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Abstract

Climate-induced shifts in mosquito phenology and population structure have

important implications for the health of humans and wildlife. The timing and

intensity of mosquito interactions with infected and susceptible hosts are a pri-

mary determinant of vector-borne disease dynamics. Like most ectotherms,

rates of mosquito development and corresponding phenological patterns are

expected to change under shifting climates. However, developing accurate

forecasts of mosquito phenology under climate change that can be used to

inform management programs remains challenging despite an abundance of

available data. As climate change will have variable effects on mosquito

demography and phenology across species it is vital that we identify associated

traits that may explain the observed variation. Here, we review a suite of

modeling approaches that could be applied to generate forecasts of mosquito

activity under climate change and evaluate the strengths and weaknesses of

the different approaches. We describe four primary life history and physiologi-

cal traits that can be used to constrain models and demonstrate how this prior
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information can be harnessed to develop a more general understanding of

how mosquito activity will shift under changing climates. Combining a

trait-based approach with appropriate modeling techniques can allow for the

development of actionable, flexible, and multi-scale forecasts of mosquito pop-

ulation dynamics and phenology for diverse stakeholders.
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INTRODUCTION

Climate change is affecting biological communities by
shifting the average timing and shape of species’ seasonal
activity patterns (Badeck et al., 2004; Carter et al., 2018;
Ib�añez et al., 2010; Parmesan & Yohe, 2003). These
changes in the temporal structure of biological activity,
also referred to as phenological shifts, can alter biological
processes through direct changes in population dynamics
via disruption in the temporal or spatial synchrony
between species and the resources they interact with
(Kudo & Ida, 2013; Walther, 2010). These phenological
shifts can have substantial effects on vital ecological pro-
cesses such as pollination services (Kudo & Ida, 2013),
pest control (Damien & Tougeron, 2019), and disease out-
break and spread (Rohr & Cohen, 2020). One ecological
system of major concern involves arthropod vectors, in
particular mosquitoes that transmit multiple wildlife and
human pathogens (Kilpatrick & Randolph, 2012; Mills
et al., 2010; U.S. Global Change Research Program,
2018). As small-bodied ectotherms, mosquitoes are expe-
cted to be highly sensitive to changing climates (Cohen
et al., 2018; Forrest, 2016; Mordecai et al., 2019). Our cur-
rent understanding regarding the specific effects of
changing climate on mosquito phenology and population
dynamics is relatively poor (Whittaker et al., 2022). This
knowledge gap is concerning because climate-induced
shifts in mosquito phenology and population structure
can affect disease transmission patterns by altering the
timing and intensity of mosquito interactions with
infected and susceptible hosts (Iwamura et al., 2020;
Rohr & Cohen, 2020) and by shifting the mosquito’s abil-
ity to transmit pathogens (i.e., alteration in mosquito vec-
torial capacity; Villena et al., 2022). Thus, predictive
understanding of mosquito phenology and population
dynamics are critical to effectively adapt management
practices to reduce vectorial disease spread to humans
and wildlife under future climates (Morisette et al., 2009).

Mosquitoes are a highly diverse and globally distrib-
uted taxa, resulting in large spatial gradients in species
richness (Foley et al., 2007) and individual species distri-
bution patterns spanning continents and climatic zones

(Liu-Helmersson et al., 2019; Samy et al., 2016). With this
broad diversity in taxa and spatial coverage, using both
micro- and macroecological perspectives would be bene-
ficial to effectively develop a general framework desi-
gned to assess mosquito sensitivities to changing
climates (Boser et al., 2021; Chandrasegaran et al.,
2020). A microecological approach can provide valuable
insight on the mechanistic processes that determine the
population and phenological sensitivities to changing
climates of a particular species at smaller local scales.
This approach, however, may fail to capture the more
general responses of the entire mosquito community at
local scales or, alternatively, the overall climate sensitiv-
ities of a single species across its entire geographical
range. We can unify these perspectives by considering
modeling approaches that capture mechanistic processes
while having the flexibility to scale across species diversity
or geographical range. The unification of micro- and
macroecological approaches could allow us to simulta-
neously gain insight on climatic sensitives of small-scale
processes while enabling the detection of general and
emergent patterns at macroscales. This flexible approach
can provide researchers and managers with an adaptable
framework to address concerns regarding climate change
and mosquito-borne diseases at the scale of their needs
and interests.

In this synthesis, we lay out a concise roadmap for
how to expand our understanding of the factors shaping
mosquito sensitivity to climate change to generate fore-
casting capabilities for both demographic processes
(i.e., growth rates) and critical elements of mosquito
activity (i.e., first, peak, and end dates of seasonal activ-
ity). We discuss different modeling approaches and the
importance of considering management needs in deter-
mining model structure and scale. We also identify pri-
mary life history and physiological traits of mosquitoes
that are likely to determine interspecific variation in the
sensitivity of mosquito species’ population dynamics and
phenology to environmental change. The trait-based
approach can be integrated into mechanistic and phe-
nomenological models of mosquito activity patterns to
reduce complexity and improve our ability to scale to a
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macroecological theory on how mosquitoes will respond
to changing climates. Such information can provide
insights into the allocation of limited resources, such as
funding or intensified surveillance efforts, for vector con-
trol and public health measures (Whittaker et al., 2022).

MOSQUITO PHENOLOGY AND
FORECASTING MODELS

A forecast is a type of prediction with the goals of
predicting an ecological outcome at future points in time
with utility for decision-making (Dietze et al., 2018;
Petchey et al., 2015). Other forms of prediction serve
explanatory purposes, such as hypothesis testing or
constructing models to explain previously observed phe-
nomena. However, our focus is on forecasting, which
includes making predictions into inherently unknown
system states and covariate values (Yates et al., 2018).
Forecasting presents several technical challenges related
to modeling approaches, data needs, and sources of
uncertainty (addressed in subsequent sections). Before
we tackle these challenges, we first need to determine the
specific forecast target and relevant spatial and temporal
scales for the resultant mosquito forecast. For mosqui-
toes, changing climate can affect both long-term pheno-
logical trends (i.e., shifts in the timing of emergence,
senescence, and duration of seasonal activity over decades)
and near-term population growth rates (i.e., altering the
within-season population abundance patterns). Vector
control agencies, public health practitioners, and natural
resource managers may each require specific insight into
multiple aspects of mosquito responses to changing cli-
mates, or on multiple timescales, to respond adequately to
emerging threats (Aryaprema et al., 2023; Col�on-Gonz�alez
et al., 2021). Forecasting models can produce a variety of
products including estimates of future adult abundances
or near-term, relative growth rates (i.e., days to weeks out)
or estimates of trends in desired phenometrics such as first
dates or adult seasonal activity duration under varying cli-
mate scenarios (years out). However, to some end users it
may be of limited value if models only offer insight into a
specific aspect of mosquito’s population dynamics such as
how temperature changes will affect seasonal growth rates
but not into relevant phenometrics such as how these
changes will affect the specific timing of first flight dates
or peaks of abundance.

The specific needs of a given stakeholder should thus
guide the structure and scale of the forecast model
(Mozelewski & Scheller, 2021; Tulloch et al., 2020)
(Figure 1). For example, if a mosquito control agency
wishes to know when to switch from larval to adult con-
trol practices for a given location, the forecast, ideally,

would estimate a particular phenometric related to this
transition period at the relevant scale such as site-specific
estimates of first flight date. This forecast will likely uti-
lize models that focus on discrete phenometrics instead
of forecasting models that describe seasonal patterns of
population growth rates. Phenometric-based forecasting
products are widely used to inform decision-making for
pest application in forestry and agriculture (Crimmins
et al., 2020) to forecast general events such as the start
of seasonal green up (Gerst et al., 2021). However,
phenometric-focused forecast models may not always be
useful for all management agencies. Public health depart-
ments may need a weekly forecast of mosquito abun-
dance to project mosquito-borne disease transmission
risk, likely needing a process-based population forecast
model that projects mosquito populations levels at larger
regional scales (i.e., across counties or entire states) for
specific time periods (Keyel et al., 2021). Developing fore-
cast models to address the breadth of stakeholder needs
across the diversity of species and habitats is thus not a
one-size-fits-all type of venture. To aid analytical choice,
we discuss the tools researchers have at their disposal
regarding developing descriptive models to enhance our
understanding of climate change and mosquito dynamics
and how to adapt those models to make probabilistic
forecasts.

Demography as phenology versus direct
modeling of phenometrics

Whether the forecasting goal is to predict a particular
demographic parameter, such as population growth rate
or a discrete phenometric, such as first, end, or peak
dates, it is important to recognize that the core biological
processes structuring population dynamics are inherently
hierarchical with overarching phenology and specific
phenometrics being descriptors of the seasonal popula-
tion dynamics, which are determined by population vital
rates (Iler et al., 2021; Ramula et al., 2015) (Figure 2A).
Not all analytical approaches are equally suited to
address the demographic and phenological aspects of
how mosquitoes will respond to changing climates. One
of the most frequently used approaches for evaluating
how abiotic factors, like temperature, influence demo-
graphic parameters is process-based population model-
ing. This approach is often viewed as the gold standard
when quantifying climate change effects on mosquito
populations and developing predictive models at local
scales (Drake et al., 2020). Process-based population
models integrate mathematical equations that represent a
theoretical understanding of population processes
(e.g., growth, survival, carrying capacity) and can capture
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the hierarchical structure and nonlinear patterns of sea-
sonal population dynamics. Parameters in the model
equations reflect current understanding of how biotic
and abiotic factors shape these population processes. This
allows researchers to directly test how different factors
such as temperature or precipitation shape demographic
parameters (i.e., growth rates or carrying capacity;
Figure 2C). For example, Marini et al. (2016) demon-
strated that Culex pipiens growth rates were largely
driven by changes in environmental temperature,
whereas carrying capacity was determined by pre-
cipitation patterns. One of the biggest strengths of
process-based models is that they provide mechanistic
insight into the specific factors that influence how and
when mosquito populations grow (Briscoe et al., 2022;
Munch et al., 2023). An added benefit of this approach is
that once fitted, any number of phenometrics, such as

first or last activity dates, can be easily estimated from
the fitted population trends (Edwards & Crone, 2021)
(Figure 2D,E). However, process-based approaches req-
uire large amounts of data, present challenges when esti-
mating numerous parameters (Bolker et al., 2013), and
thus often have high computational demand (Xia et al.,
2020). For example, a stage-structured demographic
model describing insect phenological shifts in response to
temperature change required 21 fitted parameters to be
estimated from laboratory experiments as inputs to the
model (Scranton & Amarasekare, 2017). Mechanistically
determining how a diverse group of mosquitoes respond
to climate change across space can, accordingly, be
challenging and time-consuming. If a primary goal is to
rapidly produce probabilistic forecasts, then initially
developing simple mechanistic models or utilizing alter-
native approaches may be more appropriate and effective

F I GURE 1 Integrating models of the biological processes with data to meet stakeholder needs (magenta area) requires an

understanding of the spatial and temporal scales of each process. Our ability to address these needs will determine what biological processes

to consider (blue area) and what data (gold area) are available to us. Effectively synchronizing across scales of these distinct aspects of the

forecasting problem is important for addressing rising mosquito risk with climate change.
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F I GURE 2 Utilizing a hierarchical modeling approach to develop predictive forecasting models can allow us to simultaneously make

inferences and forecasts related to both phenological and demographic processes. (A) By developing process-based models on hypothetical

mosquito capture per unit effort (CPUE) data (gray circles), we can obtain multiple derived quantities of interest such as seasonal population

trends (black line) and latent mosquito growth rates (blue dashed line; the gray area represents uncertainty in latent growth rates [λ]). We

can make various inferences from these derived quantities. (B) From a phenological perspective, we can statistically test the relationship

between relative temperature and the day of the year of first emergence, a derived quantity from the seasonal population trend. (C) From a

demographic perspective, we can assess the relative relationship between the latent growth rate and environmental temperature, an

important component of the climate sensitivity of mosquitoes. Building upon these inferences, we can expand to a forecast framework.

(D) From a phenological perspective, we estimate the likelihood of emergence based on forecasted weekly temperature. (E) From a

demographic perspective, we can estimate future mosquito abundance (dashed line; colored areas represent uncertainty at different

confidence levels) based on forecasted temperature and previous mosquito abundance data (solid line).
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in assessing the general impact of changing climate
across species and locations in a timely manner.

Alternatively, phenological sensitivities to changing
climate (i.e., changes in phenometrics such as first and
end dates) can be directly estimated by identifying
and quantifying the phenometrics of interest utilizing
available data (e.g., estimating annual date of first
sighting, or peak activity from weekly trap data), and
then build statistical models with climate-related
covariates to predict annual timing of these events
across years phenomenologically (Inouye et al., 2019).
This approach can generate predictions that are analo-
gous to the mechanistic approach we described above:
forecasts of relevant phenometics with associated
uncertainty while requiring less analytical and compu-
tational demand. Although raw data often show bias in
terms of observed first or peak events due to inconsi-
stent sampling effort over space and time (Schwob
et al., 2023), a range of parametric models (e.g.,
2nd-order polynomial regression; quantile regression;
Weibull models; Inouye et al., 2019) and non-parametric
(e.g., generalized additive models; Stemkovski et al.,
2020) have been used to harmonize disparate datasets
into unbiased phenometric estimators (Belitz et al.,
2020; Youngflesh et al., 2021). Some disadvantages of
these phenomenological approaches are that they are
descriptive rather than mechanistic and are not as
amenable to simultaneously using predictive validation
to learn about process components. For example, using
the phenomenological approach can demonstrate how
changing climates will influence timing of phenome-
trics only, but cannot determine the specific demo-
graphic patterns, such as growth rate, behind the shifts
in timing. The lack of mechanistic processes in
phenomenological approaches also limits our ability to
accurately develop forecasts for novel geographical
areas or species (Heilman et al., 2022; Taylor &
White, 2020). For addressing mosquito forecasting
goals, phenomenological approaches are best utilized
for assessing the variation in phenometrics across
space and taxa and determining the relative sensitivi-
ties of the timing of these metrics to shifts in abiotic
factors (Chmura et al., 2019; Inouye et al., 2019;
Figure 2A). The efficiency of this approach allows
researchers to derive phenometrics from a large combi-
nation of locations, species, and years, thus capturing
macroecological spatiotemporal-scale processes that
are important metrics of populations’ response to
changing climate (Figure 2D). Although this approach
has yet to be utilized widely for mosquitoes, it has been
applied in other systems to assess how different taxa’s
phenologies are responding to changing climates
(Hällfors et al., 2021; Youngflesh et al., 2021).

Data availability and structure

Regardless of the modeling approach, one of the primary
challenges in any forecast endeavor is determining the
volume, quality, and consistency of data needed for
model building, fitting, and inference. Ongoing efforts to
produce and publish widespread seasonal data on mos-
quito activity have greatly improved our ability to
develop better descriptive and predictive models of sea-
sonal mosquito activity at local and regional scales
(Whittaker et al., 2022). Efforts from organizations such
as the National Ecological Observatory Network
(Hoekman et al., 2016), VectorBase (Giraldo-Calder�on
et al., 2021), and the extensive, multi-decadal VectorSurv
and Iowa Mosquito Surveillance programs (Sucaet et al.,
2008) offer researchers the mosquito surveillance data
that are needed to address both local and macroscale
questions on mosquito sensitivities to changing climates
(Lippi et al., 2023). Additional online databases such as
VectorByte (https://www.vectorbyte.org) and VectorMap
(https://vectormap.si.edu) provide data on mosquito vec-
torial traits and blood meal analysis enabling inclusion of
disease transmission potential in forecast models. Data
collection at these broad scales often comes with limita-
tions that warrant consideration when deciding on
modeling approaches. For example, most monitoring pro-
grams record only adult mosquito activity, and data on
egg and/or larval abundances are often lacking, making
the development of a stage-structured demographic
model difficult. Furthermore, inconsistencies across data
collecting agencies in data format and associated meta-
data can introduce additional challenges in being able to
link disparate datasets to address macroscale questions
(Rund, Braak, et al., 2019; Rund, Moise, et al., 2019).
Even with compatible datasets, the sampling protocols
vary widely across most publicly available mosquito mon-
itoring programs (Engler et al., 2013; Pernat et al., 2021).
Differences include variation in the type of traps used,
when traps are set, trap deployment duration, type of
baits or lures used, and sampling processing techniques
including variation in taxonomical resolution (Pernat
et al., 2021). Analytical approaches would need to
account for these heterogenous sampling protocols
to produce robust, unbiased parameter estimates and
forecasts.

Generating forecasts also presents challenges when
utilizing environmental data to make predictions into
future states (Dietze et al., 2018; Yates et al., 2018).
Environmental data (e.g., temperature, moisture, precipi-
tation) are widely available and are useful covariates for
mosquito forecasting, as we discuss in subsequent sec-
tions. The temporal and spatial scales of such data
sources do not necessarily integrate seamlessly with each
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other or with the response data of interest (mosquitoes in
our case). The challenge to developing effective predictive
models is in synthesizing the relative importance of such
factors across scales and developing the corresponding
data requirements (Bütikofer et al., 2020). Including
temporally varying environmental covariates, such as
temperature or precipitation, in forecast models intro-
duces new sources uncertainty (Dietze et al., 2018).
Forecast models that project near-term mosquito dynam-
ics will need to include the forecasted changes in the
corresponding environmental covariates (i.e., expected
changes in weekly temperature), which will have its own
projected uncertainties. Reconciling data sources, scales,
and covariate uncertainties to meet the technical and
decision space needs of an ecological forecast will remain
an important and complex issue when building a forecast
model. Efforts to standardize the construction, use, and
forecasting outputs will foster better understanding
and comparison between forecasts (e.g., the Ecological
Forecasting Initiative; Dietze et al., 2023). Nonetheless,
building a forecast model will always require consider-
ation of complex data issues, much of which is beyond
the scope of this synthesis but common to many forecast
applications, to best serve accuracy and usefulness (Luo
et al., 2011; Petchey et al., 2015; Wander et al., 2024).

Challenges in forecasting uncertainties

Developing forecast models and approaches requires
embracing uncertainties. Forecast products that only pro-
duce predictions without associated uncertainties are of
limited value to most stakeholders and can reduce overall
trust if the forecast is perceived to perform poorly. The
quantification and representation of uncertainty not only
properly reflects our current understanding of the given
process of interest, but also helps to identify primary gaps
in our knowledge by quantifying the different sources of
uncertainty (Lewis et al., 2023). Uncertainty can arise
from numerous sources including variation inherent in
biological systems (i.e., mechanistic processes), data col-
lection, initial conditions, parameters, and covariate
uncertainties (Dietze et al., 2018). Each different analyti-
cal approach we have outlined will likely need to handle
different sources of uncertainty in distinct ways (Heilman
et al., 2022). For mechanistic models, one of the core
sources of uncertainty is process uncertainty, because to
construct these models we need to clearly define the bio-
logical mechanism or process in terms of form and
functional shape (Ward et al., 2014). This uncertainty
is further expanded when we attempt to utilize a
mechanistic-based model to forecast at novel spatial loca-
tions, or for additional species because a well-understood

biological process for a species at a given location is not
always compatible with a new species or location
(Heilman et al., 2022; Taylor & White, 2020). Capturing
this type of uncertainty would require careful consider-
ation regarding how we model the mechanistic pro-
cesses and how likely that process will vary across
species and sites. Phenology-focused forecasts using
phenemonological approaches that rely on derived
annual events (phenometrics) ideally would properly
handle parameter uncertainty as well as propagate the
uncertainties in the estimated derived products in
downstream analyses (Zylstra & Zipkin, 2021). Treating
the derived phenometrics as known quantities can
result in overconfidence in model prediction and infer-
ence, reducing the quality and performance of any
forecasting products (Youngflesh et al., 2021). Many ana-
lytical forecasting approaches will warrant the fusion of
multiple data sources to ensure that the empirical data
spans both the appropriate time scale and spatial extent
(Pau et al., 2011). This fusion of data sources presents the
analytical challenge of reconciling variation in measure-
ment procedures and data quality. Incorporating multiple
data sources often requires that forecasting models prop-
erly account for observation-level variation and uncer-
tainties (Heilman et al., 2022). By accounting for and
identifying the sources of uncertainty in our models, we
can begin to reduce the uncertainty of mosquito fore-
casts, resulting in more accurate and precise predictions
that can then be communicated properly to relevant
resource managers.

REDUCING COMPLEXITY
THROUGH A TRAIT-BASED
PERSPECTIVE

Trait-based approaches characterize organisms based on
their biological attributes such as variation in physiology,
morphology, and life history strategies and quantify how
those traits interact with environmental gradients to
influence fitness and interaction outcomes (Messier
et al., 2010) (Figure 3A,B). With over 3500 species world-
wide, even taxonomically similar mosquitoes vary greatly
in their traits, such as diet breadth, diurnal activity pat-
terns, and habitat specificity (Chandrasegaran et al.,
2020; Crans, 2004; Pratt, 1959). Trait-based approaches
can help reduce complexity in systems by collapsing spe-
cies identity into specific trait-based categories that can
explain and predict variation in biological performance
along environmental gradients, as opposed to taking a
species-by-species or population-by-population approach
(Crans, 2004). Utilizing a trait-based approach to facili-
tate forecasting and prediction has been well established
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in numerous disciplines and has been used at both local
and global scales (Green et al., 2022; Webb et al., 2010).
Recent efforts have utilized a multi-trait approach
to develop a predictive framework to understand how
changing temperatures will alter mosquito-borne
disease transmission and risk (Ryan et al., 2019;

Shocket et al., 2020). This work compiles numerous
temperature-sensitive vectorial capacity traits such as
biting rates and mosquito lifespan to generate predic-
tions of transmission rates under future climate scenar-
ios (Mordecai et al., 2019). Similar approaches have yet
to be developed to forecast mosquito population

F I GURE 3 Mosquito life history traits can strongly determine the variation in the timing of phenological events and shape seasonal

abundance patterns across species. These same traits can be used to predict how species’ phenology and seasonal population trends will

respond to future climate conditions. (A) Here, we present hypothetical examples of three mosquito species with distinct life histories and

physiological traits and their corresponding seasonal population dynamics. Species 1 (red solid line) is an obligate univoltine taxon that

relies on photoperiod to trigger exit from diapause and uses small containers as larval habitat. Species 2 (blue dashed line) is an obligate

multivoltine taxon that only uses inundation in water as a cue to exit diapause and uses a large breadth of freshwater bodies as larval

habitats. Species 3 (green dotted line) is a univoltine taxon that uses temperature as its primary cue to exit diapause, and uses containers as

larval habitats. (B) The three species have distinct phenologies and seasonal abundance patterns. Species 3 is an early-season mosquito,

typically with a single peak early in the season. Species 2 is more variable in its emergence date and has two peaks during a given year due

to its multivoltine life history strategies. Species 1 is consistently a midseason species with a single peak during the middle of the season.

(C) The variation in these mosquito taxa’s emergence date can largely be attributed to specific abiotic cues used to exit diapause. Species

1 (red) uses only photoperiod to exit diapause, so we would expect little variation or directional shift in its emergence date. Species 2 (blue)

uses flooding to exit diapause, and although the unidirectional shift is limited, we might expect high variation in emergence date as

precipitation patterns become more variable under future climate scenarios. Species 3 (green) relies on temperature to exit diapause, and

with expected general warming, we would expect earlier emergence dates for these taxa. Each point represents a hypothetical annual

emergence date relative to a baseline date. (D) By extracting the temperature dependency of each species’ relative growth rate, we can

further assess when we expect to see relative changes in growth for each species across a season. By combining a trait-based approach with a

forecasting framework, we can simultaneously improve our understanding of the mechanisms driving variation in mosquito sensitivities to

changing climates while developing an informative predictive model.
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dynamics and phenology under changing climates.
Before we can incorporate a trait-based framework into
forecast models of mosquito population dynamics and
phenology we need to clearly define what are the rele-
vant biological traits. Then, we will be able to synthe-
size the relationship between these trait values and
their effects on mosquito responses to changing cli-
mate. Leveraging a focused trait-based approach in
conjunction with seasonal trapping data, which are
both readily available from public data sources, can
improve our ability to develop flexible, multi-scale
mosquito forecasts under climate change through
increased data coverage and simplified generalized
modeling approaches.

In the following sections, we highlight four primary
life history and physiological traits that are expected to
be sensitive to changing climate, and propose how they
are likely to drive changes in vital rates and phenological
response to altered climates: (1) Cues used to enter into
and exit diapause, (2) thermal performances of demo-
graphic rates, (3) larval developmental habitats, and
(4) the number of generations per year (voltinism).
Although these four characteristics will not fully charac-
terize how life history and physiological variation shape
sensitivities to climate change, they capture major axes of
variation across mosquito taxa (Crans, 2004). By explor-
ing the variation across these four traits we establish how
to best incorporate trait-based generalization into fore-
casting frameworks to enable generalizable predictions
across scales (Figure 3).

Diapause

Diapause is an evolved life history strategy found in
many invertebrates to temporarily pause or slow down
development due to suboptimal environmental condi-
tions (Ragland et al., 2019). Many mosquito taxa diapause
through winter or dry seasons (Denlinger & Armbruster,
2014). These taxa often require specific combinations of
abiotic cues to trigger both the entry to and exit from dia-
pause, which can, in turn, determine the mosquito spe-
cies’ relative sensitivities to changing climates. Variation
in these abiotic cues can alter the timing of particular
phenometrics such as emergence, senescence, and dura-
tion of activity (Armbruster, 2016; Peffers et al., 2021).
One of the primary abiotic cues used across multiple taxa
is photoperiod (Denlinger & Armbruster, 2014). The sea-
sonal variation in photoperiod or daylight is fixed at a
given latitude and is thus a reliable cue of the onset of
more favorable environments with longer day lengths
occurring in the warmer months. Since photoperiod
alone cannot fully predict the specific timing of favorable

climates, many taxa utilize or require secondary cues
such as hydrological dynamics or the accumulation of
warmer ambient temperatures (Armbruster, 2016). For
example, numerous taxa in the genus Aedes undergo dia-
pause as desiccation-resistant eggs on dried banks and
require repeated inundation from water as the primary
cue to exit diapause and begin development (Khatchikian
et al., 2010; Sota & Mogi, 1992). Thus, for these taxa,
water availability is a necessary factor that determines
the start of the developmental period. Variation in the
timing of inundation due to climatic factors such as
drought, snowmelt, and or water release patterns will
largely determine the end of diapause. Alterations in
these factors can result in shifts in the specific timing of
mosquito emergence (i.e., shifting mosquito emergence
phenology; Lega et al., 2017). Coupled with inundation
in water, seasonal temperature patterns can be a primary
or secondary factor in determining the specific time that
mosquitoes enter or exit diapause. Mosquito taxa often
utilize a combination of different abiotic cues to ensure
they do not enter or exit diapause too early or late (Lega
et al., 2017). For instance, exiting diapause when inun-
dated with water often requires temperatures to be above
a particular threshold to ensure suitable temperature for
larval development (Vinogradova, 2007). Temperature
can further be a primary trigger to enter diapause if there
are prolonged periods of cold days and/or persistently
decreasing air temperatures (Mushegian et al., 2021).
Because diapause largely controls the timing of emer-
gence and senescence of mosquito taxa, incorporating the
specific environmental cue used by mosquito taxa into
forecast models, we can begin to predict the likely change
in these phenometrics based on estimated shifts in the
associated environmental variables (Figure 3C).

Thermal response

As mosquitoes are ectothermic, all species and develop-
mental stages are highly sensitive to the ambient temper-
ature in their environment (Angilletta et al., 2004; Huey
& Kingsolver, 2019; Mushegian et al., 2021) through ther-
mally dependent vital rates and thermal thresholds for
survival. Mosquito vital rates such as reproduction, devel-
opment, emergence, and mortality often respond
nonlinearly to thermal changes with an optimal tempera-
ture range spanning between 25 and 30�C (El Moustaid
& Johnson, 2019; Shapiro et al., 2017). Specific mosquito
population responses to temperature are thus the result
of integrated thermal performance over multiple axes
of life history traits each with a potentially unique
thermal-dependent response (Mordecai et al., 2019;
Sternberg & Thomas, 2014). The specific response to
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warmer seasonal temperatures depends on how the
changing temperature, including mean and variability,
corresponds to the species’ particular thermal perfor-
mance curves (Mordecai et al., 2019). By coupling
species-specific thermal performance profiles and
location-specific forecasted temperature changes, we
can derive forecasts of population dynamics and phe-
nology for various mosquito species under future tem-
perature profiles (Wagner et al., 2023; Figure 3D).
Utilizing these biophysical models is a powerful tool in
developing mechanistically based forecasts for how
species will respond to changing temperatures (Briscoe
et al., 2022). However, as stated above, the response of
a mosquito species to altered temperatures will be an
aggregate of numerous thermally sensitive demographic
rates (i.e., egg laying, development, and mortality), mak-
ing specific predictions regarding population abundance
nontrivial. To add further complexities, the magnitude of
the daily fluctuation in temperature can have strong
effects on mosquito population dynamics (Bernhardt
et al., 2018; Lambrechts et al., 2011; Paaijmans et al.,
2013) as well as the underlying alteration to the ph-
enological patterns (Scranton & Amarasekare, 2017).
Secondary abiotic and biotic factors such as humidity
(Brown et al., 2023) and food availability and larval com-
petition (Huxley et al., 2021) can further influence the
mosquito thermal response curves. Nevertheless, varia-
tion in the relationship between mosquito growth rates
and temperature can provide initial insight into which
taxa are likely to experience favorable future environ-
ments and how thermal changes are likely to affect
resulting population dynamics and phenology.

Larval developmental habitat
requirements

Developing mosquito larvae require aquatic habitats to
complete development and emerge as adults. Mosquito
larvae occupy a diverse array of habitats ranging from
small containers such as tree holes to lentic and lotic wet-
lands to coastal marshes (Getachew et al., 2020). Habitat
type will influence how changing climate may affect mos-
quito larval development and survival rates. For instance,
mosquito species that rely on ephemeral breeding habi-
tats such as containers or tree holes may be more sensi-
tive to the timing and intensity of precipitation events
(Townroe & Callaghan, 2014). Frequent rain events can
provide longer developmental and adult activity periods
(Lega et al., 2017; Rochlin et al., 2013), whereas infre-
quent or highly aggregated rain events can limit the tem-
poral availability of larval habitats constricting the adult
activity period (Valdez et al., 2017). Mosquito taxa that

rely on larger aquatic habitats with long hydroperiods
might be more sensitive to changes in longer-term trends
in precipitation, such as longer periods of drought, that
may shape both the number and types of available breed-
ing habitats (Wellborn et al., 1996). Alternatively, periods
of high water availability can result in ephemeral and
semipermanent wetlands habitats, which support a high
density of competitors and predators of mosquito larvae
such as other Dipteran larvae, zooplankton, additional
mosquito species larvae, dragonfly naiads, and preda-
cious beetles (Chase & Knight, 2003). Competition and
predation can reduce survival and alter the development
time and abundance of mosquito larvae (Chase &
Knight, 2003; DeSiervo et al., 2021). Collectively, these
factors can influence mosquito phenology by altering the
timing of peak emergence and the relative symmetry of
the seasonal population patterns.

Finally, the volume, persistence, and source of water
can greatly affect how sensitive mosquitoes are to chang-
ing ambient temperature (Afrane et al., 2012; Kweka
et al., 2016). For instance, large spring-fed pools in
shaded forests may have a less variable thermal profile
across the season, whereas, small pockets of water in an
urban landscape are likely to experience high tempera-
ture fluctuations (Munga et al., 2007). This contrasting
thermal regime has consequences for larval development
rates such as growth and survival, resulting in differing
patterns of emergence and phenology even if the two
habitats experience the same seasonal temperature pat-
tern (Munga et al., 2009). Thus, mosquito taxa that utilize
smaller breeding sites across diverse environments might
be more responsive to warmer temperatures than taxa
that inhabit larger aquatic habitats.

Voltinism

Voltinism or the number of generations per year has
been identified as an important trait in determining how
insect taxa respond to changing climates (Stoeckli
et al., 2012; Tobin et al., 2008). Mosquito species and/or
populations can either be univoltine (single generation
per year) or multivoltine (multiple generations per year).
Both types of voltinism can have their own unique associ-
ated climate sensitivities. For multivoltine taxa, warmer
late-season weather may result in a more successful sec-
ond generation, resulting in higher overall abundance
and a more prolonged seasonal activity period for these
taxa (Tobin et al., 2008). Multivoltine taxa can utilize dis-
tinct cues to trigger egg hatching for the initial generation
(i.e., flooding events or temperature change) and use
secondary cures for corresponding additional genera-
tions (i.e., photoperiod or temperature), necessitating
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conditional approaches to assess abiotic drivers of
population dynamics and resulting phenology in these
species (Kong et al., 2019). Although some univoltine
mosquitoes are obligate single generation taxa, others
have a more plastic response and use a combination of
temperature and photoperiod to guide diapause and initi-
ation of a potential second generation (Crans, 2004).
With overall increases in the length in the growing sea-
son it is likely to become more beneficial for plastic
univoltine mosquitoes to have a second generation under
favorable late season conditions. Shifting from a primar-
ily univoltine to multivoltine population will have impor-
tant implications for overall mosquito abundance and
total duration of seasonal activity patterns for these spe-
cies. Understanding both the intrinsic and extrinsic fac-
tors that drive when and where mosquitoes shift to more
multivoltine life history strategies represents an impor-
tant research avenue that could improve our ability to
forecast mosquito population dynamics and phenology
under changing climates.

CONCLUSIONS AND FUTURE
EXPANSIONS

Over the past century, there has been a massive scientific
effort to explore and characterize the abiotic factors shap-
ing mosquito populations. This effort has led to a wealth
of knowledge and data (Iwamura et al., 2020; Mordecai
et al., 2019; Whittaker et al., 2022). We are currently in the
position to improve our forecast accuracy by synthesizing
this past work to develop forecasting models that can
produce a diversity of predictions ranging from
phenological-based estimates, such as first emergence
dates, to population dynamic-based predictions of
near-term population growth rate. These forecasting
advances will be an indispensable tool in combating
emerging mosquito-borne disease threats and will pro-
vide a better understanding of how climate change is
shaping the ecology of vector-borne disease systems.
Our road map only captures the beginning steps to
building accurate and useful forecasts. As such, we
expect the gradual introduction of more complex and
intricate ecological and biological processes into fore-
casting models, improving the accuracy and scope of
our forecasting capabilities.

We further suggest that the four life history strategies
and the specific traits described herein capture a useful
cross-section of the broad variation in how mosquitoes
are likely to respond to changing climates. Incorporating
these strategies and traits into various modeling
approaches may allow for the development of a more
general forecasting framework. However, this list is not

exhaustive and other traits may have particular
importance for different species, regions, or for other
aspects of mosquito biology (i.e., host specificity). For
example, if warming temperatures influence phenological
shifts of an important disease vector, more information
about mosquito blood meal host composition and feeding
behavior would be needed to fully assess the effects of the
shifting phenology on pathogen transmission. Changes in
the vectorial capacity (either through shifts in the experi-
enced temperature profile or shifts in the interaction
strength of different hosts) can have implications for dis-
ease transmission (Wagner et al., 2023). Thus, trait-based
approaches could be a major research avenue to enhance
both predictions of under-sampled taxa and predict eco-
logical implications of shifting phenology, particularly for
mosquito-borne diseases.

One aspect that we did not fully address in this syn-
thesis is the geographical range expansions of taxa into
novel areas with the changing climate (Rochlin et al.,
2013; Ryan et al., 2019). Although the approaches
described can provide insight into identifying novel geo-
graphical areas of suitable habitat, forecasting range
expansions requires incorporating additional processes
such as rates of spatial spread and factors driving the
establishment of a new population (Hill et al., 2011;
Leroux et al., 2013). Range expansions and taxa’s pheno-
logical sensitivities can have critical interactions that can
shape the rate of geographical spread and resultant phe-
nology patterns in the novel area (Macgregor et al., 2019;
Shuert et al., 2022). For example, taxa that exhibit strong
phenological plasticity may be better adapted to track
favorable climates, which may result in greater rates of
geographic range expansion (Macgregor et al., 2019);
however, the generality of this pattern is still debated
(refer to Zettlemoyer & Peterson, 2021). Currently few
studies have simultaneously assessed how variation in
the phenological sensitivities of mosquito taxa can deter-
mine the rate of range expansion and how mosquito phe-
nological patterns change when populations colonize
novel geographical areas (Bartlow et al., 2019).
Understanding these complex spatiotemporal dynamics
of mosquito populations, especially at the front of range
expansion, would be a highly valuable tool in not only
predicting where these taxa are likely to be under future
climate scenarios but also forecasting the seasonal pat-
terns of vector-borne risk in novel habitats (Chuine,
2010). Incorporating spatiotemporal dynamics is highly
complex both from a conceptual and computational per-
spective (Eshel, 2011), and is currently an active area of
research for numerous large forecasting projects (Hefley
et al., 2017; Peng et al., 2020; Williams et al., 2018).

An important assumption behind forecasting models
is that the relationship between climate and focal species
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response (i.e., phenology or population dynamics) is static
in time and does not differ across populations (DeMarche
et al., 2019). This assumption ignores the critical role local
adaptation and phenotypic plasticity play in both shaping
the focal taxa relationship to the climate variable, and per-
haps more importantly how these taxa are likely to
respond to novel climates (Zettlemoyer & Peterson, 2021).
For mosquito taxa, it is likely that local adaptation plays a
critical role in how species respond to changing climate
(Bennett et al., 2021; Couper et al., 2021), specifically
temperature (Sternberg & Thomas, 2014). This variation
in local thermal adaptation may result in disparate
responses to general warming across populations that
span a large latitudinal or elevational gradient, with
response to warming temperatures diverging between
cool- and warm-adapted populations of the same species
(Atkins & Travis, 2010). Furthermore, properly under-
standing the role local adaptation plays in shaping the
response to climate change could be of critical impor-
tance in forecasting species that are expanding their geo-
graphical range (Dennington et al., 2024). Taxa at the
peripheral versus core of the range will likely vary in
their adaptation to their local abiotic factors. The inclu-
sion of local adaptation in ecological forecasting models
could simultaneously improve our ability to identify
climate-sensitive species and populations while produc-
ing more accurate forecasts.

Developing accurate forecasts of mosquito population
dynamics will fundamentally be an iterative process.
Models will constantly need to be evaluated for accuracy in
their prediction and modified, as new information and data
become readily available. Furthermore, the development of
numerous models that vary in scale, form, complexity, and
variables used to produce forecasts would be beneficial. The
wider the net we cast the more likely we will identify which
processes are more important in predicting mosquito abun-
dance and what techniques are best adapted to handling
the data that are available. Finally, we argue that with this
wide-net approach, researchers can help by ensuring their
analyses are as clear and open as possible, allowing for the
ability to seamlessly build upon their work. By utilizing the
roadmap presented, researchers can meet the challenge of
providing resource managers with the tools needed to com-
bat rising threats of shifts in mosquito populations in
response to changing climates.
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