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ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that can salvage
nucleobases from the environment to conserve nutrients that would otherwise be spent
on de novo nucleotide biosynthesis. However, little is known regarding the substrate
specificity of the 13 putative nucleobase transporters in P. aeruginosa. Here, using a
combination of genetic and chemical approaches, we report substrate identifications
for 10 putative nucleobase transporters in P. aeruginosa. Specifically, we individually
expressed each transporter in a genetic background lacking all 13 putative nucleobase
transporters and quantified growth on a panel of 10 nucleobases as sole nitrogen
sources. We confirmed these expression-based substrate identifications using targeted
genetic knockouts. In a complementary approach, we utilized four toxic nucleobase
antimetabolites to characterize antimicrobial activity in these same strains. We identified
the sole allantoin transporter as well as transporters for guanine, xanthine, uric acid,
cytosine, thymine, uracil, and dihydrouracil. Furthermore, we associated at least five
nucleobase transporters with hypoxanthine, which has been recently reported to be
an antibiofilm cue in P. aeruginosa. These results provide an initial characterization
of the putative nucleobase transporters in P. aeruginosa, significantly advancing our
understanding of nucleobase transport in this clinically relevant organism.

IMPORTANCE Pseudomonas aeruginosa is a frequently multidrug-resistant opportunis-
tic pathogen and one of the most common causes of healthcare-acquired infections.
While nucleobases are known to support growth in nutrient-limited conditions, recent
work showed that adenine and hypoxanthine can also decrease P. geruginosa biofilm
formation by disrupting c-di-GMP metabolism. Thus, nucleobase transport may be
relevant to multiple aspects of P. aeruginosa biology and pathogenesis. However, there
is currently little known about the transport of nucleobases in P. aeruginosa. Our
work reports initial substrate identifications for 10 putative nucleobase transporters
in P. aeruginosa, providing new tools to address previously difficult-to-test hypotheses
relating to nucleobase transport in this organism.
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M embers of the nucleobase-cation symporter-1 (NCS1) and nucleobase-cation
symporter-2 (NCS2) transporter families are widely present in bacteria, archaea,
and eukarya (1, 2). While thousands of these transporters have been identified through
sequencing, relatively few have been characterized experimentally, and only a fraction of
these characterized transporters are of bacterial origin (1, 2). Most knowledge regarding
bacterial NCS1 and NCS2 transporters has been gained from studying Escherichia coli
and Bacillus subtilis (3-15), although their transporters have not all been experimen-
tally characterized. Many transporters from other bacteria do not share high similarity
with these characterized transporters, and even transporters similar by nucleotide or
amino acid sequence can exhibit different substrate profiles (16-23). Thus, substrate
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identification of putative NCS1 and NCS2 transporters remains an important goal in
many bacterial species.

NCS1 and NCS2 transporters generally catalyze the uptake of purine and pyrimi-
dine nucleobases and structurally similar molecules (1, 2). Once these molecules are
internalized, cells can use salvage pathways to convert them into late intermediates
of nucleotide biosynthesis (24, 25). This process saves energy that would otherwise be
consumed by de novo nucleotide biosynthesis (25-27). Cells can also use degradation
pathways to break these molecules down for their carbon and nitrogen contents (28).
While nucleobases are not generally thought to be the preferred source of carbon
or nitrogen for most organisms, many organisms can nevertheless utilize them as
carbon and/or nitrogen sources when necessary (28). Thus, nucleobase transport may
be beneficial to bacterial survival in situations where nutrients are limited.

The rise in bacterial resistance to antimicrobial treatment has generated interest
in the potential use of nucleobase analogs for their antimicrobial and/or antivirulence
properties (29-33). Nucleobase transporters are likely points of entry for purine and
pyrimidine analogs and are therefore prime candidates for inactivation in the devel-
opment of resistance to these compounds (34). Since antimetabolites share struc-
tural similarities with metabolites, inferences regarding potential native substrates for
transporters can additionally be made once antimetabolite substrate profiles have
been determined. Thus, substrate identification of nucleobase transporters in clinically
relevant organisms may facilitate the development of new antimicrobials and under-
standing of their likely resistance mechanisms.

With this context, Pseudomonas aeruginosa is a frequently multidrug-resistant
gram-negative opportunistic pathogen known for its ability to survive in multiple
environments and metabolize a diverse set of substrates (35-37). Accordingly, P
aeruginosa encodes six genes annotated as putative NCS1 transporters and seven genes
annotated as putative NCS2 transporters (38). In this work, we leveraged the ability of P
aeruginosa to utilize nucleobases as sole nitrogen sources along with a comprehensive
set of knockout strains and expression vectors to perform growth-based experiments
to characterize substrate specificity of these 13 transporters. In parallel, we used several
purine and pyrimidine analogs in growth-based experiments to acquire antimetabolite
substrate profiles for these transporters. Overall, our results identify at least one substrate
for three out of six NCS1 transporters and seven out of seven NCS2 transporters.
Furthermore, our data demonstrate which transporters are functionally important for
the uptake of nine nucleobases and four nucleobase analogs. Collectively, these results
provide a significant advance in our understanding of nucleobase transport in this
clinically relevant organism.

RESULTS

Growth-based substrate identification method for NCS1 and NCS2 transport-
ers

We developed a growth-based substrate identification method based on the previously
demonstrated ability of pseudomonads to utilize nucleobases as sole nitrogen sources
for growth (39, 40). We serially deleted all 13 putative NCS1 and NCS2 transporters from
wild type (WT), creating strain
APAT519APA4719APAT1419APA0476APA5099APA2073APA4647APA0T66APA0352APA2938A
PA1507APA0438APA0443, which will subsequently be referred to as A13. We then
generated pPSV37-based expression vectors for each deleted transporter and used these
to individually express transporters in the A13 background such that each strain only
produced a single NCS1 or NCS2 transporter. We screened the growth of these strains
alongside WT and A13 with empty pPSV37 vector on M9 media containing 1 of 10
nucleobases as sole nitrogen sources: the purines adenine, hypoxanthine, guanine,
xanthine, uric acid, and allantoin or the pyrimidines cytosine, thymine, uracil, and
dihydrouracil. We anticipated that we would observe rescue of growth for A13 strains
expressing a transporter important for nucleobase uptake.
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We first confirmed that A13 grew similarly to WT under nitrogen-replete conditions
(Fig. S1). As expected, A13 demonstrated poor growth compared with WT for nearly
all nucleobases at their tested concentration, validating the potential use of growth as
a phenotypic readout (Fig.S2 and S3). Depending on the substrate, the magnitude of
this growth defect ranged from several hours of extension of lag phase to no growth
for the duration of the experiment. To quantify growth advantage over A13, growth for
each replicate was converted to an area under curve (AUC) value, and strains were then
compared with statistical analysis. Expression of single NCS1 and NCS2 transporters thus
provided initial transporter-substrate identifications.

To validate these observations and to ensure all transporters were identified, we
then generated combinatorial transporter deletion strains for each nucleobase substrate.
Redundance in transport often required us to make additional deletions to identify
the minimum deletion set needed to eliminate transport. We selected these additional
transporters based on similarity between P. aeruginosa transporters as well as similar-
ity to characterized transporters in other bacteria. We anticipated that the minimum
deletion set of transporters would recapitulate the growth defect of A13 on the panel
of 10 nucleobases containing both purines and pyrimidines. To quantify growth defect
relative to WT, growth for each replicate was converted to an AUC value, and strains were
then compared with statistical analysis.

Purine substrate identifications for putative NCS1 and NCS2 transporters

Both hypoxanthine and guanine were associated with PA4719, PA0166, PA1519, PA2938,
and PA0352. Specifically, expression strain data supported the importance of PAO166 (P
< 0.0001) and PA4719 (P < 0.0001) for hypoxanthine uptake (Fig. 1A). However, neither
single-knockout strain nor APA4719APA0166 grew differently from WT (Fig. S2D). Based
on sequence similarity, we suspected that PA0352 (48% similarity to PAO166) and PA1519
(60% similarity to PA4719) may also play a role in hypoxanthine and guanine transport.
Growth data for knockout combinations demonstrated that PA0352, PA1519, and PA2938
are important for hypoxanthine uptake in addition to PA0166 and PA4719 (Fig. 1B, P
< 0.0001). Similarly, expression strain data supported the importance of PA0166 (P <
0.0001), PA1519 (P < 0.001), and PA4719 (P < 0.0001) for guanine uptake (Fig. 1C).
However, neither single knockouts nor APA4719APA0166APA1519 grew differently from
WT (Fig. S2F). As with hypoxanthine, growth data for knockout combinations demon-
strated that PA0352 and PA2938 are also important for guanine uptake in addition
to PA0166, PA1519, and PA4719 (Fig. 1D, P < 0.0001). Consistent with this, PA1519
(39% similarity to EcGhxP) and PA4719 (40% similarity to EcGhxP) are similar to known
hypoxanthine-guanine and adenine transporters (6-8). Residual growth of A13 on
hypoxanthine and guanine suggests that some non-NCS1/NCS2 transporters may also
be important for uptake of hypoxanthine and guanine beyond PA4719, PA0166, PA1519,
PA2938, and PA0352.

Both xanthine and uric acid were associated with PA0166, PA1507, and PA2938.
Specifically, expression strain data supported the importance of PA0166 (P < 0.0001) and
PA1507 (P < 0.0001) for uptake of both xanthine (Fig. 1E) and uric acid (Fig. 1G). This
conclusion was supported by further growth rescue at higher induction for PA1507 (Fig.
S7 and 8). Expression strain data implied that PA1419 and PA1519 may also contribute to
uptake of xanthine and, to a lesser degree, PA0352 for uric acid, but were ruled out due
to a lack of clear growth benefit. However, neither single knockout nor APA1507APA0166
grew differently from WT on these substrates (Fig. S2H and J). Based on sequence
similarity, we suspected that PA2938 (46% similarity to PA1507) may also play a role in
xanthine and uric acid transport. Growth data for knockout combinations demonstrated
that PA2938 is important for xanthine and uric acid uptake in addition to PA0O166 and
PA1507 (Fig. 1F and H, P < 0.0001). It is somewhat unexpected that PA1507, PA2938, and
PA0166 all transport both xanthine and uric acid since characterized transporters tend to
transport either xanthine or uric acid well (5, 12-14). Furthermore, xanthine and uric acid
and purines tend to be transported by different transporters than hypoxanthine and
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FIG 1 Growth of expression and knockout strains on purines as sole nitrogen sources enabled substrate identification of NCS1 and NCS2 transporters. Growth

of selected strains in nitrogen-free M9 supplemented with (A) 500-uM hypoxanthine, (B) 100-uM hypoxanthine, (C) 150-uM guanine, (D) 100-uM guanine, (E)
300-uM xanthine, (F) 300-uM xanthine, (G) 300-pM uric acid, (H) 300-uM uric acid, (I) 500-uM allantoin, or (J) 500-uM allantoin. The leftward pointing arrow above
the expression strains demonstrates the expectation that expression of relevant transporters will improve growth on a compound as a sole nitrogen source. The

rightward pointing arrow above the knockout strains demonstrates the expectation that knocking out relevant transporters will impair growth on a compound

as a sole nitrogen source. For each expression strain, one well per substrate per experiment from three independent experiments (n = 3) was included. For

each knockout strain, one well per substrate per experiment from four independent experiments (n = 4) was included. Data represent mean + SE. For statistical

analysis, area under curve values of all strains tested in an experiment were compared using a repeated measures one-way analysis of variance with Dunnett’s

multiple comparison test. Strains whose growth significantly differed from the growth of the relevant comparison strain are displayed. Several knockout strains

whose growth did not significantly differ from the growth of the relevant comparison strain are also displayed to demonstrate transporter redundancy. Detailed

statistical comparisons are available in the main text.
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guanine for the characterized NCS2 transporters from B. subtilis and E. coli (5, 12-14). In
this regard, PAO166 and PA2938 appear to transport purines regardless of 2-oxo group
presence, a seemingly rare capability shared with PIAzg1 and PIAzg2 from the honeybee
pathogen Paenibacillus larvae (20). Residual growth of A13 on xanthine but not uric acid
suggests that some non-NCS1/NCS2 transporters may also be important for uptake of
xanthine beyond PA0166, PA1507, and PA2938.

Allantoin was associated with PA0476. Specifically, expression strain data implied
that PA0476 may be the sole allantoin transporter (Fig. 11, P < 0.0001). This conclusion
was supported by further growth rescue at higher induction (Fig. S9). Growth data for
APA0476 suggests PA0476 is the sole allantoin transporter because APA0476 greatly
diminished ability to grow on allantoin (Fig. 1J, P < 0.0001). It may be somewhat
surprising that PA0476 is not highly similar to known allantoin transporters BsPucl (34%
similarity) (4, 5) and EcAIIW (31% similarity) (15), but this demonstrates the difficulty in
determining substrate specificity from sequence alone.

Pyrimidine substrate identifications for putative NCS1 and NCS2 transporters

Cytosine was associated with PA0438 and PA0443. Expression strain data implied that
PA0438 may be the sole cytosine transporter (Fig. 2A, P < 0.0001). However, the lack
of complete growth rescue with PA0438 implied that another transporter may also
contribute to cytosine uptake. Indeed, the defect in growth for APA0438 was not as large
as that of A13 (Fig. 2B, P < 0.0001). Based on genomic location near PA0438 and genes
predicted to be involved in pyrimidine catabolism, we hypothesized PA0443 may also be
involved in cytosine uptake. While APA0443 alone did not have a notable growth defect
on cytosine, APA0438APA0443 had a significant growth defect compared to APA0438 (Fig.
2B, P < 0.0001). Consistent with this, PA0438 is similar to EcCodB (75% similarity), which
has been previously demonstrated to transport cytosine (3). Apparent residual growth of
A13 on cytosine suggests that some non-NCS1/NCS2 transporters may also play a minor
role in uptake of cytosine beyond PA0438 and PA0443.

Thymine was associated with PA0443. Specifically, expression strain data implied that
PA0443 may be the sole NCS1/NCS2 thymine transporter (Fig. 2C, P < 0.0001). Indeed,
APA0443 displayed a significant growth defect relative to WT (P < 0.0001) comparable to
A13, suggesting that PA0443 may be the sole NCS1/NCS2 transporter for thymine (Fig.
2D). Residual growth of A13 on thymine suggests that some non-NCS1/NCS2 transport-
ers may also be important for thymine uptake beyond PA0443.

Uracil was associated with PA4647 and PA0443. Expression strain data for growth on
uracil were inconclusive regarding which transporters may be important for uptake (Fig.
2E), so we tested combinatorial deletion strains at a lower uracil concentration where a
lack of high-affinity transport would be more apparent. Knockout strain data showed
that APA0443 (P < 0.0001), but neither APA0438 nor APA4647, had a growth defect on
uracil compared to WT (Fig. 2F; Fig. S3F). However, the growth defect for APA0443 was
not as severe as that of A13. We suspected PA4647 may also play a role in uracil transport
based on similarity to ECRutG (39% similarity) (9, 10) and EcUraA (39% similarity) (11),
both of which are known uracil transporters. As expected, the combination knockout
APA46470PA0443 grew worse than APA0443 (P < 0.0001), suggesting that PA0O443 and
PA4647 both contribute to uracil uptake (Fig. 2F). The strong growth of A13 on higher
uracil concentrations suggests the presence of a lower-affinity non-NCS1/NCS2 uracil
transporter beyond PA4647 and PA0443.

Dihydrouracil was associated with PA0443. Expression strain data for growth on
dihydrouracil were also inconclusive regarding which transporters may be important for
uptake (Fig. 2G), so we again tested deletion strains. Knockout strain data showed that
APA0443 (P < 0.0001), but neither APA0438 nor APA4647, had a growth defect on
dihydrouracil compared to WT (Fig. 2H; Fig. S3H). Indeed, APA0443 displayed a significant
growth defect relative to WT (P < 0.0001) comparable to A13, suggesting that PA0443
may be the sole NCS1/NCS2 transporter for dihydrouracil (Fig. 2H). Residual growth of
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FIG 2 Growth of expression and knockout strains on pyrimidines as sole nitrogen sources enabled substrate identification of NCS1 and NCS2 transporters.

Growth of selected expression and knockout strains in nitrogen-free M9 supplemented with (A) 500-uM cytosine, (B) 500-uM cytosine, (C) 500-uM thymine, (D)

500-uM thymine, (E) 500-uM uracil, (F) 100-puM uracil, (G) 500-uM dihydrouracil, or (H) 500-uM dihydrouracil. The leftward pointing arrow above the expression

strains demonstrates the expectation that expression of relevant transporters will improve growth on a compound as a sole nitrogen source. The rightward

pointing arrow above the knockout strains demonstrates the expectation that knocking out relevant transporters will impair growth on a compound as a sole

nitrogen source. For each expression strain, one well per substrate per experiment from three independent experiments (n = 3) was included. For each knockout

strain, one well per substrate per experiment from four independent experiments (n = 4) was included. Data represent mean + SE. For statistical analysis, area

under curve values of all strains tested in an experiment were compared using a repeated measures one-way analysis of variance with Dunnett’s multiple

comparison test. Strains whose growth significantly differed from the growth of the relevant comparison strain are displayed. Expression strain A13 + PA0443

did not grow significantly different from A13 in cytosine, uracil, and dihydrouracil conditions nor did A13 + PA4647 grow significantly different from A13 in

the uracil condition. Several knockout strains whose growth did not significantly differ from the growth of the relevant comparison strain are also displayed to

demonstrate transporter redundancy. Detailed statistical comparisons are available in the main text.
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A13 suggests that some non-NCS1/NCS2 transporters may also be important for
dihydrouracil uptake beyond PA0443.

Antimetabolite substrate identifications for putative NCS1 and NCS2
transporters

We next characterized these transporters using toxic analogs of the previously tested
nucleobases known as antimetabolites. Antimetabolites not only provide additional
support for the identified transporters but also to lend insight into which transporters
may be important for antimetabolite therapy. In contrast to the expression strains,
we anticipated that we would observe growth defects for A13 strains expressing a
transporter important for antimetabolite uptake. We grew WT and A13 control strains
with empty pPSV37 vector and A13 expression strains on M9 with sufficient nitrogen
for robust growth, which had been supplemented with one of four antimetabolites: the
purine analogs 8-azaguanine and 6-thioguanine or the pyrimidine analogs 5-fluorocyto-
sine and 5-fluorouracil. As expected, A13 grew better than WT on all antimetabolites at
their tested concentration (Fig. S4, P < 0.0001). Depending on the antimetabolite, the
magnitude of improved growth for A13 ranged from several hours to approximately 14
hours.

Similar to guanine, 8-azaguanine was associated with PA4719, PA0166, PA1519,
PA2938, and PA0352. Specifically, expression strain data implied that PA0352 (P < 0.0001)
and, to a somewhat greater extent, PAO166 (P < 0.0001) and PA4719 (P < 0.0001)
caused the lag phase to increase by approximately 6-10 hours, suggesting that they all
contributed to 8-azaguanine uptake (Fig. 3A). It is not possible to immediately determine
from these data whether PA0166 and PA4719 are more important than PA0352 for
transport of 8-azaguanine. Surprisingly, APA0352 grew significantly better than WT (P
< 0.0001) comparable to A13, suggesting that PA0352 may be the primary transporter
for 8-azaguanine (Fig. 3B). APA0166 (P < 0.0001), APA2938 (P < 0.0001), and APA4719 (P
< 0.0001) grew better than WT, suggesting they also likely contribute to 8-azaguanine
uptake (Fig. 3B). No other single-knockout strain grew substantially better than WT when
exposed to 8-azaguanine (Figure S4B).

6-Thioguanine was associated with PA4719. Specifically, expression of PA4719 caused
the lag phase to increase by approximately 6 hours (Fig. 3C, P < 0.0001). Intriguingly,
expression strain data for PA4719 are more severe than that of WT, implying that PA4719
may be expressed more highly in this strain than in WT (Fig. 3C). As expected, APA4719
grew significantly better than WT (P < 0.0001) comparable to A13, suggesting that
PA4719 may be the primary transporter for 6-thioguanine (Fig. 3D). No other single-
knockout strain grew substantially better than WT when exposed to 6-thioguanine (Fig.
S4D).

5-Fluorocytosine and 5-fluorouracil were associated with PA4647. All A13 expression
vector strains grew similarly to A13, implying that whichever transporter or transporters
are important for the uptake of these antimetabolites may not be properly expressed in
these strains (Fig. 3E and G; Fig.S4E through G). However, APA0438 (P < 0.0001) and
APA4647 (P < 0.0001) both grew better than WT, suggesting that PA0438 and PA4647
contribute to 5-fluorocytosine uptake (Fig. 3F). No other single-knockout strain grew
substantially better than WT when exposed to 5-fluorocytosine (Fig. S4F). As expected,
APA4647 grew significantly better than WT (P < 0.0001) comparable to A13, suggesting
that PA4647 may be the primary transporter for 5-fluorouracil (Fig. 3H). No other single-
knockout strain grew substantially better than WT when exposed to 5-fluorouracil
(Figure S4H).

Phylogenetic tree summarizing NCS1 and NCS2 transporter-substrate
identifications

To summarize all transporter-substrate identifications, we generated a maximum-
likelihood phylogenetic tree using Phylogeny.fr (41-46) for characterized NCS1 transport-
ers from E. coli, B. subtilis, and Microbacterium liquefaciens, along with the six putative
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FIG 3 Growth of expression and knockout strains on nitrogen-replete media exposed to toxic nucleobase analogs enabled substrate identification of NCS1 and
NCS2 transporters. Growth of selected expression and knockout strains in M9 containing casamino acids and the toxic compounds (A) 1,000-uM 8-azaguanine,
(B) 1,000-uM 8-azaguanine, (C) 100-uM 6-thioguanine, (D) 100-uM 6-thioguanine, (E) 1,000-uM 5-fluorocytosine, (F) 1,000-uM 5-fluorocytosine, (G) 10-uM
5-fluorouracil, and (H) 10-uM 5-fluorouracil. The rightward pointing arrow above the expression strains demonstrates the expectation that expression of
relevant transporters will impair growth when exposed to a toxic nucleobase analog. The leftward pointing arrow above the knockout strains demonstrates the
expectation that knocking out relevant transporters will improve growth when exposed to a toxic nucleobase analog. For each expression strain, one well per
substrate per experiment from three independent experiments (n = 3) was included. For each knockout strain, one well per substrate per experiment from four
independent experiments (n = 4) was included unless otherwise stated due to removal of outliers. For 6-thioguanine knockout experiments, n = 3 for WT and
APA4719 and n = 2 for A13. For 5-fluorocytosine knockout experiments, n = 2 for APA4647 and A13. For 5-fluorouracil knockout experiments, n = 2 for A13. Data
represent mean =* SE. For statistical analysis, area under curve values of all strains tested in an experiment were compared using a repeated measures one-way
analysis of variance with Dunnett’s multiple comparison test. Strains whose growth significantly differed from the growth of the relevant comparison strain are
displayed. Detailed statistical comparisons are available in the main text.
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NCS1 transporters from P. aeruginosa (Fig. 4A). This phylogenetic tree represents all the
characterized bacterial NCS1 transporters (3-5, 15, 47), demonstrating how little is
known about bacterial NCS1 transporters to date. We also generated a maximum-
likelihood phylogenetic tree using Phylogeny.fr (41-46) for characterized NCS2 transport-
ers from E. coli and B. subtilis, along with the seven putative NCS2 transporters from P.
aeruginosa (Fig. 4B). This phylogenetic tree represents all the characterized NCS2
transporters from the most studied bacteria, such as E. coli and B. subtilis, but not
necessarily all characterized bacterial NCS2 transporters (5-14). Our experimental
evidence does not suggest which substrates are transported by PA1419, PA2073, or
PA5099 (Fig.S2 through S4). This lack of substrate identification may be due either to low
native expression, low transport affinity, or transport of a substrate beyond those tested
here.

DISCUSSION

Our results provide initial substrate identifications for 10 putative nucleobase transport-
ers in P. aeruginosa. Many of our substrate assignments are supported by data from
multiple distinct experiments. For example, types of experiments tested include rescue
of growth for transporters on expression vectors vs. decreased growth for knockout
strains, as well as testing for growth on nucleobases as a sole nitrogen source vs. growth
in presence of toxic nucleobase analogs. Our data are further validated by phylogenetic
clustering of transporters with similar substrate profiles between the NCS1 and NCS2
transporters characterized in this work and previously characterized bacterial transport-
ers. Apparent functional redundancy of transport suggests that growth phenotypes are
not caused by an indirect or polar effect in a particular genomic neighborhood. The
ability to closely recapitulate growth phenotypes observed for the A13 with separately
generated knockout strains also strengthens our conclusions. Nevertheless, transporters
capable of transporting a particular nucleobase may fail to display a phenotype in these
experiments if the transporter is not expressed at a sufficient level in tested conditions
or if the capacity or affinity of the transporter is too low to affect growth. Thus, while
these data suggest which transporters are important for the uptake of 10 nucleobases
and 4 nucleobase analogs, it is possible that some tested substrates are transported by
NCS1 and NCS2 transporters not associated with a growth phenotype in this work. In the

A B
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FIG 4 Summary of data in the context of NCS1 and NCS2 phylogenetic trees. (A) Maximum-likelihood phylogenetic trees depict P. aeruginosa transporters

and selected characterized bacterial NCS1 and (B) NCS2 transporters based on nucleotide sequences. Branches with bootstrap support lower than 70% were

collapsed. Substrate specificity for characterized transporters is shown after transporter name. P. aeruginosa transporter names are highlighted, and substrate

specificity for these transporters are also shown after transporter name. For the substrates after P. aeruginosa transporters, * indicates this is suggested by

expression strain data with metabolites; T indicates this is suggested by knockout strain data with metabolites; $ indicates this is suggested by expression strain

data with antimetabolites; and § indicates this is suggested by knockout strain data with antimetabolites. Scale bar indicates the number of substitutions per site.
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future, radiolabeled substrate experiments may unveil additional substrate-transporter
pairs not able to be detected by a growth phenotype. These radiolabeled experiments
could also quantify transport kinetics and substrate affinity for these NCS1 and NCS2
transporters, which cannot be determined from these growth experiments.

In contrast to the redundancy in uptake we observed for most nucleobases,
single-transporter knockout strains exhibited resistance to tested nucleobase analogs.
Specifically, PA0352 is important for 8-azaguanine resistance; PA4719 is important
for 6-thioguanine resistance; PA0438 and PA4647 are important for 5-fluorocytosine
resistance;, and PA4647 is important for 5-fluorouracil resistance. Therefore, the loss
of different single transporters appears to be important for resistance to each toxic
nucleobase analog. Since single enzymes (33, 34) also tend to be important for
the activation of these antimetabolites, combination therapy of at least two dis-
tinct antimetabolites—or an antimetabolite and another antimicrobial agent—may be
recommended to reduce development of resistance to these compounds.

The widespread capability among organisms to transport and catabolize nucleo-
bases also highlights the importance of nucleobases as a potential nutrient source
(28). Adenine is present in seawater albeit at a low level (48) while pyrimidines are
likely available in pond and tap water (49). In fact, a TnSeq experiment suggests that
PA0443, which we suspect to be a pyrimidine transporter with broad specificity, may be
important for growth in pond and tap water (49). In terrestrial environments, nucleoba-
ses and related molecules may represent up to 7% of total available nitrogen in the soil
and up to nearly 20% of available nitrogen in humus, a soil component (50). Localized
areas in the soil can be further enriched in xanthine due to stress-induced release
of metabolites by the roots of plants, which can selectively increase the abundance
of plant-associated Pseudomonas spp. (51). In this environment, PA0166, PA1507, and
PA2938, which we identify as xanthine transporters, may be relevant. Localized areas
in the soil can also be enriched in nucleobases by animal waste products (52), which
are rich in nucleobases (53, 54). Thus, nucleobases are available to various degrees in
different environments that P. aeruginosa may encounter.

In the context of infection, while nucleobases are generally limited at many body
sites, certain nucleobases may accumulate to a sufficiently high concentration to alter
growth. Sputum from patients with cystic fibrosis (CF) (55) and metabolic cross-feeding
between polymicrobial communities in CF lung infection (27) can both support growth
of purine auxotrophic strains, suggesting purines may be available in this environment.
Work with Klebsiella pneumoniae suggests that allantoin may be available in the liver
(56). If this is also true in P. aeruginosa pathogenesis, PA0476, as the sole allantoin
transporter, may be important in liver infections. While serum allantoin levels may be
relatively low at approximately one-tenth to one-twentieth of the concentration used in
our experiments, serum uric acid levels in healthy individuals can approach and even
exceed the 300-puM uric acid used in our experiments (57). Uric acid concentrations in
synovial fluids and urine are 200 uM (57) and 2 mM (58), respectively. These values are
all sufficient to support P. aeruginosa growth as sole nitrogen sources. Thus, PA0166,
PA1507, and PA2938 could contribute to growth in several body fluids. In addition to
specific body sites, P. aeruginosa that has invaded host cells (59, 60) may be able to
access relatively high levels of intracellular hypoxanthine and guanine (61). Alternatively,
P. aeruginosa may be able to utilize these nucleobases when cytoplasmic contents leak
from dying or otherwise damaged tissues (62-65). In these situations, some combination
of PA0166, PA0352, PA1519, PA2938, and PA4719 may be important since our data
suggest they are hypoxanthine-guanine transporters. The degree of redundancy for
transport of hypoxanthine and guanine suggests these molecules may be especially
important to P. aeruginosa, a conclusion which is further supported by recent discovery
of a hypoxanthine-guanine-specific chemoreceptor for P. aeruginosa chemotaxis (66).

Beyond their role as a nutrient source, nucleobases and related molecules may
additionally act as a cue to alter bacterial behavior. Several second messenger signaling
molecules in bacteria, such as cAMP (67), c-di-AMP (68, 69), c-di-GMP (70), and (P)ppGpp
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(71, 72), are generated from purine nucleotide substrates. Purine nucleotide pools, which
can be affected by the salvage of exogenous nucleobases (73-77), may represent a
regulatory point for nucleotide-derived second messengers (78). Indeed, adenine and
guanine have been shown to alter Staphylococcus aureus susceptibility to antimicrobial
treatment by changing c-di-AMP levels (79), while adenine and hypoxanthine have been
shown to decrease P. aeruginosa biofilm formation by decreasing c-di-GMP levels (80).
Since these molecules must be salvaged from the environment to affect nucleotide
pools in this manner (79, 80), NCS1 and NCS2 transporters may be critical to the
signal transduction of nucleobase signaling. However, these transporters are unlikely
to be identified as hits in forward genetic screens even in situations where nucleobase
transport is critical due to redundancy in uptake for most native substrates. Therefore,
strains generated in this work may be useful tools to address previously difficult-to-test
hypotheses relating to nucleobase transport.

MATERIALS AND METHODS
Bacterial strains and growth conditions

The full strain list is available in File S1. P. aeruginosa MPAO1 was obtained from the
University of Washington (81). Bacteria were frozen in 50% glycerol-50% Luria-Bertani
(LB) media (Fisher Bioreagents). Solid media were prepared by adding 1.5-g/L agar
(Fisher Bioreagents) to liquid media before autoclaving. E. coli and P. aeruginosa strains
were routinely grown on LB agar at 37°C overnight, and single colonies were used
to innoculate LB media for growth at 37°C overnight with shaking at 250 rpm unless
otherwise stated. When appropriate, 50 pg/mL (E. coli) or 250 pg/mL (P. aeruginosa)
carbenicillin (Sigma-Aldrich), 15 pg/mL (E. coli) or 50 ug/mL (P. aeruginosa) gentami-
cin (TCl), or 5 pug/mL (P. aeruginosa) irgasan (Sigma-Aldrich) was added to media for
selection. Sucrose (7.5%, Sigma-Aldrich) was added to no-salt LB agar—10-g/L tryptone
(Fisher Bioreagents) and 5-g/L yeast extract (Fisher Bioreagents)—for sucrose counter-
selection. For use in experiments, P. aeruginosa was grown overnight in M9 media.
Nitrogen-free M9 media for wash steps contained 47.7-mM Na;HPO,4 (Sigma-Aldrich),
21.7-mM KH,PO4 (Sigma-Aldrich), 8.6-mM NaCl (Sigma-Aldrich), 0.2% glucose (Sigma-
Aldrich), and 1-mM MgSQ,4 (Sigma-Aldrich) and were supplemented with 18.7-mM
NH4CI (Fisher Chemical) and 0.5% acid casein peptone (Fisher Bioreagents) for overnight
growth. M9 media for nucleobase growth experiments contained 39.7-mM Na;HPO,4
(Sigma-Aldrich), 18.1-mM KH5PO,4 (Sigma-Aldrich), 7.2-mM NaCl (Sigma-Aldrich), 0.2%
glucose (Sigma-Aldrich), and 1-mM MgSQ4 (Sigma-Aldrich) and were supplemented with
15.6-mM NH4Cl (Fisher Chemical) and 0.5% acid casein peptone (Fisher Bioreagents) for
nucleobase analog growth experiments.

Generation of knockout strains

Allelic exchange was used to generate in-frame knockout strains of P. aeruginosa MPAO1
(82). Briefly, regions upstream and downstream of genes of interest were amplified from
the MPAO1 genome by PCR including Gibson overhangs using Phusion Green Hot Start
Il High-Fidelity PCR Master Mix (New England BioLabs). The primer list is available in File
S2. The plasmid list is available in File S3. pEXG2 vector was digested with HinDIII-HF
(New England BiolLabs) (83). Upstream and downstream regions were combined in
three-part Gibson assembly with cut pEXG2 using Gibson Assembly Master Mix (New
England BioLabs). NEB 5-alpha Competent E. coli (New England BioLabs) was chemically
transformed with constructs, and insert presence was detected by PCR and verified by
Sanger sequencing. E. coli $17-1 (84) was chemically transformed with verified constructs.
Constructs were then mated into P. aeruginosa by conjugation. Sucrose counterselection
was used to resolve merodiploids. Single-knockout strains were verified by amplifying
regions of interest by PCR and sequencing with Sanger sequencing. Combination
knockout mutants were generated using the same process with a single knockout or
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combination knockout mutant as the recipient strain of the pEXG2 deletion construct
instead of MPAO1. Subsequent combination mutants were verified by amplifying regions
of interest by PCR.

Generation of expression vectors

NCS1 and NCS2 transporters were expressed using the expression vector pPSV37 (85).
Briefly, genes of interest were amplified from the MPAO1 genome by PCR including
Gibson overhangs using Phusion Green Hot Start Il High-Fidelity PCR Master Mix
(New England BiolLabs) or KOD One PCR Master Mix Blue (Toyobo). pPSV37 vector
was digested with HinDIlI-HF (New England BioLabs). The genes were combined in
two-part Gibson assembly with cut pPSV37 using Gibson Assembly Master Mix (New
England BioLabs). NEB 5-alpha Competent E. coli (New England BioLabs) was chemically
transformed with constructs, and insert presence was detected by PCR and verified by
Sanger sequencing and/or Nanopore sequencing. P. aeruginosa A13 was then chemically
transformed with verified constructs to generate A13 + pPSV37 expression vector strains.
MPAO1 and A13 were chemically transformed with empty pPSV37 expression vectors for
use as control strains.

Nucleobase and nucleobase analog chemicals

Stock compounds of adenine (Alfa Aesar), hypoxanthine (Acros Organics), guanine (Acros
Organics), xanthine (Acros Organics), uric acid (Alfa Aesar), allantoin (TCl), cytosine
(TCl), thymine (Acros Organics), uracil (Acros Organics), 5,6-dihydrouracil (Alfa Aesar),
8-azaguanine (J&K Scientific), 6-thioguanine (Alfa Aesar), 5-fluorocytosine (TCl), and
5-fluorouracil (TCl) were created by dissolving compounds in water. Compounds that
did not readily dissolve were rotated on a Tube Revolver Rotator (Thermo Scientific),
heated in a 55°C water bath, and/or vortexed until solubilized.

Growth experiments with nucleobase metabolites

For transporter expression growth experiments, indicated strains were grown overnight
in M9 supplemented with gentamicin and 1-mM isopropyl-B-D-thiogalactopyranoside
(IPTG). Strains were pelleted via centrifugation, resuspended in nitrogen-free M9,
pelleted via centrifugation, and resuspended in nitrogen-free M9 a second time to
wash away residual nitrogen-containing components in overnight M9 media. Two-micro-
liters washed overnight culture of each strain was added to 198-uL nitrogen-free M9
supplemented with an individual nucleobase in a clear 96-well plate (Nunc, Thermo
Scientific) at specified final concentrations; wells were covered with Breathe-Easy film
(USA Scientific); and the plate was shaken at 37°C in a Synergy Neo2 plate reader with
an absorbance measurement at 600 nm taken every 20 minutes for at least 16 hours.
Initial ODgqq for each well was subtracted from all time points of that well as background
except for the following substrates whose background was instead taken as the time
point indicated in parentheses—hypoxanthine, guanine, and xanthine (1 hour), cytosine
(4 hours), thymine (6 hours), uracil (5.7 hours), and dihydrouracil (2.3 hours)—to improve
synchronicity of growth readings. Three independent experiments were performed. Plots
were generated using GraphPad Prism.

For knockout growth experiments, indicated strains were grown overnight in M9, and
the same protocol was followed as for transporter expression experiments. Initial ODggg
for each well was subtracted from all time points of that well as background except the
following substrates whose background was instead taken as the time point indicated in
parentheses—hypoxanthine, guanine, and xanthine (1 hour), cytosine (4 hours), thymine
(6 hours), uracil (5.7 hours), and dihydrouracil (2.3 hours)—to improve synchronicity of
growth readings. Four independent experiments were performed. Plots were generated
using GraphPad Prism.
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Growth experiments with nucleobase analog antimetabolites

For transporter expression growth experiments, indicated strains were grown overnight
supplemented with gentamicin and 1-mM IPTG. Strains were pelleted via centrifuga-
tion, resuspended in nitrogen-free M9, pelleted via centrifugation, and resuspended in
nitrogen-free M9 a second time to wash away residual nitrogen-containing components
in overnight M9 media. Two-microliters washed overnight culture of each strain was
added to 198-pL full M9 supplemented with an individual nucleobase analog antimeta-
bolite in a clear 96-well plate (Nunc, Thermo Scientific) at specified final concentrations;
wells were covered with Breathe-Easy film (USA Scientific); and the plate was shaken at
37°Cin a Tecan Infinite MPlex plate reader with an absorbance measurement at 600 nm
taken every 20 minutes for at least 16 hours. Initial ODgqq for each well was subtracted
from all time points of that well as background to improve synchronicity of growth
readings. Three independent experiments were performed. Plots were generated using
GraphPad Prism.

For knockout growth experiments, indicated strains were grown overnight in M9, and
the same protocol was followed as for transporter expression growth experiments with
antimetabolites. Initial ODggq for each well was again subtracted from all time points of
that well as background to improve synchronicity of growth readings. Four independent
experiments were performed. Plots were generated using GraphPad Prism.

Comparison of protein sequence identity

Amino acid sequences for putative P. aeruginosa NCS1 and NCS2 transporters in
strain PAO1 were downloaded from the Pseudomonas Genome Database via Pseudomo-
nas.com (38). Amino acid sequences for characterized E. coli NCS1 and NCS2 transport-
ers in strain K-12 MG1655 were downloaded from the BioCyc Database Collection via
BioCyc.org (86). Pairwise amino acid sequences were compared with blastp using default
parameters, and the resulting amino acid percent identity was rounded to the nearest
integer (87).

Generation of phylogenetic trees

Nucleotide sequences for putative P. aeruginosa NCS1 and NCS2 transporters in strain
PAO1 were downloaded from the Pseudomonas Genome Database via Pseudomo-
nas.com (38). Nucleotide sequences for characterized E. coli NCS1 and NCS2 transport-
ers in strain K-12 MG1655 were downloaded from the BioCyc Database Collection
via BioCyc.org (86). Nucleotide sequences for characterized B. subtilis NCS1 and NCS2
transporter nucleotide sequences in strain 168 were downloaded from Subtiwiki.com
(88). Nucleotide sequence for characterized NCS1 transporter Mhp1 in strain M.
liquefaciens AJ 3912 was extracted from Suzuki et al. (89). Multiple nucleotide sequences
were aligned with MUSCLE (41); alignments were curated with Gblocks (42); phyloge-
netic trees were reconstructed with PhyML (43); and trees were visualized with TreeDyn
(44) as packaged in phylogeny.fr (45). Five hundred bootstraps were used for internal
branch reliability (46). Branches with bootstrap support lower than 70% were collapsed.
P. aeruginosa protein names were highlighted, and transporter-substrate assignments
were added after protein names based on prior literature and our experimental data.

Quantification and statistical analysis

Growth data for each replicate were converted to an AUC value using GraphPad Prism,
and strains were then compared to the relevant comparison strain with statistical
analysis. Growth was defined as positive peaks starting at the time point used to remove
background for each substrate and ending at the last displayed time point in each
graph. Data from relevant supplementary figures were used for analyses so that all tested
strains were included. Repeated measures one-way analysis of variance with Dunnett’s
multiple comparison test comparing WT, A13, or another strain, as appropriate, was used
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to determine statistical significance. Expression and knockout strains were considered
statistically different from their comparison strain when P < 0.01 and strain AUC was at
least 25% greater or at least 25% less than their comparison strain, depending on the
comparison being made. Analyses were performed using GraphPad Prism v.10.2.2.
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