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Abstract— We demonstrate a procedure for the anonymiza-
tion of infant subjects in videos such that salient behavioral
information is retained. This method also creates a new identity
that is consistent temporally across video frames. We present an
overview of this anonymization process, which involves moving
through the latent space of a generative model with an infant
specific latent space traversal technique. We apply the technique
on videos of infants, a historically difficult source of data,
and make comparisons to other state-of-the-art anonymization
systems. Metrics demonstrate an improved ability to retain
emotional content of videos during the anonymization process,
even during extreme emotions or poses, while maintaining a
consistent identity throughout.

I. INTRODUCTION

In the world of infant behavioral research, data trans-
parency is sorely lacking. Due to privacy concerns, re-
searchers may have to forego the sharing of videos and
images of infants they have collected. This lack of fluid-
ity means other teams must resort to collecting their own
data for each experiment, a laborious, time-consuming, and
potentially expensive task. To ease this burden, researchers
may utilize tools specialized for anonymizing subjects in
media, such as [10], [16], [19], and [22]. However, applying
these existing methods to anonymize subjects in images can
have severe side effects when applied to videos. Our goal is
the anonymization of images and videos, while retaining the
quality and salient aspects of the original media to be used
in downstream tasks.

Fig. 1 demonstrates examples of side effects that exist-
ing anonymization methods can produce. Most notably, the
emotional content of the anonymized video is significantly
affected, rendering the generated data useless for tasks in-
volving behavioral analysis. A common preprocessing task
in behavioral studies of infants is the detection of facial
action units (FACS) [7], [8], [23], a coding system for the
muscles activated in the face for a given emotion. The loss of
emotion in an anonymized image means the coding process
produces significantly different results between the original
and anonymized dataset, which is disastrous for methods that
rely on FACS, such as in automated FACS recognition [8] or
still-face experiments [28], [30]. In addition, Fig. 1 displays
the lack of temporal consistency and inconsistencies with
original and generated ages that plague other anonymization
methods. As a result, the facial and skull morphology of the
anonymized frames are often inconsistent with the original
video and with one another. This makes it difficult to identify
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facial landmarks, a common preprocessing task in behavioral
analysis [8], [26], [29].

To rectify these issues, we present a StyleGAN based
method for anonymizing videos of infants without removing
emotional content or pose information from the resulting
video. In other words, the identity of an infant in a video
anonymized using our method differs from the original by a
significant amount, but the pose and emotions shown in the
output video are close to those of the original. This method
also boasts a higher degree of temporal consistency between
anonymized frames than other methods. We accomplish this
through a technique that traverses the latent space of the
GAN in a disentangled way to find new latent vectors for
generation that result in a new identity without losing the
information necessary for behavioral analysis.

Original Ours DeepPrivacy CIAGAN

Fr
am

e 
t

Fr
am

e 
t +

 x
Fr

am
e 

t +
 y

Fig. 1: A comparison of current GAN-based anonymization
tools applied to a single infant video. These images demon-
strate the loss in salient content from other anonymization
methods. These images were taken from the SIBSMILE [21]
dataset.

II. RELATED WORKS

A. Generative Adversarial Networks

With the proliferation of generative technologies, GANs
represent a staple of privatization methods [10], [11], [15],
[20]. We base our method upon StyleGAN [14], a generative
adversarial network well known for its ability to generate
human faces, as well as its easily explored and well stud-
ied latent space for controlling generation. We specifically
choose StyleGAN3 [13] to build our method, as it offers
better temporal consistency when applied to videos than its
predecessors.
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Fig. 2: An overview of our method. We embed video frames into the latent space of the StyleGAN. These latent vectors are
used to fine-tune the StyleGAN model to produce results that closely match the dataset. The initial latent vectors and the
fine-tuned StyleGAN model are then used to find the edited latent vectors that produce anonymized images. The fine-tuned
StyleGAN maps these edited latent vectors to the final anonymized images.

Other GAN-based anonymization methods such as CIA-
GAN [20] and DeepPrivacy [11] typically train custom
models with an objective function aimed at producing
anonymized images. This results in networks that are able
to successfully anonymize images at the cost of destroying
any behavioral information from the original frames. By
using StyleGAN as a starting point, we make use of several
well-studied techniques, such as GAN inversion, pivotal
tuning inversion, and an editable latent space, that aid in
the anonymization process while allowing for the retention
of behavioral attributes.

B. 3D Morphable Models

3D morphable models (3DMM) represent parameterized
models of the human face, examples of which can be found
in [6], [9], and [31]. Through parameters such as identity,
pose, and expression, these methods are able to generate a
wide variety of human faces as 3D models. To create an
anonymous video using 3DMM techniques, one could vary
pose and expression parameters across frames while keeping
the identity parameter consistent.

However, infants are often out of the distribution of
training data used to create these 3D models, leading to a
morphology in the output video that would be found in a
much older child or even an adult. Furthermore, retraining
of these models requires data that comes from expensive
4D scanners, limiting the work that can be done to extend
the data distribution. It is therefore imperative to have
an anonymization method that can be trained using more
abundant images and videos of infants.

III. METHODOLOGY

This section presents an overview of our method divided
into three areas representing the three fundamental steps in
obtaining our anonymized videos. The first step involves
embedding video frames into the latent space of the GAN
through an inversion process. Unfortunately, doing so naı̈vely
yields latent vectors that generate subpar images lacking
temporal consistency and similarity to the original frames.
Therefore, in the second step, we leverage a process called
Pivotal Tuning Inversion to fine-tune the StyleGAN back-
bone. This step allows us to better embed video frames into
the latent space. The resulting latent vectors generate frames
that are temporally consistent, and retain salient aspects of
the original frames from which they come. In our third
step, we add differentiable components to the StyleGAN
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Fig. 3: A comparison between video frame inversion results
for a StyleGAN model with and without PTI finetuning. The
latent vector for both is the inverted image from the original
column. It can be seen that the similarity in generated images
to the original frame is higher after the PTI process.

backbone that allow us to edit the latent vectors found in
step 2 according to our desired criteria.

A. Latent Space Embedding

StyleGAN, like many GANs, can be understood as a black
box model g that maps a unique vector v to a unique image
g(v). Given a dataset of images {i1, i2, . . . , iN} that come
from video frames, an identity similarity function id, and an
emotional similarity function e, where lower scores indicate
lower similarity, our method attempts to find latent vectors
which yield generated images that have dissimilar identities
and similar emotion as compared to the original images. In
other words, our objective function is:

min
v1...vN

1

N

∑
j

id(ij , g(vj))− e(ij , g(vj)) (1)

The latent space of StyleGAN also has the property that
directional paths in the latent space correspond to semantic
changes in output images [4], [14], [25]. For instance, if g(v)
produces an image of a person with blonde hair, ∆x could
represent a direction in the latent space such that g(v+∆x)
is an image that has darker hair. We exploit this property
of the latent space to design a traversal process, which we
describe in more detail later in the paper. For now, let us
focus on describing how to find vj for a given image ij . We
require a way to invert an image ij , such that the similarity
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Latent Space
Fig. 4: An overview of the traversal method for the latent space. The top arrow is a path followed without disentangling,
resulting in an image that looks much older than the original. The arrow at the bottom is a path that takes disentanglement
into account. The disentanglement process is described on the right side of the diagram. Circles represent the top channels
of a particular gradient, and the transparent areas of the final gradient represent channels that have been masked out.

between g(inv(ij)) and ij is maximized, where inv is the
embedding process.

We turn to a technique called ReStyle, which can map an
image into the StyleGAN latent space using an autoencoder
[1], [2]. The process encodes translation and rotation infor-
mation of the video subject into the latent vectors, meaning
if video frames are close together in time, the location of
their inverted vectors are also close together.

B. Pivotal Inversion Tuning

Unfortunately, using ReStyle alone produces images
{g(v1), g(v2), . . . , g(vn)} that lack similarity with the orig-
inal images, as seen in the middle column of Fig. 3. We
would like to match the generated images as closely as
possible to the original in order to retain as much salient
behavioral information as possible. To rectify this, we apply a
technique known as Pivotal Tuning Inversion [24]. The basic
idea of PTI is to fine-tune the StyleGAN3 model g′ on only
the latent vectors {v1, v2, . . . , vn}, such that the similarities
between {i1, i2, . . . , in} and {g′(v1), g′(v2), . . . , g′(vn)} are
maximized.

This technique has an added benefit related to the ed-
itability of the latent vectors. Within the latent space of the
GAN are certain regions where editing can be performed
in a more disentangled way [27]. This means changing a
latent vector in a semantic direction, such as to obtain darker
hair color, does not change other semantics, such as whether
the generated face wears glasses or not. By applying PTI to
fine-tune StyleGAN3, the latent vectors from embedding the
video end up in these more editable regions, benefiting the
disentanglement of the anonymization method. The results
of generation after this step are given in Fig. 3. It should
be noted that this unfortunately causes a loss in generated
image quality. However, the benefits of performing PTI
outweigh the downsides when looking to retain as much of
the information of the original videos as possible.

C. Latent Space Traversal

To control generation, we provide to the model an attribute
a to edit, as well as a set of attributes {b, c, . . . , z} that should
be retained in the output. Given these attributes, we require
differentiable functions {fa, fb, . . . , fz} that can score a
latent vector vj , with a high score indicating that g′(vj) is
likely to have the given attribute, as described in [3]. As an
example, ffemale(vj) for a latent vector vj could provide
a probability that g′(vj) will be classified as female. We
can calculate {∇vj

fa(vj),∇vj
fb(vj), . . . ,∇vj

fz(vj)} with
respect to vj . Changing the latent vector in the direction
of one of these gradients should correspond to a greater
expression of the underlying attribute. For instance, g′(vj +
α∗∇vj

ffemale(vj)) and g′(vj−α∗∇vj
ffemale(vj)) should

generate images that have a higher chance of being classified
as female and male, respectively. α serves as the step size.

Attributes can be entangled with each other in the latent
space, such that moving in one semantic direction causes
changes in another. This is demonstrated in Fig. 4, where
the age and identity of the generated image are shown to
be entangled. The entanglement arises from high magni-
tude components in {∇vj

fb(vj), . . . ,∇vj
fz(vj)} coinciding

with components of ∇vj
fa. To combat this, we calculate

the positions of the top-K magnitudes in each gradient
{∇vjfb(vj), . . . ,∇vjfz(vj)} and set the same positions in
∇vjfa to 0, giving (∇vjfa)

′. Changing a latent vector in
the direction of (∇vj

fa)
′ should therefore cause a smaller

change in the expression of the attributes that should stay
the same, allowing for disentangled editing.

For anonymizing infant behavioral research videos, we set
the attribute to change to be the identity of the generated
image, while the ones to retain are emotion, age, and gender.
We chose to add scorers for age and gender after early
experimental results showed that changing identity often
changed these attributes as well, and in so doing negatively
affected the facial and skull morphology of the images.

For our scoring functions, we train single layer neural
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TABLE I: A comparison of methods on the SIBSMILE
dataset.

Identity Arousal Valence Pose
Cos ↓ TC ↑ RMSE ↓ RMSE ↓ RMat ↓

PTI + Traversal .55 .79 .29 .19 25.79
PTI .69 .79 .22 .15 20.59

Traversal .44 .76 .37 .22 22.14
DeepPrivacy .28 .41 .48 .33 80.33

CIAGAN .21 .64 .58 .38 57.14

networks {fid, femo, fgen, fage} on random latent vectors
vj , generating labels for each vj by applying pretrained
classifiers from [18] to g′(vj). The identity attribute is an
exception to this rule; we generate latent vectors vj for video
frames from the embedding process previously mentioned,
as well as random latent vectors rj . ArcFace [5] is used on
generated images {g′(vj); g′(rj)} to create a unit vector i
representing the identity of a face. We choose a label for
each vector based on a threshold for the cosine similarity
between i and the average identity vector from all frames
from the current video.

IV. EXPERIMENTS

To test our method, we utilize the SIBSMILE dataset
[21], which includes videos of infants undergoing a still
face experiment [28]. Throughout this experiment, infants
display a wide range of pose and emotion, presenting a
challenging task for anonymization methods. There are 174
videos from 58 infants in 3 different phases of the still
face experiment. For traversing the latent space, we use 300
steps per image and an α of -75. Our method is compared
against the DeepPrivacy and CIAGAN models, two state-of-
the-art anonymization methods [11], [20]. We also perform
an ablation study by separating the two components of our
method, only applying PTI or latent space traversal to latent
space images.

Our goal is to analyze quantitatively, for each anonymiza-
tion method, the degree to which edited video frames are
anonymized, retain the same arousal, valence, and pose of
the original frames, and demonstrate temporal consistency.
We compare with state-of-the-art and with ablations in Table
I. We use valence and arousal measures from [26] to assess
each approach’s ability to retain emotional features between
corresponding original and anonymized frames. Valence
measures how positive or negative and emotion is while
arousal represents its intensity, with both being standard
features for emotional analysis. RMSE is taken as a metric of
similarity between results. We compare the identity of edited
and original frames by feeding both through the identification
network from [5] and taking a cosine similarity (Cos).
Identities under the ArcFace model are generally considered
the same if the angle between identity vectors are less than
45◦, or a cosine similarity above .71 [5]. To demonstrate
temporal consistency (TC), we compute the weighted cosine
similarity between identity vectors for generated frames
spaced 3 seconds apart. Finally, we measure pose of the
original and anonymized image using FLAME [17]. We

compute a metric (RMat) between the rotation matrices of
the two poses, as given in [12].

Compared to the state of the art, our method performs
better on every metric except the anonymization metric.
However, based on the Arcface threshold mentioned pre-
viously, this level of anonymization is acceptable. This
demonstrates the ability of our process to anonymize a
subject while retaining behavioral attributes. Comparing to
the ablation results, applying only PTI results in marginally
better behavioral attribute retention while essentially failing
to anonymize the subject. Applying only the traversal pro-
cess demonstrates a better anonymization process than our
method at the cost of losing emotional retention. Our method
combines the behavioral retention of the PTI process with the
anonymization of the traversal process.

V. FUTURE WORK

Our results demonstrate promise in the realm of utility pre-
serving anonymization methods. However, there is still room
for improvement, especially in the degree of anonymization
offered. While it was not present in this work, future contri-
butions should involve differential privacy in order to prove
that identities are sufficiently hidden. Differential privacy
guarantees would increase the likelihood of this work being
practically useful to behavioral researchers. As it is, the
results of this paper show an avenue towards anonymizing
sensitive identity information while retaining salient features
for downstream tasks.

Another avenue of future work involves the quality of
output images, especially by replacing only the face, rather
than the whole frame. This would more closely mimic
CIAGAN, but would provide overall better image quality.
Diffusion models might provide a path towards this goal
due to their ability to produce high fidelity output videos and
their ability to perform image infilling. It is also possible that
diffusion models contain latent spaces with a lower degree
of entanglement, allowing for an easier editing experience
during anonymization.

VI. CONCLUSION

Infants are underrepresented in computer vision data sets
due to tedious data collection and hurdles preventing data
sharing. Models trained on images of humans have a ten-
dency to break down on the out-of-distribution images, which
we demonstrated with videos of infants. In spite of these
limitations, we have developed a technique for anonymizing
videos of infants such that emotional and pose content is
preserved during the process. We have displayed the efficacy
of this technique on a difficult dataset containing videos of
infants undergoing a behavioral study and showing extreme
emotions, occlusions, and shifts in pose. For researchers in
human behavioral research, this process is a step forward
towards the goal of sharing sensitive datasets that could aid
the research community as a whole.
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