"lm development and acidi"cation of 

the local environment. (b) Schematic showing measurements of extracellular pH in bio"lms across di#erent bu#ered environments using a cell-impermeable 

pH reporter, 2′,7′-bis-(carboxyethyl)-5-(and-6)-carboxy$uorescein (BCECF) free acid. (c) Left, images of B. subtilis NCIB 3610 grown on fully bu#ered MSgg 

media containing 100 mM MOPS vs minimally bu#ered. Images correspond to bio"lms at 48 h; scale bar represents 5 mm. Right, colony-forming unit (CFU) 

measurements of 3610 bio"lms grown on bu#ered and minimally bu#ered MSgg. Bio"lms were harvested at 24 and 48 h. Images correspond to bio"lms at 

48 h; scale bar represents 5 mm. Data: mean ± SD, n = 3 technical replicates. Strain: NCIB 3610. (d) Extracellular pH tracked over time with NCIB 3610 bio"lms in 

bu#ered (100 mM MOPS) and minimally bu#ered (1 mM MOPS) MSgg. Bio"lms were grown statically at 30°C. Extracellular pH is calculated from the $uorescence 

intensity (535 nm) of a cell-impermeable pH reporter, BCECF free acid, over time. Data: mean ± SD, n = 4 technical replicates. Strain: NCIB 3610. (e) Extracellular 

pH measurements for NCIB 3610 wild-type (WT) bio"lms. Data: mean ± SD, n = 42 technical replicates. Strain: NCIB 3610. (f ) Extracellular pH measurements for 

planktonic mutant NCIB 3610 ΔsinI. Data: mean ± SD, n = 42 technical replicates. Strain: NCIB 3610 ΔsinI. (g) Comparison of microenvironment pH between 3610 

WT and ΔsinI after 60 h of growth. Bio"lm end pH values were statistically higher compared to planktonic mutant (P < 0.05). Data: n = 42 technical replicates per 

strain. Statistical signi"cance was calculated using a Student’s t-test with P < 0.000001. Strains: NCIB 3610 and NCIB 3610 ΔsinI.
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followed by an extended alkalinization phase (31.2 ± 0.5 h) that ultimately returns the pH 
to the neutrophile range (Fig. 1e). Bio"lms acidify to approximately pH 5.5 at an average 
rate of 0.06 ± 0.0008 pH/h and alkalinize back to pH 6.9 at an average rate of 0.03 ± 
0.0005 pH/h (n = 42). We veri"ed that this dynamic is not due to changes in growth 
rate (Fig. S1a) and observed that the alkalinization phase occurred during latter bio"lm 
development. Furthermore, we found that a planktonic mutant strain (3610 ∆sinI) was 
unable to return to neutral (one-sided t-test, n = 42, P < 0.000001) due to a complete 
lack of the alkalinization phase (Fig. 1f and g). As before, we veri"ed that the absence of 
alkalinization was not due to di#erences in growth (Fig. S1b). Thus, we concluded that 
the two-phase pH dynamic is speci"c to the bio"lm lifestyle.

We sought to determine the genes responsible for driving the observed acidi"cation 
and alkalinization. We considered metabolic pathways and processes that could both 
acidify and alkalinize the bio"lm environment (Fig. 2a; Fig. S3a). We "rst investigated 
ETC-associated complexes that can act as proton pumps and could drive acidi"cation 
of the bio"lm environment. We individually disrupted all "ve B. subtilis ETC complexes 
with known proton pump function and observed that no deletion produced signi"cant 
change to the observed pH dynamic (Fig. S3b). In the case of ∆ctaCD, ∆qoxA, ∆cydA, and 
∆ythB mutants, each deletion was a major subunit in the ETC complex resulting in total 
loss of function for that enzyme. These results suggest that common sources of direct 
proton transport are not entirely responsible for the observed pH dynamic. However, it 
is likely that multiple sources of metabolic acidi"cation may contribute to the observed 
phenomenon.

We next suspected fermentation as a source of acidi"cation since it is known 
that proliferating bacteria excrete acidic metabolites during over$ow metabolism (17). 
We initially suspected lactate fermentation, as lactate is commonly produced during 
exponential and stationary growth to replenish redox carriers (37). However, a lac­
tate production-de"cient mutant (∆ldh) did not show any di#erence in acidi"cation 
compared to WT (Fig. S3c). We then considered acetate fermentation, where acetate 
production similarly yields ATP and provides a substrate for the TCA cycle (Fig. 2a). To 

FIG 2 Genetic mechanisms responsible for extracellular pH modulation in B. subtilis bio"lms. (a) Schematic showing acetate and acetoin metabolism in B. 

subtilis NCIB 3610 as potential sources for extracellular acidi"cation and alkalinization. Potential acidi"cation pathways are highlighted in red, whereas potential 

alkalinization pathways are highlighted in blue. (b) Acetate measurements of bio"lm extracellular media. Data: mean ± SD, n = 3 technical replicates. Strains: NCIB 

3610, ΔsinI. (c) Acetoin measurements of bio"lm extracellular media as measured by metabolomic pro"ling. Data: mean ± SD, n = 3 technical replicates. Strains: 

NCIB 3610, ΔsinI. (d) Extracellular pH measurements for alsS mutant. Data: mean ± SD, n = 3 technical replicates. Strains: NCIB 3610, ΔalsS. (e) Extracellular pH 

measurements for alsD mutant. Data: mean ± SD, n = 3 technical replicates. Strains: NCIB 3610, ΔalsD.
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determine if acetate fermentation is involved in bio"lm pH regulation, we "rst measured 
acetate levels in the extracellular environment during growth using a chemical acetate 
kit. We observed that bio"lms transiently accumulate acetate before maturation, while 
planktonic mutants continue to accumulate larger quantities of acetate (Fig. 2b). We 
then generated mutants for each enzyme in the acetate biosynthesis pathway. While an 
ackA mutant (∆ackA) retained the acidi"cation rate (Fig. S3d), a double mutant of ackA 
and acsA (∆ackA∆acsA), where acsA is an enzyme that can reversibly convert acetate 
into acetyl-CoA, had a reduced acidi"cation rate. We quanti"ed this reduction and 
observed that the ∆ackA∆acsA mutant had an acidi"cation rate of approximately 48% 
less compared to that of wild type. Therefore, we concluded that acetate production is 
a signi"cant source of acidi"cation during bio"lm development, while other sources of 
metabolic acidi"cation remain.

On the other hand, to determine the genetic mechanism of alkalinization, we initially 
suspected ammonia as a critical community metabolite and known volatile alkaline 
species. However, deleting enzymes involved in ammonia synthesis produced no change 
to the alkalinization phase (Fig. S3e). We then considered acetoin biosynthesis as a 
pathway that has been speculated to circumvent lethal acidi"cation via consumption of 
free protons (38–40). The acetoin pathway consists of two enzymatic conversion steps 
where AlsS (acetolactate synthase) converts pyruvate to acetolactate and AlsD (acetoin 
synthase) converts acetolactate to acetoin, with each step consuming a proton (Fig. 
2a). Using metabolomics, we found that overall acetoin levels signi"cantly increased 
in WT bio"lms compared to those in the planktonic ∆sinI mutant (Fig. 2c). We then 
generated mutants for each step and observed that both the alsS (∆alsS) and alsD 
(∆alsD) mutants retained the acidi"cation phase yet completely lost the alkalinization 
phase (Fig. 2d and e). Genetic complements of alsS and alsD in their respective mutant 
backgrounds showed restoration of the alkalinization phase. To explore whether acetoin 
catabolism would a#ect bio"lm extracellular pH, we generated an acoA mutant and 
saw no di#erence in pH regulation compared to WT (Fig. S3f ). Additionally, we found 
that acetoin itself (up to 50 mM) produces no change in the magnitude or timing of 
alkalinization in either WT or ∆alsS, suggesting that the process of acetoin biosynthesis 
itself, and not the acetoin product, was the main driver for bio"lm alkalinization (Fig. S4a 
and b). Therefore, we concluded that the acetoin biosynthesis process is responsible for 
alkalinization.

We then asked whether bio"lms could utilize acetoin biosynthesis as an active pH 
regulation mechanism. We grew bio"lms in minimally bu#ered MSgg media condi­
tioned to a range of initial pH values (pH 6 to 9) and tracked the local pH and AlsS 
expression in each case (Fig. 3a). Strikingly, we found that bio"lms conditioned their 
local pH to the preferred neutrophile range by modulating both the magnitude and 
duration of the alkalinization phase (Fig. 3b). Speci"cally, in acidic initial conditions 
(pH 6), alkalinization proceeded at a rate of 0.03 pH/h over a longer duration (36.6 ± 
0.4 h) compared to neutral initial conditions (31.2 ± 0.5 h; Fig. 3c). Conversely, bio"lms 
grown in basic conditions (pH 8 and 9) minimized alkalinization in both magnitude 
and duration (Fig. 3c). Interestingly, while the observed phases di#ered, bio"lms grown 
at each pH condition produced similar matrix levels as indicated by safranin staining 
(Fig. S5). Comparatively, ∆alsS mutant bio"lms failed to maintain their local pH in the 
preferred neutrophile range (Fig. 3d). In agreement with the pH measurements on WT 
bio"lms, a PalsS-YFP reporter strain revealed that AlsS expression was increased in acidic 
conditions and decreased in alkaline conditions (Fig. 3e). Indeed, previous studies have 
shown that acetoin biosynthesis is upregulated during acidic conditions (39, 41–43). 
We then wondered if overexpression of the AlsS pathway could change the dynamics 
of the observed alkalinization phase. Using an inducible AlsS overexpression strain, 
we observed that AlsS overexpression decreases the time required to return to the 
neutrophile range (Fig. 3f). Our data reveals that bio"lms can use acetoin biosynthesis as 
an active pH regulation mechanism to mitigate growth-associated acidi"cation even in 
non-ideal pH environments.
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To validate acetoin biosynthesis as an active pH regulation mechanism, we performed 
RNA sequencing (RNAseq) on WT and ∆alsS mutant bio"lms to identify di#erentially 
expressed genes (DEGs) in both normal and minimally bu#ered media. We con"rmed 
that the alsSD pathway was upregulated in WT bio"lms in minimally bu#ered media 
(Fig. S6). Interestingly, we found that ∆alsS mutant bio"lms grown in minimally bu#ered 
media upregulated ilvBH, an alternate acetolactate synthase that could potentially 
compensate for loss of alsS activity (Fig. S6). As expected, we observed upregulation 
of several acid stress genes in ∆alsS mutant bio"lms grown in minimally bu#ered media 
(Fig. 4a). In addition, we observed upregulation of several oxidative stress genes in ∆alsS 
mutant bio"lms (Fig. 4a). This oxidative stress may result from a dysregulation of the 
PMF when active pH regulation is absent. Taken together, these results corroborate that 
bio"lms utilize acetoin biosynthesis as a form of active pH regulation to maintain pH 
homeostasis and minimize cellular stress.

Accordingly, we wondered if active pH regulation could facilitate bio"lm develop­
ment in minimally bu#ered conditions. We "rst compared WT and ∆alsS bio"lms on 
bu#ered media and found no signi"cant di#erence in their overall growth and morphol­
ogy (Fig. 4b, top). However, while WT bio"lms largely maintained bio"lm morphology 
in minimally bu#ered conditions, ∆alsS mutant bio"lms lacked macroscopic wrinkles 
and displayed altered bio"lm morphology, suggesting a di#erence in the bio"lm ECM 
that maintains bio"lm structure (Fig. 4b, bottom). In agreement with these observations, 
we found that ∆alsS bio"lms had a signi"cantly lower cell count (P < 0.001), which 
was speci"c to minimally bu#ered conditions, suggesting that inability to alkalinize via 

FIG 3 Active pH regulation during B. subtilis bio"lm development via acetoin biosynthesis. (a) Measurement of extracellular pH for NCIB 3610 bio"lms grown 

across a range of starting pH conditions (pH 6, 7, 8, 9). Dashed gray area represents optimal extracellular pH for neutrophile organisms. Bio"lms were grown at 

30°C statically. Data: mean ± SD, n = 3 technical replicates. (b) Average acidi"cation and alkalinization rates for bio"lm extracellular pH. Data from ΔpH/h traces 

were analyzed and averaged to determine bio"lm acidi"cation (<0 ΔpH/h) and alkalinization (>0 ΔpH/h). Data: mean ± SD, n = 3 technical replicates. (c) Phase 

duration for bio"lm pH dynamics. Data from ΔpH/h traces were analyzed to determine bio"lm acidi"cation and alkalinization phase duration by measuring time 

periods where ΔpH/h was predominately <0 and >0, respectively. Data: mean ± SD, n = 3 technical replicates. (d) Measurement of extracellular pH for ΔalsS 

mutant bio"lms grown across a range of starting pH conditions (pH 6, 7, 8, 9). Dashed gray area represents optimal extracellular pH for neutrophile organisms. 

Bio"lms were grown at 30°C statically. Data: mean ± SD, n = 3 technical replicates. (e) Measurements of acetoin biosynthesis via genetically encoded reporters 

for acetolactate synthase (alsS). Data: mean ± SD, n = 3 technical replicates. Strain: NCIB 3610. (f ) Measurement of extracellular pH for NCIB 3610 bio"lms without 

and with inducible alsS expression grown starting at pH 7. Dashed gray area represents optimal extracellular pH for neutrophile organisms. Bio"lms were grown 

at 30°C statically. Data: mean ± SD, n = 3 technical replicates. Strains: NCIB 3610, NCIB 3610 sacA::Phyp-alsS.
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acetoin production was detrimental to bio"lm growth (Fig. 4c). These results suggest 
that acetoin biosynthesis plays a role in bio"lm development speci"c to minimally 
bu#ered environments.

To corroborate these "ndings, we performed RNAseq analysis to identify DEGs 
associated with bio"lm development and ECM production. We found that ∆alsS mutant 
bio"lms grown in minimally bu#ered media downregulated 16 of the 18 known 
ECM-associated genes in B. subtilis, while WT bio"lms did not (Fig. 4d). We then created 
a genetically encoded $uorescent reporter for TapA, the anchoring and assembly protein 
for bio"lm amyloid "ber. As expected, we found that WT bio"lms displayed compara­
ble TapA reporter expression in both bu#ered and minimally bu#ered conditions, in 
agreement with our prior observations on bio"lm morphology (Fig. 4e, left). In contrast, 
while ∆alsS bio"lms had comparable TapA reporter expression in bu#ered conditions, 
we measured signi"cantly reduced (P < 0.0001) TapA expression in minimally bu#ered 
conditions (Fig. 4e, right, and f). Interestingly, both ∆alsS mutant bio"lms and WT bio"lms 
upregulated motility genes in minimally bu#ered conditions, suggesting the possibility 
of acidi"cation-associated bio"lm dispersal. Taken together, these results con"rm that 
active pH regulation facilitates bio"lm ECM formation in minimally bu#ered conditions.

FIG 4 Physiological characterization of B. subtilis bio"lms and bu#ering-de"cient mutants (a) Heat map showing di#erentially expressed genes in acid and 

oxidative stress, induced by minimization of extracellular bu#er, n = 3. (b) Images of B. subtilis NCIB 3610 WT and ∆alsS on bu#ered and minimally bu#ered MSgg 

solid agar, grown over 60 h. Scale bar represents 2 mm. (c) CFU measurements of 3610 WT and ∆alsS bio"lms grown on bu#ered and minimally bu#ered MSgg 

solid agar harvested at 60 h. Data: mean ± SD, n = 6 technical replicates. (d) Heat map showing di#erentially expressed genes associated with matrix and motility 

in NCIB 3610 WT and ∆alsS bio"lms induced by minimization of extracellular bu#er, n = 3. (e) Fluorescence microscopy images of 3610 WT and ∆alsS bio"lms 

expressing PtapA-CFP on bu#ered and minimally bu#ered MSgg solid agar at 36 h. White outline denotes bio"lm edge, blue represents TapA matrix expression. 

Scale bar represents 2 mm. (f ) Fluorescence measurements of 3610 WT and ∆alsS bio"lms grown on bu#ered and minimally bu#ered MSgg solid agar harvested 

at 36 h. Data: mean ± SD, n = 6 technical replicates.
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DISCUSSION

While chemical bu#ers can be employed to study bio"lms in the laboratory, they can 
also mask the underlying biology of pH management during bio"lm development. In our 
study, we established a minimally bu#ered system to determine how undomesticated 
B. subtilis bio"lms cope with growth-associated acidi"cation. We discovered an active 
pH regulation mechanism that e#ectively mitigates both growth-associated acidi"cation 
and external pH challenges. This phenomenon is fully masked in bu#ered laboratory 
media—such as MSgg commonly used to study Bacillus subtilis bio"lms—and relies on 
the pH-dependent expression of acetoin biosynthesis. Disruption of acetoin biosynthe­
sis results in dysregulated bio"lm development and decreased extracellular matrix 
production. Thus, this active pH regulation mechanism enables bio"lms to minimize 
cellular stresses and maintain community resilience against both internal growth-asso­
ciated acidi"cation and external pH challenges (Fig. 5). The discovery of active pH 
regulation in B. subtilis bio"lms could provide new opportunities for understanding 
microbial communities, controlling pathogenic bio"lm growth, and engineering novel 
bio"lm behaviors.

Additional studies will be needed to determine whether this active pH regula­
tion mechanism is found in other bio"lm-forming species. While acetoin biosynthe­
sis is largely conserved across both Gram-positive and Gram-negative bacteria, the 
pH-dependent expression of these pathways, especially in minimally bu#ered condi­
tions, remains an open question. Furthermore, while over$ow metabolism has been well 
characterized in planktonic lab strains of Escherichia coli, its potential impact on bio"lm 
development and pH regulation remains unclear (17, 44). We propose that over$ow 
metabolism, speci"cally acetoin biosynthesis, provides a critical detoxi"cation pathway 
for immobilized and densely packed communities during bio"lm development. Our 
proposal aligns with and extends mechanistic single-cell level studies that reveal the 
potential role of acetoin biosynthesis in mitigating local acidi"cation (45).

Future studies may also elucidate how active pH regulation in$uences other 
emergent behaviors observed in bio"lms. For example, in natural environments, such 
as soil, geothermal springs, and human gastrointestinal tract, variations and gradients 
in pH give rise to unique bacterial behaviors such as extracellular electron transport, 
chemotropy, and increased drug resistance (46–48). Our results are also intriguing to 
consider alongside recent results that show acetate biosynthesis pathway promoting 

FIG 5 Proposed schematic of active pH regulation in B. subtilis bio"lms.

Research Article mBio

March 2024  Volume 15  Issue 3 10.1128/mbio.03387-23 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
bi

o 
on

 0
3 

Fe
br

ua
ry

 2
02

5 
by

 1
65

.1
24

.1
03

.1
32

.

https://doi.org/10.1128/mbio.03387-23


bio"lm development over macroscopic length scales (49, 50). As bio"lm growth appears 
to necessitate acetate production, it would be interesting to determine how local acetate 
production in$uences nearby communities and how each community integrates their 
local needs with those of their neighbors. Active pH regulation could also help stabilize 
the PMF of bio"lm cells during electrochemical signaling, enabling cells to modulate 
ionic e%ux and membrane voltage while maintaining cellular growth.

MATERIALS AND METHODS

Growth conditions

Bacteria were grown in Luria–Bertani (LB) rich media overnight and/or grown on the day 
of experiment and seeded into MSgg media. Bio"lms in fully bu#ered conditions were 
grown in standard MSgg, which contains 100 mM MOPS, 5 mM potassium-phosphate 
bu#er (pH 7), 2 mM MgCl2, 700 µM CaCl2, 50 µM MnCl2, 100 µM FeCl3, 1 µM ZnCl2, 2 µM 
thiamine HCl, 0.5% (vol/vol) glycerol, and 0.5% (wt/vol) monosodium glutamate. Bio"lms 
in minimally bu#ered conditions were grown in modi"ed MSgg, which contains 1 mM 
MOPS, 5 mM potassium phosphate bu#er (pH 7), 2 mM MgCl2, 700 µM CaCl2, 50 µM 
MnCl2, 100 µM FeCl3, 1 µM ZnCl2, 2 µM thiamine HCl, 0.5% (vol/vol) glycerol, and 0.5% 
(wt/vol) monosodium glutamate. To measure bio"lm extracellular pH, 10 µM BCECF free 
acid (Biotium) was used in MSgg. Strains were grown to optical density 0.8–1.0 in LB, 
spun down and resuspended in 1% PBS. One microliter of cell culture was then seeded 
into 199 µL of MSgg in a 96-well microplate (Corning 3904) or into a well with 0.6 mL of 
solid MSgg agar in a 24-well plate (Corning 3526).

Optical density, #uorescence, and cell density measurements

Optical density (530 and 600 nm), BCECF, and YFP $uorescence in all our studies were 
measured using a TECAN In"nite MPLEX plate reader with excitation/emission wave­
length set to 503/530 nm and gain set to 100. To quantify bio"lm extracellular pH, 
minimally bu#ered MSgg was prepared for each experiment and conditioned to pH 5, 6, 
7, 8, and 9 using 1 M HCl and 1 M NaOH when appropriate. BCECF dye was then added 
to these aliquots and included as a standard curve to convert the measured BCECF 
$uorescence signal to extracellular pH. Cell density of bio"lms or planktonic cultures was 
quanti"ed using a hemocytometer or Logos Biosystems Quantom TX Microbial Counter. 
To prepare bio"lms for cell density quanti"cation, bio"lms were grown for the desired 
time in either bu#ered or minimally bu#ered MSgg media. Each bio"lm was harvested 
into 1 mL of 1% PBS solution and sonicated for 5 s on ice using a Qsonica Q125 125W 
20-kHz sonicator at 60% amplitude. For hemocytometer counting, the resulting cell 
suspension was "xed with paraformaldehyde, diluted into PBS, and counted using phase 
microscopy. For the Quantom TX, the cell suspension was diluted in PBS, stained using 
the Logos Total Cell Staining kit, and imaged directly on the Quantom TX.

DNA cloning

Custom promoter sequences were ordered from Integrated DNA Technologies (IDT) or 
ampli"ed from the native NCIB genome and cloned upstream of a YFP reporter in a 
B. subtilis integration vector ECE174 (https://bgsc.org/search.php?Search=ece174) with 
chloramphenicol resistance. All plasmid assembly was performed using Gibson Assembly 
using the Gibson Assembly Master Mix (NEB). The assembled plasmid was transformed 
into NCIB 3610 using a natural competence protocol previously described and plated 
on LB agar with appropriate selection (51). Genetic complements with native promoters 
were ampli"ed from the native NCIB genome with 500 bp of the native promoters 
and added to the integration vector ECE174 with chloramphenicol resistance. Gene 
overexpression was ampli"ed the same way as genetic complements, but the native 
promoter was swapped with pHyperspank for inducible expression of the given gene 
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with isopropyl β-D-1-thiogalactopyranoside. Gene overexpression constructs were also 
added to ECE174 with chloramphenicol resistance.

Acetate measurements

Bio"lms (3,610) were grown in minimally bu#ered MSgg media in a 96-well microplate 
(Corning 3904). Supernatant was harvested at given timepoints and stored at −80°C 
until all samples were collected. Samples were transferred to microcentrifuge tubes and 
cleared of debris by centrifugation at 20,000g for 15 min at 4°C. Sample supernatants 
were transferred to fresh tubes and diluted with water to be within the working range 
of the kit. Acetate was measured using the Abnova KA3780 kit according to protocol 
provided. Measurements were conducted in the colorimetric range.

Bio!lm growth and normalization for metabolomics

Bacteria were grown in LB rich media on the day of experiment, washed with PBS, 
and seeded onto MSgg media agar pads in six-well plates. Bio"lms were harvested 
at given timepoints into 1 mL of −80°C prechilled 80% methanol. Samples were then 
frozen at −80°C until all samples were collected. Samples were then sonicated on ice 
for metabolite extraction using a Qsonica Q125 125W 20 kHz sonicator. Sonication was 
performed at 60% amplitude for 45 s—one 30-s sonication followed by a 15-s sonication 
with at least 5 min of rest on ice in between. Protein from lysed samples was precipitated 
at −80°C overnight. Samples were then cleared of debris by centrifugation at 20,000g for 
15 min at 4°C. Sample supernatants were transferred to Northwestern’s Core Facility for 
Samples Reconstitution and Metabolomic analysis. For normalization, replicate bio"lms 
were grown and harvested for every timepoint to determine total bio"lm cell counts 
(11). Bio"lms were collected in ice-cold PBS, sonicated for 5 s to disrupt cells from the 
matrix, and diluted 20% in PBS. Bio"lm cell counts were then determined using Logos 
Total Cell Count staining kit and imaged directly on Quantom TX. Cell counts were 
used for normalization in “Metabolomics sample reconstitution after extraction” and 
“Metabolomics” below.

Metabolomics sample reconstitution after extraction

Extraction solution was dried using SpeedVac. Acetonitrile (50%) was added to the tube 
for reconstitution followed by overtaxing for 30 s. Sample solution was then centrifuged 
for 30 min at 20,000g, 4°C. Supernatant was collected for liquid chromatography-mass 
spectrometry analysis.

Metabolomics

Samples were analyzed by high-performance liquid chromatography and high-reso­
lution mass spectrometry and tandem mass spectrometry (HPLC-MS/MS) (52, 53). 
Speci"cally, the system consisted of a Thermo Q-Exactive in line with an electrospray 
source and an Ultimate3000 (Thermo) series HPLC consisting of a binary pump, degasser, 
and auto-sampler out"tted with an Xbridge Amide column (Waters; dimensions of 3.0 
mm % 100 mm and a 3.5-µm particle size). The mobile phase A contained 95% (vol/
vol) water, 5% (vol/vol) acetonitrile, 10 mM ammonium hydroxide, 10 mM ammonium 
acetate, pH = 9.0; B was 100% acetonitrile. The gradient was as follows: 0 min, 15% A; 
2.5 min, 30% A; 7 min, 43% A; 16 min, 62% A; 16.1–18 min, 75% A; 18–25 min, 15% A 
with a $ow rate of 150 µL/min. The capillary of the ESI source was set to 275°C, with 
sheath gas at 35 arbitrary units, auxiliary gas at 5 arbitrary units, and the spray voltage 
at 4.0 kV. In positive/negative polarity switching mode, an m/z scan range from 60 to 
900 was chosen, and MS1 data were collected at a resolution of 70,000. The automatic 
gain control (AGC) target was set at 1 % 106, and the maximum injection time was 
200 ms. The top "ve precursor ions were subsequently fragmented, in a data-dependent 
manner, using the higher-energy collisional dissociation (HCD) cell set to 30% normal­
ized collision energy in MS2 at a resolution power of 17,500. Besides matching m/z, 
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metabolites are identi"ed by matching either retention time with analytical standards 
and/or MS2 fragmentation pattern. Data acquisition and analysis were carried out by 
Xcalibur 4.1 software and Trace"nder 4.1 software, respectively (both from Thermo Fisher 
Scienti"c).

RNA isolation

3610 bio"lms were grown for 36 h in either bu#ered or minimally bu#ered MSgg media. 
Each bio"lm was harvested into 1 mL of pre-chilled 50% methanol solution. The bio"lm 
was then pelleted by centrifugation, aspirated to remove supernatant, and $ash frozen 
with liquid nitrogen before being stored overnight at -80°C. RNA was then isolated using 
the QIAGEN RNeasy kit (QIAGEN) according to the manufacturer’s instructions with lysis 
being completed by 30s of bead-beating using Lysis Matrix B tubes in the Omni Bead 
Ruptor Elite bead beating machine.

RNA sequencing

RNA quality was checked using Bioanalyzer (Agilent) prior to RNA-seq library prepara­
tion. RNA samples with an RNA integrity number >8 were used for library preparation, 
which was constructed from 100 ng of RNA with the Illumina Stranded Total RNA 
Prep, Ligation with Ribo-Zero Plus kit (Illumina). RNA sequencing was then performed 
on a NovaSeq 6000 sequencer and analyzed as previously described. The quality of 
reads, in FASTQ format, was evaluated using FastQC. Reads were trimmed to remove 
Illumina adapters from the 3′ ends using cutadapt (54). Trimmed reads were aligned 
to the B. subtilis genome strain 3610 National Center for Biotechnology Information 
(NCBI) CP020102.1 and plasmid NCBI CP020103.1 using STAR (55). Read counts for each 
gene were calculated using htseq-count (Anders et al., 2015) in conjunction with a 
gene annotation "le for the reference genomes obtained from NCBI. Normalization and 
di#erential expression were calculated using DESeq2, which employs the Wald test (56). 
The cuto# for determining signi"cantly di#erentially expressed genes was an FDR-adjus­
ted P-value < 0.05 using the Benjamini–Hochberg method.

Microscopy

Bio"lm growth was recorded using phase-contrast and $uorescence microscopy. The 
microscope used was a Nikon Ti2. To image entire bio"lms, we used a 10% objective and 
the stitching function in Nikon Elements to assemble images. Images were taken every 
hour. Whenever $uorescence images were recorded, we used the minimum exposure 
time that still provided a good signal-to-noise ratio.

Image analysis

Fiji/ImageJ (National Institutes of Health) was used for image analysis. To measure bio"lm 
$uorescence, we identi"ed the bio"lm area "rst using phase and creating custom regions 
of interests (ROIs) that outlined the bio"lm for each frame. We then used the same ROIs 
on the relevant $uorescent channel of the same experimental run to measure average 
$uorescent reporter signal over time.

Statistical analyses

Statistical tests were calculated in GraphPad Prism 9.0. For comparisons between two 
independent groups, a Student’s t-test was used. Signi"cance was accepted at P < 0.05. 
The details of the statistical tests carried out are indicated in respective "gure legends.
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