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Fig. 1: SignAvatar excels at two tasks: reconstructing 3D sign language motions from videos and generating them from semantics (images,

text). The top row displays a sign language video for "drink" -

note some motion blur here. The middle row shows the 3D avatar

reconstruction by SignAvatar, and the bottom row demonstrates its ability to generate a 3D signing avatar from the word "drink".

Abstract— Achieving expressive 3D motion reconstruction
and automatic generation for isolated sign words can be
challenging, due to the lack of real-world 3D sign-word data,
the complex nuances of signing motions, and the cross-modal
understanding of sign language semantics. To address these
challenges, we introduce SignAvatar, a framework capable of
both word-level sign language reconstruction and generation.
SignAvatar employs a transformer-based conditional variational
autoencoder architecture, effectively establishing relationships
across different semantic modalities. Additionally, this approach
incorporates a curriculum learning strategy to enhance the
model’s robustness and generalization, resulting in more realistic
motions. Furthermore, we contribute the ASL3DWord dataset,
composed of 3D joint rotation data for the body, hands, and
face, for unique sign words. We demonstrate the effectiveness
of SignAvatar through extensive experiments, showcasing its
superior reconstruction and automatic generation capabilities.
The code and dataset are available on the project page'.

I. INTRODUCTION

Over 70 million people worldwide rely on sign language
as their primary way of communication [7]. The emergence
of Al has catalyzed research in Sign Language Recognition
(SLR) and Sign Language Translation (SLT). Most of the
works [27], [24] use skeletal data to analyze motions and
learn feature projections with designed models. However,
this approach may not be well-suited for generative tasks
because synthetic skeletal motion is highly abstract and may
not be readily understood by DHH individuals, hence is not
as conducive for effective communication. The use of virtual
human agents, signing avatars [29], holds the potential for
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automated interaction in scenarios such as remote communica-
tion, customer service, or public announcements [35]. Using
3D word-level sign dictionaries [29] can greatly improve
sign language synthesis and enhance the quality of sign
language learning. Initial effort [10] required extensive manual
intervention and expensive equipment support, resulting in
avatars with unnatural movements.

Our goal in this work, therefore, is to synthesize expressive
and natural 3D word-level signing avatars, either by recon-
structing them from videos or automatically generating them
from texts only. Reconstructing realistic 3D sign motions
from 2D videos and semantically controlling such motion
generation both present significant challenges. Firstly, it
requires reliable 3D data for learning. However, the equipment
needed for capturing such data is expensive and requires
skilled professionals to operate, which discourages many
researchers. Secondly, unlike the broad body motions often
considered in many activity recognition tasks, the motions
in sign language typically involve subtle variations. Even
slight changes in these gestures can lead to significant
shifts in meaning. The definitions of sign language grammar
encompass various factors, including whether signs are one-
handed or two-handed, the shape of gestures, palm orientation,
locations, and movement patterns. Consequently, mastering
these characteristics presents considerable challenges in
learning and distinguishing between different signs.

To tackle the aforementioned challenges, we introduce
SignAvatar, a novel approach for 3D motion reconstruction
and automatic sign language generation, providing an effective
solution for learning, understanding, and generating signs.
Our SignAvatar employs a transformer-based conditional vari-
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ational autoencoder (CVAE) framework, capturing temporal
and spatial relationships in sign language motions while
aligning semantics. We leverage the Contrastive Language-
Image Pre-Training (CLIP) [36] latent space for conditioning.
This model not only effectively captures textual semantics
but also offers semantic expansion for images. As a result,
our SignAvatar can generate sign language 3D motion from
various semantic conditions. Further elaboration on the model
architecture is provided in Section III.

Along with the framework design, we also introduced a
curriculum learning training strategy to further enhance the
robustness of generating consistent and diverse motions. This
approach employs masked motion modeling, gradually raising
the mask ratio during training. Detailed results showing the
efficacy of curriculum learning are presented in Table I.

To further evaluate our SignAvatar framework, we con-
structed a 3D sign language motion dataset from the Word-
Level American Sign Language (WLASL) dataset [21]. This
dataset, which is a large collection of isolated videos, serves
as a valuable resource for SLR tasks [1]. However, we have
also identified some limitations in its use for generative work.
Section IV explains how the samples in the dataset were
selected and refined for further processing. For 3D pose
extraction, rather than the typical 3D skeleton-based features,
we use the SMPL-X [32] format which includes joint rotation
information for the body, hands, and face, making it suitable
for flexible and complex sign language motions. Additionally,
this pose format is conducive to generating SMPL-X meshes
and rendering avatars. More information on this process is
given in Section IV-B.

SignAvatar takes a stride towards automating the synthesis
of realistic 3D signing avatars. We have tackled a series
of challenges ranging from data acquisition and framework
design to enhancing generalizability. Simultaneously, we
have established a more robust baseline for conditional 3D
signing word generation. In summary, our contributions can
be outlined as follows:

« We propose SignAvatar, a sign language generative frame-
work that integrates a transformer-based CVAE architecture
and a large vision-language model, CLIP. For the first time,
we are able to reconstruct 3D sign language motions from
isolated videos and also generate 3D motions from text or
image prompts, thus representing a major advancement in
automated sign language understanding technology.

o We introduce a curriculum learning strategy that gradually
increases the mask ratio during training. This approach aids
SignAvatar in enhancing its fine-grained gesture learning
and generalization abilities, thereby facilitating the synthesis
of realistic and natural signing motions.

o We provide a thorough evaluation of SignAvatar, showcas-
ing its denoising capability in sign language reconstruction
and superior capability in sign language motion generation.
Additionally, we contribute the ASL3DWord dataset, com-
prising word-level 3D joint rotation sequence, for 3D sign
language research.

II. RELATED WORK

Sign Language Synthesis In recent years, Al-generated
content has seen remarkable advancements, significantly
driving progress in automated sign language synthesis re-
search. Notably, recent work by Saunders et al. includes
the generation of 3D single-channel signs based on a gloss
intermediary [40], and the introduction of a sophisticated 3D
multi-channel system. This system integrates both manual
(hand movements) and non-manual (facial landmarks) fea-
tures, employing advanced technologies such as transformers
and mixture density networks [41]. Other multi-channel
approaches have also been explored [39]. These sign language
generation techniques were developed and evaluated using
the RWTH PHOENIX-Weather-2014T (PHOENIX14T) [18]
German sign language dataset. Stoll et al. introduced the
Text2Sign system [42], employing Generative Adversarial
Networks (GANSs) to produce sign videos. Zelinka et al.
developed text-to-video signs [47] using a skeletal model
based on the Openpose [3] framework. A comprehensive
review of sign language production was presented by Rastgoo
et al. [38], mentioning the lack of annotated datasets is one of
the major challenges in this field. Sign language production
typically relies on seq2seq mapping, which can only recreate
a limited set of predefined sentences. However, due to the
dynamic nature of real-life sentences, the scalability of this
approach is severely limited. Research on sign language
generation that begins at the word-level semantic level offers
greater flexibility and better support for generating unseen
semantic expressions. Since words form the basis of sentences
and phrases, our approach focuses on word-level generation.
Pose Representation Transitioning from 2D skeletons to
3D skeletons [41], [39], [47] for the hands, body, and facial
features has become mainstream due to its incorporation
of depth, thereby enhancing our understanding of motion.
However, this approach still results in unrealistic abstraction
by losing shape information, which is a critical component
in sign language understanding. In addition to methods
that estimate a sparse set of landmarks, various approaches
have been developed for estimating parameters of morphable
models for different body parts. These include the hand [11],
[20], [26], [49], face [6], and body [4], [13], [15], [17], [19],
[23], [28], [49]. The emergence of expressive 3D body models
like SMPL-X [33], Adam [14], and GHUM [45] has made
it easier to research and estimate complete 3D body surfaces.
However, in the domain of sign language, these body models
have not been fully utilized. We believe that leveraging SMPL-
X to synthesize expressive, human-like sign language avatars
represents a significant step forward in the field.

3D Human Pose Estimation from Single Image Several
initial studies employed an optimization-based approach,
wherein they aimed to fit a 3D human model to the available
2D/3D ground-truth data. For instance, Joo et al. [14]
employed this approach by fitting their human models to
3D human joint coordinates and point clouds, in a multi-
view studio setting. Building on their work, Xiang et al.
[44] extended the approach to single-view RGB scenarios.
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Fig. 2: SignAvatar overview. We present our SignAvatar transformer-based CVAE framework, featuring an encoder (left, green dashed
box) and a decoder (right, pink solid box), designed for both the reconstruction of signing avatars from videos and the generation of
signing avatars from conditions (middle, yellow solid box). These conditions can be text or images, which are transformed into semantic
embeddings using CLIP. Given a sign language video, the SignAvatar encoder learns the sign motion distribution through the following
process: pose extraction (3D Pose Inference Module), concatenation with semantic embeddings, positional encodings (PE), and utilization
of a transformer encoder. Samples 'z’ from this distribution, when combined with the semantic-based condition, will guide the SignAvatar
decoder in synthesizing pose sequences, which are then rendered using Blender. For reconstruction, SignAvatar samples from the learned
distribution, while for generation, it bypasses the left encoder and directly samples sequences from a standard normal distribution.

In parallel, SMPLifX [33] and Xu et al. [45] also utilized
optimization-based techniques, to fit their respective human
models, SMPL-X and GHUM, to 2D human joint coordinates.
However, these optimization-based methods are known to be
slow and sensitive to noisy evidence.

More recently, a shift towards regression-based approaches
has been observed. Numerous neural network-based methods
have emerged, each comprising of distinct networks dedicated
to body, hand, and face components. Each of these networks
takes as input a human image, a hand-cropped image, and a
face-cropped image, respectively, to predict SMPL-X parame-
ters and generate a final whole-body 3D human mesh. Notable
regression-based methods in this context include ExPose
[5], the approach that employed three separate networks.
Zhou et al. [52] leveraged 3D joint coordinates for predicting
3D joint rotations, while PIXIE [8] introduced a moderator
to enhance the prediction of 3D joint rotations. Using a
Pose2Pose design, Hand4Whole[25] utilized both body and
hand metacarpophalangeal joint features for accurate 3D wrist
rotation and smooth connection between 3D body and hands.
We incorporate this last method into our proposed generative
model, to alleviate the current challenge of insufficient real-
life 3D data availability?.

Conditional Generation Researchers have consistently
aimed to enhance controllability in generation, whether for
motion synthesis or static images. For instance, ACTOR [34]
achieved action-aware latent representation learning for hu-

2Such 3D real-life data can be obtained with motion capture sensors,
depth cameras, etc., but these can be expensive and resource intensive.

man motions using a transformer-based VAE, albeit with one-
hot action labels as a condition. The subsequent development
of language-guided generation established a stronger link
between visual representation and semantic space, offering
more precise control and expanding creative possibilities.
Many prior language-guided generation approaches [50], [22],
[30] have primarily focused on generating images. DALL-E
[37] employed a discrete variational autoencoder to create
diverse images based on text embeddings derived from GPT-
3 [2]. A more recent development, CLIP[36], demonstrated
remarkable capabilities by jointly learning a multi-modal
vision-language embedding space. Building on the power
of CLIP, StyleCLIP [31] extended StyleGAN [16] into a
language-driven generation model through their CLIP-guided
mapper.

Current action generation models primarily focus on body
motion, neglecting the intricate movements of hands. This
oversight makes it relatively easy to train the generative model
due to fewer joints and larger movement changes. However,
in sign language data, the body remains relatively static, with
only the hands and upper limbs exhibiting high flexibility
and often subtle motions. This presents a challenge akin to
fine-grained motion learning, making it more difficult to train
the model effectively.

III. METHOD

A. Problem Formulation

The task of sign language 3D motion synthesis aims to
reconstruct motion from videos and generate sign motion
sequences from labels that accurately represent the given label



semantics Y. To convey semantics accurately, it is necessary
to consider factors such as gestures, upper body movements,
and facial expressions. Moreover, to make sign language
more realistic and naturally reflect different morphology, it
is desirable to disentangle the pose and the shape. Thus,
we adopt the SMPL-X body model, a unified representation
model with shape parameters trained jointly for the face,
hands, and body. Considering a neutral body shape, our goal
then is reduced to generating sequences of pose parameters.
Specifically, we use a pose inference module to estimate the
SMPL-X pose parameters p; from the video frames f; and
construct word text and motion pairs {(Yyord, My)}, where
M,, = [p1,....pr] is the motion sequences. During training,
we utilize the upper pose information as input, while during
the testing phase, the goal is to synthesize a full-body motion
sequence [p1, ....pr] based on the input word text.

B. Conditional VAE with CLIP latent space

We model the sign language synthesis process with a
Conditional Variational Autoencoder (CVAE) framework, as
illustrated in the Fig. 2. The proposed SignAvatar consists of a
transformer-based encoder-decoder architecture. The encoder
extracts the core structure from the input motion sequence,
creating a concise latent representation. The decoder then
combines this latent representation with the text embedding
from CLIP to produce a realistic human motion sequence
that matches the specified condition.

Encoder Our CVAE encoder takes the pose sequence
and word-level text projections as input, using a transformer
architecture to learn their respective latent representations
and calculate Gaussian distribution parameters, denoted as p
and X. We concatenate two tokens to represent the Gaussian
distribution parameters, which are derived from the input
embedding using a three-layer multilayer perceptron (MLP).
For word-level embedding, we employ CLIP as the projection
method since it is trained on both images and text semantics,
providing robust generalization to semantic relations and
image recognition. Combining information from both sources
through concatenation enhances the coupling of semantic and
motion data. Additionally, using an MLP projection helps
align the dimensions of motion and text, facilitating better
integration of information within the same latent space. The
resulting encoder input is the summation with the positional
encodings in the form of sinusoidal functions. We obtain the
distribution parameters p and X by taking the output from
the corresponding token position while ignoring the rest.

Decoder When provided with a latent vector z, we initially
introduce a conditional bias in order to integrate categorical
information. This bias is unique to the words and is acquired
from the word-level embedding via MLP layers. Additionally,
we introduce a time dimension denoted as 7°, and this
information is duplicated to create a sequence. To provide
positional context, we employ sinusoidal positional encoding
before feeding the data into the transformer decoder. In this
context, the time information represented by 7' sinusoidal
positional encodings serves as the query (Q), while the Z

sequence infused with semantic information is treated as the
key (K) and value (V).

The decoder subsequently generates a pose sequence

using the latent space by projecting it back to the SMPL-X
parameters. These parameters are then utilized in Blender with
the SMPL-X add-on for rendering, resulting in the creation
of realistic 3D avatars, with options for both male and female
avatars. Notably, our model operates efficiently, generating the
entire sequence at once, without the need for an autoregressive
approach that relies on prior information to generate the next
pose.
Learning Objectives In line with the standard VAE
approach, our model was trained with two fundamental
components: the reconstruction loss L. and Kullback-Leibler
(KL) divergence loss Lxi. The primary objective of the
reconstruction loss is to minimize the dissimilarity between
the original motion representation M and the reconstructed
motion representation M using a mean square error loss:

T
1 2
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On the other hand, the KL divergence loss Lx; minimizes
the distribution difference between the estimated posterior
N(u,X) and the prior normal distribution N (0, I'). Thus, the
CVAE training loss Lcvag is a weighted sum of the two
terms:

Levag = Lree + wrr Lk, 2)

where wgp. is a weighting hyperparameter.

C. Curriculum Learning Strategy

Employing curriculum learning, where models are pro-
gressively exposed to easier and then more challenging
samples, has proven to enhance performance[43]. Recent
work [12], [48] demonstrated that even when we mask a
portion of inputs, meaningful outcomes can still be achieved.
This masking operation essentially elevates the sample’s
complexity. Inspired by the success of these works in effective
representation learning, we introduce curriculum learning
of masked sign motion modeling. This technique entails
randomly masking a portion of the input motion sequence
at a ratio r and tasking the model with reconstructing the
complete motion sequence.

We perform curriculum learning by progressively increas-
ing the mask ratio as the training progresses according to a
growth function g(ep), where ep represents epochs.

g(ep) = min {0.1 " {%J ,0.6} Lep € [0,5000)  (3)

As a result, at the beginning of training, a lower mask ratio
allows the model to learn basic motion patterns and capture
fundamental structures in the motion data. As the mask ratio
increases, the model is exposed to more challenging and com-
plex motion sequences. This curriculum strategy thus enables
a more effective and stable learning experience, ultimately
improving motion synthesis performance. It enhances the
model’s comprehensive grasp of motion data, encompassing
both local and long-range patterns.
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Fig. 3: Data Collection Quality Control Process. This graph displays the downsampled video frames of certain "Table" videos. The
correct grammar for this sign-word involves holding both hands and forearms horizontally in front of the body, with the dominant forearm
positioned above the non-dominant one, followed by tapping them together. The 21 frames shown earlier match this description, while the
gray area that follows does not; these frames will be manually removed.

IV. DATASET

To quantitatively evaluate SignAvatar’s performance in
sign language reconstruction and generation, we construct
the ASL3DWord dataset from the WLASL video dataset
[21]. WLASL is the largest publicly available Word-Level
American Sign Language (ASL) dataset for SLR, containing
2000 words (glosses) and their corresponding sign videos.
However, while WLASL boasts of such a large vocabulary,
its data distribution of videos per word is quite unbalanced,
where there is an uneven number of sign video samples per
word. This number ranges from 7 to 40 video samples per
word. Having such a varied number of samples will inevitably
skew the motion distribution learned and affect the correctness
of generated samples.

ASL3DWord Subset

0 20 40 60 80 100
Sign Glosses (sample size >= 18)

Fig. 4: ASL Word sample statistics in WLASL: shown for words
having a sample size of 18 or more videos per word. For generative
models such as VAE and CVAE, a small number of samples cannot
properly capture the underlying distribution for the word sign motion.

Thus, to create a more balanced dataset, with a sufficient
number of samples needed to train each word sign, we first
filtered out the words having less than 20 video samples, to
build the source video subset. To create the larger dataset,
from the original data, we again filtered out the words having
less than 18 video samples. The resulting data distribution in
our curated dataset is shown in Fig. 4.

A. Quality Control

After some preliminary analysis, it was observed that
the dataset contained considerable noise samples, where in
certain video clips, only the initial portion corresponded to

the intended word meaning, while the remainder contained
words that had no bearing on the label of the video. Fig. 3
shows the 48 frames from a video featuring the semantic
word "table" within the dataset. In the figure, only the first
21 frames contain the sign for the table while the rest of
the frames contain other signed words which we consider as
noise. Because these noise signals could negatively affect the
performance of the generative model, we manually removed
such "noisy" frames from the dataset.

Additionally, certain videos featured prolonged periods of
inactivity at the beginning, where no signs were performed.
So, to enable the model to glean as much useful information
as possible, we removed excessively long silent frames, thus
enhancing the overall data quality. Ultimately, we constructed
a 3D sign language dataset consisting of 103 gloss words. We
then divided the data for each word into training and testing
sets in an 8:2 ratio, resulting in a total of 1208 samples for
training and 339 samples for testing.

Fig. 5: Comparing 3D upper body pose estimation with different
models. The original image is on the left, with ExPose[5] extraction
in the middle and Hand4Whole[25] extraction on the right.

B. Pose Feature Extraction

After completing the data quality control process, we used a
3D pose estimation model to extract 3D SMPL-X parameters
from video frames. In terms of feature extraction, the
optimization-based methods [32] were relatively slow, making
them less suitable for extracting data in large quantities.
Therefore, we focused on regression-based methods, first
exploring ExPose [5]. It introduced body-driven attention
to improve efficiency. However, we found that the results
it produced for sign motion data were unsatisfactory, with
unnatural wrist rotations and inaccuracies in gestures.
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Fig. 6: The upper row represents the reconstruction process, absorbing knowledge and analyzing their relationships, while the lower row
indicates the generation process, which outputs knowledge. Unlike the rigid mapping of sign language production, the input text or images

in sign language generation showcase greater semantic flexibility.

An example of this is shown in the middle column of
Fig. 5, where the hand rotation appears to be unrealistic and
inaccurate. Since hand pose estimation is crucial for sign
language research, we further explored Hand4Whole[25],
which incorporates the metacarpophalangeal (MCP) hand
joints to predict 3D wrists. This resulted in more accurate
3D wrist rotation predictions (the last column of Fig. 5).

We used Hand4Whole to extract SMPL-X parameters from
our collection of pre-selected, quality-controlled video frames,
thus building the ASL3DWord motion dataset. Meanwhile,
we designated the top 30 word samples as the ASL3DWord
Subset, which served as the control group for generalization
analysis.

V. EXPERIMENTS

As depicted in Fig. 6, our SignAvatar can manage both
the reconstruction pipeline and generation pipeline. The
reconstruction process obtains samples from a distribution
learned from the initial extracted poses, which makes it
closely resemble the input video. However, the generation
process directly samples from a standard normal distribution
N(0,I). As a result, the generation process matches the
overall motion but exhibits slight differences, such as in the
starting and ending positions or the range of motions, as
shown in Fig. 1. We evaluate the raw, reconstruction, and
generation groups using various metrics. First, we introduce
the four evaluation metrics used in our experiments. Next,
we outline the implementation details. Then, we present an
ablation study. Finally, we provide qualitative results.

A. Evaluation Metrics

We follow the performance measures employed in [9] for
quantitative evaluations. We measure recognition accuracy,
FID, overall diversity, and per-action diversity (referred to as
multimodality in [9]). Below are details of the four metrics:
« Recognition Accuracy (Acc.) The recognition accuracy

metric serves as an indicator of how effectively our

reconstruction and generation can be identified by the same
classifier. We compute the overall recognition accuracy for
three data groups: Raw (Raw), Reconstruction (Rec), and
Generation (Gen). We begin with a sign motion recognition
classifier using Spatio-Temporal Graph Convolutional Net-
works (STGCN) [46], trained on Raw data and employing
6D rotations [51] for pose expression. STGCN seamlessly
combines temporal and spatial information, which has
recently led to successes in motion recognition tasks.
Fréchet Inception Distance (FID) FID assesses the
overall quality of reconstructed and generated motions
by comparing feature distributions. It involves extracting
features from the initial raw motions, as well as from
the reconstructed and generated motions. Subsequently,
FID is computed by measuring the feature distribution
of the reconstructed and generated motions against that
of the original raw features. This metric holds significant
importance and is commonly employed in evaluating the
quality of generated motions.

Diversity(Div.) Diversity measures the variance of the
motions across all action categories for three data groups.
From a set of all motions from various action types within
the same data group, two subsets of the same size S, are
randomly sampled. Their respective sets of motion feature

vectors {my,...mg, } and {mll, m/sd} are extracted.
The diversity of this set of motions is defined as

’

Dy
1
Diversity = — Hm —m, )
d 1=1

2

Sq = 200 is used in experiments. Hyperparameter settings
follow previous motion research [9], [34].

Multimoldality(Multi.) Different from diversity, multi-
modality measures the average variance within each sign
word for three data groups. Given a set of motions with
C sign words. For each word, we randomly sample two



TABLE I: Quantitative results comparison on Raw Poses (Raw), Reconstructed Poses (Rec), and Generated Poses (Gen). —
indicates results are better if they are closer to the extracted Raw pose.

ASL3DWord Subset Acc. T | FID | | Div.— | Multi— ASL3DWord Ace.t FID| Div.— | Multi.—
Rawrain 1.0 0 30.001 9.921 Rawrain 1.0 0 34.565 13.256
Rawiest 0.897 0 26.252 11.180 Rawgest 0.818 0 30.599 12.289

w/o Curriculum Learning w/o Curriculum Learning
Recirain 1.0 4.566 | 28.981 10.160 Recirain 1.0 3.395 33.566 13.803
Reciest 0.962 | 32.583 | 29.495 9.095 Rectest 0.906 29.184 | 31.356 10.249
Gentrain 0.884 | 75.243 | 24.566 8.250 Gentrain 0.515 126.830 | 25.732 16.500
Gentest 0.890 | 65.285 | 24.187 6.600 Gentest 0.5111 | 100.147 | 25.393 12.289

w/ Curriculum Learning w/ Curriculum Learning
Recirain 0.997 7.195 29.340 9.993 Recirain 0.999 6.112 33.583 13.347
Reciest 0.976 | 32.973 | 29.165 7.362 Reciest 0.952 40.637 32.561 8.486
Gentrain 0.946 | 44.469 | 27.115 7.160 Gentrain 0.729 85.025 | 27.973 14.700
Gentest 0.941 46.435 | 27.097 5916 Gentest 0.733 71.809 | 27.811 10.483

TABLE II: Ablation Study for Quality Control

Data w/o Quality Control | w/ Quality Control
ASL3DWord Subset | Acc. T FID | Ace. T FID |
Rawirain 1.0 0 1.0 0
Rawtest 0.790 0 0.897 0
Rectrain 0.927 27.319 0.997 7.195
Reciest 0.851 51.846 0.976 32.973
Gengrain 0.856 70.250 0.946 44.469
Gentest 0.860 75.515 0.941 46.435

subsets with same size S; , and then extract two subset of
! !
feature vectors {mc,1,...mc,s, } and {mc,l, My s,

c S

1 ,
Tx G 22 Hm e
c=1i=1

C = 30 and S; = 20 are used in experiments following
previous motion research.

B. Ablation Study

We perform a comprehensive analysis of the proposed
SignAvatar from three perspectives: framework design, cur-
riculum learning strategy, and data collection quality control.
We trained and evaluated the proposed model using raw
poses (Raw), reconstructed poses (Rec), and generated poses
(Gen), while also comparing the individual results of their
train and test splits.

SignAvatar CVAE Framework Our experimental results
on both the ASL3DWord Subset and ASL3DWord dataset
compellingly demonstrate our design’s effectiveness in sign
motion reconstruction and generation tasks, as shown in
Tables I and II. Recognition accuracy serves as a reliable
indicator for assessing the quality of reconstructed and
generated poses by the SignAvatar CVAE Framework. We
train our STGCN-based recognition model using the raw
training set. From Table I, we observe that compared to
Rawyest accuracy, our CVAE-based Framework significantly
improves reconstruction test results, Recqes;, regardless of
whether the curriculum learning strategy is used. This can
also be observed in Table II, where our reconstruction
Reciest increases from 0.790 to 0.851, even without data
collection quality control. This is because the original feature

Multimodality = ®)]

2

extraction involves inference from images, which are not
directly obtained ground truth through camera equipment.
When the frame is blurred, such inference can introduce errors
and substantial noise. In contrast, our framework possesses
a certain denoising effect, resulting in a smoother and more
accurate performance.

Curriculum Learning Strategy (CLS) Through exper-
iments, we have also proved the effectiveness of the CLS
for our generation pipeline. Here, recognition accuracy and
FID are the two most critical metrics, while diversity and
multimodality serve as auxiliary indicators, providing us with
insights from the perspective of variance. When calculating
FID, all data groups are compared with Raw;,qi, in the
Train Split and with Raw;es; in the Test Split. Therefore,
the values for both Raw;,qin and Rawyes: are 0. Analyzing
the recognition accuracy from Table I, when CLS is not
used, the value of Recy,qin reaches 1, but Recies: is 0.962,
which is lower than the Reciqs; value of 0.976 when CLS is
employed. Both groups have the same trend, indicating that
CLS improves the model’s generalization. This observation
is also well-supported in the generation for different group
sizes. Without CLS, the generation performance drops to 0.51,
but with CLS, the generation performance remains around
0.73. This indicates CLS improves the model’s robustness.
Examining the FID values, it is evident that employing CLS
significantly reduces Generation FID. Specifically, for a group
word size of 30, Geng,.qin decreases from 75.243 to 44.47,
and Geny.s; from 65.285 to 46.435. For a group word size
of 103, it decreases from 100.147 to 71.809.

From the perspectives of Diversity and Multimodality, using
CLS results in a slight decrease in Generation Multimodality,
indicating a sacrifice in within-class variation. However,
employing CLS leads to an increase in Diversity, with group
sizes increasing from 24 to 27 in the ASL3DWord Subset
and from 25 to 27 in the ASL3DWord dataset, bringing the
results closer to those of the Raw data group. This suggests
that using CLS strikes a balance between different word
classes, enhancing overall diversity and making the results
more authentic compared to not using it. These findings
clearly show that our CLS improves the model’s robustness,
enhances generalization, and boosts authenticity.

Data Collection Quality Control We have also conducted



Fig. 7: SignAvatar can accept images as input. Given an image on the left, and using the text-image embedding of CLIP, SignAvatar can
recognize the corresponding semantics - "book", and generate the corresponding 3D signing motion. The upper row is the front view and

the lower row is the side view.

experiments to underscore the importance of quality control
during the 3D data collection process. Using a model with
CLS and identical configurations, we trained and evaluated
the original data for ASL3DWord Subset without quality
control. In Table II, we omitted Diversity and Multimodality
metrics because their relevance diminishes when the Accuracy
and FID results cannot be guaranteed. The experimental data
indicates that Raw;e.s¢ Accuracy is only 79%, a decrease of
10 percentage points compared to the previous results. This
suggests that the original data had a significant amount of
noise. Particularly noteworthy is that the accuracy of the gen-
erated results is slightly higher than that of the reconstructed
results, further confirming the issue of substantial noise in the
original data. While our SignAvatar enhances performance,
leading to improved results for both Recyess, Gengpqin and
Genyesy compared to Rawyes;, there remains a substantial
gap when these are compared to Reciest, Genirain, and
Gengest that have undergone quality control.

Examining the FID metrics, we observe that Reci,qin
increases from 7.195 to 27.319, Recses: increases from
32.973 to 51.846, Genirqin increases from 44.47 to 70.250,
and Genges; increases from 46.43 to 75.515. This further
emphasizes that excessive noise can significantly affect the
model’s learning ability and generalization performance. Thus,
it is evident that quality control of the data is a crucial step
in improving data reconstruction and generation quality.

C. Qualitative Results

We present quality results in Fig. 1. From the figure, it is
evident that the reconstructed results closely match specific
provided videos. However, within the same semantic sign
language, there may be subtle expressive differences due to
individual habits. Our Generation results, on the other hand,
reflect this diversity precisely, as they have learned from a
vast range of data samples. This illustrates that our SignAvatar
can effectively meet the requirements of both reconstruction
accuracy and generation diversity.

SignAvatar can also accept an image as its input condition
as shown in Fig. 7. This is an advantage of using CLIP.

With its image encoder and text encoders, CLIP can readily
identify the semantic meaning of the image and use this for
sign generation from SignAvatar.

VI. CONCLUSIONS AND FUTURE WORKS

We present SignAvatar, a novel approach for sign language
3D motion reconstruction and generation from 2D isolated
videos. Our curriculum learning strategy enhances the mod-
els’ scalability, robustness, generalization, and authenticity.
Furthermore, the text-driven and image-driven generation
methods increase flexibility in this field. Comprehensive evalu-
ations demonstrate SignAvatar’s superior performance in sign
language reconstruction and generation tasks. Additionally,
we have developed a quality-controlled, SMPL-X-based 3D
dataset, ASL3DWord, for academic research.

In the future, we aim to further leverage the semantic
space provided by CLIP to explore semantic similarities in
sign language. Additionally, recognizing that sign language
incorporates non-manual elements such as facial expressions,
lip movements, and emotions, we will investigate how facial
expressions and body poses contribute to improved under-
standing, in the context of 3D sign language reconstruction
and generation.
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