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Abstract— Cooperative Adaptive Cruise Control (CACC) is a
fundamental connected vehicle application. In CACC, a vehicle
coordinates its longitudinal movements to safely and efficiently
follow the vehicle in front. The follower vehicle relies on a
combination of sensory and communication inputs to identify
the position, velocity, and acceleration of the preceding vehicle.
Malicious subversion of these inputs can cause catastrophic
accidents, string instability, and disruption in the transportation
infrastructure. In this paper, we develop a security system,
RECAP, to provide real-time resiliency in CACC against adver-
sarial subversion of both sensory and communication inputs.
RECAP makes use of a combination of techniques based on
kinematics and machine learning to detect anomalous inputs,
narrow down the source of subversion, and perform mitigation.
We provide extensive simulations to demonstrate the effectiveness
of RECAP against a diverse spectrum of attacks under complex,
multi-channel adversaries.

Index Terms— Security, sensors, vehicular communication,
automated driving, machine learning, anomaly detection.

I. INTRODUCTION

VEHICULAR systems have seen a rapid transformation
in recent years, with an explosive infusion of automated

driving features enabled by the integration of a variety of new
sensors, actuators, compute elements, communication proto-
cols, and software. Automated driving holds the promise of
dramatically improving safety through elimination of human
errors, while improving utilization efficiency of road infras-
tructure and reducing adverse environmental impact. However,
this also increases the susceptibility of transportation systems
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to cyber-attacks. Recent research has shown that it is possible,
— even relatively straightforward, — to perform cyber-attacks
on virtually any component of a transportation system with
potentially catastrophic consequences [10], [22], [25].

A key feature of emergent automated vehicles is the ability
to perceive its environment. This is achieved through sensors
as well as vehicular communications (V2X). Vehicular com-
munications entail exchange of messages with other vehicles
(V2V), various components of transportation infrastructure
(V2I), and other devices connected to the Internet (V2IoT).
In this paper, we refer to the inputs obtained through sensory
and communication channels uniformly as perception inputs,
and the constituent channels as perception channels. Percep-
tion channels are crucial to the development of a variety of
connected and automated vehicular (CAV) applications such
as platooning [37], cooperative route management [12], and
many others. However, perception channels also produce a
large and highly complex attack surface with possibly catas-
trophic impact [2], [41]. A crucial feature of cyber-attacks on
perception channels is that it is not necessary for an attacker to
hack into the hardware or software of the victim component:
it is possible to create catastrophic impact simply by provid-
ing wrong or misleading sensory or communication inputs.
Developing viable resiliency technology against cyber-attacks
on perception is crucial for proliferation or even adoption of
CAV applications.

In this paper, we consider a simple but fundamental CAV
application, Cooperative Adaptive Cruise Control (CACC),
and show how to develop resiliency against cyber-attacks on
its perception channels. In CACC, a follower vehicle E (also
called the ego vehicle) coordinates its longitudinal movements
in accordance with the velocity, position, and acceleration of
the vehicle P in front (or the preceding vehicle). In many
common CACC implementations, E obtains the velocity and
position of P through on-board sensors and the acceleration
of P through V2V communications [36], [38]; however, the
application itself is oblivious to whether a specific chan-
nel uses sensor or communication. Adversarial tampering of
perception channels of CACC can disrupt traffic movement
and cause catastrophic accidents. Our solution, RECAP (for
“Resilient Cooperative Adaptive Cruise Control Against Multi-
channel Perception Adversaries”) is an in-vehicle real-time
anomaly detection system that makes use of kinematics and
machine learning (ML) to detect anomalous inputs, narrow
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down the source of subversion, and perform mitigation.
We demonstrate the effectiveness of RECAP against a diverse
spectrum of attacks under complex, multi-channel adversaries.

RECAP is, to our knowledge, the first in-vehicle resiliency
architecture developed for CACC to defend against a power-
ful multi-channel security adversary that can simultaneously
corrupt more than one perception channel.1 Our approach
is generally independent of the mechanism of attack, and
can consequently provide protection against both known and
unknown attacks as long as the attack is consistent with
the adversary power discussed in Section IV-A. Furthermore,
this is achieved in the absence of a fixed source of trusted
information used to detect and rectify potential anomalies.
Another salient feature of RECAP is its ability to always
maintain a a small gap (in the range of 0.55–0.75s in our
simulations) even under attack scenarios. Note that in contrast,
other related resiliency approaches that fall back to ACC
(i.e., adaptive cruise control without cooperation) on detecting
attacks and consequently pay the price in terms of a larger
time gap (1.2s for the controllers used in our experiments).

Despite significant research on security of CACC (see
Section II-C), there has been relatively little work on real-
time resiliency; most of the related work has been on detecting
anomalies or intrusions from analysis of communication or
sensor channels after the fact. One previous research that
targeted real-time resiliency was by Boddupalli et al. [8] that
developed an ML-based strategy for detection and mitigation
of cyber-attacks on CACC. They considered attacks that
tamper the acceleration input from the preceding vehicle.
Many aspects of RECAP are inspired by this work, e.g.,
the use of ML for detecting unexpected inputs as anomalies,
as well as an architecture that includes on-board components
for real time detection with trained ML models together with
an off-site component for performing computation-intensive
training. Nevertheless, RECAP differs from this previous
work in a number of aspects particularly because of the
expanded attack surface resulting from a significantly more
powerful adversary model. The adversary model for RECAP
permits subversion of any of the perception channels from the
preceding vehicle, including possibly multiple channels.2 This
precludes the mitigation approach considered in previous work
that made critical use of the assumption that the velocity and
position values for the preceding vehicles received through the
on-board sensors of the ego vehicle always correspond to the
ground truth. In addition to detecting the presence of anomaly
in input data as done in previous work, RECAP needs to also
accurately identify the specific channels containing anomalous
data. Developing a resiliency solution under these uncertainties
requires a different and novel approach to design and analyze
real-time resiliency. Furthermore, the multi-channel adversary
considered in this work enables attacks where the source of
corruption could arbitrarily change during an on-going attack.
While simple model-based solutions may be effective against

1Recently, there has been other related work enabling resiliency in con-
nected vehicle applications in general and CACC in particular. However, the
adversaries considered in such research are much weaker. See Section II-C.

2We still need to impose some constraints on the adversary to ensure that
it is not “all powerful”. See the discussions in Section IV.

Fig. 1. CAVs engaging in CACC in untrusted environment.

an adversary with fixed sources of corruption, they cannot pro-
vide resiliency under an adversary with dynamically changing
anomaly sources. This warrants an ML-based solution that
can tackle this challenge by learning the contextual relation
among various perception inputs as well as their historical
values.

The paper makes the following important contributions.
We develop to our knowledge the first approach to real-time
resiliency for a cooperative connected vehicle application
against a multi-channel perception adversary. Multi-channel
adversaries with no a priori trusted channels brings a
number of complex research challenges. We show how
to develop a resiliency mechanism that addresses these
challenges. Finally. we present a comprehensive evaluation
methodology to navigate the attack space. We also pro-
vide a roadmap for simulations to validate various design
properties of the resiliency system such as recoverabil-
ity, efficacy against multi-channel corruption and stealthy
attacks, etc.

The remainder of the paper is organized as follows.
We introduce the basics of CACC application and discuss
recent related work in Section II. A brief overview of
RECAP’s vision is presented in Section III and the unique
research challenges associated with real-time resiliency against
multi-channel adversary are discussed in Section IV. We dive
into the details of RECAP architecture and functionality in
Section V. We present a brief summary of our evaluation
methodology in Section VI followed by a detailed analysis
of our simulation results in Sections VII, VIII, and IX.
We conclude in Section X

II. BACKGROUND AND RELATED WORK

A. CACC Basics
CACC is a fundamental vehicle-following application for

connected and automated vehicles. It extends the traditional
Adaptive Cruise Control (ACC) available in today’s vehicles.
In CACC, the ego vehicle E adapts its acceleration aE to
efficiently follow its preceding vehicle P (Fig. 1) without a
human driver’s intervention. The goal is to maintain a constant
time gap Tgap. Most CACC controllers target a constant
Tgap of approximately 0.55 seconds. To do so, the CACC
controller in E uses three perception channels to detect the
state of P relative to E , viz., P’s velocity vP , P’s (intended)
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TABLE I
GLOSSARY OF NOTATIONS

acceleration aP , and the gap g between E and P . CACC
controllers operate in two modes depending on the value of g.
If g > gsafe, it operates in gap control mode where it smoothly
minimizes the relative velocity with respect to P; if g  gsafe,
it operates in collision avoidance mode where E decelerates at
its maximum rated value Dmax. Here, gsafe is called the safe
inter-vehicular distance, which is a function of the targeted
minimum time gap Tgap, relative velocities between E , and
the rated deceleration value Dmax.

B. Representative CACC Implementation
RECAP can be used to build resiliency on top of any CACC

controller. Nevertheless, for concreteness we will use the
representative CACC implementation by Amoozadeh et al. [4].
Equations 1 and 2 represent the controller functionality. Due to
the vehicular dynamics and the underlying response time, the
desired acceleration computed in Equation 2 cannot be applied
immediately. This actuation delay is modeled as a first order
time lag. Ultimately, the acceleration applied to the vehicle
is computed as represented in Equation 3 accounting for the
difference between the desired acceleration and the previous
acceleration of the vehicle. In Equation 3, 1t refers to the
interval for updating the vehicle’s acceleration. It is set to be
0.01s indicating that the underlying controller is operated at
a frequency of 100Hz. The current acceleration to be applied
to E and its previous acceleration are represented by aE (t)
and aE (t � 1) respectively. Table I shows the glossary of
parameters used in this paper and the controller constants for
the representative CACC model.

Remark 1: There are several CACC controllers that
account for engine dynamics and realistic traffic simula-
tions, e.g., Zhang et al. [43], Milanés and Shladover [24],
Ploeg et al. [32], Xiao et al. [40], Bu et al. [9], etc. Our
choice is governed by the goal to showcase the independence
of the resiliency system to the specific low-level details of
the controller implementation. Note that an explicit objec-
tive of RECAP is that it can be installed on top of any
CACC controller. However, demonstrating this flexibility in our
experiments requires using a controller with a well-defined,
high-level interface that can serve as an abstraction of the
underlying CACC system and can be easily integrated into

a software-level simulation framework. This enables use of
software simulation to efficiently demonstrate resiliency of
RECAP over the spectrum of attack scenarios considered in
this paper. Furthermore, note that the controller we use is
widely adopted in related work on CACC security research [5],
[6], [16], [31].

gsafe = 0.1vE +
v2
E

2Dmax
E
�

v2
P

2Dmax
P

+ Gmin (1)

ades = KaaP + Kv(vP � vE ) + Kg
�
g � vETgap � Gmin

�

(2)

aE (t) =
ades � aE (t � 1)

⌧
1t + aE (t � 1) (3)

C. Related Work

There has been significant research recently on
cyber-security of CACC. In this section, we summarize
the research in different categories of security solutions for
CACC and highlight their limitations. Additionally, several
excellent surveys are available that provide a comprehensive
treatment of attacks on CAVs engaging in cooperative driving
applications [14], [29], [30], [36].

1) Offline Detection Techniques: Biroon et al. [7] propose
a diagnostic scheme based on a partial differential equation
observer model to detect an adversary injecting ghost vehi-
cles into the platoon. Keijzer and Ferrari [20] propose a
sliding-mode observer (SMO) approach for detecting attacks
on CACC-based platoon compromising V2V and local sensors
simultaneously. Jagielski et al. [16] present a discussion on
detection of communication and sensor attacks compromis-
ing CACC. Alotibi and Abdelhakim [3] propose a detection
technique to capture falsified leader communication in a pla-
toon. Mokari et al. [26] propose a detection and estimation
approach against Denial of Service (DoS) attacks on platoons.
Sajjad et al. [34] propose an adversarial-aware CACC control
scheme that utilizes only local sensor information obviating
the need for inter-vehicle communication. This category of
techniques target detection of anomalous samples in historic
data after application engagement and therefore, ineffective
for real-time resiliency.

2) Consensus-Based Approaches: Lu et al. [23] present
attack-resilient sensor fusion approach for platoons by uti-
lizing the spatial information provided by other participating
CAVs thereby achieving more accurate estimation. Yang and
Lv [42] propose adding redundant sensor systems to obtain
robust estimates of the physical parameters susceptible to
security attacks. Petrillo et al. [31] present a secure adap-
tive CACC controller capable of evicting malicious CAVs
in the platoon and mitigating the effects of network-induced
perturbations. Kamel et al. [19] propose a simulation frame-
work for misbehavior detection in vehicular platoons through
plausibility and consistency checks of the reported messages.
Garlichs et al. [13] propose a trust model to identify bad
actors and prevent safety hazards in dynamically formed
platoon systems.
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Obviously, approaches relying on majority voting cannot
apply to 2-vehicle CACC. These are also ineffective in the
absence of a fixed trusted source of information.

3) Mitigation Techniques: Khanapuri et al. [21] propose
a detection and mitigation approach for defending pla-
toon systems against attacks on V2V communication. They
utilize local sensor information to mitigate V2V attacks.
Wolf et al. [39] propose various general mitigation strate-
gies against data injection attacks and perception channel
faults. According to one of the detection-oriented approaches
suggested here, the CACC controller gradually degrades
to ACC in response to the suspiciousness index of the
received inputs. Iorio et al. [15] present a correlation-based
anomaly detection technique for capturing injection attacks
on CACC. Jin et al. [17] develop an adaptive CACC con-
troller that can defend against sensor and actuator attacks.
Sun et al. [35] present a detection and mitigation approach
for V2V attacks on CACC based on deep-learning classifiers.
Kalogiannis et al. [18], propose a misbehavior detection and
mitigation technique for platoons based on Guassian Mixture
Model, under a collaborative adversary with an internal and
external attack agent acting together to subvert the platoon
system. Mousavinejad et al. [27], propose a distributed detec-
tion and recovery method based on state prediction and state
estimation to identify malicious platoon messages. Each of
these approaches generally targets a specific attack category
(e.g., DoS or injection). It is difficult to integrate individual
resiliency solutions into vehicular electronics to address each
category of attack instances. Furthermore, such solutions can-
not provide resiliency against attacks that are discovered after
deployment. Previous work by Boddupalli et al. [8] addresses
some of these limitations. They develop an ML-based real-
time resiliency architecture for 2-vehicle CACC to capture
and mitigate anomalies in the untrusted V2V channel reporting
preceding vehicle acceleration values. A unique feature of this
work is that it provides assured resiliency against attacks on
V2X irrespective of the attack mechanism; consequently, the
protection also extends to unknown attacks. This work is most
closely related to our work in this paper and provides an initial
roadmap for developing resiliency architecture for CACC
that we extend and consolidate with RECAP. However, the
adversary considered in this previous work could only corrupt
the acceleration channel; all other channels (e.g., preceding
velocity and gap between the ego and preceding vehicles) were
assumed to report ground truth. Their mitigation critically
depends on this fact to compute an alternative response in
case an anomaly is detected. Consequently, such an approach
is precluded under the multi-channel adversary considered for
RECAP where no channel can be assumed trusted.

Remark 2: CACC controllers have been developed to
gracefully handle the inherent imperfections in communication
and senor systems [1], [11], [28]. These controllers are
designed to tolerate a specific model of random noise and/or
packet loss. However, intentional corruption of V2X and sensor
channels through malicious interference cannot be captured
under these models. As a result, noise-tolerant controllers
cannot automatically be considered resilient against security
adversaries.

Fig. 2. RECAP-Augmented CACC System.

III. RECAP OVERVIEW

RECAP performs real-time detection and mitigation of
perception attacks on a vehicle E engaging in CACC in an
untrusted driving environment. The in-vehicle architecture of
RECAP is shown in Fig. 2. It comprises two components:
a Detection and Diagnosis subsystem and and a Mitigation
subsystem. The Detection and Diagnosis subsystem monitors
the instantaneous state of P , i.e., position, velocity, and
acceleration, received through untrusted perception channels.
If one or more parameter values are determined to be anoma-
lous, they are corrected and an alternate optimal decision is
computed by Mitigation system; in the absence of an anomaly,
RECAP allows the decision computed by the naive CACC
controller to take effect. RECAP adopts a combination of ML
techniques and kinematics correlation checking for anomaly
detection, precise source identification, as well as mitigation.
An important feature of RECAP is its ability to reliably rectify
its past errors achieving robustness against sophisticated and
stealthy attacks. Furthermore, RECAP is designed to remain
agnostic to the underlying perception technology. Therefore,
it can provide resiliency to vehicles using either sensors, V2V,
or a combination of both for perception.

ML-based anomaly detection involves two steps: (i) offline
training of ML regression model to learn the normal behavior
of a vehicle engaging in CACC as a function of perception
parameters, and (ii) using this trained ML model in real-time
as a reference generator for detecting anomalies in untrusted
perception inputs. The idea is to train the ML model to learn
the normal behavior of a vehicle under benign circumstances;
in field, deviation of the behavior beyond a pre-defined thresh-
old would be treated as an anomaly, triggering an alternate,
mitigatory response. The input features of the ML model are
selected carefully to capture the context sufficiently to enable
effective anomaly detection. It is configured with optimal
detection thresholds to achieve accurate anomaly detection
of untrusted perception inputs and identification of anomaly
sources. Appropriate ML architecture that enables effective
anomaly detection with minimal computation and power
foot-print is identified through a careful selection process.3 We
explain the ML model parameters and inputs in Section V.

3Boddupalli et al. [8] provide a detailed discussion of architecture selection
and threshold tuning. RECAP follows a similar approach.
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Trained and configured RECAP resiliency components are
downloaded to the subscribing CAVs through secure con-
nection before commute. During CACC engagement the ML
model acts as a reference generator for estimating the normal
response. The reference generator output at each step is
compared to the response of the naive CACC application
controller in real-time. Any deviation between the two beyond
a pre-defined threshold is captured as an anomaly and miti-
gated. RECAP provides real-time resiliency without requiring
persistent connection to the cloud. Note that the training and
configuration of RECAP does not require any prior knowledge
of attack data.

IV. RESEARCH CHALLENGES WITH MULTI-CHANNEL
ADVERSARY AND RECAP APPROACH

Developing real-time resiliency against multi-channel per-
ception adversaries poses several unique research challenges.
These are primarily attributed to the complexity of the pow-
erful adversary and the absence of a fixed source of trusted
information, as described below.

A. Adversary Model
A crucial aspect of resiliency design is defining the

adversary capabilities. An adversary should be (i) practical,
meaning it should be possible to realize the adversarial action
(and constraints upon it) in practice, (ii) non-trivial, meaning
the adversary capabilities are not too weak that there is a trivial
solution to mitigate any subversion, (iii) impactful, meaning
attacks if not mitigated have serious consequences to the
application being subverted, and and (iv) viable, meaning the
adversary is not “all-powerful” such that it becomes impossible
in principle to defend against a subversion. Under a complex
multi-channel adversary, it is quite challenging to construct
a threat model balancing the conflicting goals of practicality,
triviality, impact, and viability. For instance, an adversary that
can collusively corrupt4 all the perception channels of the
victim vehicle does not satisfy the viability condition. On the
other hand, an adversary that is constrained to only corrupt
a single pre-defined channel (e.g., position of the preceding
vehicle) does not satisfy non-triviality since it is possible to
mitigate it by simply ignoring information from the untrusted
channel and reconstructing it from the values reported by other
channels using kinematics.

RECAP is designed to address a general class of adversaries
satisfying the following constraints.

1) Any attack instance is assumed to corrupt up to two
of the three perception channels from the preceding
vehicle, i.e., at most two of the following: preceding
vehicle position, velocity, or acceleration. Note that
a consequence of this constraint is that one channel
is corruption-free throughout an attack instance. How-
ever, the channel(s) being targeted in an attack are not
fixed a priori and can be different for different attack
instances.

4We say that two channels are collusively corrupted if they report values
different from ground truth but in such a way that all laws of kinematics
relating the values are obeyed.

2) Attacks are assumed to target stable CACC engagement
but not during the initial stabilization period at the start
of the engagement, i.e., if a CACC engagement takes
a time period TS to stabilize, there is assumed to be
no attack during that time. Furthermore, two different
attack instances are assumed to be non-overlapping and
distant in time from each other, i.e., there is assumed
to be a time interval of at least Tm between the end of
one attack instance and the start of a subsequent one (if
any).

3) An attack instance is assumed to be upper-bounded by
a time interval TC , i.e., if an attack is initiated at time t
and causes corruption in channel L then the attack must
be over and L must start reporting ground truth on or
before time (t + TC ).

We now explain how these constraints satisfy the require-
ments of practicality, non-triviality, impact, and viability. For
viability, note that if the adversary were not limited to corrupt
at most two out of three channels then it is possible to
create attacks that are not viable, e.g., collusive attacks on
all three channels as discussed above. Without the restriction
of non-overlapping attack instances, it is possible to craft
scenarios with two overlapping attacks that can collectively
cause collusive corruption of all three channels. Without
Constraint 3, an attacker can introduce an infinitesimally small
anomaly to a victim channel for an indefinite amount of
time: this would enable the attack to remain undetected for a
sustained initial period and ultimately disrupting any resiliency
mechanism entirely. Note that these restrictions are only
intended to eliminate non-viable corner-case scenarios, and
do not unreasonably restrict natural adversarial actions. For
instance, each perception channel in practice involves different
sensory or communication inputs. Therefore, corrupting each
channel would involve a different attack technology (e.g.,
jamming the sensor, introducing fabricated messages into the
V2V communication, etc.). It is reasonable to assume that the
same adversary cannot simultaneously compromise all three
channels within the same attack instance.

Remark 3: Note that the framework does permit collusive
attacks, but only precludes attacks that enable collusive cor-
ruption of all three preceding vehicle channels at the same
time, such that the laws of kinematics are maintained. It is
easy to show that no framework can provide resiliency against
an adversary that can collusively corrupt all three channels,
as follows. Suppose the ground truth is represented by the
velocity, position, and acceleration values hv, a, xi but the
adversary corrupts these values to report hv0, a0, x 0i. Suppose
a resiliency mechanism R can identify this triple as malicious.
Observe that since the kinematics laws hold within the tuple
hv0, a0, x 0i, the tuple can also arise under a benign situation.
This implies that R would then classify such benign tuples
as malicious. A consequence of the restriction is that RECAP
generally applies to adversaries that corrupt the perception
data input to a (follower) vehicle, not attackers that hack into
the vehicle to modify the messages going internally through
its bus.

Remark 4: At cursory read, the upper-bound on duration
of each attack instance may appear restrictive. However,
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no attack in practice continues indefinitely and RECAP incor-
porates this insight by providing the upper-bound on any
continuous attack. One view of TC is as a programmable
design parameter. The security designer has the choice of
selecting a value of TC targeted for a specific domain, and
tuning the resiliency system to work for that value. Further-
more, changing the value of TC (perhaps in response to data
collected in field) would simply entail retraining and re-tuning
the ML model for the new value.

B. Anomaly Source Identification
A key challenge with a multi-channel adversary as consid-

ered in this paper is that there is no channel that is known
a priori to be trusted. An attacker can dynamically switch the
channel targeted for corruption during the course of the attack
(as permitted by the adversary model). In the absence of a
known trusted channel, it is challenging to determine which
channel is actually corrupted (and hence find an appropriate
mitigation for corruption) even when an anomaly is detected.
In particular, simple correlation-checking approaches cannot
be directly used to detect a source of anomaly. For instance,
suppose the adversary collusively corrupts the velocity vP
and acceleration aP of the preceding vehicle P in such a
way that the kinematic equations connecting these variables
are satisfied; an anomaly detection technique would then find
that the values of vP and aP are mutually consistent but
inconsistent with the reported value of the gap g. However,
there is no way to determine if the corruption is in vP and aP
(collusively) or in g. Simple model-based techniques cannot
resolve this ambiguity and can be clearly misled by collusive
attacks. We provide empirical evidence of how a simple
correlation checking system (or a kinematics model) fails
under representative collusive attacks in Section IX. RECAP
addresses this challenge by adopting a context-aware ML-
based detection approach, explained in Section V. This enables
it to detect intelligently crafted anomalies in the perception
channels that appear normal when each channel is analyzed
independently but are indeed corruptions added by an attacker.
Careful selection of ML input parameters and effective offline
training allow for learning the context sufficiently, achieving
highly accurate detection and anomaly source identification
under a multi-channel adversary.

C. Safe and Efficient Mitigation
Real-time actions of CAVs not only affect their own safety

but can have a direct impact on the safety and efficiency of the
neighboring traffic and the transportation infrastructure. Under
multi-channel adversaries, it is non-trivial to simultaneously
guarantee safety and efficiency during an attack. Furthermore,
since anomalies in different perception channels manifest
differently, a single strategy of mitigation is generally not
effective against corruption in different channels. RECAP’s
mitigation in response to a detected anomaly consequently
involves computing several alternate decisions and vetting each
of them for safety first. Out of the safe alternatives, RECAP
picks the decision that results in smoothest transition from
previous state. This guarantees RECAP’s response is always

close to the ideal behavior in terms of safety and efficiency.
Additionally, this also ensures that the consequences of erro-
neous judgment are not too drastic and can be safely mended.

D. Recoverability

Ideally, a resiliency system should compute the same deci-
sions under attack as a naive application controller would
under benign conditions. Our goal in building a resiliency is to
incur only a tolerable deviation from this ideal behavior. This
requires the resiliency system to be capable of distinguishing
between normal and anomalous inputs it receives with a high
degree of accuracy. However, even when it makes mistakes, the
resultant behavior must not deviate so much that subsequently
normal behavior begins to appear anomalous and vice versa.
Recoverability is the property that ensures that the resiliency
system can always remain within tolerable accuracy of ideal
behavior even after it commits an error. Note that inherent
imperfections of probabilistic decision-making components in
RECAP may result in false alarms or missed anomalies, lead-
ing to non-recoverability of the overall system. Even when an
anomaly is detected correctly, improper source identification
also impacts recoverability since it leads to erroneous rectifi-
cation of inputs or sub-optimal alternate responses applied to
the vehicle. Consequently, RECAP is equipped with a number
of checks to identify and neutralize errors in detection or
correction in the previous time step, ensuring recoverability
of the system. We provide more insights on recoverability and
RECAP’s approach to address it in Section V

V. RECAP ARCHITECTURE

In this section, we describe the various in-vehicle compo-
nents of RECAP and discuss their functionality in detail. The
operation of RECAP-augmented follower vehicle E engaging
in CACC is shown in Algorithm 1. We make the following
assumptions about the underlying CACC application. These
assumptions are validated over the simulation data used for
the implementation and evaluation analysis of RECAP.

Assumption 1: RECAP assumes that the follower vehicle
E receives information from all its perception channels and
computes its decisions at discrete instances. The interval
1t between two such sampling instants (also referred to
as sampling interval) is assumed to be small enough that
the acceleration aP of the preceding vehicle can be treated
as constant during the interval. Consequently, the mutual
relationship between the aP , vP , and xP can be represented
using simplified kinematics represented in Equations 4 and 5

vP(t + 1) = vP(t) + aP(t)1t; (4)

xP(t + 1) = xP(t) +


vP(t)1t +

aP(t)
2

1t2
�

. (5)

Assumption 2: We assume that the magnitude of change in
acceleration 1a between any two consecutive time instances
t and t + 1 to be approximately same under stable CACC
in benign conditions. This is generally true of CACC engage-
ments in practice, to ensure the movement of the vehicles under
stable CACC engagement to be smooth, (or minimally jerky).
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Algorithm 1 ReCAP Functionality
1: while E engaged in stable CACC do
2: aP(t), vP(t), xP(t) Read Perception()

3: aE(t)naive  AcclCmp(aP(t), vP(t), xP(t), vE(t), xE(t))
4: ********* Detection and Diagnosis *********
5: anm Flgs  EnhCorrChk(vP(t), xP(t), aP(t � 1))

6: anm Flgv, anm Flgx , anm Flga Prev  anm Flgs
7: if anm Flgv True then
8: ˆvP(t) CorrectV el()
9: if anm Flgx True then

10: ˆxP(t) Correct Pos()
11: if anm Flga Prev True then
12: ˆaP(t � 1) Correct PrevAcc()
13: anm Flga  M L Anm Det ( ˆaP(t � 1), ˆvP(t), ˆxP(t))
14: if anm Flga True then
15: ˆaP(t)) Correct Acc()
16: ********* Mitigation *********
17: if all anm Flgs False then
18: aE(t) aE(t)naive

19: ˆaP(t), ˆvP(t), ˆxP(t) aP(t), vP(t), xP(t)
20: else
21: aE(t) Mitigation( ˆaP(t), ˆvP(t), ˆxP(t))
22: throttle, braking ActuationControl(aE(t))
23: AppendCorrupt Hstr y(anm Flgs)
24: DataCollection( ˆaP(t), ˆvP(t), ˆxP(t), aE(t), anm Flgs)

A. Detection and Diagnosis

Detection and Diagnosis is responsible for determining
whether one or more perception inputs is anomalous and
rectifying the corrupted input(s). RECAP adopts two distinct
techniques to determine the presence of anomalies in different
perception channels. It performs: (i) enhanced correlation
checking for detection and correction of anomalies in velocity
and position channels and (ii) ML-based detection and correc-
tion of anomalies in acceleration channel.

1) Enhanced Correlation Checking: This step in RECAP
resiliency is represented in Algorithm 1, line 5 and expanded
further in Algorithm 2. Anomalies in vP(t) and xP(t) are
detected by checking the correlation between them and the pre-
vious acceleration aP(t � 1). However, this correlation check
can accurately determine the presence of anomalies in vP(t)
and xP(t) only if aP(t � 1) is error-free and represents ground
truth. Due to the inherent limitations in machine learning
systems, anomalies in acceleration channel may sometimes go
undetected or inaccurately corrected resulting in an erroneous
aP(t � 1). Additionally, a stealthy adversary can carefully
corrupt two out of three channels simultaneously in such a
way that the correlation between them is preserved. By con-
struction, a simple correlation check will not be able to detect
such attacks (discussed further in Section IX). Therefore,
RECAP adopts an “Enhanced Correlation Checking” tech-
nique equipped to rectify past errors and accurately determine

Algorithm 2 Enhanced Correlation Checking
1: aP(t � 1)v  ComputeK inEst (vP(t), vP(t � 1))

2: aP(t � 1)x
est  ComputeK inEst (xP(t), xP(t � 1))

3: corr Flgva  CompareEsts(aP(t � 1)vest , aP(t � 1))

4: corr Flgxa  CompareEsts(aP(t � 1)x
est , aP(t � 1))

5: corr Flgvx  CompareEsts(aP(t � 1)vest , aP(t � 1)x
est )

6: if all corr Flgs True then
7: aP(t � 1), vP(t), xP(t) normal
8: anm Flgs  False
9: else

10: corrupt Hstr y ReadCorrupt Hstr y()

11: if corrupt Hstr y shows 2 untrusted channels then
12: (Trusted channel identified)
13: anm Flgs  ResolveAmbiguity(trstChnl)
14: else
15: (Checking Data Property)
16: 1a |aP(t � 2)� aP(t � 3)|

17: 1av  |aP(t � 1)vest � aP(t � 2)|

18: 1ax  |aP(t � 1)x
est � aP(t � 2)|

19: 1aa  |aP(t � 1)� aP(t � 2)|

20: trstChnl  MinDi f (1a, {1av, 1ax , 1aa})

21: anm Flgs  ResolveAmbiguity(trstChnl)
22: return anm Flgs

the presence of anomalies in velocity and position channels.
It is a 3-step approach that involves: (a) correlation checking,
(b) corruption history analysis, and (c) normal-data property
checking.

a) Correlation checking: As explained before, under
normal conditions, aP(t � 1), vP(t), and xP(t) obey
Equations 4 and 5. We compute acceleration estimates
by re-arranging the subject of these equations as shown in
Equations 6 and 7. If the computed estimates are close to
each other and aP(t � 1), the correlation check passes.

aP(t � 1)vest =
{vP(t)� vP(t � 1)}

1t
; (6)

aP(t � 1)x
est =

2
1t2 [{xP(t)� xP(t � 1)}� vP(t � 1)1t]. (7)

If the deviation between any corresponding pair of esti-
mates is beyond a predefined threshold, the correlation check
fails indicating the presence of corruption. This can be
caused due to one of the following: (i) the presence of
an anomaly in one or both of the current inputs vP(t)
and xP(t), (ii) undetected anomaly in aP(t � 1) from the
previous cycle, or (iii) inaccurate correction of aP(t � 1)

in the previous cycle. The following two steps, 1.b and
1.c, are used to identify the root-cause from among these
possibilities.

b) Corruption history analysis: The recorded corruption
history is used by the resiliency system to determine which
channels were detected to be untrusted in the past. This
helps resolve the ambiguity and identify the root cause of
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TABLE II
ML-MODEL ARCHITECTURE AND TRAINING HYPERPARAMTERS

inconsistency in a few scenarios. For instance, if the corruption
history indicates that anomalies were detected in velocity and
position channels in the past, the correlation check failure
can be attributed to potential anomalies in one or both of
these channels again in the current cycle. Since the adversary
model guarantees at least one channel that is corruption-free
all through out the application engagement, in this scenario,
the anomaly cannot be in (aP(t � 1)).

c) Data property checking: If the corruption history fails
to irrefutably indicate the presence of past anomalies in two
out of three channels, RECAP cannot automatically resolve
the ambiguity. In such scenarios, the estimates are checked
to see if they obey the data-driven property exhibited in
perception channels under normal conditions. While several
such data properties can be learned, RECAP uses the property
observed in time series data of aP as stated in Assumption 2.
The estimate that closely obeys the property is considered to
be trusted and the ambiguity in anomaly source(s) is resolved
accordingly.

After discovering the sources of anomaly (if any) through
enhanced correlation checking, any previous errors carried
forward in aP(t � 1) are rectified. The values of vP(t), and
xP(t) are corrected using the value of rectified aP(t � 1). This
is represented by Algorithm 1, lines 8, 10, and 12.

2) ML-Based Anomaly Detection: Once anomalies in veloc-
ity and position are captured and rectified, acceleration channel
is scrutinized for possible anomalies. A pre-trained machine
learning model referred to as Reference Generator computes a
normal reference estimate aE(t)re f which is compared against
the acceleration computed by the naive controller aE(t). The
naive controller (discussed in Section II) takes all three
untrusted parameters of the preceding vehicle as inputs. Any
discrepancy in the decision it computed could be attributed to
the anomalies in one or more of these channels. However, since
vP(t) and xP(t) are corrected during Enhanced Correlation
Checking, a deviation from the reference beyond the detection
threshold indicates an anomaly in acceleration. Reference
Generator takes vetted inputs from the previous time steps
to compute the normal reference estimate (see Table II and
Fig 3(a)). If an anomaly is detected in aP(t), it is rectified using
the data-driven property of acceleration time-series represented
in the “Assumption 2”.

Fig. 3. ML-model architecture: (a) Reference Generator and (b) Mitigator.

B. Mitigation

Mitigation is triggered if anomalies are detected in one or
more current perception inputs, or in case of an erroneous
aP(t � 1) due to mis-detection/correction in the previous cycle.
RECAP mitigation involves the following two steps.

1) Optimal Response Computation: To determine the opti-
mal response for vehicle E , a list of alternatives are computed
as follows: (i) by re-invoking the naive CACC acceleration
computation module with corrected perception inputs, (ii) by
using a trained ML-model that generates an alternate response,
and (iii) by invoking the conservative ACC acceleration com-
putation module. A (hypothetical) worst case safety scenario
is considered where vehicle P decelerates at the maximum
rated value. Among the alternate responses, acceleration val-
ues that are deemed safe in that worst case are shortlisted.
Consequently, these alternatives are safe under any possible
acceleration of P . In order to preserve the behavior of CACC
and to limit error accumulation in case of a potential mis-
prediction, mitigating action is taken in small steps. Finally,
the alternative that is closest to the previous aE(t � 1) among
the safe candidates is determined to be the optimal response
and applied to vehicle E .

2) Shadow State Computation: In case of a mis-detection
in previous cycle, RECAP tries to neutralize the incorrect
action aE(t � 1) taken by vehicle E in the previous cycle.
This is achieved by computing a “shadow response”. First,
aE(t � 1) decision is recomputed using the corrected value of
aP(t � 1). The resultant change in state is computed with the
new aE(t � 1). This is considered the shadow state of vehicle E
at time t if it hadn’t made an inaccurate decision at time t�1.
An intermediate decision is computed with this hypothetical
state of E receiving the corrected perception inputs. A resultant
next state is computed using the intermediate decision. This
is ideally the state vehicle E reaches in time t + 1 if it hadn’t
made any incorrect decisions at time t . Finally, aE(t)shadow is
computed as an action required to reach this ideal state from
the current state of vehicle E . The value aE(t)shadow is added
to the list of alternate decisions computed and is applied to
vehicle E if it is determined to be the optimal choice in terms
of safety and efficiency.

a) Preserving recoverability: Enhanced Correlation
checking is designed to preserve the recoverability of RECAP.
The idea is to equip the resiliency system with the ability
to rectify potential errors in a cycle in a timely manner
without letting them propagate indefinitely into the subsequent
cycles of operations. Since the primary source of errors are
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Fig. 4. Data Simulation and Evaluation Flow.

the imperfect ML components in RECAP (used for anomaly
detection of acceleration channel and mitigation), Enhanced
Correlation Checking technique and shadow state computation
involves detecting and correcting past errors (in aP(t � 1)) at
each time step. This ensures that the imperfect ML-predictions
(i.e., false positives or false negatives in anomaly detection,
and sub-optimal corrections) are rectified within the next time
instance. While it is impossible to eliminate ML errors alto-
gether, this effectively controls the error propagation thereby
preserving the property of recoverability of RECAP resiliency
system.

VI. SIMULATION RESULTS

A. Simulation Setup

Fig. 4 shows the evaluation flow of RECAP. We gen-
erate realistic driving data to represent the trajectory of the
preceding vehicle using a state-of-the-art physical automotive
simulator RDS1000® [33]. This simulator enables flexible
configuration of various terrains, weather conditions, and
environmental parameters, and includes a repository of pre-
configured scenarios developed by engineering experts to
reflect real-world environment conditions, lighting, visibility,
and road traction attributes. For our simulations, we used
24 driving environments as a cross-product of the following
parameters: (i) Road terrain (highway, suburban and urban);
(ii) Weather (clear, windy, snowy, rainy); and (iii) Time of
day (day, night). The test subjects were selected from students
in the university and were instructed to drive the simulated
vehicle manually as natural to them for the corresponding
driving environment and traffic conditions, following the traffic
rules and speed limits. Each of the 24 datasets corresponds
to about 15 minutes of driving time and constitutes approxi-
mately 90, 000 samples collected at a frequency of 100Hz. The
data collected provides the preceding vehicle trajectory. the
following vehicle trajectory is computed through a software
model of the CACC controller discussed in Section II-A.
For performing the simulations presented here, we selected
the setting corresponding to: {highway-clear weather-daytime}
which is split 60-20-20 into training, validation, and test data.
We further discuss the details of simulated data under benign
and attack scenarios in Section VII and Table III.

Remark 5: In generating the driving behavior on the sim-
ulated vehicle, care is taken to ensure that the behavior is
“typical” for each driving condition, i.e., neither too aggres-
sive nor too conservative. This characteristic is reflected in
the ML model learned by the training process, and deviations
flagged as anomalies are computed based on that learning.
Like other ML-based systems, it is crucial for effectiveness of
RECAP in practice that the dataset used for training reflect
the driving behavior anticipated to be encountered on road
under benign conditions for the different environments targeted
for training.

B. Summary of Experiments
We analyzed the viability of RECAP in the context of

the challenges explained in Section IV. We briefly describe
the organization of the simulation results here followed by
numerical/quantitative evidence for our conclusions in the
remainder of this manuscript.

1) Attack orchestration and impact visualization: Attack
impact visualization helps the security architect to
gain a holistic perspective on the resiliency problem.
In Section VII, we explain the attack orchestration
method, a comprehensive attack taxonomy, and also
present various examples of representative perception
attacks on CACC. We show their impact on the target
vehicle in terms of the resultant time-gap between the
vehicles.

2) Resiliency evaluation: In Section VIII-A, we show the
efficacy of RECAP resiliency in terms of resultant safety
and efficiency achieved under various representative
attacks. We show that RECAP ensures recoverabil-
ity under different attack scenarios in Section VIII-B.
We show the computation cost associated with RECAP
under various attacks in Section VIII-C.

3) Stealthy attack analysis: In Section IX, we present
analysis on a special class of “stealthy attacks” where
two perception channels are simultaneously corrupted
in such a way that they remain mutually consistent with
each other even under attack. We show that RECAP can
effectively mitigate them.

VII. ATTACK ORCHESTRATION AND
IMPACT VISUALIZATION

We characterize each attack using the following “attack
specifications”:

1) Corrupt Channels specify the perception channels that
are corrupted during the course of an attack. According
to the adversary assumptions, this can arbitrarily change
during the course of an attack such that at most two
channels are simultaneously corrupt at a given instance
of time and at least one perception channel remains
unmodified during the entire course of CACC engage-
ment.

2) Attack Frequency specifies the instances of time or
the pattern at which corruption occurs. Particularly,
we define 3 categories of attacks based on attack
frequency: (i) continuous attacks, (ii) cluster attacks,
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Fig. 5. Taxonomy of Perception Attacks on CACC.

and (iii) discrete attacks. Under a continuous attack,
the adversary corrupts the channel(s) for a sustained
duration of time. Under a cluster attack, the adversary
corrupts the target channel(s) in disjoint intervals of
time where the adversary reports corrupted messages
for a specific duration followed by reporting the ground
truth and so on. Under a discrete attack, the adversary
corrupts perception parameters at distinct individual time
instances separated by intervals of ground truth.

3) Corruption Bias specifies the deviation between the fake
perception inputs received and the ground truth. While
the magnitude of the bias influences how severe the
attack impact is, the sign of the bias influences what kind
of adverse impact an attack has on the victim vehicle.
Generally, a positive bias leads to the occurrence (or
increased risk) of collision while a negative bias leads
to efficiency degradation. Consequently, a fluctuating
positive-negative bias can cause string instability and in
severe cases also cause a collision.

4) Bias Type can be (i) constant, (ii) linear, or (iii)
sinusoidal. Under a constant bias, attack the deviation
between the fake perception readings and the ground
truth remains constant at a specified value. Under a
linear attack, the bias linearly varies with time according
to the specified slope. Under a sinusoidal attack, the bias
varies with time according to the sinusoidal amplitude
and frequency specified. These biases account for typical
corruption types considered in related work [3], [16].

Attack Taxonomy: In order to systematically navigate the
attack space under this adversary, we use a taxonomy showed
in Fig. 5.5 This approach of attack categorization obviates
the need to specify the mechanism and rather characterizes
the attacks based on the manifestation of an attack. Note that
irrespective of mechanism an attack manifests in one of three
categories: mutation, fabrication, or delivery prevention.

Our simulation platform includes a flexible attack genera-
tion module that takes the attack specifications and simulates
attack instances. We orchestrated a total of 72 representative
attacks grouped into various categories to cover different com-
binations of attack specifications described above. Table III

5The taxonomy presented here is inspired by by Boddupalli et al. [8].
However, the previous work only accounts for attacks under a single untrusted
perception channel (V2V communication). In this paper, we extend that
taxonomy to be applicable to multi-channel adversaries.

TABLE III
ATTACK CATEGORY DESCRIPTION

provides the details of the different attack categories we
orchestrated. Each attack category comprises 6 individual
attack instances covering all combinations of single (acc, vel,
and pos attacks) and 2-corrupt channel attacks (acc-vel, acc-
pos, and vel-pos attacks). Attack categories 1–6 include safety
degradation attacks while categories 7–12 include efficiency
degradation attacks. We carefully selected the magnitude of
biases added to each perception channel during attacks to
be small but significant such that the fake readings fall well
within the range of practical values (constrained by vehicle
dynamics) for each perception channel. This is to ensure
that we orchestrate non-trivial, hard-to-detect attacks that
can compromise safety and efficiency nonetheless. Note that
detection of evidently high deviations between the fake and
actual values (e.g., a f ake = 50ms�2 or v f ake = 200ms�1) can
be easily solved with a simple threshold comparison. CACC
engagement starts at t = 0 and ends at t = 3000 for a total
duration of 30s (constituting 3000 data samples).

Continuous attacks start at t = 800 and end at t =

2800 while cluster attacks have 5 arbitrarily spaced attack
pulses each with a duration of 200 samples separated by a
finite duration of unmodified perception values.6 We show the
impact of a few individual attack instances in Fig. 6. The
metric we use to quantify the impact on safety or efficiency
is the time gap (TGap) between the two vehicles.

VIII. RESILIENCY EVALUATION

A. Mitigation Efficacy Analysis
RECAP resiliency is evaluated under various representative

attacks in terms of the resultant safety and efficiency. We select
time gap (TGap) as a metric to indicate safety and efficiency.
Under ideal conditions, the CACC system considered in this
paper achieves a stable time gap of around 0.55s. However,

6We do not include discrete attacks analysis here in the interest of space
and since the impact of discrete attacks is relatively minimal in terms of safety
or efficiency. We also exclude delivery prevention attacks from the scope of
this work as they have been analyzed by Boddupalli et al. [8] in previous
work.
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Fig. 6. Attack Impact Visualization: (a) Single-corrupt Channel (Vel) constant
bias continuous attack, (b) Two-corrupt channel (Acc-Vel) linear bias cluster
attack, and (c) Two-corrupt channel (Acc-Pos) sinusoidal bias continuous
attack.

in practice due to the enforced speed limits, initial conditions
and vehicle dynamics, the stable time gap may be around
0.6–0.65s under benign conditions. The resiliency goal of

Fig. 7. RECAP Resiliency Visualization: (a) Two-corrupt channel (Acc-Vel)
constant bias continuous Attack, and (b) Two-corrupt channel (Vel-Pos) linear
bias continuous attack (c) Two-corrupt channel (Acc-Vel) sinusoidal bias
continuous attack.

RECAP is to maintain a TGap that is well within this range
under benign as well as attack conditions.

Fig. 7 shows representative single and multiple corrupt per-
ception input attacks causing safety or efficiency degradation.
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TABLE IV
RESILIENCY EVALUATION UNDER DIFFERENT ATTACK CATEGORIES

We also show the mean TGap distribution in Table IV for each
attack category. RECAP-augmented CACC always maintains
TGap values within the ideal range (closely following the
TGap achieved under benign conditions), while naive con-
troller under attack shows unsafe and inefficient TGap values.

Remark 6: Sudden deviations in the reported acceleration,
position, or velocity are trivial anomalies and could be cap-
tured by any simple control systems. However, an intelligent
adversary such as the one considered in this work can subvert
such mechanisms by initially launching a coordinated stealthy
attack followed by an impactful attack. We further discuss
stealthy attacks in detail with the help of simulation results in
Section IX. We show the ineffectiveness of simple correlation
checking systems in the face of coordinated attacks that
cannot be detected by the controller, gradually corrupting its
perception of ground truth. The adversary then proceeds to
launch a more impactful attack on the ego vehicle which can
no longer identify the discrepancies in the reported values.
RECAP is robust against attacks that are not only impactful
but also collusive and stealthy. This enables holistic defense
against the entire spectrum of attacks under the adversary
model.

B. Recoverability Analysis
As explained in Section IV, the goal of RECAP is to ensure

the behavior of the target CAV under attack is as close to that
of a naive CAV under benign conditions. Recoverability of
RECAP is, therefore, analyzed from the deviation between
the state variable (instantaneous acceleration, velocity and
position) progression of RECAP augmented E under attack
and the naive E under benign conditions over the duration of
CACC engagement. For each orchestrated attack, we recorded
the state deviation at every individual time instance and
computed the mean over the attack duration (3000 instances
or 30s). As a result, we tabulated a total 72 different mean
error readings each for acceleration, velocity and position. The
distribution of mean error in acceleration, velocity and position
is shown under each attack category in Figs. 8, 9, and 10.

Fig. 8. Mean acceleration error incurred by RECAP and naive controller
under different attack categories.

One can observe that the error distribution boxes for naïve
controller (in blue) and ReCAP (in red) cannot be displayed
over the same scale due to the large differences in the errors
incurred for both controllers. For instance, while the naïve
controller typically experiences position errors in the range of
10m to 100m under various attack categories, ReCAP expe-
riences less than 0.03m across the entire spectrum. We show
this drastic difference in the robustness of the controllers by
displaying these error box plots on a split scale where the
range in the lower half is in 10�2 units while the upper half
is in 10–102 units.

In case of the naive CAV, the mean error distribution boxes
are centered around 1-1.5ms�2 for acceleration, around 2ms�1

for velocity, and around 8-10m for position channels. The
highest magnitude of errors are reported under efficiency
degradation and safety degradation linear attacks (Attack Cat-
egories: 8, 11, 2, and 5) where the maximum mean errors
reach as high as 3ms�2, 10ms�1, and 200m in acceleration,
velocity, and position respectively. On the other hand, the
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Fig. 9. Mean velocity error incurred by RECAP and naive controller under
different attack categories.

Fig. 10. Mean position error incurred by RECAP and naive controller under
different attack categories.

errors incurred by RECAP are several orders smaller in com-
parison to the naive CAV under every attack category for all
three state variables. Distribution of mean error in acceleration
for RECAP is around 0.005ms�2 with a maximum error
reaching only as high as 0.0175ms�2 over the entire attack
spectrum. Similarly, the mean error in velocity and position
variables is also around 0.005ms�1 and 0.02m respectively.
Thus RECAP is robust against the entire adversarial spectrum
ensuring recoverability and effective resiliency under all the
representative perception attacks.

Remark 7: While the results in Table IV may seem perfect
and unrealistic, RECAP is a viable and practical solution.
Note that RECAP is not designed to strictly result in a TGap of
0.55s at all times. Such an assumption would not be practically
realizable. Instead, the goal of RECAP is to guarantee a TGap
within an acceptable range of values that is still considered
safe and efficient in comparison to an ACC system. The results
in the table indicate that this design goal is met by RECAP
under all attack scenarios. This is also indicated by the small
but non-zero error distributions of RECAP with respect to
each perception parameter as shown in Fig. 8, 9, and 10.

Fig. 11. Distribution of Computation Cost (per time step) under Various
Attack Categories.

C. Resiliency Overhead Analysis
RECAP-augmented CACC system incurs additional com-

putation overhead due to the presence of various on-board
resiliency components. Furthermore, the ML-based detection
system suffers from a small number of false positives, false
negatives, and inaccurate source identification, which lead to
additional error correction and mitigation costs. We show the
distribution of the computation overhead under each attack
category in Fig. 11. The simulations are performed on
a computer with 8th Generation i7-8500U processor and a
memory of 16GB. These specifications could be considered
comparable to the on-board computational resources available
in today’s automotive ECUs. The cost is well within the
decision making interval, making RECAP a viable system to
adopt.7

IX. STEALTHY ATTACK ANALYSIS

The adversary considered in this work accounts for a
special category of stealthy multi-channel corruption attacks,
i.e., attacks that are orchestrated to remain undetected or
misdiagnosed by the underlying detection system. To achieve a
high degree of stealth, the magnitude of corruption is restricted
to very small values. As a result, stealthy attacks generally
do not show a significant impact on safety or efficiency
of the naive victim CAV. However, such attacks can affect
the recoverability of in-vehicle resiliency system making it
dysfunctional and consequently compromising the safety and
efficiency of the vehicle.

Under these attacks, the adversary simultaneously corrupts
two channels: a primary perception channel and a secondary
channel. A small offset is added to the primary channel
and correspondingly, the secondary channel is corrupted such
that the kinematics relation between them remains satisfied.
Fig. 12(a) shows a collusive attack where the acceleration
channel (primary channel) is corrupted by adding a small con-
stant bias of 0.005ms�2. The velocity channel is corrupted in
conjunction to the corrupted acceleration channel following the
kinematics relationship represented in Equation 4. Correlation
check based on majority vote can be easily bypassed by such

7Note that the current implementation of RECAP is a prototype. The
computation costs for a deployed architecture will likely be significantly lower.
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Fig. 12. RECAP Resiliency under 2-Corrupt channel collusive attacks:
(a) Acc-Vel attack (a f ake

P = atrue
P + 0.005; v

f ake
P : collusive corrup-

tion), (b) Acc-Vel attack (a f ake
P = atrue

P � 0.005; v
f ake
P : collusive

corruption), and (c) Acc-Pos attack (a f ake
P = atrue

P +0.005; x f ake
P : collusive

corruption).

an attack since two out of three channels that are systemati-
cally corrupt report false information. Such a detection system
would incorrectly identify the one unmodified channel to be

corrupt and rectify it according to the other two corrupted
channels. In this attack example, such a detection would
incorrectly identify the position channel as corrupted. Since
it no longer can distinguish between normal and anomalous
inputs, this will prevent the victim vehicle E from having an
accurate perception of the true state of vehicle P as the attack
proceeds. Ultimately, it can lead to collisions, dangerously low
time-gap between vehicles or severe degradation in efficiency.

We orchestrate such stealthy attacks and show that unlike
simple correlation checking methods, the robust detection
approach adopted by RECAP is capable of detecting and
mitigating them. This is achieved with the help of data-driven
components incorporated in RECAP detection (enhanced
correlation checking and ML-based anomaly detection) as
explained in Section V. We compare the performance of
RECAP with a kinematics correlation checker based on
majority voting. The resultant TGap achieved under different
stealthy attack scenarios is plotted in Fig. 12. Under all the
attacks, RECAP-augmented CAV successfully mitigated the
collusive attacks and preserved its recoverability. The impact
of Attacks (a) and (b) shown in the figure is insignificant on
the naive CAV. However, under Attack (a), there is a dip in the
resultant TGap for the CAV with simple correlation checker
falling below the safety limit of 0.55s. Similarly under Attack
(b), the resultant TGap indicates efficiency degradation for
the simple correlation checker. Under Attack (c), both naive
and simple correlation checker result in negative deviation in
TGap. However, RECAP consistently mitigates all the attacks
successfully and ensures a high degree of safety and efficiency
simultaneously.

X. CONCLUSION AND FUTURE WORK

We have presented what we believe is the first compre-
hensive real-time resiliency framework for CACC against
multi-channel adversaries with no a priori trusted input.
Our framework RECAP uses machine learning to predict
the ego vehicle’s responses for capturing anomalies in real
time, identify the source of the anomaly, and perform mit-
igation. We discussed the challenges in designing resiliency
against multi-channel adversaries and our approaches to
resolve these challenges. We also developed a comprehensive
methodology for resiliency evaluation in connected vehicle
applications and showed the viability and effectiveness of
RECAP.

In future work, we will explore applications and extensions
of RECAP for other cooperative connected vehicle applica-
tions. A key application is multi-vehicle platooning where
the ego vehicle receives inputs from other vehicles based on
an information flow topology in addition to the preceding
vehicle.
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