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Abstract—Local differential privacy is a powerful method for
privacy-preserving data collection. In this paper, we develop
a framework for training Generative Adversarial Networks
(GANs) on differentially privatized data. We show that entropic
regularization of optimal transport – a popular regularization
method in the literature that has often been leveraged for its
computational benefits – enables the generator to learn the raw
(unprivatized) data distribution even though it only has access
to privatized samples. We prove that at the same time this leads
to fast statistical convergence at the parametric rate. This shows
that entropic regularization of optimal transport uniquely enables
the mitigation of both the effects of privatization noise and the
curse of dimensionality in statistical convergence. We provide
experimental evidence to support the efficacy of our framework
in practice.

Index Terms—Privacy, GANs, entropic optimal transport.

I. INTRODUCTION

LOCAL differential privacy (LDP) [1], [2] has emerged
as a popular criterion to provide privacy guarantees on

individuals’ personal data and has been recently deployed by
major technology organizations for privacy-preserving data
collection from peripheral devices. In this framework, the
user data is locally randomized (e.g., by the addition of
noise) before it is transferred to the data curator, so the
privacy guarantee does not rely on a trusted centralized server.
Mathematically provable guarantees on the randomization
mechanism ensure that any adversary that gets access to
the privatized data will be unable to learn too much about
the user’s personal information. This directly alleviates many
of the systematic privacy and security challenges associated
with traditional data collection. Learning from privatized data,
however, requires rethinking machine learning methods to
extract accurate and useful population-level models from the
privatized (noisy) data.

In this paper, we consider the problem of training generative
models from locally privatized user data. In recent years,
deep-learning-based generative models, known as Generative
Adversarial Networks (GANs), have become a popular frame-
work for learning data distributions and sampling, and have
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achieved impressive results in various domains [3], [4], [5].
GANs aim to learn a mapping G(·), called the generator, which
comes from a set of functions G ⊆ {G : Z → X } usually
modeled as a neural network, and maps a latent random
variable Z ∈ Z with some known simple distribution to a
random variable G(Z) ∈ X , with distribution PG(Z) that is
close to the target probability measure PX . For example, by
using the popular p-Wasserstein distance as a discrepancy
measure between the generated and target distributions the
GAN optimization problem becomes,

min
G∈G

Wp
p

(
PG(Z), PX

)
. (1)

In practice, the target distribution PX is represented by its
samples {Xi}ni=1 ∼ P⊗n

X and the optimization problem is solved
by replacing PX in (1) with the empirical distribution Qn

X of
the samples, i.e.,

min
G∈G

Wp
p

(
PG(Z), Qn

X

)
. (2)

How can we use the GAN framework above to learn
a generative model for PX when we have only access to
samples {Yi = M(Xi)}ni=1 privatized by an LDP mechanism
M : X → Y? For example, Yi can represent a privatized image
obtained from Xi by adding sufficient Gaussian or Laplace
noise independently to each pixel. Simply replacing the target
distribution PX in (1) with the empirical distribution Qn

Y of the
privatized samples,

min
G∈G

Wp
p

(
PG(Z), Qn

Y

)
, (3)

will result in a generative model for PY = M#PX , the
push-forward distribution of PX through the privatization
mechanism M, rather than the original distribution PX . In other
words, we will learn to generate the privatized data (e.g., noisy
images) instead of learning to generate the original (raw) data.

In this paper, we show that a simple but non-intuitive
modification of the objective in (3) – the addition of an
entropic regularization term – allows one to provably learn
the original distribution PX from the privatized samples Yi

under de-facto privatization mechanisms such as the Laplace
or Gaussian mechanism, i.e., PGn(Z) → PX for the minimizer
Gn of the entropically regularized version of (3) provided
that the generator class G is expressive enough to generate
PX . More generally, we show that the original distribution
PX can be recovered under any privatization mechanism M

by entropic regularization of optimal transport with a suitably
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chosen cost function given by the negative log-likelihood
of the privatization mechanism. Note that the fact that we
can learn the population distribution PX from which the
original samples have been generated does not imply that we
can learn the original samples Xi, (i.e., somehow “denoise”
the observed privatized samples Yi), and indeed the post-
processing property of DP ensures that the DP guarantee on
the samples Yi translates to the learned model Gn as well as
any new samples generated from this model.

Entropic regularization for Optimal Transport GANs has
been of significant interest in the prior literature, albeit for dif-
ferent reasons. Historically, it has been leveraged primarily for
its computational benefits, enabling an efficient approximation
of the optimal transport problem [6]. More recently, [7] (also
see [8] and [9]) has shown that it facilitates rapid convergence
of GANs and circumvents the curse of dimensionality. In
particular, without regularization the solution of the empirical
problem in (2) converges to the solution of population problem
in (1) as �(n−2/d), where d is the dimension of the target
distribution (PX), while [7] shows that for p = 2 entropic regu-
larization enables convergence at the parametric rate O(1/

√
n).

In this paper, we prove similar convergence guarantees for
the privatized setting for both p = 1 and p = 2. In the
non-privatized setting of [7] entropic regularization of (1) is
needed to facilitate convergence albeit introducing undesirable
regularization bias that changes the solution (i.e., the generated
distribution does not converge to the target distribution PX).
In the privatized setting, we show that entropic regularization
has the unique advantage of both mitigating the effects of
privatization noise and facilitating convergence. Therefore, our
framework can be potentially useful even in the unprivatized
setting as a way of facilitating convergence without biasing
the solution. The contributions of our paper are summarized
as follows:
• LDP Framework for Optimal Transport GANs: We

propose a novel framework for training GANs from
differentially privatized data based on entropic regular-
ization of Optimal Transport. Previous approaches to
privatization in GANs exclusively focus on privatizing the
training process, for example, by using DP-SGD methods.
In contrast, in our framework, privatization occurs exclu-
sively at the data level and hence it is particularly suitable
for user-generated data, e.g., federated learning, where
each user can locally privatize its data before sending it
to the service provider or data collector. The training of
the model from privatized samples is indistinguishable
from training a non-privatized GAN (with entropic regu-
larization), which enables the immediate use of existing
entropic optimal transport libraries.

• Sample Complexity Bounds: We prove convergence guar-
antees for our LDP framework with entropic optimal
transport, including the convergence results for Laplace
and Gaussian privatization mechanisms. These results
show that entropic regularization uniquely mitigates both
the effects of privatization noise and the curse of dimen-
sionality and provides a clear understanding of the
trade-offs involved between privacy, accuracy, and the
volume of data. In the non-privatization setting, previous

convergence results have been limited to the entropic
2-Wasserstein distance setting.

• Empirical Validation: We supplement our theoretical
contributions with a comprehensive set of experiments
designed to validate our claims. These experiments
demonstrate the efficacy of our approach in practical
scenarios and provide empirical evidence of the superior
performance of our method.

A. Connection to Rate-Distortion Theory

In this section, we illustrate how the main idea of our paper
is inherently connected to rate-distortion theory. Consider the
special case of (3) for p = 2 with the empirical distribution
Qn

Y of the privatized samples replaced by their true distribution
PY = M#PX , in which case we can explicitly write it as (see
also (6):

min
G∈G

inf
π∈�(PG(Z),PY)

E(G(Z),Y)∼π

[
‖G(Z)− Y‖2

]
,

where π ∈ �(PG(Z), PY) represents the set of all joint
distributions on X × Y with marginals PG(Z) and PY . The
entropic regularization we advocate in this paper transforms
this problem to the following problem (see also (8)):

min
G∈G

inf
π∈�(PG(Z),PY)

{
E(G(Z),Y)∼π

[
‖G(Z)− Y‖2

]

+λIπ (G(Z), Y)

}
, (4)

where Iπ (G(Z), Y) is the mutual information between G(Z)

and Y as dictated by the joint distribution π and λ ∈ R is
the regularization parameter that we can choose. Assuming the
set of functions G is rich enough to generate any distribution
PG(Z) on X (we relax this condition and make it more precise
in Theorem 1) and relabeling PG(Z) = P

X̂
for simplicity, we

can rewrite (4) as:

inf
P

X̂|Y
E

[
‖X̂ − Y‖2

]
+ λI

(
X̂, Y

)
.

One can recognize this as the Lagrangian form of the following
rate-distortion problem under mean-squared error:

inf
P

X̂|Y :E
[
‖X̂−Y‖2

]
≤D

I
(

X̂, Y
)
,

where Y can be interpreted as the source variable and X̂

as its reconstruction. For general PY , there is no explicit
characterization of the solution of this problem. Our paper
leverages the observation that this problem is easy to solve
in one special case: when Y = X + N, for arbitrary X ∼ PX

and N ∼ N (0, D) independent of X. In this case, the optimal
conditional distribution P

X̂|Y (or equivalently the test channel
P

Y|X̂) is such that

Y = X̂ +W, X̂ ∼ PX, W ∼ N (0, D).

This can be observed from the standard characterization of
the rate-distortion function for a Gaussian source under mean-
squared error; see proof of [10, Th. 10.3.2] or see Theorem 1
where we prove a more general result. Note that this implies
that the reconstruction X̂ of Y has distribution PX which
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corresponds to the unprivatized distribution in our setting. Note
that this conclusion holds only if the desired compression rate
D matches the distribution of the Gaussian component N ∼
N (0, D) of Y . This corresponds to a specific choice of the
regularization parameter λ in our framework in (4).

B. Related Work

Estimation, inference, and learning problems under local
differential privacy (LDP) constraints have been of significant
interest in the recent literature with emphasis on two canonical
tasks: discrete distribution and mean estimation [11], [12],
[13], [14], [15], [16], [17]. However, insights from these
solutions do not extend to training generative models with
high-dimensional data under LDP constraints. The understand-
ing of learning problems under LDP constraints is relatively
limited, and even less so in the non-interactive setting when
the data is accessed only once as in our setting, in which case
training can be exponentially harder as shown in [2], [16].

The exploration of differentially private learning in gen-
erative models has primarily been focused on introducing
privacy during the training phase, e.g., by adding noise to
the gradients during training [18], [19], [20], [21]. However,
noisy gradients can amplify inherent instability during GANs’
training process [22], [23]. These methods can be applied in a
federated learning setting by locally privatizing the gradients at
each user and transmitting them to the server at every iteration
of the learning algorithm [24]. However, this leads to a large
communication overhead. In contrast, there is only one round
of communication in our LDP setting; users send their locally
privatized data to the server. The training of the GAN from
this privatized data is effectively indistinguishable from the
non-private case.

Entropic regularization of optimal transport has been ini-
tially proposed as a computationally efficient approximation of
optimal transport [6], [25]. Subsequently, [8], [26] have shown
statistical convergence benefits of entropic regularization when
estimating optimal transport from empirical samples. More
recently, [7] have shown that these statistical benefits extend
to the entropic 2-Wasserstein GAN setting, where both the
generated distribution and the target distribution depend on the
empirical samples. We extend those results to the privatized
setting, showing fast convergence in both the entropic 1- and
2-Wasserstein GAN settings.

II. BACKGROUND AND PROBLEM SETUP

To formally state the problem, we first introduce the
necessary concepts of privacy.

A. Local Differential Privacy

A local randomizer A : X → Z acting on the data domain
X satisfies ε-LDP for ε ≥ 0 if for any S ⊆ Z and for any pair
of inputs x, x′ ∈ X , it holds that

P(A(x) ∈ S) ≤ eεP
(
A
(
x′
)
∈ S
)

LDP ensures that the input to A cannot be accurately inferred
from its output. To achieve LDP, one common approach is via
the following Laplace mechanism.

Laplace Mechanism [1]: For any ε > 0 and any function
f : X → R

k such that ‖f (x)− f (x′)‖1 ≤ � for any x, x′ ∈ X ,

the randomized mechanism A(x) = f (x) + (s1, . . . , sk) with
si ∼ Laplace(0,�/ε) independent of sj, j 
= i satisfies ε-DP
and is called the Laplace Mechanism. We will call ε/� the
noise scale of the mechanism (also called noise multiplier).
Oftentimes, in ML applications, the (pure) LDP constraint may
be too stringent, so the following relaxation on pure LDP is
often adopted.

Approximate Local Differential Privacy: A local random-
ized algorithm A : X → Z acting on the data domain X

satisfies (ε, δ)-(approximate) LDP for ε ≥ 0, δ ∈ (0, 1), if for
any S ⊆ Z and for any pair of inputs x, x′ ∈ X , it holds that

P(A(x) ∈ S) ≤ eεP
(
A
(
x′
)
∈ S
)
+ δ

(ε, δ)-LDP is very similar to pure LDP, but it allows the
privacy requirement to be violated with (small) probability δ.
One of the most versatile mechanisms to achieve (ε, δ)-DP is
the following Gaussian Mechanism.

Gaussian Mechanism [27], [28]: For any ε > 0, δ ∈
(0, 0.5), and any function f : X → R

k such that ‖f (x) −
f (x′)‖2 ≤ � for any x, x′ ∈ X , the randomized mechanism
A(x) = f (x) + (s1, . . . , sk) with si ∼ N (0, σ 2) independent
of sj, j 
= i is called the Gaussian Mechanism and satisfies
(ε, δ)-DP if

σ >
c+

√
c2 + ε

ε
√

2
�, where c2 = ln

2√
16δ + 1− 1

. (5)

Similar to the Laplace mechanism, we will call σ the noise
scale of the Gaussian mechanism.

B. Optimal Transport GANs

Optimal Transport GANs minimize the distance between
the target and generated distributions. Contrary to the Jensen-
Shannon divergence, which was first introduced as a loss
function for generative models, and many other popular
distances on probability measures (total variation distance,
KL-divergences), optimal transport (OT) is defined through
a cost function in the sample space and thus is meaningful
for distributions with non-overlapping supports. Moreover, for
certain costs, OT defines a distance between distributions
and metrizes weak convergence on distributions with finite
moments.

Optimal Transport: Let c : U × V → R+ be a cost
function taking non-negative values and P(U) be the set of all
probability measures with support U ⊆ R

d. Then for U ,V ⊆
R

d and PU ∈ P(U), PV ∈ P(V), two probability measures on
U ,V respectively, the Optimal Transport between PU and PV

is

OTc(PU, PV) = inf
π∈�(PU ,PV )

E(U,V)∼π [c(U, V)],

where �(PU, PV) = {π ∈ P(U × V):
∫
V

π(u, v)dv =
PU(U),

∫
U

π(u, v)du = PV(v)} is the set of all couplings of
PU and PV , i.e., all joint probability measures with marginal
distributions PU and PV .
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p-Wasserstein distance: When the cost is c(x, y) = ‖x −
y‖p

p the optimal transport becomes the p-Wasserstein distance
between PU, PV (raised to power p):

Wp
p (PU, PV) = inf

π∈�(PU ,PV )
E(U,V)∼π

[
‖U − V‖p

p

]
. (6)

Optimal Transport GAN: The main objective of GANs is
to find a mapping G(·), called a generator, that comes from
a set of functions G ⊆ {G : Z → X } (usually modeled as a
neural network) and maps a latent random variable Z ∈ Z

with some known distribution to a variable X ∈ X with some
target probability measure PX approximated by the empirical
distribution Qn

X of n samples {Xi}ni=1 ∼ P⊗n
X . Using the optimal

transport to measure the dissimilarity between the generated
PG(Z) and target distribution leads to the following learning
problem of GAN:

min
G∈G

OTc

(
PG(Z), Qn

X

)
. (7)

Note that when the cost function is a distance raised to power
p as in (1) and (2), the GAN is also known as p-Wasserstein
GAN [29], [30].

Entropic Optimal Transport GAN: Solving the formulation
in (7) involves solving for the optimal transport plan π – a joint
distribution over the real and generated sample spaces, which
is a difficult optimization problem with very slow convergence.
Adding entropic regularization to the objective makes the
problem strongly convex and thus solvable in linear time [25].

Formally, the entropy-regularized optimal transport, also
known as Sinkhorn distance [6], is defined as

Sc(PU, PV) = inf
π∈�(PU,PV )

E(U,V)∼π [c(U, V)]+ Iπ (U, V),

where Iπ (U, V) =
∫

log
(

dπ(u,v)
dPU(u)dPY (V)

)
dπ(u, v) is the mutual

information between U and V under the coupling π. In case
c(x, y) = ‖x − y‖p

p/λ, the Sinkhorn distance is proportional
to the entropy-regularized Wasserstein distance

λSc(PU, PV ) = Wp,λ(PU, PV )

= inf
π∈�(PU ,PV )

E(U,V)∼π

[
‖U − V‖p

p

]
+ λIπ (U, V), (8)

The objective of an entropic optimal transport GAN is the
entropy-regularized optimal transport between the generated
distribution G#PZ = PG(Z) for some latent noise Z and the
empirical approximation Qn

X of the target distribution:

min
G∈G

Sc

(
PG(Z), Qn

X

)

and the objective of an entropic p-Wasserstein GAN is

min
G∈G

Wp,λ

(
PG(Z), Qn

X

)
. (9)

It is worth mentioning that both non-regularized and regular-
ized optimal transport formulations admit a dual formulation
with optimization over functions of the input random variables.
We note that the dual formulation for regularized optimal
transport is unconstrained and hence easier to use, while the
constraints for the unregularized counterpart are usually harder
to enforce (e.g., Lipschitzness [29] or convexity [30]).

C. Optimal Transport GANs With LDP Data

Let M : X → Y be a randomized privacy-preserving
mechanism: Y = M(x) ∼ PM(y|x). For example, PM(X)|X(y|x)
can be the Laplace pdf at y − x for the Laplace mechanism
or the Gaussian pdf at y− x for the Gaussian mechanism. Let
PY = M#PX denote the distribution of Y , i.e., the push-forward
distribution of PX through the privatization mechanism M.
The goal of learning a GAN from privatized samples is to
reconstruct G(Z) ≈ X in distribution from a sample S =
{Y}ni=1 ∼ P

⊗
n

Y with empirical distribution Qn
Y = 1

n

∑n
i=1 δYi .

III. MAIN RESULTS

First, we focus on the population setting where the dis-
tribution of the privatized samples PY is known and show
that by tailoring the cost function for optimal transport to the
privatization mechanism M, the GAN learning problem with
entropic optimal transport can recover the raw data distribution
PX .

Theorem 1: Let X ∼ PX and Y = M(X) ∼ PM(X)|X(·|X).

Assume that the privatisation mechanism M and the set of
generator functions G is such that for any G ∈ G,

DKL

(
PX‖PG(Z)

)
> 0 =⇒ DKL

(
PM(X)‖PM(G(Z))

)
> 0. (10)

Let c(x, y) = − log PM(X)|X(y|x) and

G∗ = arg min
G∈G

Sc

(
PG(Z), PY

)
. (11)

If PX ∈ {PG(Z)|G ∈ G}, i.e., PX is realizable with the set of
generator functions G, then PG∗(Z) = PX .

Proof: Fix some G ∈ G and assume that Y is a continuous
random variable. Denote P = �(PG(Z), PY), U = G(Z) Then
by the definition of mutual information:

Sc

(
PG(Z), PY

)
= inf

π∈P
E(U,Y)∼π

[
− log pM(Y|U)

]
+ Iπ (U, Y)

= inf
π∈P

∫ (
− log pM(y|u)+ log

π(u, y)

PU(u)PY (y)

)
π(u, y)dudy

Notice that the terms on the RHS can be rearranged into
the Kullback-Leibler divergence:

Sc

(
PG(Z), PY

)

= inf
π∈P

∫ (
− log(PY(y))+ log

πY|U(y|u)

pM(y|u)

)
π(u, y)dudy

= h(Y)+ inf
π∈P

EU∼PG(Z)
DKL

(
πY|U(·|U)‖pM(·|U)

)
(12)

The right-hand side is minimized when πY|U(y|u) = pM(y|u)

for any u ∈ supp(PG(Z)), y ∈ supp(PY), which is a fea-
sible coupling only if PM(G(Z)) = PY . By the realizability
assumption PY = PM(X) = PM(G∗(Z)), so PM(G(Z)) =
PY ⇐⇒ PM(G(Z)) = PM(G∗(Z), or equivalently
DKL(PM(G(Z))‖PM(G∗(Z)) = 0. In addition to that, (10)
implies that whenever the privatized distributions are equal
DKL(PM(G(Z))‖PM(G∗(Z)) = 0, it has to be that the orig-
inal data distributions are equal too, so we conclude that
DKL(PG(Z)‖PG∗(Z)) = 0, or equivalently PG(Z) = PG∗(Z) =
PX . The same set of equalities also holds in the case when Y

is discrete with differential entropy changing to entropy.
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The theorem indicates that the optimal solution to the GAN
optimization problem (11) generates the target distribution PX ,
assuming that the generator class G is expressive enough to
generate the target distribution. Note that the cost function in
the definition of the entropic optimal transport Sc(PG(Z), PY)

in (11) has to be chosen as c(x, y) = − log PM(X)|X(y|x) to
match the privatization mechanism M. Thus provided that
there are enough privatized samples, the generator will output
the raw target distribution. Assumption (10) ensures that
privatizing any generated distribution other than PX will result
in a distribution different from PY , or equivalently PX 
= PG(Z)

implies that PM(X) 
= PM(G(Z)), where the 
= is in terms of the
distribution functions.

This condition is needed to eliminate degenerate cases of
privatization mechanisms, for example M(X) = 0. Note that
if PM(X) = PM(G(Z)) and PG(Z) 
= PX, it is not possible
to differentiate between them since the learning framework
only has access to the privatized distribution. Moreover, we
note that the condition is satisfied for any additive noise
privatization mechanism provided that the noise characteristic
function is non-zero everywhere, which holds for Laplace and
Gaussian privatization mechanisms.

We next show that when the privatization mechanism is
given by the popular Laplace or the Gaussian mechanisms,
the entropic OT problem reduces to the entropic 1- and 2-
Wasserstein GAN problems respectively.

Corollary 1: Under the conditions of Theorem 1, if
supx∈X ‖x‖1 ≤ �1, p = 1, and Y = M(X) is the Laplace
mechanism with noise scale ε/�1, then training a GAN with
loss W1,ε/�1(PG(Z), PY) is ε-LDP, and recovers the target
distribution: PG∗(Z) = PX .

Corollary 2: Under the conditions of Theorem 1, if
supx∈X ‖x‖2 ≤ �2, p = 2, and Y = M(X) is the Gaussian
mechanism with noise scale σ defined in (5), then training a
GAN with loss W2,2σ 2(PG(Z), PY) is (ε, δ)-LDP, and recovers
the target distribution: PG∗(Z) = PX .

We note that first [31] showed that projection with respect
to entropic optimal transport is maximum likelihood deconvo-
lution, and Corollary 1 and 2 can be viewed as the population
case of [31] when the data distribution comes from a convo-
lution model. While [31] does not draw a connection between
LDP and entropic optimal transport and is not concerned
with proposing an entropy-regularized GAN framework for
privatized data, their result has a similar flavor to our results
in Corollary 1 and 2. However, we note that proving that
entropic projection is maximum likelihood deconvolution as
done in [31] is more involved, while our Theorem1, which
holds for general privatization mechanisms and not only under
additive noise ones as in [31], simply follows from the non-
negativity of KL divergence and is inherently related to the
characterization of the rate distortion function as discussed in
Section I-A.

The results so far are only applicable to the realizable case
PX ∈ {PG(Z)|G ∈ G}, namely when the true data distribution
PX can be generated. However, this is not always the case in
practice, and the approximation error of the class G given by
minG∈G W

p
p (PG(Z), PX) can be non-zero. The following lemma

can be used in this case. Note that it holds for p ∈ {1, 2}

which correspond to the Laplace and Gaussian mechanisms
respectively.

Lemma 1: Let X ∼ PX and Y = M(X) = X + N, where
N ∼ fN(z) ∝ e−‖z‖

p
p/(pσ p), p ∈ {1, 2}, and

G∗ = arg min
G∈G

Wp,pσ p

(
PG(Z), PY

)
.

If PX /∈ {PG(Z)|G ∈ G}:
DKL

(
PG∗(Z)+N‖PX+N

)
≤ min

G∈G
Wp

p

(
PG(Z), PX

)

where DKL(P‖Q) =
∫

P log dP
dQ

is the KL-divergence.
Lemma 1 bounds the KL Divergence between the push-

forwards of the generated and target distributions. This is
sometimes called the smoothed KL divergence between PX

and PG∗(Z) [32]. It ensures that if ε is the approximation error
in p-Wasserstein distance of the class G, then PG∗(Z) is ε-close
to the target distribution PX in smoothed KL-divergence. We
prove the lemma in Section V-A.

Lemma 1, Theorem 1, and Corollaries 1, 2 have been
established in the population setting where we work directly
with PY . In practice, PY is approximated by the empirical

distribution Qn
Y of its samples {Y}ni=1 ∼ P

⊗
n

Y . We next
investigate how fast the solution of the empirical problem
converges to the population solution and first we establish a
new result on convergence of the entropic optimal transport
that is suited to our framework.

Theorem 2 (Entropic Optimal Transport GAN Excess Risk

Bound): Let the target data distribution PX be a probability
measure with bounded support, namely supp PX ⊆ X ⊂ R

d

and supx∈X ‖x‖∞ = D < ∞, and let the set of admissible
generators be G ⊆ {G : Z → X }. Let the cost function
c : X × Y → R be measurable with respect to the product
measure: E(X,G(Z))∼PX×PG(Z)

c(X, G(Z)) < ∞ for any G ∈ G

and non-negative: c(x, y) ≥ 0 for any x ∈ X , y ∈ R
d. If the

exponentiated negative cost function is a Mercer kernel, that
is k(x, y) = e−c(x,y) is
• continuous
• symmetric: k(x, y) = k(y, x)

• positive definite: for any number n and any set of points
{xi}ni=1 ⊂ X the matrix with entries Kij = K(xi, xj) is
positive semi-definite

then for

G∗ = arg min
G∈G

Sc

(
PG(Z), PY

)
, Gn = arg min

G∈G
Sc

(
PG(Z), Qn

Y

)
,

where Qn
Y is the empirical distribution of {Yi}ni=1 – n i.i.d.

samples from PY it holds that

E
[
Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)]
≤ 4E sup

x∈X
e2c(x,Y)/

√
n.

The detailed proof of the theorem is given in Section V-B
and is based on two main ideas: one is a simple decomposition
of the dual function of entropic optimal transport similar
to [33] and the other one is a Rademacher complexity bound
for one of the dual potential, which we obtain through
the Mercer’s decomposition of the conditional probability
distribution. We defer the proof to Section V, while we provide
a discussion and give two important corollaries – for a general
privatization mechanism and the Laplace mechanism.
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The above theorem is easily adjusted to the privatization
framework by plugging in c(x, y) = − log PM(X)|X(y|x), which
results in the following corollary.

Corollary 3: Let the target distribution PX be a probability
measure with bounded support, namely supp PX ⊆ X ⊂ R

d

and supx∈X ‖x‖ <∞, and let the set of admissible generators
be G ⊆ {G : Z → X }. Additionally, let the distribution
function of the privatization mechanism be a Mercer kernel,
that is k(x, y) = PM(X)|X(y|x) is
• continuous
• symmetric: k(x, y) = k(y, x)

• positive definite: for any number n and any set of points
{xi}ni=1 ⊂ X the matrix with entries Kij = K(xi, xj) is
positive semi-definite.

Then for Y = M(X) ∼ pM(X)|X, c(x, y) = − log PY|X(y|x),

G∗ = arg min
G∈G

Sc

(
PG(Z), PY

)
, Gn = arg min

G∈G
Sc

(
PG(Z), Qn

Y

)
,

where Qn
Y is the empirical distribution of {Yi}ni=1 – n i.i.d.

samples from PY it holds that

EY∼PY

[
Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)]

≤ 4E sup
x∈X

PM(x)|X(Y|x)−2/
√

n (13)

One can now apply the corollary to the Laplace mechanism,
whose pdf is a Mercer kernel. However, the direct application
of the theorem will not result in a meaningful upper bound
since the RHS of (13) is infinite, but one can still use
Theorem 2 after noting that the cost function decomposes into
c(x, y) ∝ ‖x − y‖1 = a(y) + c̃(x, y), where the function c̃ is
bounded and the term a(y) only depends on y and not x, so
it can be factored out of the entropic optimal transport. This
leads to the following corollary, where we only require the
support of the data distribution to be bounded.

Corollary 4: If Y = M(X) is the Laplace mechanism with
noise scale σ, the support of the data distribution is bounded
in ∞ norm: supx:PX(x)>0 ‖x‖∞ ≤ D as well as the output of
the generator functions: ∀G ∈ G the ∞ norm of the output
does not exceed D: supG∈G ‖G‖∞ ≤ D then for

G∗ = arg min
G∈G

W1,σ

(
PG(Z), PY

)
, Gn = arg min

G∈G
W1,σ

(
PG(Z), Qn

Y

)
,

where Qn
Y is the empirical distribution of n i.i.d. samples from

PY it holds that

E
[
W1,σ

(
PGn(Z), PY

)
−W1,σ

(
PG∗(Z), PY

)]
≤ 4σe4dD/σ /

√
n.

Proof: For the Laplace mechanism c(x, y) = d log(2σ) +
‖x− y‖1/σ. Let (b(y))i = max{min{yi, D},−D}, namely b(y)

clips y to the interval [−D, D] coordinate-wise. Then |xi−yi| =
|xi − b(yi)| + |b(yi) − yi|, denote c̃(x, y) = c(x, b(y)). Since
c(x, y) = c̃(x, y) + ‖y − b(y)‖1, where the term ‖b(y) − y‖1

does not depend on x and, therefore, the coupling one can
write

Sc

(
PG(Z), PY

)
= Sc̃

(
PG(Z), PY

)
+ EY∼PY‖Y − b(Y)‖1,

which leads to the following excess risk bound

E
[
Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)]

= E
[
Sc̃

(
PGn(Z), PY

)
− Sc̃

(
PG∗(Z), PY

)]

Theorem 2 can now be applied to Sc̃ to result in

E
[
Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)]
≤ 4E sup

x∈X
e2c(x,b(y))/

√
n

≤ 4 sup
x∈X ,y:‖y‖∞≤D

e2‖x−y‖1/σ /
√

n ≤ 4e4dD/σ /
√

n.

Expressing the Wasserstein distance in terms of optimal
transport using (8) leads to

E
[
W1,σ

(
PGn(Z), PY

)
−W1,σ

(
PG∗(Z), PY

)]
≤ 4σe4dD/σ /

√
n

Note that to achieve ε-differential privacy one needs to
choose σ ≥ ε/ supx:PX(x)>0 ‖x‖1 and if, for example, the data is
supported on X = {x ∈ R

d|‖x‖∞ ≤ D} then to ensure ε-LDP
on needs to choose σ = supx∈X ‖x‖1/ε = dD/ε, which leads
to

E
[
W1,σ

(
PGn(Z), PY

)
−W1,σ

(
PG∗(Z), PY

)]
≤ 4dDe4ε/ε

√
n.

Note that in this case, the excess risk not only does not
suffer from the curse of dimensionality as in the case of
unregularized Wasserstein distance but scales linearly with the
dimension. However, it is important to note that in our frame-
work we have changed the loss function from unregularized
Wasserstein distance to entropic Wasserstein distance and the
excess risk bound here is in terms of entropic Wasserstein
distance. In particular, this result does not imply a parametric
rate of convergence in terms of unregularized Wasserstein
distance.

We next state the generalization result for the Gaussian
mechanism which is proven in Section V-C. To formally
state the sample complexity results, let us first recall some
definitions. A distribution PX supported on a d-dimensional set
X is σ 2 sub-Gaussian for σ ≥ 0 if E exp

(
‖X‖2/(2dσ 2)

)
≤ 2.

Let σ 2(X) = min{σ ≥ 0
∣∣E exp(‖X‖2/(2dσ 2)) ≤ 2 } denote

the sub-Gaussian parameter of the distribution of X. A set of
generators G is said to be star-shaped with a center at 0 if a
line segment between 0 and G ∈ G also lies in G, i.e.,

G ∈ G ⇒ αG ∈ G,∀α ∈ [0, 1]. (14)

Note that these conditions are not very restricting. For exam-
ple, the set of all linear generators, the set of linear functions
with a bounded norm or a fixed dimension, the set of all
L-Lipschitz functions or neural networks with a relu (f (x) =
max(0, x)) activation function at the last layer all satisfy (14).

Theorem 3 (Excess Risk of the Gaussian Mechanism):

Let PZ and PX be sub-Gaussian, the support of PX be
d-dimensional, and the generator set G consist of L-Lipschitz
functions, namely ‖G(Z1) − G(Z2)‖ ≤ L‖Z1 − Z2‖ for any
Z1, Z2 ∈ Z. Assume additionally that G satisfies (14). If Y =
M(X) = X + N is the Gaussian mechanism with noise scale
σ then for

G∗ = arg min
G∈G

W2,2σ 2

(
PG(Z), PY

)
, Gn = arg min

G∈G
W2,2σ 2

(
PG(Z), Qn

Y

)
,

where Qn
Y is the empirical distribution of n i.i.d. samples from

PY it holds that

E
[
W2,2σ 2

(
PGn(Z), PY

)
−W2,2σ 2

(
PG∗(Z), PY

)]

≤ Cdσ
2n−1/2

(
1+

(
τ 2(1+ σ(X)/σ )2

)�5d/4�+3
)

,
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where τ = max{Lσ(Z)/σ (X), 1} and Cd is a dimension
dependent constant.

The theorems show that the excess risk diminishes at the
parametric rate (of order 1/

√
n), which breaks the curse

of dimensionality (convergence of order n−�(1/d)), often
attributed to GANs. We also observe that the excess risk
is approximately linear in σ 2, the privatization noise scale,
beyond a certain threshold (σ 2 > σ(X)2)). This implies that
convergence for larger σ 2, corresponding to higher privacy,
can be achieved by increasing the number of samples n.

The above results show that the value of the loss function
under the empirical solution Gn converges to the value of
the loss function under the population solution G∗. However,
this result does not directly relate PGn(Z) to PX . Next, we use
Theorem 3 and Corollary 5 to upper bound the smoothed KL-
divergence between PX and PGn(Z).

Corollary 5: If the target distribution can be generated, that
is PX ∈ {PG(Z)|G ∈ G}, then
• under the conditions of Corollary 4 one has

E
[
DKL

(
PY‖PGn(Z)+N

)]
≤ 4e4dD/σ /

√
n,

where N ∼ fN is the privatization noise of the Laplace
mechanism, fN(x) ∝ e−‖x‖1/σ

• under the conditions of Theorem 3

E
[
DKL

(
PY‖PGn(Z)+N

]

≤ Cdn−1/2
(

1+
(
τ 2(1+ σ(X)/σ )2

)�5d/4�+3
)

Note that the parametric convergence of the smoothed
KL-divergence results in the convergence of the smoothed
Wasserstein distance [32], which is, in turn, a distance metriz-
ing weak convergence similar to Wp.

We note that known results on the sample complexity
of entropic optimal transport are either only applicable to
c(x, y) ∝ ‖x − y‖2

2 [8] or require the cost function to be
∞-differentiable [26], [34], both of which assumptions do not
apply to the Laplace setting. Reference [33] proves sample
complexity bounds for entropic optimal transport but with
bounded cost, and most importantly, extending their result to
the GAN setting where one of the distributions depends on
the sample would require restricting the set of the generators
to have a small complexity (VC-dimension or Rademacher
complexity for example), which is not common in practice and
is hard to compute. Our result, on the other hand, does not
depend on the complexity of the set of generators, provided
that their output has a bounded norm. We achieve this by
bounding the Rademacher complexity of the set of one of the
dual potentials. Similar to [26], we invoke the bound involving
the RKHS norms, but instead of using the smoothness of the
dual potentials and the RKHS of the Sobolev space (which
requires at least �d/2� continuous differentiability), we rely on
the fact that in the case of Laplace distribution the privatization
mechanism’s pdf is a Mercer kernel, which allows us to use
its RKHS norms without requiring smoothness. This technique
can also be used to provide sample complexity bounds for
entropic 1-Wasserstein distance. Moreover, the properties of �1

norm allow us to eliminate the dependence on the tails of the

privatized data distribution, which is only sub-exponential and
does not concentrate as well as sub-Gaussian distributions. The
proof of the theorem as well as all other proofs are deferred
to Section V.

IV. EXPERIMENTAL RESULTS

We first describe the approach we used to privatize the data
and train the GAN, and then present the experimental results.1

Data Privatization: We conduct experiments for both the
Laplace and Gaussian data privatization mechanisms. We set
f (x) = vec(x), where vec(x) – is the vectorization of x,
specifically if x ∈ R

d is a vector then f (x) = x and if it is a
matrix x ∈ R

d1×d2 then f (x) ∈ R
d, d = d1d2 in the definitions

of the Laplace and Gaussian privatization mechanisms.
For the Laplace mechanism and LDP budget ε we set

the �1 sensitivity to be � = supx,x′∈X ‖f (x) − f (x′)‖1 and
the noise scale σ = �/ε, so Y = f (X) + Z, where
Zi ∼ Laplace(0, σ ) i.i.d. for each coordinate i ∈ {1, . . . , d}.
Similarly, for the Gaussian mechanism and LDP budget ε we
set the �2 sensitivity to be � = supx∈X ‖f (x) − f (x′)‖2 and
the noise scale σ that satisfies (5) so Y = f (X) + Z, where
Zi ∼ N (0, σ 2) i.i.d. for each coordinate i ∈ {1, . . . , d}.

GAN training: For training the Sinkhorn GAN we follow
the work of [35] using Sinkhorn-Knopp algorithm [36] to
approximate the optimal transport plan π in (9) from mini-
batches of size b for the generated and privatized training
data. The algorithm is stated below, where θ stands for the
parameter of the Generator, i.e., G = {Gθ : Z → X |θ ∈ �}.

Dataset and architecture: We train our models on syn-
thetic data as well as MNIST data [37], consisting of
60000 grayscale images of handwritten digits. We do not use
the labels to mimic a fully unsupervised training scenario.
The generator model for MNIST is DCGAN from [38] with
latent space dimension 100. All the losses were used in
the primal formulations (6), (8) with optimization over the
coupling matrix.

Remark 1: Note that since the DP noise is added to the
training data, even if the training algorithm is an iterative
process, the final privacy guarantee does not depend on (1)
the number of rounds and (2) the specific privacy accountant
or composition theorem used.

A. Synthetic Data

We first test our method on synthetic data. In this exper-
iment, we sample data uniformly from a two-dimensional
manifold shaped as a half-circle of radius 1 and we assume
the support X is known to be the half circle, so that the �1

sensitivity is 2 and the �2 sensitivity is
√

2. The 400000 sam-
pled points are privatized with Laplace or Gaussian noise and
then the entropic p−Wasserstein GAN for the corresponding
p is trained on the privatized data using Algorithm 1. We used
2-dimensional latent noise uniform in [−1, 1]2 and a small
Neural Network with 2 hidden layers and 256 neurons on
each hidden layer. We trained it with batch gradient descent

1Additional experiments with synthetic data, and the dependence of the
loss function on the number of samples and privacy budget can be found on
arxiv: https://arxiv.org/abs/2306.09547.
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Algorithm 1 Training GAN With Wp,pσ p

Input: θ0, D = {yi}ni=1 (the privatized training data), b (batch
size), L (number of Sinkhorn iterations), α (learning rate)

Output: θ

θ ← θ0

for t = 1, 2, . . . do
Sample {yi}bi=1 i.i.d. from the dataset D, Qb

Y :=
1
b

∑b
i=1 δyi

Sample {zi}bi=1
i.i.d∼ PZ , Qb

G
:= 1

b

∑b
i=1 δGθ (zi)

Calculate the optimal transport plan for Sc(Q
b
G, Qb

Y) with
L Sinkhorn-Knopp steps
π ≈ arg min

π∈�(Qb
G,Qb

Y )

E(U,Y)∼π [c(U, Y)]+ Iπ (U), Y)

Cij ← c(yi, Gθ (zj)) for i, j = 1, . . . , b

gt ← ∇θ 〈π, C〉
θ ← θ − αgt.

end for

Fig. 1. Learning data from the half-circle-shaped manifold privatized with
Laplace mechanism ε = 5 (top) and Gaussian mechanism ε = 5, δ =
10−4 (bottom). Columns (a) and (b) show the manifold learned with entropic
p-Wasserstein GAN (9), and column (c) shows the manifold learned with
unregularized p-Wasserstein GAN (7). Note p = 1 for Laplace mechanism
and p = 2 for Gaussian mechanism.

using RMSprop optimizer with a learning rate of 10−4. The
entropy-regularized Wasserstein distance was calculated with
geomloss library [25] for the full dataset in each iteration (b =
n in Algorithm 1) with scaling parameter set to 0.99. Figure 1
shows the learned manifolds with data privatized with Laplace
mechanism ε = 5 and entropic 1-Wasserstein loss (9) (top) and
with data privatized with the Gaussian mechanism ε = 5, δ =
10−4 and entropic 2-Wasserstein loss (9) (bottom). We note
that for both the Laplace and Gaussian mechanisms entropic
regularization allows to recover the original domain of the data
(columns (a) and (b)), even-though noise in both cases appears
to be large enough to completely obfuscate the data domain
(column (b)). Without regularization (column (c)), the model
generates the privatized distribution and fails to recover the
original domain.

We note that the ε = 5 local differential privacy guarantee
obtained with the Laplace mechanism can be translated to
a central privacy guarantee by leveraging privacy amplifi-
cation by shuffling. Since the distribution of the output of

Fig. 2. Learning with LDP privatized images: (a) raw images from MNIST
dataset, (b) image samples privatized with Gaussian (ε, δ) = (35, 10−4) (top)
and Laplace mechanism ε = 196 (bottom), (c) images from the second column
denoised with the wavelet transform and (d) the Noise2Void [41], (e) random
samples from the output distribution of the unregularized p-Wasserstein
GAN (2), and (f) generated samples from the entropic p-Wasserstein GAN
trained on privatized data (picked to be the same digit as in column (a)).

Algorithm 1 does not depend on the order of the samples in
the privatized data (due to the random sampling) and because
the local privatization mechanism only depends on the data
at the client and no auxiliary input, one can assume that the
data is shuffled before privatization, which allows to apply [39,
Th. 3.2], resulting in a (εc = 0.353, δc = 10−6) central
differential privacy guarantee for the Laplace mechanism.

B. MNIST: Comparison With Denoising

We next provide our experimental results with MNIST [37]
and DCGAN [38] generator. The pixel values of the images
were rescaled to [−1, 1] leading to � = 2×282 �1 sensitivity
and � = 56 �2 sensitivity.

We use 100-dimensional Uniform [0, 1] noise at the input
to the generator (Pz = Unif[0, 1]100). In Figure 2, we show
two raw samples from the MNIST dataset (column (a)) and
the corresponding privatized images (column (b)). In column
(c), we denoise the privatized images in the second column
with wavelet transform [40]; the results indicate that the
wavelet transform can not be used to recover the images. Here,
the wavelet transform parameters for denoising (the wavelet
basis, the level and reconstruction thresholds) were optimized
to minimize the average distance between the reconstructed
and original image under the particular noise instance, thus
providing better results than one would expect in a fully
privatized setting. In column (d), we used the noise2void [41]
image denoising mechanism with parameters as given in
the paper and trained it on the whole dataset of privatized
images, and showed that it also failed to reconstruct the
images. These experiments suggest that the privatization noise
is large enough to preclude reconstruction of the original
images. Column (e) shows samples generated by GANs trained
with p-Wasserstein loss (without entropic regularization) that
fails to learn from privatized data. Finally, in (f) we provide
samples obtained by our method stated in Algorithm 1 in
Figure 2. Note that while the generated images by the entropic
p−Wasserstein GAN are not perfect for the chosen privacy
levels, the results do suggest that the model has learned
to generate new images of digits. For training the entropic
p-Wasserstein GAN we used 400 Sinkhorn-Knopp iterations
and the Adam optimizer with learning rate 10−4 for 100
epochs.
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Fig. 3. Entropic 1-Wasserstein GAN on MNIST trained on data privatized
with the Laplace mechanism achieving ε-LDP ε = 35 (left) and ε = 25
(right).

Fig. 4. Entropic 2-Wasserstein GAN on MNIST trained on data privatized
with the Gaussian mechanism achieving (ε, δ)-LDP with δ = 10−4 and ε =
30 (left) and ε = 25 (right).

C. MNIST: Higher Privacy Samples

In this section, we further investigate the performance of
entropic p-Wasserstein GAN on locally privatized data. We
set the number of sinkhorn steps L = 400 and the batch size
to be b = 400 and we performed optimization with Adam
optimizer [42] and learning rate varied in {0.005, 10−4, 5 ×
10−5}. We optimized for 150 epochs. For p = 1 we first took
the discrete cosine transform of the images and clipped the
coefficients below 0.8 quantile to preserve more information,
and then to control the sensitivity, we projected each training
image onto an �1 ball with radius 140 (the parameters were
chosen based on 1 held-out image in a way that it would
not visually distort the image beyond recognition). We also
applied DCT transform to the generator output before plugging
it into the loss function. Similarly, for p = 2 we projected
each training image onto an �2 ball with radius 20, but we
did not apply any transforms (since �2-norm does not change
under multiplication by an orthonormal matrix).

The results are presented on Figure 3 for p = 1 and Figure 4
for p = 2. They indicate the effectiveness of our model
at higher privacy regimes. However, smaller ε values still
produced a lot of noise in the generated samples or eroded
the images significantly. This can be potentially mitigated by
increasing the number of samples as suggested in Theorem 3;
however the relatively small size of MNIST limits the privacy
levels that can be achieved. Note that the privacy parameters
chosen for the images are rather large, however, our method
still performs reasonably despite the exponential blowup in
the excess risk. We believe that the dependence of the excess
risk on the privacy budget ε can thus be improved and is a
direction for future work.

We provide additional samples for different privacy levels
and report 400 randomly sampled digits on Figure 5 for the
Laplace and Gaussian mechanisms.

D. Comparison With Noisy Wasserstein GAN

We next provide our experimental results with MNIST and
FashionMNIST [43], which is a set of 60000 grayscale images
of clothing items of size 28× 28.

Here we fix p = 1 and compare entropic 1-Wasserstein
GAN to a noisy 1-Wasserstein GAN applied to data privatized
with the Laplace mechanism.

The noisy 1-Wasserstein GAN is a GAN trained with the
following unregularized loss function:

W1
(
PM(G(Z)), Qn

Y

)
, (15)

Fig. 5. Laplace mechanism with different privacy budgets ε and clipping of
the discrete cosine transform, entropic 1-Wasserstein GAN (top) and Gaussian
mechanism with different privacy budgets ε for δ = 10−4 and clipping the
Euclidean norm of images, entropic 2-Wasserstein GAN (bottom).

Fig. 6. Fashion MNIST samples generated with 1-Wasserstein GAN and the
addition of noise to the generator (a) and entropic 1-Wasserstein GAN (b).

where M(·) is the privatization mechanism. Note that this
loss function also satisfies Theorem 1, but suffers from
the curse of dimensionality, namely W1(PM(G(Z)), Qn

Y) =
�(n−1/d). However, Wasserstein GANs have been successful
in practice [29], [44] and use a different benchmark, so
we compare their performance with the performance of the
entropic 1-Wasserstein GAN.

We again use a DCGAN as a generator, but we removed
the batch normalization layers and used a larger batch size of
6000 as suggested by [45]. As in Section IV-B, experiments in
this section do not involve projecting onto the �1/�2 balls. The
pixel values of the images were rescaled to [−1, 1] leading
to �1 = 2 × 282 �1 sensitivity and �2 = 56 �2 sensitivity.
For FashionMNIST we choose the noise scale σ = 7, which
results in ε = 224-LDP, and for MNIST we choose the noise
scale σ = 3, which results in ε = 97-LDP. We also report
Frechet Inception Distance (FID) [46] calculated between the
generated and the validation set as a quantitative measure
of performance. We report the FID measures and random
samples in Figure 6 for FashionMNIST and Figure 7 for
MNIST.

The experiments clearly show that the images generated by
the entropic Wasserstein GAN still look like clothing items,
while the images generated by the unregularized Wasserstein
GAN with noise added to the generator look like noise. The
closeness of the distributions is also validated by the closeness
in FID scores.

Note that the images for the entropic 1-Wasserstein GAN
are still corrupted by noise even given the very high pri-
vacy budget. This is due to the large �1 sensitivity of
the data. In the next section we address that problem
with clipping the image norms before applying privatization
noise.
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Fig. 7. MNIST samples generated with 1-Wasserstein GAN and the addition
of noise to the generator (a) and entropic 1-Wasserstein GAN (b).

Fig. 8. Entropic 1-Wasserstein GAN trained on FashionMNIST data
privatized with the Laplace mechanism.

Fig. 9. Entropic 2-Wasserstein GAN trained on FashionMNIST data
privatized with the Gaussian mechanism.

E. Fashion MNIST: Higher Privacy Samples

To achieve a smaller privacy budget we clipped the norm
of the images to have sensitivity �1 = 700 and �1 = 550.

Adding Laplace noise with σ = 7 then results in ε = 100 and
ε = 78, 6 -LDP. The results are presented in Figure 8.

Similarly, for p = 2 we clipped the �2 norm to have
sensitivity �2 = 40. Adding Gaussian noise with σ = 9.17 or
σ = 7.24 results in ε = 25 and ε = 35 privacy for δ = 10−4,

see Figure 9.
The results indicate the effectiveness of our model at higher

privacy regimes. However, smaller ε values still produced a
lot of noise in the generated samples or eroded the images
significantly. This can be potentially mitigated by increasing
the number of samples as suggested in Theorem 3; however
the relatively small size of MNIST limits the privacy levels
that can be achieved.

V. DETAILED PROOFS

In this section we prove the theorems from Section III.

A. Proof of Lemma 1

We first prove the following lemma, which is used in this
proof and the proof of Corollary 5 (Corollary 5 is a direct
consequence of the lemma and excess risk results – Theorem 3
and Corollary 4).

Lemma 2: Let X ∼ PX and Y = M(X) = X+N, where N =
(N1, . . . , Nd) ∼ fN independent of X and fN(x) ∝ e−‖x‖

p/(pσ p)

Then

DKL

(
PY‖PG(Z)+N

)

≤
(
W2,2σ 2

(
PY , PG(Z)

)
−W2,2σ 2(PY , PX)

)
/pσ p, (16)

where DKL(P‖Q) is the KL-divergence (DKL(P‖Q) =∫
P(x) log P(x)

Q(x)
dx for continuous PX and DKL(P‖Q) =∑

x∈X P(x) log P(x)
Q(x)

for discrete X).
Proof: We start by noting that c(x, y) = − log fN(x − y) =

‖x − y‖p
p/(pσ p) + C, where C is a constant. Thus, for two

probability measures µ, ν

Sc(µ, ν) = Wp,pσ p(µ, ν)/pσ p + C. (17)

Additionally, since PY = PM(X), the KL-divergence in (12)
is zero for PG(Z) = PX, so Sc(PX, PY) = h(Y). We can now
rewrite the difference on the RHS of (16) using (17) and (12):
(
Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY)

)
/pσ p

= Sc

(
PG(Z), PY

)
− Sc(PX, PY)

= inf
π∈�(PG(Z),PY)

EU∼PG(Z)
DKL

(
πY|U(·|U)‖pM(·|U)

)
, (18)

where pM(·|u) = fN(· − U) is the conditional pdf of the
privatization mechanism.

We then use the chain rule for KL-divergence, which states
that for any two joint distributions Q1 � Q2 with marginals
(Q1

X, Q1
Y) and (Q2

X, Q2
Y) correspondingly, it holds that

DKL

(
Q1‖Q2

)
= DKL

(
Q1

X‖Q2
X

)

+ EX∼Q1
X
DKL

(
Q1(·|X)‖Q2(·|X)

)
(19)

Setting Q1(u, y) = π(u, y) and Q2 = PG(u)pM(y|u) =
PG,M(G), we can rewrite the DKL term in (18) as

(
Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY)

)
/pσ p

= inf
π∈�(PG(Z),PY)

DKL

(
π‖PG(Z),M(G(Z))

)
. (20)

Finally, (19) also shows that the KL-divergence between
two joint distributions dominates the KL-divergence between
the corresponding the marginals, namely DKL(π‖PG,M(G)) ≥
DKL(PY‖PM(G(Z))), so continuing from (20) we get

(
Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY)

)
/pσ p

≥ DKL

(
PY‖PM(G(Z))

)
= DKL

(
PY‖PG(Z)+N

)
.

We next prove Lemma 1. We first show that

Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY )

≤
{

W2
2

(
PG(Z), PX

)
if p = 2,

p2p−1Wp

(
PG(Z), PX

)(
σ p +Wp

(
PG(Z), PX

))1−1/p
if p ≥ 1.

(21)

We continue from (18): fix some coupling π ∈ �(PG(Z), PX)

and let the joint distribution of U = G(Z), X, and Y be
(U, X, Y) ∼ γ (u, x, y) = π(u, x)fN(y − x), or equivalently,
U−X−Y is a Markov chain with (U, X) ∼ π and Y = X+N

with N independent of (X, U). Then γUY(u, y) ∈ �(PG(Z), PY)

and

γY|U(y|u) =
∫

γ (y|x)γ (x|u) dx

=
∫

fN(y− x)π(x|u) dx = EX∼πX|U=u
fN(y− X).

Plugging this into (18) gives
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(
Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY)

)
/pσ p

≤ EU∼PG(Z)
DKL

(
γY|U(·|U)‖fN(· − U)

)

= EU∼PG(Z)
DKL

(
EX∼πX|U(·|U)fN(· − X)‖fN(· − U)

)

≤ EU∼PG(Z)
EX∼πX|U(·|U)DKL(fN(· − X)‖fN(· − U)), (22)

where (22) follows from the convexity of KL-divergence and
Jensen’s inequality. We can now plug in the definition of KL-
divergence leading to

(
Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY)

)
/pσ p

≤ E(U,X)∼π DKL(fN(· − X)‖fN(· − U))

= E(U,X)∼π

∫
fN(z− X) log(fN(z− X)/fN(z− U))dz

= E(U,X)∼π,N∼fN

[
‖N + X − U‖p

p − ‖N‖p
p

]
/pσ p. (23)

In the special case of p = 2 it follows that

Wp,pσ p

(
PG(Z), PY

)
−Wp,pσ p(PX, PY) ≤ E(U,X)∼π

[
‖X − U‖2

2

]
,

and taking the infimum over π ∈ �(PX, PG(Z)) leads to (21).
When p 
= 2, p ≥ 1 we can upper bound the RHS of (23)
using the convexity of f (x) = (x)p for x ≥ 0, which states that
f (x+ δ)− f (x) ≤ f ′(x+ δ)δ leads to

E(U,X)∼π,N∼fN

[
‖N + X − U‖p

p − ‖N‖p
p

]

≤ E(U,X)∼π,N∼fN

[(
‖N‖p + ‖X − U‖p

)p − ‖N‖p
p

]

≤ pE(U,X)∼π,N∼fN

[
‖X − U‖p

(
‖N‖p + ‖X − U‖p

)p−1
]

We then use Hölder’s inequality E[XY] ≤ (E|X|p)1/p

(E|Y|p/(p−1))1−1/p to get

E(U,X)∼π,N∼fN

[
‖N + X − U‖p

p − ‖N‖p
p

]

≤ pE
[
‖X − U‖p

p

]1/p

E
[(
‖N‖p + ‖X − U‖p

)p]1−1/p

≤ p2p−1
E

[
‖X − U‖p

p

]1/p

E

[
‖N‖p

p + ‖X − U‖p
p

]1−1/p

= p2p−1
E

[
‖X − U‖p

p

]1/p(
σ p + E

[
‖X − U‖p

p

])1−1/p

We can now take the infimum over the couplings π ∈
�(PX, PG(Z)) and arrive at (21) for p 
= 2 case. By Lemma 2
and (21) choosing G∗ = arg minG∈G Wp,pσ p(PG(Z), PY) and
GW = arg minG∈G Wp(PG(Z), PY) we get:

pσ pDKL

(
PY‖PG∗(Z)+N

)

≤ Wp,pσ p

(
PG∗(Z), PY

)
−Wp,pσ p(PX, PY )

≤ Wp,pσ p

(
PGW (Z), PY

)
−Wp,pσ p(PX, PY )

≤
{

W2
2

(
PG(Z), PX

)
if p = 2,

p2p−1Wp

(
PG(Z), PX

)(
σ p +Wp

(
PG(Z), PX

))1−1/p
if p ≥ 1.

B. Proof of Theorem 2

We will be using the dual formulation of entropic
optimal transport, so we begin by providing some
related results. We denote the dual objective of

Sc(µ, ν) for probability measures µ, ν of support
supp(µ), supp(ν) ⊆ R

d:

�(f , g;µ, ν) = EX∼µf (X)+ EY∼νg(Y)

− E(X,Y)∼µ×ν

[
ef (X)+g(Y)−c(X,Y)

]
+ 1.

Here f : supp(µ)→ R and g : supp(ν)→ R are called dual
potentials are real-valued functions from the support of µ and
ν and f ∈ L1(µ), g ∈ L1(ν), where for a probability measure
µ we denote the set of absolutely integratable functions w.r.t.
µ as L1(µ) = {f : supp(µ)→ R|EX∼µ[|f (X)|] <∞}.

The dual function yields a lower bound on the optimal trans-
port: for any f , g ∈ L1(µ)× L1(ν), Sc(µ, ν) ≥ �(f , g;µ, ν).

Strong duality is guaranteed to hold by [47, corollary 3.1]
(case (B)) for any µ, ν that satisfy EX,Y∼µ×ν[c(X, Y)] <

∞, which holds for any combination of Qn
Y , PY , PX and

PG(Z) for any G ∈ G by the assumption. Strong duality
means that

Sc(µ, ν) = max
f ,g∈L1(µ)×L1(ν)

�(f , g;µ, ν). (24)

The optimality conditions for the dual problem
maxf ,g∈L1(µ)×L1(ν) �(f , g;µ, ν) yield for any x, y ∈ R

d (only
the values of the dual potentials for x ∈ supp(µ) and y ∈
supp(ν) affect the problem value, but we extend them to
x, y ∈ R

d, this is known as the canonical extension, see [48])

f (x) = − logEY∼µeg(Y)−c(x,Y), g(y) = − logEX∼νef (X)−c(X,y)

(25)

Note that the dual potentials are defined up to an additive
constant, that is f (x)+c, g(x)−c is also a pair of optimal dual
potentials. The optimality conditions yield �(f , g;µ, ν) =
EX∼µf (X)+EY∼νg(Y) = Sc(µ, ν), so we assume the optimal
potentials are chosen to have

EX∼µf (X) = EY∼νg(Y) = Sc(µ, ν)/2 ≥ 0. (26)

We can now proceed to bound the excess risk:

Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)

= Sc

(
PGn(Z), PY

)
− Sc

(
PGn(Z), Qn

Y

)
︸ ︷︷ ︸

A

+ Sc

(
PGn(Z), Qn

Y

)
− Sc

(
PG∗(Z), PY

)
︸ ︷︷ ︸

B

(27)

We start by bounding the first term on the RHS in (27) using
the dual formulation: denoting the optimal dual potentials for
the population optimal transport with generator Gn

fn, gn = arg max
f ,g∈L1(PGn(Z))×L1(PY )

�
(
f , g;PGn(Z), PY

)
.

Then rewriting (27) in the dual formulation gives

A = �
(
fn, gn;PGn(Z), PY

)

− max
f ,g∈L1(PGn(Z))×L1(Qn

Y)
�
(
f , g;PGn(Z), Qn

Y

)

≤ �
(
fn, gn;PGn(Z), PY

)
−�

(
fn, gn;PGn(Z), Qn

Y

)
,
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We can next plug in the definition (24) for � to get

A ≤ EY∼PY gn(Y)− 1

n

n∑

i=1

gn(Yi)

− EY∼PYEX∼PGn(Z)

[
efn(X)+gn(Y)−c(X,Y)

]
(28)

+ 1

n

n∑

i=1

EX∼PGn(Z)

[
efn(X)+gn(Yi)−c(X,Yi)

]
. (29)

Recall the optimality condition (25) for gn, which asserts that
for any y ∈ R

d : EX∼PGn(Z)

[
efn(X)+gn(Y)−c(X,y)

]
= 1, so the last

summands in (28) and (29) are equal to −1 and 1 respectively
and cancel out, leaving

A ≤ EY∼PY gn(Y)− 1

n

n∑

i=1

gn(Yi). (30)

Bounding B in (27) is simpler than bounding A because by
the optimality of Gn:

B ≤ Sc

(
PG∗(Z), Qn

Y

)
− Sc

(
PG∗(Z), PY

)
,

and now standard results for the sample complexity of entropic
optimal transport like Theorem 2 from [33] can be used to
bound it since G∗ does not depend on the sample. However,
the known results will require additional assumptions on the
cost function/privatization mechanism, which we would like
to avoid, so we proceed by bounding B in a fashion similar to
A. Denote

f̂ ∗, ĝ∗ = arg max
f ,g∈L1(PG∗(Z))×L1(Qn

Y)
�
(
f , g;PGn(Z), Qn

Y

)
,

the optimality of these potentials and strong duality results in
the following bound similar to the one for A:

B ≤ �

(
f̂ ∗, ĝ∗;PG∗(Z), Qn

Y

)
−�

(
f̂ ∗, ĝ∗;PGn(Z), PY

)

≤ 1

n

n∑

i=1

ĝ∗(Yi)− EY∼PY ĝ∗(Y). (31)

Bounding the expected values of A and B can now be done
in the same way as bounding the excess risk in classic learn-
ing problems, which can be achieved through Rademacher
complexity.

Definition 1 (Rademacher Complexity): For a family of
functions F and a fixed sample S = {Yi}ni=1 the empirical
Rademacher complexity of F with respect to the sample S is
defined as:

R̂S(F) = Eσ

[
sup
f∈F

1

n

n∑

i=1

σif (Yi)

]
,

where the expectation is taken with respect to σ =
(σ1, . . . , σn) with σi being independent uniform random vari-
ables taking values in {±1}.

For any integer n ≥ 1 the Rademacher complexity of F is
the expectation of the empirical Rademacher complexity over
all samples of size n:

Rn(F) = ES∼P⊗n
Y
Eσ

[
sup
f∈F

1

n

n∑

i=1

σif (Yi)

]
.

Rademacher complexity is one of the key tools to bound
suprema of empirical processing, with the following lemma
connecting the two, which appears in [49] in the proof of [49,
Th. 3.3, eq. (3.13)] (we removed the unused assumptions):

Lemma 3: For a set of functions F mapping X to R and a
sample S = {Yi} ∼ P⊗n

Y :

ES sup
f∈F

(
E
[
f (Y)

]
− 1

n

n∑

i=1

f (Yi)

)
≤ 2Rn(F)

Fix S = {Yi}ni=1, applying this lemma to A in (30) gives

E[A] ≤ E

[
EY∼PY gn(Y)− 1

n

n∑

i=1

gn(Yi)

]

≤ E sup
g∈Hn

(
EY∼PY g(Y)− 1

n

n∑

i=1

g(Yi)

)
≤ 2Rn(Hn),

where Hn is the set of dual potentials g for all the admissible
generators g ∈ G, that is Hn = {g : R

d → R|∃f , ∃G ∈
G : �(f , g;PG(Z), PY) = Sc(PG(Z), PY)}. Note that here we
again assume that the optimal dual potentials are extended to
R

d and (26) holds. Similarly for B in (31):

E[B] ≤ E

[
1

n

n∑

i=1

ĝ(Yi)− EY∼PY ĝ(Y)

]
≤ 2Rn

(
Ĥ
)
,

where Ĥ is the set of dual potentials g for all the admis-
sible generators g ∈ G for the empirical problem, that is
Ĥ = {g : R

d → R|∃f , ∃G ∈ G : �(f , g;PG(Z), Qn
Y) =

Sc(PG(Z), Qn
Y)}. The excess risk is finally bounded by

E
[
Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)]

≤ 2Rn(Hn)+ 2Rn(Ĥ) (32)

The rest of the proof bounds the Rademacher complexities
using the properties of the dual potentials. We start by
bounding the optimal dual potential from Hn, the bound for
Ĥ is identical.

Let f , g be the maximizes of �(f , g;PG(Z), PY). The opti-
mality conditions (25) and our convention (26) together with
Jensen’s inequality for − log(x) yield for any x, y ∈ R

d:

f (x) = − logEY∼PY

[
eg(Y)−c(x,Y)

]

≤ EY∼PY

[
c(x, Y)− g(Y)

]
≤ EY∼PY

[c(x, Y)] (33)

g(y) = − logEX∼PG(Z)

[
ef (X)−c(X,y)

]

≤ EX∼PG(Z)

[
c(X, y)− f (X)

]
≤ EX∼PG(Z)

[
c(X, y)

]
(34)

Note that for any function h(y) it holds that R̂n(Hn) =
R̂n(Hn ⊕ h(y)), namely, adding or subtracting a specific
function from all the functions in a set does not change the
Rademacher complexity, so let h(y) = supx∈X c(x, y) and
u(y) = eh(y)−g(y). By the upper bound on g(y) (34):

u(y) ≥ e
supx∈X c(x,y)−EX∼PG(Z)[c(X,y)] ≥ 1,

so the function f (x) = − log x is 1-Lipschitz on the range of u.

By Talagrand’s lemma [49, Lemma 5.7], composition with a 1-
Lipschitz function cannot increase the Rademacher complexity
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of a function set. Denoting Un = {u(y) = esupx∈X c(x,y)−g(y)|g ∈
Hn} we arrive at

R̂n(Hn) = R̂n((− log) ◦ U ⊕ h(y)) ≤ R̂S(U).

To further bound the Rademacher complexity of U we use the
following result for positive definite symmetric kernels that is
a direct consequence of Mercer’s theorem [50].

Theorem 4 ([49, Ths. 6.8 and 6.12]): Let Z ⊂ R
d and

K : Z×Z → R be a positive definite symmetric kernel. Then
there exists a Hilbert space H and a mapping � : Z → H

such that: ∀x, x′ ∈ X , K(x, x′) = 〈�(x),�(x′)〉. H is called
a reproducing kernel Hilbert space (RKHS) associated to K.
and let � : Z → H be a feature mapping associated to k. Let
S = {zi}ni=1 ⊂ Z be a sample of size n, and let H = {x "→
〈w,�(x)〉 : ‖w‖H ≤ �} for some � ≥ 0. Then

#̂S(H) ≤ �

( n∑

i=1

K(zi, zi)

)1/2

/n

First, we check the conditions of the theorem: fix some
u ∈ U , then there exists a G ∈ G and a pair f , g of optimal
dual potentials maximizing �(f , g;PG(Z),PY

) such that

u(y) = esupx∈X c(x,y)−g(y) = esupx∈X c(x,y)
EX∼PG(Z)

ef (X)−c(X,y).

To simplify the notation denote v(y) = esupx∈X c(x,y) and note
that K(x, y) = v(x)v(y)e−c(x,y) is a positive definite symmetric
kernel (as a product of two kernels), so applying Theorem 4
to kernel K leads to

u(y) = EX∼PG(Z)

[
K(X, y)ef (X)/v(X)

]

=
〈
EX∼PG(Z)

[
�(X)ef (X)/v(X)

]
,�(y)

〉
= 〈w,�(y)〉.

So u(y) is indeed a linear function in RKHS and its associated
norm is

‖w‖2
H = EX,X′∼P2

G(Z)
ef(X′)+f (X)−c(X,X′)

≤ EX,X′∼P2
G(Z)

eEY∼PY [c(X′,Y)+c(X,Y)−c(X,X′)]

≤ e2 supx∈X EY∼PY
[c(x,Y)],

where we used the upper bound on f (x) given in (34).
Combining this with Theorem 4 leads to

R̂S(Hn) ≤ R̂S(U) ≤ esupx∈X EY∼PY
[c(x,Y)]

√∑n
i=1 v(Yi)

2

n

= esupx∈X EY∼PY
[c(x,Y)]

√∑n
i=1 e2 supx∈X c(x,Yi)

n

To get the bound for the Rademacher complexity we take the
expectation of both sides and apply the Jensen’s inequality,
which leads to

Rn(Hn) ≤ esupx∈X EY∼PY
[c(x,Y)]

√
Ee2 supx∈X c(x,Y)/n

≤ Ee2 supx∈X c(x,Y)/
√

n (35)

The derivation for R̂S(Ĥ) follows the same lines with the only
change being the use of Qn

Y instead of PY leading to

R̂S(Ĥ) ≤ esupx∈X
1
n

∑n
i=1 c(x,Yi)

(
n∑

i=1

e2 supx∈X c(x,Yi)

)1/2

/n.

Taking the expectation of both sides and applying the Cauchy-
Schwartz inequality leads to

Rn(Ĥ) ≤
(
E
[

sup
x∈X

e
2
n

∑n
i=1 c(x,Yi)

]
E
[
e2 supx∈X c(x,Y)

]
/n

)1/2

≤ Ee2 supx∈X c(x,Y)/
√

n

which combined with (35) and (32) gives

E
[
Sc

(
PGn(Z), PY

)
− Sc

(
PG∗(Z), PY

)]
≤ 4Ee2 supx∈X c(x,Y)/

√
n

C. Proof of Theorem 3

Theorem 3 follows from [7, Th. 6].
Theorem 5 [7, Th. 6]: Let PZ and PY be sub-Gaussian

and the set of generators G consist of L-Lipschitz functions,
i.e., ‖G(Z1) − G(Z2)‖ ≤ L‖Z1 − Z2‖ for any Z1, Z2 in
the support of PZ and let G satisfy (14). Then for τ 2 =
max{L2σ 2(Z), σ 2(Y)} the generalization error for entropic
GAN with p = 2 (9) can be upper bounded as

E
[
W2

2,λ

(
PGn(Z), PY

)
−W2

2,λ

(
PG∗(Z), PY

)]

≤ Cdλn−1/2
(

1+
(

2τ 2/λ

)�5d/4�+3
)

.

In our case λ = 2σ 2 and Y = X + N with N ∼ N (0, σ 2I),

so σ(Y) ≤ σ(X) + σ(N), where σ(N) = σ 2. Thus, plugging
it into the theorem we get

E
[
W2

2,λ

(
PGn(Z), PY

)
−W2

2,λ

(
PG∗(Z), PY

)]

≤ Cdσ
2n−1/2

(
1+

(
max{Lσ(Z), σ (X)+ σ }/σ

)2
⌈

5d
4

⌉
+6
)

Letting τ = max{Lσ(Z)/σ (X), 1} we get (σ (X) + σ)τ ≥
max{Lσ(Z), σ (X)+ σ }, which leads to

E
[
W2

2,λ

(
PGn(Z), PY

)
−W2

2,λ

(
PG∗(Z), PY

)]

≤ Cdσ
2n−1/2

(
1+

(
τ 2(1+ σ(X)/σ

)2)
⌈

5d
4

⌉
+3
)

.

VI. DISCUSSION AND CONCLUSION

We have proposed and analyzed a new framework for
locally differentially private training of GANs. Our analysis
indicates that the addition of mutual information to the objec-
tive of the optimal transport GAN can act as a deconvolution
operator provided the right choice of the cost function. The
method not only recovers the original distribution in the
population setting but also converges at a parametric rate and
can be easily combined with non-privatized training methods
as a black box in practice since the modifications do not
influence the training process. We believe understanding how
to train ML models from privatized data and improving the
privacy/utility trade-offs is of paramount importance for the
future of privacy-preserving machine learning.
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