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AbstractÐWe consider the problem of secure histogram es-
timation, where n users hold private items xi from a size-d
domain and a server aims to estimate the histogram of the
user items. Previous results utilizing orthogonal communication
schemes have shown that this problem can be solved securely
with a total communication cost of O(n2 log(d)) bits by hiding
each item xi with a mask. In this paper, we offer a different
approach to achieving secure aggregation. Instead of masking
the data, our scheme protects individuals by aggregating their
messages via a multiple-access channel. A naÈıve communication
scheme over the multiple-access channel requires d channel uses,
which is generally worse than the O(n2 log(d)) bits communication
cost of the prior art in the most relevant regime d ≫ n. Instead,
we propose a new scheme that we call Over-the-Air Group
Testing (AirGT) which uses group testing codes to solve the
histogram estimation problem in O(n log(d)) channel uses. AirGT
reconstructs the histogram exactly with a vanishing probability
of error Perror = O(d−T ) that drops exponentially in the number
of channel uses T .

Index TermsÐOver-the-Air Computation, Histogram Estima-
tion, Group Testing, Non-Coherent, Goal-Oriented Communica-
tions.

I. Introduction

IN this paper, we introduce the idea of over-the-air compu-

tation (AirComp) for federated analytics (FA). Introduced

in [1], FA is the practice of applying data science methods to

the analysis of raw data that is stored locally on users’ devices.

This often involves the estimation of population-level statistics

(histogram, ranges, heavy hitters, quantiles, mean/median, etc.)

from distributed data for the analysis of user behaviour and

system performance. It also provides critical input for more

sophisticated downstream tasks such as training of machine

learning models.

In this paper, we focus on one of the most canonical tasks in

FA for discrete data: histogram estimation. Assume we have a

set of n user devices, each holding an item xi ∈ {1, . . . , d} for

i = 1, . . . , n. The server wants to estimate the histogram of the

items held by the n users. For example, xi can represent a word

typed by user i, in which case the server wishes to estimate the

empirical frequency distribution of the words, and the domain

size d is the set of words in the English dictionary. As another
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example, xi can represent the location trace of user i, in which

case the server wishes to estimate the distribution of users in

a given geographical area. Note that in both cases xi (words

typed by user i or their location) represents sensitive private

information, hence it is essential to ensure that the underlying

data remains private and secure while the server learns the

population distribution.

A popular method to ensure privacy is the secure ag-

gregation (SecAgg) scheme [2]. SecAgg is a cryptographic

multi-party computation (MPC) scheme that ensures only

population-level information (such as the summation of inputs)

is revealed to the server while individual information remains

secret. This is typically achieved by having all user devices

agree a priori on pairwise masks that can be used to obscure

their items. By communicating the masked items to the server,

any individual’s xi is hidden from the server yet it can still

recover the histogram of the items. This method has recently

been analyzed in [3], however as shown in this paper it results

in a significant increase in communication cost. Without

concern for privacy, each user can communicate its item to

the server by using only log d bits. With secure aggregation,

[3] shows that the communication cost increases to O (

n log d
)

bits per user.

In this paper, we study the problem of histogram estimation

over multiple access channels (MACs). Our core idea is to

leverage the natural superposition of simultaneously transmit-

ted electromagnetic waves to achieve secure aggregation, with-

out requiring masks such as in SecAgg. This general concept

is known as AirComp [4] and already has a rich literature

[5]. However, applying AirComp to federated analytics, and

histogram estimation in particular, requires a rethinking of this

paradigm. This is because a naÈıve application of AirComp

requires d channel uses to communicate the histogram (by

representing each xi as a one-hot vector of length d). This is

generally worse than the total communication cost for SecAgg,

O
(

n2 log(d)
)

bits, especially in the most relevant regime d ≫ n

for practical applications. For example, in the natural language

processing application mentioned above, d ≈ 500, 000 while

n is limited by the number of users that connect to the same

access point (typically in the tens or hundreds). Our proposal

reconstructs the histogram support in O (

n log(d)
)

channel

uses by posing histogram estimation as a distributed group

testing (GT) problem. Once the support is estimated, the full

histogram can be securely computed with SecAgg.

GT was originally introduced during World War 2 in the
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context of testing patients for syphilis [6]. The problem

formulation involves a large population of people with a small

unknown subset of infected individuals. The goal is to identify

the infected individuals with a minimal number of tests. The

basic idea is to mix blood samples from different individuals

and test the mixed sample to reveal whether at least one person

is infected in the group. In this way, the infected subset can

be identified with exponentially fewer tests, provided that the

number of infected people is much smaller than the population

size. We show that these codes can be used to construct

efficient communication schemes in our setting in the regime

d ≫ n. Moreover, their inherent coding power can be leveraged

to mitigate the channel noise in AirComp and reconstruct

the histogram exactly with high probability. In Section II,

we detail how group testing can be leveraged for histogram

estimation.

A. Contributions

The main contributions of our paper can be summarized as

follows:

• We propose a new protocol for histogram estimation over

MACs referred to as over-the-air group testing (AirGT);

• AirGT only requires O (

n log(d)
)

channel uses to securely

reconstruct histograms, which is a factor n improvement

over the O
(

n2 log(d)
)

bits required for SecAgg. Moreover,

it leverages the additive nature of the channel to reveal

only the histogram to the server eliminating the need for

cryptographic protocols;

• AirGT can be viewed as a distributed channel code for

computation. In particular, AirGT offers exact recovery of

the histogram, with a vanishing probability of error that

decreases exponentially in the number of channel uses.

B. Related Work

Since its introduction in 1943 [6], GT has been an active

area of research. Different types of order-optimal or nearly

optimal constructions are known for GT including adaptive

[7], nonadaptive [8], combinatorial [9], and probabilistic [10]

GT codes.

GT has been applied to wireless communications before,

such as in neighbor discovery [11] and massive random access

[12]. However, as far as we are aware, our work is the first one

that applies GT to either AirComp or histogram estimation.

Within AirComp, we leverage non-coherent methods with

hypothesis testing at the receiver. We have taken inspiration

from similar methods in majority-vote distributed gradient

descent [13] and aggregation in low power wide area networks

[14]. However, unlike our work, none of these related works

offer a reconstruction of the desired function with a vanishing

probability of error.

II. Problem Setup

In this section, we introduce the notation of AirGT and

discuss group testing in the context of AirComp.

Assume we have a set of n user devices and each device

holds an arbitrary item xi from the set {1, . . . , d}. We will

represent xi as a one-hot vector xi ∈ {0, 1}d, i.e., xi is a one-

sparse vector consisting of all zero entries but a single 1 where

the location of 1 indicates the corresponding item. The GT

algorithm is aimed at recovering the histogram support hs =
∨n

i=1 xi, where
∨

denotes bitwise OR (disjunction). Note that

the cardinality of the histogram support is ∥hs∥1 ≤ n, with

equality if and only if (iff) all devices carry unique items, i.e.,

xi , x j for all i , j.

At timeslot t, the server administers a group test by polling

all n devices using a (potentially dense) bitmask mt ∈ {0, 1}d.

A non-zero entry mt[ j] = 1 indicates that item j ∈ {1, . . . , d}
is tested in timeslot t. The devices reply with a single bit of

information bi[t] = ⟨xi,mt⟩ which equals one if their item is

part of test t. Just as in binary GT, the server only needs to

know if at least one device responded positively, i.e., it only

needs
∨n

i=1 bi[t]. This is where the AirComp protocol is used.

We view f (b) =
∨n

i=1 bi[t] as the desired function and estimate

it with a non-coherent AirComp protocol. In particular, we

design a communication scheme such that the server receives

the noisy superposition

v[t] B















n
∨

i=1

bi[t]















⊕ z[t], (1)

where z[t] ∼ B(q) represents a bit flip with probability q, and

⊕ is the XOR operation.

In this paper, we restrict ourselves to nonadaptive GT, since

the adaptive version requires a downlink communication step

for each group test, whereas nonadaptive GT can be completed

in a single communication round. In particular, consider that

the server administers a total of T tests. All group tests mt

can be expressed as a GT matrix M ∈ {0, 1}T×d which can

be shared offline as a software update. With this setup, an

instance of AirGT can be realized as

1) The server broadcasts a pilot to initiate group testing;

2) Using the predetermined GT matrix M, the user devices

compute a vector of bits as bi = Mxi;

3) All user devices communicate their vector bi over (1) with

T channel uses and the server receives v =
(

∨n
i=1 bi[t]

)

⊕
z[t] ∈ {0, 1}T .

The server is then tasked with a linear inverse problem to

recover the high-dimensional but sparse histogram support hs

given the noisy low-dimensional test results v. After hs is

recovered, it is cheap to find h since the problem has been

reduced from dimension d to (at most) dimension n. h can

then be found with SecAgg by querying each histogram bin

corresponding to hs. If desired, AirGT can be generalized to

quantitative GT [15]. In that case, the full histogram h could

be recovered directly over-the-air. However, in this paper, we

focus on recovering the support hs. The overall problem setup

is illustrated in Fig. 1.

The rest of the paper is organized as follows. In Section III,

we present the design of the GT algorithm and give explicit

upper bounds on the number of channel uses T required to

reconstruct the histogram. In Section IV, we introduce the non-

coherent communication scheme that realizes the disjunction
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Fig. 1. Illustration of the AirGT setup over the disjunction MAC. All notation
follows Section II with the addition of y B b1 + b2 for brevity. The devices
compute bi = Mxi and communicate it over the MAC. The server receives
a noisy and distorted sum of the transmitted messages v = (b1

∨

b2) ⊕ z.
Finally, the server solves a linear inverse problem to estimate the histogram.
In this example, T = 7, d = 9, and n = 2.

MAC from (1), and give a closed-form expression of q.

In Section V, we present numerical results to evaluate the

tightness of our bounds. Finally, in Section VI, we conclude

the paper.

III. Group Testing Analysis

In this section, we describe the GT algorithm that we use in

AirGT, how the GT matrix is constructed, and prove an upper

bound on the number of tests required to reliably reconstruct

the histogram.

In this paper, we leverage the Noisy Combinatorial Orthog-

onal Matching Pursuit (NCOMP) algorithm [10] to solve the

noisy GT problem. For a detailed exposition of NCOMP, such

as a process of setting parameters, we refer to [10] but we

also give a brief overview here for completeness. In NCOMP,

the group-testing matrix is a random binary Bernoulli matrix,

where every element Mi, j is independently selected to be one

with some probability p ≤ 1/2. Upon receiving the test results

v ∈ {0, 1}T via the disjunction-MAC (1), the server initiates

a decoding algorithm to recover hs from v. The decoding

algorithm is based around matching columns m j ∈ {0, 1}T×1

with the received vector v ∈ {0, 1}T×1, where each column

j ∈ {1, . . . , d} corresponds to one bin in the histogram. In

particular, a column m j is considered to be matched with v if
∣

∣

∣S j

∣

∣

∣ ≥ ∥m j∥1(1 − q(1 + ∆)), (2)

where S j is the set of indices i where both m j[i] = 1 and

v[i] = 1, q is the bit flip probability in (1), and ∆ is a design

parameter for the algorithm which will be specified later. The

estimated histogram is then simply constructed as

ĥs[ j] =















0 if
∣

∣

∣S j

∣

∣

∣ < ∥m j∥1(1 − q(1 + ∆))

1 if
∣

∣

∣S j

∣

∣

∣ ≥ ∥m j∥1(1 − q(1 + ∆))
. (3)

In addition to simplicity, this algorithm achieves order-wise

optimality. We are now ready to state the first proposition of

the paper.

Proposition 1. Consider that the result of test t is communi-

cated over the disjunction-MAC (1) with bit flip probability q.

The GT matrix M is selected as a random Bernoulli matrix

with probability p = 0.5n−1. The number of user devices n is

assumed to be much smaller than the histogram dimension d,

i.e., n = o(d). Upon receiving the noisy test results v, the server

applies the decoding algorithm from (3) with parameter1

∆ =

√
δe−0.5(1 − 2q)

q
(√
δ +
√

1 + δ
) , (4)

where δ ∈ R
+ is a design parameter. Let β B

4.36
(√
δ +
√

1 + δ
)2

(1−2q)−2. The histogram support hs can

then be exactly reconstructed in

T ≤ βn log(d), (5)

tests with error probability ϵGT B Pr
(

ĥs , hs

)

≤ d−δ.

Proof. The proof for this proposition closely follows the proof

in [10, Theorem 6], with one additional step. This step is

needed because the proof in [10, Theorem 6] assumes that

the true histogram hs is exactly n-sparse (|hs|1 = n), but in our

case it can be less than n-sparse. Therefore, we need to show

that the error probability ϵGT is increasing in |hs|1 for a fixed

number of tests T .

The error probability is upper bounded by the sum of the

probability of false negatives and the probability of false

positives ϵGT ≤ ϵ−GT
+ ϵ+

GT
. From [10, Theorem 6], we know

that the probability of false negatives is bounded by

ϵ−GT ≤ |hs|1e−0.5β(1−e−2)(q∆)2 log(d) =: b−, (6)

where β > 0. The probability of false positives is bounded by

ϵ+GT ≤ (d − |hs|1)e−0.5β(1−e−2)(e−0.5(1−2q)−∆q)2 log(d) =: b+, (7)

which increases with decreasing |hs|1. To ensure that a reduc-

tion in |hs|1 does not break the bound, it is sufficient to verify

that the sum of the bounds on ϵ−
GT

and ϵ+
GT

satisfies

∂b−

∂|hs|1
+
∂b+

∂|hs|1
≥ 0. (8)

Inspection of (6) and (7) shows that (8) is equivalent to

ee−1(1−2q)2−2q∆e−1/2(1−2q) ≥ 1. (9)

At this point, we substitute for ∆ from (4) and do some algebra

to get
√
δ +
√

1 + δ ≥ 2
(

q
√

1 + δ +
√
δ(1 − q)

)

, (10)

which always holds since q ≤ 1/2. With this additional step,

[10, Theorem 6] gives our Proposition.

Given Proposition 1, we know that reliable histogram esti-

mation is achievable in T = βn log(d) channel uses over the

disjunction MAC. The constant β is lower-bounded by 4.36

1Our ∆ from (4) does not match with the one in [10]. This is because the
∆ from [10] has a parameter controlled by n and d. If we use the fact that
n = o(d) to approximate that parameter, the ∆ from [10] results in the same
value as ours.
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and will not be larger than 30 for reasonable values of d, δ and

q. For instance, consider a histogram dimension of d = 106,

a bit flip probability of q = 5%, and δ = 1/2. Proposition 1

will then guarantee a GT error probability ϵGT ≤ 0.1% with

β ≈ 20.1.

In the next section, we present the communication scheme

that leads to the disjunction MAC.

IV. Communication Scheme

In this section we describe how the disjunction-MAC from

(1) can be realized using a Rayleigh fading wireless MAC

with additive white Gaussian noise (AWGN). In particular,

we consider that the user devices transmit the analog value

si[t] ∈ R+ and that the server receives

y[t] =

n
∑

i=1

hi[t]si[t] + z[t], (11)

where z[t] ∼ CN(0, 2σ2
z ) and hi[t] ∼ CN(0, 2σ2

h
). Since the

devices i ∈ {1, ..., n} do not have access to a shared clock,

it is notoriously difficult to achieve phase alignment at the

receiver [4], [5], [16]. To reflect this, we consider that neither

transmitting devices nor the server have access to channel state

information (CSI). As such, the fading distribution will be

zero-mean regardless of the modulation scheme and the server

only has access to the zero-mean random variable y[t] (11).

Given this information, the server is tasked with distinguishing

between the null hypothesis H0 B
∨n

i=1 bi[t] = 0 and H1 B
∨n

i=1 bi[t] = 1. The outcome of this hypothesis test yields the

disjunction-MAC defined in (1).

Given this model, the most energy-efficient modulation

scheme is on-off keying [17, Appendix B]. Therefore, we

consider that the devices transmit

si[t] =
√

Pmaxbi[t] =
√

Pmax⟨mt, xi⟩, (12)

where Pmax is a maximum power constraint placed on the

device and bi[t] is the bit defined in Section I. The server

will then receive a superposition of the np[t] ≤ n participating

devices for which bi[t] = 1

y[t] =
√

Pmax

np[t]
∑

i=1

hi[t] + z[t], (13)

where we have committed some abuse of notation since the

index i is no longer the same as in (12). Since the tests

are independent, we will occasionally drop t for brevity. As

mentioned previously, E[y] = 0, and therefore the relevant

information for the hypothesis testing problem lies in the

energy of y. Note that

|y|2 =














√

Pmax

np
∑

i=1

hI
i + zI















2

+















√

Pmax

np
∑

i=1

h
Q

i
+ zQ















2

, (14)

where the superscripts I and Q indicate in-phase and

quadrature components, respectively. It is clear that the IQ-

components of (14) are squared independent Gaussian vari-

ables with mean µy = 0 and variance σy[t]2 = np[t]Pmaxσ
2
h
+

σ2
z . By [17, Theorem 2], the optimal decision rule by the server

can be reduced to a threshold test on |y[t]|2. Therefore, we

consider that the server makes its decision as

v[t] =















0 if |y[t]|2 < γ
1 if |y[t]|2 ≥ γ.

, (15)

where γ is a predefined threshold. With this setup, we achieve

the disjunction MAC from (1) with explicit bit flip probability

q according to the following lemma.

Lemma 1. Consider that xi is a one-hot vector, where the

non-zero position is independently and uniformly generated

for all i ∈ {1, . . . , n}. Additionally, consider that the GT matrix

M ∈ {0, 1}T×d is generated via a Bernoulli Process with

probability p = 0.5n−1 for each element of M to be one. Then,

by communicating si[t] ∈ R according to (12) and estimating

v[t] ∈ {0, 1} according to (15), the Rayleigh Fading MAC from

(11) can be turned into the disjunction MAC from (1) with

q ≤ max

















e−0.5γ/σ2
z ,

∑n
l=1

(

1 − e−0.5γ/(lPmaxσ
2
h
+σ2

z )
)

Pr
(

np = l
)

∑n
l=1 Pr

(

np = l
)

















,

(16)

where

Pr
(

np = l
)

=

d
∑

k=0

fB

(

l; n,
k

d

)

fB

(

k; d,
1

2n

)

, (17)

fB (k; n, p) is the Binomial PMF of getting exactly k successes

in n trials with probability p, and γ ∈ R+ is a constant.

Proof. Since the IQ-components of |y|2 are squared indepen-

dent Gaussian variables with mean µy = 0 and variance σ2
y =

npPmaxσ
2
h
+σ2

z , the server can apply the linear transformation

A(np) =
|y|2

npPmaxσ
2
h
+ σ2

z

(18)

to attain a chi-squared distribution with 2 degrees of freedom2.

With A(np), it is clear that the estimator from (15) has a

decision error probability

ϵcom = Pr
(

|y|2 ≥ γ
∣

∣

∣ H0

)

Pr (H0) + Pr
(

|y|2 < γ
∣

∣

∣ H1

)

Pr (H1)

= Pr

(

A(0) ≥ γ
σ2

z

)

Pr
(

np = 0
)

+

n
∑

l=1

Pr













A(l) <
γ

lPmaxσ
2
h
+ σ2

z













Pr
(

np = l
)

,

(19)

where

Pr

(

A(0) ≥ γ
σ2

z

)

= e−0.5γ/σ2
z , and

Pr













A(l) <
γ

lPmaxσ
2
h
+ σ2

z













=
(

1 − e−0.5γ/(lPmaxσ
2
h
+σ2

z )
)

.

(20)

For any given device, the probability of participating follows

a Bernoulli trial of probability p = 0.5n−1, since the device is

2In practice, the server can not perform this linear transformation since it
does not know np. However, it does not have to, it can operate directly on

|y|2 to distinguish between H0 and H1.
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equally likely to select any one-hot vector and the sparsity of

any given group test is 0.5n−1. However, note that the Bernoulli

trials of any two devices are not independent for a fixed GT

matrix M, therefore np is not a Binomial random variable.

Instead, the PMF of np is given by

Pr(np = l) =

d
∑

k=0

Pr
(

np = l
∣

∣

∣ j = k
)

Pr ( j = k)

=

d
∑

k=0

fB

(

l; n,
k

d

)

fB

(

k; d,
1

2n

)

,

(21)

where fB (k; n, p) is the Binomial PMF of getting exactly k

successes in n trials with probability p and j is the number

of non-zero entries in one group test. To clarify, Pr( j = k)

is the probability that there are k non-zero values in any row

of M, and Pr(np = l| j = k) is the probability that l out of n

devices has bi[t] = 1 given that the corresponding GT row has

k non-zero values. With Eqs. (19)-(21), we have a closed form

expression for ϵcom. However, this does not directly translate

to a bit flip probability q for the disjunction MAC in (1), since

the disjunction MAC considers symmetric bit flip probability

of false negatives q− and false positives q+. Therefore, we

require that neither q− nor q+ exceeds q. Equivalently,

q ≤ max
(

Pr
(

|y[t]|2 ≥ γ
∣

∣

∣ H0

)

,Pr
(

|y[t]|2 < γ
∣

∣

∣ H1

))

= max

















e−0.5γ/σ2
z ,

∑n
l=1

(

1 − e−0.5γ/(lPmaxσ
2
h
+σ2

z )
)

Pr
(

np = l
)

1 − Pr
(

np = 0
)

















.

(22)

Next, γ can be selected according to

argmax
γ

1 − q(γ) s.t. γ ≥ 0, (23)

where q(γ) is the right-hand side of (22). Since q− is an

increasing function of γ and q+ is a decreasing function, (23)

is equivalent to

e−0.5γ/σ2
z =

∑n
l=1

(

1 − e−0.5γ/(lPmaxσ
2
h
+σ2

z )
)

Pr
(

np = l
)

1 − Pr
(

np = 0
) , (24)

which yields a symmetric bit flipping probability q. By com-

bining Eqs. (19)-(22), with γ according to (24), the lemma

follows.

We are now ready to state the main result of this paper.

Theorem 1. Consider that n user devices share a Rayleigh

fading wireless MAC with a single-antenna server. In channel

use t, each user device sends si[t] ∈ R+ and the server receives

y[t] =

n
∑

i=1

hi[t]si[t] + z[t], (25)

where z[t] ∼ CN(0, 2σ2
z ) and hi[t] ∼ CN(0, 2σ2

h
). Each device

carries a one-hot vector xi ∈ {0, 1}d, where the non-zero

location is independently generated over a uniform distribu-

tion U(1, d). Then, without any CSI, the server can exactly

reconstruct the support hs =
∨

i xi with error probability
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Fig. 2. The error probability for AirGT as a function of the number of channel
uses T under n = 10 and d = 104. It is empirically calculated by running 100
Monte-Carlo simulations, and each plot corresponds to a different SNR value.
The value of δ was set to 1/4 so that the upper bound of the error probability is
d−δ = 0.1. Each vertical dotted line represents the upper bound of T calculated
with (26).

ϵGT B Pr
(

ĥs , hs

)

≤ d−δ. The communication cost is upper-

bounded (in terms of channel uses) by

T ≤ βn log(d), (26)

where

β = 4.36
(√
δ +
√

1 + δ
)2

(1 − 2q)−2, (27)

q = max

















e−0.5γ/σ2
z ,

∑n
l=1

(

1 − e−0.5γ/(lPmaxσ
2
h
+σ2

z )
)

Pr
(

np = l
)

1 − Pr
(

np = 0
)

















,

(28)

Pr
(

np = l
)

=

d
∑

k=0

fB

(

l; n,
k

d

)

fB

(

k; d,
1

2n

)

, (29)

fB (k; n, p) is the Binomial PMF of getting exactly k successes

in n trials with probability p, and γ ∈ R+ , δ ∈ R+ are design

parameters.

Proof. Proposition 1 and Lemma 1 yield the theorem.

With Theorem 1, we have proven that AirGT can reconstruct

the histogram support hs in O(n log(d)) channel uses. Also,

Theorem 1 tells us that the probability of group testing error

is exponentially decreasing in the number of channel uses as

ϵGT = O(d−T ) since T = O(δ).

Before introducing the numerical results, we also wish to

mention an alternative viewpoint of AirGT as a distributed

channel code for aggregation. Since xi is a one-hot vector,

the vector-matrix multiplication bi = Mxi is equivalent to

selecting one column in M, i.e., if xi[ j] = 1 then bi = m j,

where m j is column j of M. Every user device selects one

column of M, and the server can reconstruct hs using
∨

i bi.

If we consider
∨

i bi as a separate codeword, we can observe

that these codewords are likely to be well-separated from each

other, i.e., the disjunction of any n columns is well separated

from the disjunction of any other n columns.
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Fig. 3. The error probability for AirGT as a function of the number of channel
uses T under n = 10 and SNR=20 dB. It is empirically calculated by running
100 Monte-Carlo simulations, and each plot corresponds to a different d value.
The value of δ was set according to d so that the upper bound of the error
probability is d−δ = 0.1. Each vertical dotted line represents the upper bound
of T calculated with (26).

V. Numerical Results

In this section, we evaluate the end-to-end performance of

AirGT. Most of the results in this paper are given in exact

closed form, so the mathematical expressions give the full

picture. However, the number of channel uses T and the error

probability ϵGT B Pr
(

ĥs , hs

)

are given as upper bounds,

which we evaluate numerically.

All simulations are created by randomly generating the

items xi, the GT matrix M, the AWGN z, and the fading

coefficients h for 100 Monte Carlo trials. In each trial, y

is computed according to (11), v is computed based on y

according to (15), S j is computed with v and M, and finally

the estimate ĥs is formed with S j according to (3). The

empirical error is the fraction of Monte Carlo trials that

resulted in ĥs , hs. The simulation code is available at

https://github.com/henrikhellstrom93/AirGT.

In Figure 2, we fix d = 104 and δ = 1/4 such that the GT

error probability is bounded to be ϵGT ≤ 10% according to

Theorem 1. The goal of this simulation is to illustrate how

the empirical error probability is affected by the SNR and the

number of channel uses T . From the results, it is clear that

T can be selected as approximately half of the upper bound,

while still maintaining the desired error probability. In fact, if

T is equal to the bound, the empirical error probability is less

than 1%, i.e., we get zero errors in 100 Monte Carlo trials.

In Figure 3, we are interested in evaluating the level of

compression achieved by the GT scheme. We define the

compression ratio r B d/T , i.e., if a histogram of dimension

105 is communicated using 103 channel uses, we consider that

to be a compression ratio of r = 100. For d = 103, we see that

almost no compression is possible (r ≈ 1). When d = 104, a

ratio of r ≈ 10 is possible, and for d = 105, around r ≈ 80.

Larger dimensions are prohibitively expensive to simulate via

Monte Carlo simulation, but our bound in Theorem 1 can

be used to get a minimum guarantee on r. For example, if

d = 107, n = 100, δ = 1/7 and SNR=20 dB, the upper

bound of T becomes 24021, resulting in r ≥ 400. Finally,

it is worth noting that the numerical results are in the same

order of magnitude as the bounds, suggesting that they can be

viewed as an approximation for system performance.

VI. Conclusion

In this paper, we have demonstrated that secure histogram

estimation can be performed over MACs in T/n = O (

log(d)
)

channel uses per user with a vanishing probability of error. In

each time slot, the user devices elect to participate based on a

common group testing matrix M and their data item xi. Based

on the superimposed received waveform, the server solves a

linear inverse problem to recover the histogram support hs ∈
{0, 1}d. Our upper bound on T is exact, where T ≤ βn log(d)

with a relatively modest constant β ≥ 4.36.
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