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Abstract

A random algebraic graph is defined by a group G with a uniform distribution over it and a connection

σ : G −→ [0, 1] with expectation p, satisfying σ(g) = σ(g−1). The random graph RAG(n,G, σ) with

vertex set [n] is formed as follows. First, n independent variables x1, . . . ,xn are sampled uniformly

from G. Then, vertices i, j are connected with probability σ(xi(xj)
−1). This model captures random

geometric graphs over the sphere, torus, and hypercube, certain instances of the stochastic block model,

and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when

is a random algebraic graph statistically and/or computationally distinguishable from G(n, p)? Our

results fall into two categories. 1) Geometric. We focus on the case G = {±1}d and use Fourier-

analytic tools. For hard threshold connections, we match [LMSY22] for p = ω(1/n) and for 1/(r
√
d)-

Lipschitz connections we extend the results of [LR23a] when d = Ω(n log n) to the non-monotone

setting. 2) Algebraic. We provide evidence for an exponential statistical-computational gap. Consider

any finite group G and let A ¦ G be a set of elements formed by including each set of the form

{g, g−1} independently with probability 1/2. Let Γn(G,A) be the distribution of random graphs formed

by taking a uniformly random induced subgraph of size n of the Cayley graph Γ(G,A). Then, Γn(G,A)
and G(n, 1/2) are statistically indistinguishable with high probability over A if and only if log |G| ≳ n.

However, low-degree polynomial tests fail to distinguish Γn(G,A) and G(n, 1/2) with high probability

over A when |G| = ω(n4).
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1 Introduction

Latent space random graphs are a family of random graph models in which edge-formation depends on

latent variables associated to nodes. One of many examples of latent space graphs—appearing in [SAC19],

for example—is that of social networks. Social networks form based on features such as age, occupation,

geographic location, and others. Such features are oftentimes hidden due to privacy considerations or

absence of measurement.

Latent space graphs capture and explain many real-world phenomena not captured by the more common

Erdős-Rényi model, such as “the friend of my friend is also (likely) a friend of mine” [SAC19].

A mathematical model that captures this structure is given by a probability distribution D over some

latent space Ω, an integer n, and a connection function Ã : Ω × Ω −→ [0, 1] such that Ã(x,y) = Ã(y,x)
almost surely with respect to D. The probabilistic latent space graph PLSG(n,Ω,D, Ã) is defined as follows

[LR23a]. For G ∼ PLSG(n,Ω,D, Ã) and a fixed adjacency matrix A = (Ai,j)i,j∈[n],

P(G = A) = E
x1,x2,...,xn

i.i.d.∼ D

[ ∏

1fi<jfn
Ã(xi,xj)

Ai,j(1− Ã(xi,xj))
1−Ai,j

]
. (1)

In words, for each node i ∈ [n] = {1, 2, . . . , n}, an independent latent (feature) variable xi is drawn

from Ω according to D. Conditioned on the latent variables, for each pair of vertices i and j, an edge is

drawn independently with probability Ã(xi,xj). We will throughout denote by p the expected marginal

edge probability, that is p = E
x1,x2

i.i.d.∼ D[Ã(x1,x2)].

When Ã is equal to p almost surely, this is the Erdős-Rényi distribution G(n, p). In this setting, the graph

contains no information about D and Ω, so we will think of the Erdős-Rényi distribution as an absence of a

latent space structure. More interesting examples occur when there is richer structure in (Ω,D, Ã).
The focus of this paper is the case when Ω is a group and Ã is “compatible” with the group structure as

made precise in Definition 1.12. Before delving into the novel algebraic setting, we provide some context

and motivation for our work by describing the canonical setting of a geometric structure.

Suppose that Ω is a metric space (most commonly Ω ¦ Rd with the induced ∥ · ∥2 metric) and Ã(x,y)
depends only on the distance between x and y. Such graphs are called random geometric graphs and we

write RGG instead of PLSG. In practice, random geometric graphs have found applications in wireless

networks [Hae12], consensus dynamics [ES16], and protein-protein interactions [HRP08] among others

(see [Pen03, DdC22] for more applications). On the more theoretical side, random geometric graphs are, by

construction, random graph models with correlated edges which provide an interesting and fruitful parallel

theory to the better understood Erdős-Rényi model. Liu et al. recently showed that random geometric graphs

are high-dimensional expanders in certain regimes [LMSY23]. The study of random geometric graphs has

also catalyzed the development of other areas in probability such as the convergence of Wishart matrices to

GOE matrices [BG15, BDER14, BBH21b], which in turn has applications such as average-case reductions

between statistical problems [BB19].

Starting with [DGLU11], the high-dimensional setting (in which Ω ¦ Rd and d grows with n) has gained

considerable attention in recent years [BDER14, BBN20, EM20, EMP22, LMSY22, LMSY23, LR23a,

LR23b, BBH24] (and [LS23, BB24a, BB24b, BB24c, MZ24] which appeared after the first version of this

current work was made public). The overarching direction of study in most of these papers and also our

current work is based on the following observation, first made in [DGLU11]. When d −→ +∞ for a fixed

n, random geometric graphs typically “lose their geometric structure” and become indistinguishable from

Erdős-Rényi graphs of the same expected density. This motivates the following question. How large does

the dimension d need to be so that edges become independent?

More concretely, we view each of Ω,D, p, Ã as an implicit sequence indexed by n and take n −→ +∞.
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This gives rise to the following hypothesis testing problem for latent space graphs on input graph G:

H0 : G ∼ G(n, p) versus H1 : G ∼ PLSG(n,Ω,D, Ã). (2)

Associated to these hypotheses are (at least) two different questions:

1. Statistical: First, when is there a consistent test? To this end, we aim to characterize the parameter

regimes in which the total variation between the two distributions tends to zero or instead to one.

2. Computational: Second, we can ask for a computationally efficient test. In particular, when does

there exist a polynomial-time test solving (2) with high probability?

The answers to the two questions might be strikingly different. Perhaps most famously, in the planted

clique model there is a huge separation between the strength of signal (clique size) detectable by brute-

force algorithms and the strength strength of signal (clique size) needed by efficient algorithms [Jer92,

Kuc95, AKS98, BHK+19, HS24]. For a more geometric example, the “planted dense cycle” model, a

1-dimensional random geometric graph also exhibits a statistical-computational gap [MWZ23, MWZ24].

Yet, to the best of our knowledge, in the setting of high-dimensional geometric spaces there has been

no evidence so far that the answers to the statistical and computational question are different. In particular,

an efficient test (counting signed subgraphs, defined in Section 2.4.2) always matches or nearly matches

the statistical threshold. In Section 7, we give an example of a model with evidence of an exponential

gap between the statistical and computational detection thresholds. Evidence for the gap is provided in the

framework of low-degree polynomial tests (see [SW22], for example).

To evince this gap (as well as numerous other new phenomena depending on the choice of Ã, see Sec-

tion 1.2), we first focus on the case of the Boolean hypercube1, Ω = {±1}d ¦ Rd. Most previous papers in

the high-dimensional setting study the unit sphere or Gauss space. The advantage of the hypercube model

is that it possesses a very simple algebraic structure — it is a product of d groups of order 2 — in addition

to its geometric structure. The underlying group structure facilitates the use of Fourier-analytic tools which

lead to our results for much more general connections Ã than previously considered.

Random Geometric

Graph: Ω ¦ Rd,
Ã(x, y) depends on

∥x− y∥2.
Prior Work: Section 1.1

Random Algebraic

Graph: Ω is a group,

Ã(x, y) depends on

xy−1.
This Work:

Sections 1.3 and 1.4

Hypercube Model

Ω = {±1}d ¦ Rd,
Ω ∼= (C2)×d,
Ã depends on

(xy−1) = (x1y2, x2y2, . . . , xdyd).
This work: Section 1.2

Probabilistic Latent Space Graphs PLSG(n,Ω,D, Ã)

1Throughout the entire paper, when we say hypercube, we mean the Boolean hypercube {±1}d rather than [0, 1]d. This

distinction is very important as [0, 1]d with its ∥·∥
2

metric is not a homogeneous metric space, which makes its behaviour sub-

stantially different from the behaviour of the unit sphere and Boolean hypercube. Specifically, recent work [EAGR20] suggests

that random geometric graphs over [0, 1]d do not necessarily converge to Erdős-Rényi.
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Our results for the hypercube motivate us to analyze more general latent space graphs for which Ω is

a group. We call such graphs, defined in Section 1.3, random algebraic graphs. It turns out that a natural

condition in this setting is that Ã(x, y) depend only on the “group difference” – xy−1 (or, alternatively, on

x−1y). As we will see in Section 1.3, random algebraic graphs turn out to be extremely expressive.

The hypercube model can be viewed as a bridge between random algebraic graphs and random geo-

metric graphs. Of course, one needs to be careful when interpreting results for the hypercube model since

they can have their origin both in the underlying geometry or underlying algebra (or, even, finiteness of the

latent space). In Section 8, we discuss the dependence of our results on geometry and algebra.

1.1 Prior Work

1. Hard Thresholds on the Unit Sphere and Gauss Space. A majority of the papers on high-dimensional

random geometric graphs deal with hard thresholds on the unit sphere: the latent space is Ω = Sd−1 and

D is the uniform distribution Unif over it. The connection Ã is given by Tp,d(x, y) := 1[ïx, yð g Äp,d],
where Äp,d is chosen so that E

x,y
i.i.d.∼ Unif(Sd−1)

[Tp,d(x,y)] = p (we will usually suppress the parameter d and

write Äp,Tp). For example, Ä1/2 = Ä1/2,d = 0. In [DGLU11], the authors initiated this line of work by

showing that when d = exp(Ω(n2)), the two graph models are indistinguishable. Bubeck et al. make an ex-

ponential improvement to d = É(n3) in [BDER14]. Implicitly, the authors of [BDER14] also showed that

the signed-triangle count statistic (which can be computed in polynomial time) distinguishes G(n, p) and

RGG(n, Sd−1,Unif,Tp) when d = Õ(n3p3) (explicitly, the calculation appears in [LMSY22], for example).

It is believed that the signed triangle statistic gives the tight bound.

Conjecture 1.1 (Implicit in [BDER14, BBN20, LMSY22] and others).

TV
(
G(n, p),RGG(n, Sd−1,Unif,Tp)

)
= on(1)

when d = Ω̃(n3p3) for p = Ω( 1
n
).

The current progress towards this conjecture is the following. In the sparse regime, when p = Θ( 1
n
),

Liu et al. resolve the conjecture in [LMSY22] by showing indistinguishability when d = Ω(log36 n). When

p f 1
2

and p = É( 1
n
), the same paper shows that TV

(
G(n, p),RGG(n, Sd−1,Unif,Tp)

)
= o(1) holds when

d = Ω̃(n3p2), missing a factor p relative to Conjecture 1.1. The conjecture was proven with respect to

low-degree polynomial tests after the initial version of this current work [BB24b].

Several papers, including [BDER14], also study the related model when (Sd−1,Unif) is replaced by

(Rd,N (0, Id)
¹n). The two models are closely related since if x′ ∼ N (0, Id), then

x′ × ∥x′∥−1
2 ∼ Unif(Sd−1) and ∥x′∥22 is extremely well concentrated around d.2 We will say more about the

significance of the Gauss space model when discussing Wishart matrices momentarily.

2. Wishart Matrices. For X ∼ N (0, Id)
¹n ∈ Rn×d, denote by W(n, d), the law of the Wishart matrix

XXT . In [BDER14], the authors prove and use the following result. A GOE matrix M(n) is a symmetric

n × n matrix with random Gaussian entries, which are independent on the main diagonal and above. The

variance of each entry on the main diagonal is 2 and above the diagonal it is 1.

Theorem 1.2 ([BDER14, JL13]). When d = É(n3), TV
(
W(n, d),

√
dM(n) + In

)
= o(1).

2After the initial version of this current work, [BB24b] identified an important qualitative difference in the sparse regime

between Gaussian and spherical random geometric graphs.
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This result shows that when d is sufficiently large, W(n, d) is, in total variation, a Gaussian matrix with

i.i.d. entries. In the context of random geometric graphs, this implies that inner products of latent vectors

are independent (in total variation) and, thus, the corresponding random geometric graph has independent

edges. Theorem 1.2 has been generalized in several ways since. In [BG15], the authors obtain similar

results when the Gaussian density used in the construction of the Wishart ensemble is replaced with a log-

concave density. In [RR19], the authors show that the transition between a Wishart ensemble and GOE is

“smooth” by calculating TV
(
W(n, d),

√
dM(n) + In

)
when limn−→+∞ d/n3 = c for a fixed constant c.

Finally, in [BBH21b], the authors consider the convergence of a Wishart matrix with hidden entries to a

GOE with hidden entries. They consider both structured and random “masks” hiding the entries. A special

case of one of their results for bipartite masks, which we will use later on, is the following. Let M be an

n× n matrix split into four n
2
× n

2
blocks, where the upper-left and lower-right ones contain only zeros and

lower-left and upper-right contain only ones. Let » be the usual Schur (entry-wise) product.

Theorem 1.3 ([BBH21b]). When d = É(n2), TV
(
M»W(n, d),M» (

√
dM(n) + In)

)
= on(1).

We also mention that Ch’etelat and Wells establish a sequence of phase transitions of the density of W
when nK+3 = É(dK+1) for all K ∈ N [CW19].

3. Soft Thresholds. A line of work by Liu and Racz [LR23b, LR23a] studies a soft threshold model. In

it, edges are random rather than deterministic functions of ïxi, xjð, which corresponds to Ã taking other

values than just 0 and 1. In [LR23b], the connection of interest is given as a convex combination between

pure noise Ã ≡ p, and Tp, namely ϕq(x, y) = (1 − q)p + qTp(x, y) for some q ∈ [0, 1]. In [LR23a],

on the other hand, the authors consider smooth monotone connections formed as follows. Take (Ω,D) =
(Rd,N (0, Id)). Suppose that f is a C2 ³-Lipschitz density corresponding to a zero-mean distribution over

R. Let F be the corresponding CDF. Let Ãf (x, y) := F
( ïx,yð−µp,d,r

r
√
d

)
, where r g 1 and µp,d,r is chosen so

that E[Ãf (x,y)] = p. The fact that f is ³-Lipschitz implies that Ãf is O( 1
r
√
d
)-Lipschitz when viewed as a

function of ïx, yð (this follows directly from [LR23a, Lemma 2.6.]). The main result is the following.

Theorem 1.4 ([LR23a]). Let RGG(n,Rd,N (0, Id), Ãf ) be defined as above.

1) If d = É(n
3

r4
), then

TV
(
G(n, p),RGG(n,Rd,N (0, Id), Ãf )

)
= o(1).

2) If d = o(n
3

r6
) and, additionally, d/ log2 d = É(r6) or r/ log2(r) = É(d1/6), then

TV
(
G(n, p),RGG(n,Rd,N (0, Id), Ãf )

)
= 1− o(1).

The authors conjecture that the lower bound in Theorem 1.4, which is derived via the signed triangle

statistic, is tight [LR23a]. The upper bound in Theorem 1.4 is derived using the following general claim on

latent space random graphs. This claim is the starting point for the indistinguishability results in the current

paper. It bounds the KL divergence to Erdős-Rényi, defined in Section 2.2.

Claim 1.5 ([LR23a]). Let p ∈ [0, 1]. Consider the graph PLSG(n,Ω,D, Ã) for some n,Ω,D, Ã, where the

marginal density E
x,y

i.i.d.∼ D[Ã(x,y)] = q is not necessarily equal to p. Define

µp(x,y) = Ez∼D

[
(Ã(x, z)− p)(Ã(z,y)− p)

]
. (3)

Then,

KL
(
PLSG(n,Ω,D, Ã)∥G(n, p)

)
f

n−1∑

k=0

logE
x,y

i.i.d.∼ D

[(
1 +

µp(x,y)

p(1− p)

)k]
.
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Typically, we take p = q. We state the result in this more general form for the purely technical reason

that in Section 5 we will need it for q = p(1 + ϵ), where ϵ is exponentially smaller than p.
In light of Pinsker’s inequality (see Theorem 2.2), showing that the KL-divergence is of order o(1)

implies that the total variation is also of order o(1). Expanding the expression above, we obtain

E
x,y

i.i.d.∼ D

[(
1 +

µp(x,y)

p(1− p)

)k]
=

k∑

t=0

(
k

t

)
E[µtp]

pt(1− p)t
. (4)

Thus, Claim 1.5 reduces the task of proving indistinguishability bounds to bounding moments of µp. In

[LR23a], the authors achieve this via a wide range of tools in Gaussian analysis. Our approach is quite

different and it relies on the interpretation of µp as an autocorrelation function when Ω is a group.

Unfortunately, as noted by [LR23a], Claim 1.5 is likely not tight. In Section 8.1, we demonstrate new

instances in which (and reasons why) it is not tight, which hopefully will shed light on how to improve

Claim 1.5. Improving it has the potential to resolve several open problems such as Conjecture 1.1 and the

gap in Theorem 1.4.

4. Other Random Geometric Graphs. Several other random geometric graph models have been studied

recently as well. For example, [BBH24, EM20] consider the hard thresholds model for anisotropic Gaussian

vectors. Together, the two papers prove a tight condition on the vector of eigenvalues of the covariance ma-

trix under which the total variation is of order o(1). The works of [MWZ23, MZ24] study a 1-dimensional

random geometric graph with latent space the unit circle. In [FGKS24a, FGKS24b, BB24a] the authors

study a random geometric graph over the d-dimensional torus Td.

1.2 Our Results on the Hypercube

There is a large gap in the literature, with all prior works focusing on connections Ã with the following two

properties:

1. Monotonicity: Monotonicity of ïx, yð −→ Ã(ïx, yð) is a natural assumption which can be interpreted

as closer/more aligned vectors are more likely to form a connection. Nevertheless, many interesting

choices of Ã are not monotone. For example, connections could be formed when vectors are instead

weakly correlated, corresponding to the non-monotone Ã(x, y) = 1[|ïx, yð| f ¶] for some ¶. As

we will see in Section 4.1, the underlying symmetry around 0, i.e., Ã(x, y) = Ã(x,−y) leads to a

different indistinguishability rate.

2. Symmetry: Connections Ã(x, y) depending only on ïx, yð are symmetric with respect to permuta-

tions of coordinates. However, in some interesting examples different coordinates can influence the

connection in qualitatively different ways. For example, suppose that the latent vectors correspond

to characteristics of people and edges in the graph to friendships among the set of people. Similar-

ity in some characteristics—such as geographical location—can make people more likely to form a

friendship, but others—such as competition for scarce resources—can make them less likely to be-

come friends due to competitiveness. In Section 4.2 we use a simple mathematical model of such

connections, which again leads to different indistinguishability rates.

Theorem 3.1 in the current paper makes a step towards filling this gap. It addresses a large family of

probabilistic latent space graphs over the hypercube Ω = {±1}d with the uniform measure D = Unif for

which neither monotonicity nor symmetry holds. We remark that because our proofs are based on Fourier-

analytic tools, which have generalizations to products of Abelian groups and tori, our results likely hold in

greater generality. In the interest of obtaining simple and interpretable results, we do not pursue this here.
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The main insight is that over the hypercube, Fourier-analytic tools facilitate the analysis of connections

depending on the coordinate-wise (group-theoretic) product (x, y) −→ xy ∈ {±1}d. This setup is strictly

more general than the setting of inner products since
∑d

i=1(xy)i = ïx, yð. When Ã only depends on xy,
we use the notation RAG (standing for random algebraic graph, see Definition 1.12) instead of PLSG.
Theorem 3.1 yields indistinguishability rates depending on the largest magnitude of Fourier coefficients on

each level (see Section 2.3 for preliminaries on Boolean Fourier analysis). Informally, we have:

Theorem 1.6 (Informal Theorem 3.1). Suppose that d = Ω(n), Ã : {±1}d −→ [0, 1] has expectation p,

and m ∈ N is a constant. Let Ã =
∑

S¦[d] Ã̂(S)ÉS . For 1 f i f d, let Bi = max
{
|Ã̂(S)|

(
d
i

)1/2
: |S| = i

}
.

Let

Cm =

d/2en∑

i=m+1

B2
i +

d−m−1∑

i=d− d
2en

B2
i and D =

∑

d
2en

fjfd− d
2en

B2
i .

If Cm, B
2
u, B

2
d−u f p(1− p) for 0 f u f m, then

TV
(
RAG(n, {±1}d, Ã),G(n, p)

)2

= O

(
n3

p2(1− p)2
×
(

m∑

i=1

B4
i

di
+

d∑

i=d−m

B4
i

dd−i
+

C2
m

dm+1
+D2 × exp

(
− d

2en

)))
.

Qualitatively, the TV distance is small whenever all Fourier coefficients of Ã are small. In Remark 6.6,

we show the converse – a single large Fourier coefficient makes the TV distance large.

We make several remarks on Theorem 1.6 at this point of time. First, typically the four conditions are

reduced to just the much simpler d g Km × n. This is the case, for example, when Ã is symmetric. Indeed,

note that
∑d

i=1B
2
i = Var[Ã] f p(1 − p) in that case, so the three inequalities are actually implied by

d g Km × n. This also holds for “typical” {0, 1}-valued connections as we will see in Section 4.3.

Next, we explain the expression bounding the TV distance. In it, we have separated the Fourier levels

into essentially 2m+ 3 intervals:

• Iu = {u} for u ∈ [m],

• Im+u = {d− u} for u ∈ [m],

• I2m+1 = [m+ 1, d
2en

] ∪ [d− d
2en
, d−m− 1],

• I2m+2 = ( d
2en
, d− d

2en
),

• I2m+3 = {d}.

First, as we will see in Sections 4.1 and 4.1.4, levels very close to 0 and d, i.e indexed by O(1) or d−O(1)
play a fundamentally different role than the rest of the levels. This explains why I1, I2, . . . I2m, I2m+3 are

handled separately and why I2m+1 and I2m+2 are further separated (note that if m is a constant, levels

m,m + 1, . . . , 2m in I2m+1 also have indices of order O(1)). There is a further reason why I2m+2 is held

separately from the rest. On the respective levels, significantly stronger hypercontractivity bounds hold as

described by the next inequality.

The utility of the following inequality comes into play as we derive an upper bound of the desired TV

distance via the moments of a symmetric function. Symmetric functions over the hypercube are weighted

sums of elementary symmetric polynomials.
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Theorem 1.7 (Theorem 3.5). Let d ∈ N. Consider the elementary symmetric polynomial es : Rd −→ Rd

given by es(x) =
∑

S¦[d] : |S|=s
∏

i∈S xi. If t ∈ N is such that d
2et

< s < d− d
2et
, then

(
d

s

)
exp

(
− ln 2× d

t

)
f Ex∼Unif({±1}d)

[
|es(x)|t

]1/t f
(
d

s

)
exp

(
− d

2et

)
.

We have not tried to optimize the constants in the exponent. The upper bound also holds for other

distributions such as uniform on the sphere and Gaussian when s < d/2.
We now describe some applications of Theorem 1.6 to various choices of Ã. While the claim of the

theorem is rather long, it turns out to be relatively simple to apply. We organize our results based on the

degree of symmetry in the respective connections. Note that in the symmetric case over {±1}d, Ã(xy−1) =
Ã(xy) only depends on

∑d
i=1 xiyi = ïx, yð and this is the usual inner-product model.

1.2.1 Symmetric Connections

Most previous work on indistinguishability focuses on monotone connections and proves a necessary con-

dition of the form d = Ω̃(n3) (with hidden constants, depending on p, Lipschitzness, etc). We show that

even some of the simplest instances of non-monotone, but still symmetric, connections violate this trend.

Theorem 1.8 (Informal, Corollaries 4.5, 4.10 and 4.14). If Ã is symmetric and even (i.e., Ã(g) = Ã(−g)),
then TV

(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1), whenever d = Ω̃(n3/2).

The reason why this holds is that odd Fourier levels of Ã vanish for even connections (so, in particular

B1 = 0 in Theorem 1.6). We generalize this result with the following conjecture, which, unfortunately,

does not follow from our Theorem 3.1 for m > 3 as the latter only applies to the regime d = Ω(n).

Conjecture 1.9 (Conjecture 4.16). Suppose that Ã is a symmetric connection such that Ã̂(S) = 0 when-

ever 1 f |S| f m − 1 or d − m − 1 f |S| f d for a fixed constant m. If d = Ω̃(n3/m) holds,

TV
(
G(n, p),RAG(n, {±1}d, Ã)

)
= o(1).

In Proposition 6.13 we show that, if correct, this conjecture is tight up to logarithmic factors. Specif-

ically, there exist connections Ã for which the conditions of Conjecture 4.16 are satisfied and the signed-

triangle statistic distinguishes the two models whenever d = õ(n3/m).
Some further nearly immediate applications of Theorem 1.6 in the symmetric setting are the following.

1. Hard Thresholds Connections. When Ã = Tp (defined over the hypercube analogously to the

definition of the unit sphere), we prove in Corollary 4.8 that if d = max
(
É̃(n3p2),Ω(n log n)

)

holds, then TV
(
RAG(n, {±1}d,Tp),G(n, p)

)
= o(1). This matches the state of the art result on

the sphere in the regime p = É(n−1) in [LMSY22]. For the even analogue of Tp given by Dp(x, y) :=
1
[
|ïx, yð| g Äp/2|

]
with expectation p, G(n, p) and RAG(n, {±1}d,Dp) are indistinguishable when

d = max
(
(É̃(n3/2p),Ω(n log n)

)
and distinguishable when d = o(n3/2p3/2) (see Corollaries 4.10

and 6.2).

2. Lipschitz Connections. In Corollary 4.4 we show that if d = max
(
Ω(n3/r4),Ω(n log n)

)
for an

1
r
√
d
-Lipschitz connection Ã, TV

(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1), extending the work of [LR23a]

to the non-monotone case. Again, we improve the dependence to

d = max
(
Ω(n3/2/r2),Ω(n log n)

)
in the even case in Corollary 4.5.

3. Interval Unions and Fluctuations. In Section 4.1.3 we extend the classical threshold model in which

Ã is an indicator of a single interval, i.e. [Äp,d,+∞) to the case when Ã is an indicator of a union of

s disjoint intervals. Namely, we have indistinguishability when d = Ω(n3 + n3/2s2) in the general

case and d = Ω(n3/2s2) in the even case. We give lower bounds in Section 6.1.2 when d = o(ns2),
showing that the dependence on s is tight.
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4. Low-Degree Connections. In Section 4.1.5 we consider the case when Ã is a symmetric polynomial

of constant degree. In that case, we prove that the two graph models are indistinguishable when

d = Ω(n) and d = É̃(min(n3/2p−1/2, n3p2)). In Section 6.1.4, we give a detection lower bound for

d = o((np)3/4), which leaves a polynomial gap in this setting.

1.2.2 Modifications of Symmetric Connections

As Theorem 3.1 only depends on the size of Fourier coefficients on each level, it also applies to trans-

formations of symmetric connections which do not increase the absolute values of Fourier coefficients.

We analyse two such transformations, which we call “coefficients contractions” and “repulsion-attraction”

twists. Both have natural interpretations, see Section 4.2.1.

A special case of a coefficient contraction is the following. For a symmetric connection Ã : {±1}d −→
[0, 1] and fixed g ∈ {±1}d, the coefficient contraction Ãg is given by Ãg(x) := Ã(xg) (which simply

negates the coordinates xi for which gi = −1). All of our indistinguishability results from Section 1.2.1

continue to hold with the exact same quantitative bounds on d if we replace the connection Ã with an

arbitrary coefficient contraction Ãg of it. While it is a virtue of our proof techniques for indistinguishability

results that they capture these more general non-symmetric connections, it is also a drawback. It turns out

that certain coefficient contractions become statistically indistinguishable from G(n, p) for polynomially

smaller dimensions, but this phenomenon is not captured by Theorem 1.6.

A particularly interesting case which illustrates this is the following. In Section 6.2, we consider co-

efficient contractions with h = 1, 1, . . . , 1︸ ︷︷ ︸
d1

,−1,−1, . . . ,−1︸ ︷︷ ︸
d1

for d = 2d1. This choice of h negates exactly

half the variables. In that case, Ãh(xy
−1) = Ãh(xy) depends on

∑
ifd1 xiyi −

∑
j>d1

xjyj. Thus, edges de-

pend on a difference of inner products rather than inner products (equivalently, inner products with signature

(+,+, . . . ,+︸ ︷︷ ︸
d1

,−,−, . . . ,−︸ ︷︷ ︸
d1

) ). The corresponding analogue of Wishart matrices is of the formXXT−Y Y T ,

where X, Y ∈ Rn×d1 . In the Gaussian case, we prove the following statement.

Theorem 1.10 (Theorem 6.17). Define the law of the difference of two Wishart matrices as follows.

W(n, d1,−d1) is the law of XXT−YYT , where X,Y ∈ Rn×d1 are iid matrices with independent standard

Gaussian entries. If d1 = É(n2), then TV
(
W(n, d1,−d1),

√
d1M(n)

)
= on(1).

Compared to Theorem 1.2, this statement differs only in dimension. A Wishart matrix converges to GOE

when d = É(n3), but a difference of independent Wishart matrices converges to GOE when d = É(n2).
This proves that in the Gaussian case, for any connection Ã(x, y) over Rd × Rd that only depends on∑
ifd1 xiyi −

∑
j>d1

xjyj, it is the case that TV
(
RGG(n,R2d1 ,N (0, I2d1), Ã),G(n, p)

)
= o(1) whenever

d = É(n2). We expect that the same thing holds for the hypercube model, but our Theorem 3.1 yields

dependence d = É(n3).
In Section 8.1, we use Theorem 1.10 to rigorously show that there is an inefficiency in deriving Claim 1.5

arising from the use of KL-convexity, as predicted in [LR23a].

1.2.3 Typical Indicator Connections Induce a Statistical-Computational Gap

Finally, we study the behaviour of RAG(n, {±1}d, ÃA) where A ¦ {±1}d is a “typical” subset of the

hypercube and ÃA is its indicator, and pA = |A|/2d. We obtain strong evidence for a nearly-exponential

statistical-computational gap.

Theorem 1.11 (Informal, Theorems 4.19, 7.1, 7.5 and 7.6). In the setup above,
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(a) If d = Ω(n log n), then TV
(
RAG(n, {±1}d, ÃA),G(n, 1/2)

)
= o(1) for a 1 − 2−Ω(d) fraction of the

subsets A of {±1}d.

(b) If d = n
2
− É(1), then TV

(
RAG(n, {±1}d, ÃA),G(n, 1/2)

)
= 1− o(1) for all subsets A of {±1}d.

(c) If 2d = É(n4), no low-degree polynomial test can distinguish RAG(n, {±1}d, ÃA) and G(n, 1/2) for

a 1− o(1) fraction of the subsets A of {±1}d.

Our result is more general and holds for other values of p beyond 1/2. We describe this in more detail

in the next section, when we extend Theorem 1.11 to arbitrary groups of appropriate size. The advantage

of the Fourier-analytic proof in the hypercube setting over our proof in the setting of general groups is

that it gives an explicit construction of connections for which the statistical limit occurs at d = Θ̃(n). In

particular, this is the case for all A such that ÃA is dC/2d/2-regular for a fixed constant C (see Claim 4.20

and Remark 4.21).

1.3 Random Algebraic Graphs

The main insight about the Boolean hypercube is that we can analyze connections Ã(x, y) depending only

on the group product, which is much more general than the inner product induced by Rd. It turns out that

this construction can be naturally extended to a wide class of groups.

Definition 1.12 (Random Algebraic Graphs). Suppose that Ω is a unimodular locally compact Hausdorff

topological group G with the unique left- and right-invariant probability Haar measure µ corresponding to

distribution D.3 Suppose further that the connection · : G × G −→ [0, 1] given by ·(x, y) only depends on

x−1y, that is ·(x, y) = Ã(x−1y) for some Ã : G −→ [0, 1]. Then, we call PLSG(n,G,D, ·) a left random

algebraic graph. We use the notation LRAG(n,G, Ã). Similarly, define a right random algebraic graph and

denote by RRAG for connections depending only on xy−1.

Clearly, for Abelian groups such as {±1}d, right- and left- random algebraic graphs coincide, for which

reason we will use the simpler notation RAG. We now demonstrate the expressivity of random algebraic

graphs by relating them to (approximate versions) of other well-studied graph models.

1. Random Geometric Graphs over the Sphere, Hypercube, and Tori. Random geometric graphs

over the hypercube and torus Td (examples of the latter include [MWZ23, MWZ24, FGKS24a, FGKS24b,

BB24a]) are random algebraic graphs. More surprisingly, any random geometric graph defined by Ω =
Sd−1,D = Unif, and a connection · depending only on inner products can be represented as a random

algebraic graph even though Sd−1 does not possess a group structure when d > 3. Namely, consider a

different latent space - the orthogonal group O(d) = Ω with its Haar measure. The latent vectors are iid

“uniformly distributed” orthogonal matrices U1, U2, . . . , Un. To generate uniform iid latent vectors on Sd−1,
take U1v, U2v, . . . , Unv for an arbitrary v ∈ Sd−1, say v = e1. Define Ã(U) := ·(ïvvT , Uð) and observe that

·(Uiv, Ujv) = ·(ïUiv, Ujvð) = ·(ïvvT , UT
i Ujð) = Ã(U−1

i Uj).

Clearly, RGG(n, Sd−1,Unif, ·) and LRAG(n,O(d), Ã) have the same distribution.

3If G is finite, this measure is just the uniform measure over the group elements. If G is, say, the orthogonal group, this is the

Haar measure over it. Importantly, since the group is unimodular, the left and right Haar measures coincide.
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2. Cayley Graphs: Blow-ups and Random Subgraphs. Suppose that G is a finite group and Ã is an

indicator of some S ¦ G which satisfies a ∈ S if and only if a−1 ∈ S. The Cayley graph Γ(G, S) has vertex

set G and edges between any two distinct vertices g, h ∈ V (Γ(G, S)) = G for which gh−1 ∈ S. We consider

two regimes.

First, when n = o(
√

|G|). With high probability, the latent variables in RRAG(n,G, Ã) are pairwise

distinct by the birthday paradox. This immediately leads to the following observation.

Observation 1.13. Suppose that G is a group such that |G| = É(n2). Denote by Γn(G, S) the uniform

distribution over n-vertex induced subgraphs of Γ(G, S). Then,

TV
(
RRAG(n,G, Ã),Γn(G, S)

)
= o(1).

Second, when |G| = o( n
logn

). With high probability, each g ∈ G appears n
|G|(1 + o(1)) times as a latent

variables in RRAG(n,G, Ã). It follows that RRAG(n,G, Ã) is approximately an n
|G| -blow-up of Γ(G, S).

It is interesting to consider whether this relationship to Cayley graphs can be used to understand random

geometric graphs. For example, there are several results on the expansion properties of Cayley graphs

[AR94, Con17], which could be related to the expansion properties of random geometric graphs [LMSY23].

3. Stochastic Block Model. The symmetric stochastic block-model is given by an n vertex graph, in

which k communities and edges between them are formed as follows ([RB17]). First, each vertex is inde-

pendently assigned a uniform label in {1, 2, . . . , k}. Then, between every two vertices, an edge is drawn

with probability p if they have the same label and with probability q < p otherwise. Denote this graph

distribution by SSBM(n, k, p, q).
SSBM(n, k, p, q) can be modeled as a random algebraic graph as follows. Take an arbitrary Abelian

group G which has a subgroup H of order |G|/k. Define Ã : G −→ [0, 1] by Ã(g) := q + (p − q) ×
1[g ∈ H]. Then, RAG(n,G, Ã) has the same distribution as SSBM(n, k, p, q). This follows directly from

the observation that communities in the stochastic block model correspond to subsets of vertices with latent

variables in the same coset with respect to H in the random algebraic graph.

One can also model certain non-symmetric instances of the stochastic block model via random algebraic

graphs. For example, in [KVWX23], the authors study the following stochastic block model with uniformly

distributed labels over [q]× [q] :

Ã
(
(a1, b1), (a2, b2)

)
=





0 if a1 = a2,

1 if a1 ̸= a2, b1 = b2,

1/2 otherwise .

(5)

Viewing [q]× [q] as the product of cyclic groups Cq×Cq, we see that Ã
(
(a1, b1), (a2, b2)

)
only depends on

(a1 − a2, b1 − b2). Hence, this is indeed a random algebraic graph over Cq × Cq.

1.4 Our Results on Typical Cayley Graphs

We utilize the connection between random algebraic graphs and Cayley graphs to study the high-probability

behaviour of Cayley graphs when the generating set is chosen randomly. The distribution over random

generating sets that we consider is the following.

Definition 1.14 (The ante-inverse-closed uniform measure). Let G be a group and 0 f p f 1 a real number,

possibly depending on G. Define the density AnteU(G, p) as follows. Consider the action of C2 = {1, Ä}
on G defined by Ä(g) = g−1 and let O1,O2, . . . ,Ot be the associated orbits. Let X1,X2, . . . ,Xt be t iid

Bernoulli(p) random variables. Then, AnteU(G, p) is the law of S =
⋃
j : Xj=1 Oj.
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Our main result, extending Theorem 1.11, is the following.

Theorem 1.15 (Informal, Theorems 5.1, 7.1 and 7.6). Consider a finite group G.

(a) If |G| = exp
(
Ω(n log 1

p
)
)
, then TV

(
Γn(G,A),G(n, p)

)
= o(1) with probability at least 1− |G|−1/7

over A ∼ AnteU(G, p).

(b) If |G| = exp(O(nH(p))), where H is the binary entropy function, then TV
(
Γn(G, A),G(n, p)

)
=

1− o(1) for any generating set A.

(c) If |G| = É(n4), no degree log2−ϵ n polynomial test with input the graph edges and A can distinguish

G(n, p) and Γn(G,A) with high probability over A ∼ AnteU(G, p).

We note that these results can be equivalently phrased if we replace Γn(G, A) by RRAG(n,G, ÃA),where

ÃA is the indicator of A.
In particular, this suggests that indistinguishability between Γn(G, A) and G(n, p) depends only on the

size of G, but not on its group structure. This continues the long-standing tradition of certifying that

important properties of random Cayley graphs only depend on group size. Prior literature on the topic

includes results on random walks [AD86, DH96, HOT21] (see [HOT21] for further references), related

graph-expansion properties [AR94], and chromatic numbers [Alo13] of typical Cayley graphs.

One major difference between previous results and our current result is the measure over generating sets

used. Previous works used what we call the post-inverse-closed uniform measure.

Definition 1.16 (The post-inverse-closed uniform measure). Let G be a finite group and k f |G| be an

integer. Define the density PostU(G, k) as follows. Draw k uniform elements Z1,Z2, . . . ,Zk from G and set

Z = {Z1,Z2, . . . ,Zk}. Then, PostU(G, k) is the law of S = Z ∪ Z−1.

There are several differences between the two measures on generating sets, but the crucial one turns out

to be the following. In the ante-inverse-closed uniform measure, each element appears in S with probability

p. In the post-inverse-closed uniform measure, an element g of order two appears with probability q :=
1 − (1 − 1

|G|)
k since g ∈ Z ∪ Z−1 if and only if g ∈ Z. An element h of order greater than 2 appears with

probability 1 − (1 − 2
|G|)

k ≈ 2q. This suggests that we cannot use the PostU measure for groups which

simultaneously have a large number of elements of order two and elements of order more than two to prove

indistinguishability results such as the ones given in Theorem 1.15. Consider the following example.

Example 1.17. Consider the group G = C3 × C2 × C2 × · · · × C2︸ ︷︷ ︸
d

. Denote the three different cosets with

respect to the C3 subgroup by Hi = {i} × C2 × C2 × · · · × C2︸ ︷︷ ︸
d

for i ∈ {0, 1, 2}. Elements in H0 have order

at most 2, while elements in H1,H2 have order 3. Now, consider PostU(G, k), where k is chosen so that

E[|S| × |G|−1] ≈ 1
2
. Each element from H0 appears in S with probability q and each element in H1,H2

with probability ∼ 2q, such that q × |H0|+ 2q × (|H1|+ |H2|) = |G|
2
. It follows that q ≈ 3

10
.

Let S be drawn from PostU(G, k) andG ∼ Γn(G,S).With high probability, the vertices ofG can be split

into three groups - G0, G1, G2, where Gi contains the vertices coming from coset Hi. The average density

within each of G0, G1, G2 in G will be approximately 3
10
, while the average density of edges of G which

have at most one endpoint in each ofG0, G1, G2 will be approximately 6
10
. Clearly, such a partitioning of the

vertices G0, G1, G2 typically does not exist for Erdős-Rényi graphs. Thus, no statistical indistinguishability

results can be obtained using the PostU measure over G = C3 × C2 × C2 × · · · × C2︸ ︷︷ ︸
d

.
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1.5 Roadmap

A detailed map of the relationship between our different results follows. In it, an arrow from A toB implies

that B is a corollary of A. Undirected links connect an indistinguishability and a detection result for the

same (family of) PLSG.

Main theorem on

indistinguishability

over the hypercube

Theorem 1.6 (Theorem 3.1).

Proof in Section 3.

Main theorem applied

to symmetric connections

Corollary 4.1

Transformations

to symmetric connections

Section 4.2

Typical connections

Theorem 4.19

Lipschitz

Corollary 4.4

Analogous to [LR23a]

+
Even Lipschitz

Corollary 4.5

Lipschitz

detection

Corollary 6.2

Hard threshold

Corollary 4.8

Analogous to

[BDER14, LMSY22]

+
Even hard threshold

Corollary 4.10

Hard thresholds

detection

Corollary 6.2

Non-monotone

Section 4.1.3

Non-monotone

detection

Section 6.1.2

Conjectured

indistinguishability

without low-degree and

high-degree terms

Conjecture 4.16

Detection without

low-degree and

high-degree terms

Proposition 6.13

Low-degree

Section 4.1.5

Low-degree

detection

Section 6.1.4

Detection for

symmetric connections

via signed triangles

Corollary 6.1

Indistinguishability for

typical RAG over

general groups Section 5

Lower bound against

low-degree polynomials

for detecting typical RAG

Section 7.1

Detection

of typical RAG

via brute-force

enumeration

Section 7.3
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In Section 2, we introduce notation and preliminary results. In Section 3 we prove our main result over

the hypercube, Theorem 1.6 (Theorem 3.1). In Section 4 we give several applications of the result. In

Section 6 we give the relevant lower bounds arising from signed-triangle counts. Section 5 is dedicated to

proving Theorem 1.15 (Theorem 5.1) on the indistinguishability of typical random algebraic graphs and in

Section 7 we present the corresponding brute-force detection algorithm and lower bound against detection

with low-degree polynomial tests.

2 Notation and Preliminaries

2.1 Notation

Graph Notation. We use standard graph notation. For a graph G, we denote by V (G) and E(G) its

vertex set and its edge set. We denote by Kn the complete graph on n vertices and by Cm the cycle on m
vertices. We denote by G1 ∼ G2 the fact that G1 and G2 are isomorphic.

Asymptotic Notation. We use standard asymptotic notation o, O, É,Ω,Θ. That is, for two functions

f, g of n, we say that f(n) = o(g(n)) whenever limn−→+∞ f(n)/g(n) = 0, f(n) = O(g(n)) when-

ever |f(n)/g(n)| is bounded, f(n) = É(g(n)) whenever g(n) = o(f(n)) and f(n) = Ω(g(n)) whenever

g(n) = O(f(n)). Finally, f(n) = Θ(g(n)) means that f(n) = Ω(g(n)) and f(n) = O(g(n)). The same

notation with an extra ·̃ means up to multiplicative polylog(n) factor. E.g., f(n) = Õ(g(n)) whenever

|f(n)/g(n)| is bounded by logC n for some absolute constant C.
Recall that in our setting, we view each of D,Ω, Ã, p and the parameters that determine them (such as

d when Ω = {±1}d, for example) as an implicit sequence indexed by the number of vertices n. Hence,

asymptotic notation with respect to n is well defined.

Miscellaneous. We typically use bold fonts to denote random quantities. For a natural number m ∈ N,
we write [m] := {1, 2, . . . ,m}. We denote by Cm the cyclic group on m elements.

2.2 Information Theory

The main subject of the current paper is to understand when two graph distributions - G(n, p) and

PLSG(n,Ω,D, Ã) - are statistically indistinguishable or not. For that reason, we need to define similar-

ity measures between probability distributions.

Definition 2.1 (For example, [PW24]). Let P,Q be two probability measures over the measurable space

(Ω,F). Suppose that P is absolutely continuous with respect to Q and has a Radon-Nikodym derivative
dP
dQ
. For a convex function f : Rg0 −→ R satisfying f(1) = 0, the f -divergence between P,Q is given by

Df (P∥Q) =

∫

Ω

f

(
dP

dQ

)
dQ.

The two f -divergences of primary interest to the current paper are the following:

1. Total Variation: TV(P,Q) := Df (P∥Q) for f(x) = 1
2
|x − 1|. It easy to show that TV can be

equivalently defined by TV(P,Q) = supA∈F |P(A)−Q(A)|.

2. KL-Divergence: KL(P∥Q) := Df (P∥Q) for f(x) = x log x (where f(0) = 0).

It is well-known that total variation characterizes the error probability of an optimal statistical test.

However, it is often easier to prove bounds on KL and translate to total variation via Pinsker’s inequality.
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Theorem 2.2 (For example, [PW24]). Let P,Q be two probability measures over the measurable space

(Ω,F) such that P is absolutely continuous with respect to Q. Then,

TV(P,Q) f
√

1

2
KL(P∥Q).

Another classic inequality which we will need is the data-processing inequality. We only state it in the

very weak form in which we will need it.

Theorem 2.3 (For example, [PW24]). For any two distributions P,Q, any measurable deterministic func-

tion h, and any f -divergence Df , the inequality Df (P∥Q) g Df (h∗(P)∥h∗(Q)) holds. Here, h∗(P), h∗(Q)
are the respective push-forward measures.

2.3 Boolean Fourier Analysis

Central to the current paper is the use of tools from Boolean Fourier analysis to the study of random

algebraic graphs. We make a very brief introduction to the topic based largely on [O’D14].

Basics. {±1}d is an Abelian group (isomorphic to Zd2). We denote the product of elements x, y in it

simply by xy. Note that x = x−1 over {±1}d. An important fact is that all functions on the hypercube are

polynomials.

Theorem 2.4. Every function f : {±1}d −→ R can be uniquely represented as

f(x) =
∑

S¦[d]

f̂(S)ÉS(x),

where ÉS(x) :=
∏

i∈S xi, É∅ := 1 and f̂(S) is a real number, which we call the Fourier coefficient on S.

We call the monomials ÉS(x) characters or Walsh polynomials. They satisfy ÉSÉT = ÉS∆T . The Walsh

polynomials form an orthogonal basis on the space of real-valued functions over {±1}d with respect to the

uniform measure. Namely, for two such functions f, g, define ïf, gð = Ex∼Unif({±1}d)[f(x)g(x)]. This is a

well-defined inner-product with corresponding L2-norm ∥f∥22 := ïf, fð.

Theorem 2.5 (For example, [O’D14]). The following identities hold.

1. ïÉS, ÉT ð = 1[T = S].

2. ïf, gð =∑S¦[d] f̂(S)ĝ(S). In particular,

(a) f̂(S) = E[f(x)ÉS(x)].

(b) ∥f∥22 =
∑

S¦[d] f̂(S)
2.

(c) E[f ] = f̂(∅),Var[f ] =
∑

∅ªS¦[d] f̂(S)
2.

3. The Fourier convolution (f ∗ g) : {±1}d −→ R defined by (f ∗ g)[x] = E[f(xz−1)g(z)] can be

expressed as

(f ∗ g)[x] =
∑

S¦[d]

f̂(S)ĝ(S)ÉS(x).
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Noise operator and hypercontractivity. Oftentimes, it is useful to study other Lp-norms, defined for

p g 1 by ∥f∥p := Ex∼Unif({±1}d)[|f |p]1/p. By Jensen’s inequality, ∥f∥p f ∥f∥q holds whenever p < q. It

turns out, however, that a certain reverse inequality also holds. To state it, we need the noise operator.

Definition 2.6. For x ∈ {±1}d, let NÄ(x) be the Ä-correlated distribution of x for Ä ∈ [0, 1]. That is,

y ∼ NÄ(x) is defined as follows. For each i ∈ [d], independently yi = xi with probability 1+Ä
2

and

yi = −xi with probability 1−Ä
2
. Define:

1. Noise Operator: The linear operator TÄ on functions over the hypercube is defined by TÄf [x] :=
Ey∼NÄ(x)[f(y)]. The Fourier expansion of TÄf is given by

TÄf =
∑

S¦[d]

Ä|S|f̂(S)ÉS.

In light of this equality, TÄ can also be defined for Ä > 1.

2. Stability: The Stability of a function f : {±1}d −→ R is given by

StabÄ[f ] := ïTÄf, fð =
∑

S¦[d]

Ä|S|f̂(S)2 =
∥∥T√

Äf
∥∥2
2

We are ready to state the main hypercontractivity result which we will use in Section 3.

Theorem 2.7 ([Bon70]). For any 1 f p f q and any f : {±1}d −→ R, we have the inequality

∥f∥q f
∥∥∥T√

q−1
p−1

f
∥∥∥
p
.

In particular, when q g p = 2, one has ∥f∥2q f
∑

S¦∅
(q − 1)|S|f̂(S)2.

The way in which the noise operator changes the Fourier coefficient of ÉS depends solely on the size of

S. For that, and other, reasons, it turns out that it is useful to introduce the Fourier weights. Namely, for a

function f : {±1}d −→ R, we define its weight on level i ∈ {0, 1, 2, . . . , d} by

W i(f) =
∑

S¦[d] : |S|=i
f̂(S)2.

We similarly denote Wfi(f) =
∑

jfiWj(f) and Wgi(f) =
∑

jgiWj(f). Trivially, for each i, one has

W i(f) f ∑d
j=0 Wj(f) = ∥f∥22 . In particular, this means that if |f | f 1 holds a.s. (which is the case for

connections Ã in random geometric graphs by definition), W i(f) f 1 also holds for each i. It turns out that

in certain cases, one can derive sharper inequalities.

Theorem 2.8 ([KKL88]). For any function f : {±1}d −→ [−1, 1] such that ∥f∥1 = ³, the inequalities

Wfk(f) f
(2e
k

ln(1/³)
)k
³2 and Wgd−k(f) f

(2e
k

ln(1/³)
)k
³2

hold whenever k f 2 ln(1/³).
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Weights of symmetric low-degree polynomials. We end with the following lemma which will be useful

when discussing connections which are low-degree polynomials.4 The proof is in Appendix E.

Proposition 2.9. If f : {±1}d −→ [−1, 1] is a symmetric degree-k polynomial f. Then,

Var[f ] f p

d
× (Ck log(e/p))

k

for some constant Ck depending only on k.

Beyond the uniform measure. Finally, we mention that one can develop a similar theory for non-uniform

measures on the hypercube. Of specific interest are p-based measures, which for notational convenience,

we introduce over {0, 1}d instead of {−1, 1}d. The main fact that we will use is an analogue of the Walsh

polynomials for the uniform measure.

The monomials

{∏

i∈S

xi − p√
p(1− p)

}

S¦[d]

form an orthonormal basis for x1,x2, . . . ,xn
i.i.d.∼ Bernoulli(p).

(6)

2.4 Detection and Indistinguishability via Fourier Analysis

Before we jump into the main arguments of the current paper, we make two simple illustrations of Fourier-

analytic tools in the study of random algebraic graphs, which will be useful later on. These observations

cast new light on previously studied objects in the literature.

2.4.1 Indistinguishability

First, we will interpret the function µ from Claim 1.5 as an autocorrelation function.

Proposition 2.10. Let G = {±1}d and suppose that Ã only depends on xy−1. Then,

µ(x, y) = (Ã − p) ∗ (Ã − p)[xy−1].

Proof. Let Ã(g) =
∑

S¦[d] Ã̂(S)ÉS(g) for g ∈ {±1}d. In particular, Ã̂(∅) = p. Now, we have

µ(x, y) = Ez∼Unif({±1}d)[(Ã(x, z)− p)(Ã(y, z)− p)] = Ez

∑

∅ªS,T¦[d]

[
Ã̂(S)Ã̂(T )ÉS(xz

−1)ÉT (zy
−1)
]

=
∑

∅ªS,T¦[d]

Ã̂(S)Ã̂(T )ÉS(x)ÉT (y
−1)E[ÉT∆S(z)] =

∑

S ̸=∅
Ã̂(S)2ÉS(xy

−1)

= (Ã − p) ∗ (Ã − p)[xy−1].

The same argument applies verbatim when we replace {±1}d with an arbitrary finite Abelian group

(and some other groups such as a product of a finite Abelian group with a torus, provided Ã is L2-integrable

with respect to D). Hence our use of xy−1. In light of (4), we simply need to prove bounds on the moments

of the autocorrelation of Ã − p (i.e., the centered moments of the autocorrelation of Ã). We remark that the

later work [BB24a] gives two further interpretations of this correlation function related to quasirandomness.

4We greatly thank Jason Gaitonde for suggesting us the proof of this lemma. In the earlier version of this work, we had

the weaker bound Var[f ] f Ck
1

d
for some constant depending only on k. The proof of the weaker bound follows from an

application of the Bohnenblust-Hille inequality as in [EI22].
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2.4.2 Detection via Low-Degree Polynomial Tests

Low-degree polynomial tests. Common in the literature on high-dimensional statistics is the framework

of testing with low-degree polynomial tests. Low-degree polynomial tests are viewed as a proxy for efficient

algorithms [HS17, Hop18]. Polynomials of degree O(log n) capture, among others, (signed) counts of sub-

graphs on at most O(log n) edges [Hop18], certain spectral methods [BKW19], SQ algorithms [BBH+21a]

and approximate message passing algorithms [MW22] in certain natural regimes.

In the case of testing between graph distribution as in (2), the polynomials are over the edges of input

graphs. Given polynomial f : {0, 1}(n2) −→ R between two graph distribution H0,H1 as follows. On input

a graph G, if f(G) is “close” to EH∼H0 [f(H)], one reports H0. If f(G) is “close” to EH∼H1 [f(H)], one

reports H1. A success criterion for low-degree polynomial tests can be derived via a simple second-moment

condition.

Definition 2.11. [E.g. [Hop18, HS17]] Consider the hypothesis testing problem G ∼ H0 versus G ∼ H1.
We say that a polynomial f succeeds with high probably if

|EG∼H0 [f(G)]− EG∼H1 [f(G)]|2 = É

(
VarG∼H0 [f(G)] +VarG∼H1 [f(G)]

)
.

Conversely, if the inequality

|EG∼H0 [f(G)]− EG∼H1 [f(G)]|2 = o

(
VarG∼H0 [f(G)] +VarG∼H1 [f(G)]

)

holds for all polynomials of degree at most D, we say that degree-D polynomial tests fail to distinguish H0

and H1.

This condition simplifies remarkably when H0 is a product distribution such as in Erdős-Rényi. To state

the relevant result, we reinterpret the orthonormal basis (6) in the setting of graphs. Omitting the scaling

factor of
√
p(1− p)

−|E(H)|
, for any fixed graph H, we define its p-based signed weight by

SW
p
H(G) :=

∏

(ji)∈E(H)

(Gji − p).

Using the orthonormality (6), a simple calculation suggests the following fact.

Theorem 2.12 (E.g. [Hop18, HS17, MWZ23]). Suppose that H1 is some distribution over n-vertex graphs

such that ∑

H¦Kn, : 0<|E(H)|fD
(p(1− p))−|E(H)|EG∼H1 [SW

p
H(G)]2 = o(1), (7)

where the sum is over all graphs without isolated vertices. Then, no degree-D polynomial test can distin-

guish G(n, p) and H1.

Signed subgraph counts. One concrete instance of low-degree polynomials is omnipresent in the litera-

ture on testing between graph distributions. The signed subgraph count of H is defined as the sum of the

signed subgraph weight of all isomorphic copies of H.

SC
p
H(G) :=

∑

H1¦Kn : H1∼H
SW

p
H(G).
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As a concrete example, in the case of H a triangle, we obtain:

SC
p
△(G) = SC

p
C3
(G) =

∑

i<j<k

SW
p
△(i,j,k)(G) =

∑

i<j<k

(Gij − p)(Gjk − p)(Gki − p). (8)

We will sometimes suppress p in SC
p
H , SW

p
H when clear from the context.

To use the signed subgraph count as a test between G(n, p) and PLSG(n,Ω,D, Ã), one needs to compute

the expectation of two signed counts with respect to both distributions.

Expectation and variance with respect to Erdős-Rényi. As edges in Erdős-Rényi are independent, we

obtain that for any non-empty H,

EG∼G(n,p)[SW
p
H(G)] = 0 = EG∼G(n,p)[SC

p
H(G)]. (9)

To compute the variance, first notice that there are O(n|V (H)|) isomorphic copies of H in Kn. Further-

more, for any two copies H1, H2 of H such that E(H1)∆E(H2) ̸= ∅, it holds that

EG∼G(n,p)[SW
p
H1
(G)SWp

H2
(G)] = 0. Hence,

VarG∼G(n,p)[SC
p
H(G)]

= VarG∼G(n,p)

[ ∑

H1¦Kn : H1∼H
SW

p
H(G)

]

=
∑

H1¦Kn : H1∼H
VarG∼G(n,p)

[
SW

p
H(G)

]
+

∑

H1,H2¦Kn : H1∼H,H2∼H,H2 ̸=H1

VarG∼G(n,p)

[
SW

p
H(G)

]

=
∑

H1¦Kn : H1∼H
VarG∼G(n,p)

[
SW

p
H(G)

]

=
∑

H1¦Kn : H1∼H
EG∼G(n,p)

[
SW

p
H(G)

2

]

=
∑

H1¦Kn : H1∼H
(p− p2)|E(H)| = O(n|V (H)|p|E(H)|),

(10)

where we used (6) in the second to last line. We furthermore note that the inequality is tight when k = O(1):

VarG∼G(n,p)[SC
p
H(G)] = Θ(n|V (H)|(p− p2)|E(H)|) when |V (H)| = O(1). (11)

Expectation and variance of signed cycle counts in random algebraic graphs. Computing the expec-

tation and variance of signed subgraph counts for general H is much more involved under general random

algebraic graph distributions. Yet, in the special case of signed cycles, common in the literature on random

geometric graphs [BDER14, LR23a, LR23b, BBH21b, LMSY22, BB24b], there turns out to be a simple

expression for the expected signed cycle count.

Observation 2.13. Let p = E
x,y

i.i.d.∼ {±1}d [Ã(x,y)]. Then,

EG∼RAG(n,{±1}d,Ã)

[
SW

p
Ck
(G)

]
=
∑

S ̸=∅
Ã̂(S)k.
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Proof. Consider for simplicity the cycle with edges (1, 2), (2, 3), . . . , (k − 1, k), (k, 1). We compute

EG∼RAG(n,{±1}d,Ã)

[
k−1∏

t=1

(Gt,t+1 − p)× (Gk,1 − p)

]

= EG∼RAG(n,{±1}d,Ã)

[
E

[
k−1∏

t=1

(Gt,t+1 − p)× (Gk,1 − p)|x1,x2, . . . ,xk

]]

= E
x1,x2,...,xn

i.i.d.∼ Unif({±1}d)

[
k−1∏

t=1

(Ã(x−1
t xt+1)− p)(Ã(xkx

−1
1 )− p)

]
.

Now, observe that x1,x2, . . . ,xk are independently uniform over the hypercube. Thus, when we substitute

gℓ = x−1
ℓ−1xℓ, the variables g1,g2, . . . ,gk−1 are independent and gk = g−1

1 g−1
2 · · ·g−1

k−1. We conclude that

E

[
E

[
k−1∏

t=1

(Ã(x−1
t xt+1)− p)(Ã(xkx

−1
1 )− p)|xi1 ,xi2 , . . . ,xik

]]

= E
(g1,g2,...,gk−1)

i.i.d.∼ Unif({±1}d)(Ã(g1)− p)(Ã(g2)− p) · · · (Ã(gt−1)− p)(Ã(g−1
1 g−1

2 · · ·g−1
k−1)− p).

Expanding the above product in the Fourier basis yields

E


 ∑

S1,S2,...,Sk ̸=∅

k∏

i=1

Ã̂(Si)×
k−1∏

i=1

ÉSi(gi)× ÉSk(g
−1
1 g−1

2 · · ·g−1
k−1)




=
∑

S1,S2,...,Sk ̸=∅

k∏

i=1

Ã̂(Si)×
k−1∏

i=1

E
[
ÉSi(gi)ÉSk(g

−1
i )
]
.

Since ïÉSi , ÉStð = 1[Si = St], the conclusion follows.

It follows that

EG∼RAG(n,{±1}d,Ã)[SC
p
Ck
(G)] = Θ

(
nk
∑

S ̸=∅
Ã̂(S)k

)
when k = O(1).

In Appendix A, using very similar reasoning, we show that the variance can also be bounded in terms

of the Fourier coefficients of Ã.

Proposition 2.14. VarG∼RAG(n,{±1}d,Ã)[SC
p
C3
(G)] = O

(
n3p3 + n3

∑

S ̸=∅
Ã̂(S)3 + n4

∑

S ̸=∅
Ã̂(S)4

)
.

Combining Observation 2.13 and Proposition 2.14 with (9) and (10), we make the following conclusion.

Corollary 2.15. If

n6
(∑

S ̸=∅
Ã̂(S)3

)2
= É

(
n3p3 + n3

∑

S ̸=∅
Ã̂(S)3 + n4

∑

S ̸=∅
Ã̂(S)4

)
,

then TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= 1−o(1). Furthermore, the polynomial-time algorithm of counting

signed triangles distinguishes G(n, p) and RAG(n, {±1}d, Ã) with high probability.

Thus, we have shown that the entirety of the detection via signed triangles argument has a simple

interpretation in the language of Boolean Fourier analysis. In principle, one can argue similarly for counting

signed k-cycles when k > 3, but the variance computation becomes harder.
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3 The Main Theorem on Indistinguishability over the Hypercube

In this section, we prove our main technical result on indistinguishability between G(n, p) and

RAG(n, {±1}d, Ã). The statement itself does not look appealing due to the many conditions one needs

to verify. In subsequent sections, we remove these conditions by exploring specific connections Ã.

Theorem 3.1. Consider a dimension d ∈ N, connection Ã : {±1}d −→ [0, 1] with expectation p, and

constant m ∈ N.5 There exists a constant Km depending only on m, but not on Ã, d, n, p, with the following

property. Suppose that n ∈ N is such that nKm < d. For 1 f i f d, let

Bi = max
{
|Ã̂(S)|

(
d
i

)1/2
: |S| = i

}
. Denote also

Cm =

d
2en∑

i=m+1

B2
i +

d−m−1∑

i=d− d
2en

B2
i and D =

∑

d
2en

fjfd− d
2en

B2
i .

If the following conditions additionally hold

• d g Km × n×
(

Cm
p(1−p)

) 2
m+1

,

• d g Km × n×
(

B2
u

p(1−p)

) 2
u

for all 2 f u f m,

• d g Km × n×
(
B2
d−u

p(1−p)

) 2
u

for all 2 f u f m,

then

TV(RAG(n, {±1}d, Ã),G(n, p))2

f Km × n3

p2(1− p)2
×
(

m∑

i=1

B4
i

di
+

d∑

i=d−m

B4
i

dd−i
+

C2
m

dm+1
+D2 × exp

(
− d

2en

))
.

While the above theorem is widely applicable, as we will see in Section 4, it has an unfortunate strong

limitation - it requires that d = Ωm(n) even when the other three inequalities are satisfied for much smaller

values of d (for an example, see Section 4.1.4). In Section 8.1, we show that this is not a consequence of

the techniques for bounding moments of µ that we use. In fact, any argument based on Claim 1.5 applied to

{0, 1}-valued connections over the hypercube requires d = Ω(n). In particular, this means that one needs

other tools to approach Conjecture 1.1 in its analogue version on the hypercube when p = o(n−2/3) and our

conjecture Conjecture 4.16. In Theorem 7.6, we illustrate another, independent of proof techniques, reason

why d = Ω(n) is necessary for {0, 1}-valued connections with expectation of order Θ(1).
Finally, we end with a brief overview of the proof, which is split into several sections.

1. First, in Section 3.1, we “symmetrize” Ã by increasing the absolute values of its Fourier coefficients,

so that all coefficients on the same level are equal. This might lead to a function which does not take

values in [0, 1]. As we will see, this does not affect our argument.

2. Then, in Section 3.2, using a convexity argument, we bound the moments of the symmetrized function

by the moments on several (scaled) elementary symmetric polynomials which depend on the intervals

I1, I2, . . . , I2m+3 described above.

5We will usually take m f 3 when applying the theorem, so one can really think of it as a small constant.
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3. Next, in Section 3.3, we bound separately the moments of elementary symmetric polynomials using

hypercontractivity tools. We prove new, to the best of our knowledge, bounds on the moments of

elementary symmetric polynomials in certain regimes.

4. Finally, we put all of this together to prove Theorem 3.1 in Section 3.4.

3.1 Symmetrizing the Autocorrelation Function

In light of (4) and Claim 1.5, we need to bound the moments of µ. Our first observation is that we can, as

far as bounding k-th moments is concerned, replace µ by a symmetrized version.

Proposition 3.2. Suppose that µ,B1, B2, . . . , Bd are as in Theorem 3.1 and consider the function

f(g) :=
∑

∅¦Sª[d]

B2
|S|(
d
|S|
)ÉS(g).

Then, for any k ∈ N, it holds that 0 f Eg[µ(g)
k] f Eg[f(g)

k].

Proof. Using Proposition 2.10, we know that

Eg[µ(g)
k] = E


 ∑

∅ªS¢[d]

Ã̂2(S)ÉS(g)



k

=
∑

S1,S2,...,Sk ̸=∅
Ã̂2(S1)Ã̂

2(S2) · · · Ã̂2(Sk)E[ÉS1(g)ÉS2(g) · · ·ÉSk(g)].

Now, observe that E[ÉS1(g)ÉS2(g) · · ·ÉSk(g)] takes only values 0 and 1, which immediately implies non-

negativity of E[µk]. Let ECV be the set of k-tuples (S1, S2, . . . , Sk) on which it is 1 (this is the set of even

covers). Using that |Ã̂2(S)| f B2
|S|
(
d
|S|
)−1

holds for all S ̸= ∅ by the definition of Bi, we conclude that

Eg[µ(g)
k] =

∑

(S1,S2,...,Sk)∈ECV
Ã̂2(S1)Ã̂

2(S2) · · · Ã̂2(Sk)

f
∑

(S1,S2,...,Sk)∈ECV

B2
|S1|(
d

|S1|
)
B2

|S2|(
d

|S2|
) · · ·

B2
|Sk|(
d

|Sk|
) = Eg[f(g)

k].

(12)

The last equality holds for the same reason as the first one in (12).

Since f is symmetric, we can express it in a more convenient way as a weighted sum of the elementary

symmetric polynomials ei. That is,

f(g) =
d∑

i=1

B2
i(
d
i

)ei(g). (13)

Note that if Ã is symmetric, we have not incurred any loss at this step since µ = f. Moving forward, we

will actually bound the Lk-norms of f, i.e. use the fact that E[fk] f E[|f |k] = ∥f∥kk . There is no loss in

doing so when k is even. One can also show that there is no loss (beyond a constant factor in the KL bound
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in Theorem 3.1) for k odd as well due to the positivity of E[fk]. Considering the expression in (4), we have

E
x,y

i.i.d.∼ Unif({±1}d)

[(
1 +

µ(x,y)

p(1− p)

)k]
=

k∑

t=0

(
k

t

)
Eg∼Unif({±1}d)[µ(g)

t]

pt(1− p)t
= 1 +

∑

tg2

(
k

t

)
E[µt]

pt(1− p)t

f 1 +
∑

tg2

(
k

t

)
E[f t]

pt(1− p)t

f 1 +
∑

tg2

(
k

t

) ∥f∥tt
pt(1− p)t

,

(14)

where we used that E[µ] = µ̂(∅) = 0 by Proposition 2.10.

3.2 Splitting into Elementary Symmetric Polynomials

Our next step is to use a convexity argument to show that when bounding (14), we simply need to consider

the case when all the mass is distributed on constantly many levels. The key idea is to view (14) as a

function of the coefficients on different levels. To do so, define

h(W 1,W 2, . . . ,W d) := 1 +
∑

tg2

(
k

t

)
p−t(1− p)−t

∥∥∥∥∥
d∑

i=1

W i

(
d
i

)ei
∥∥∥∥∥

t

t

.

Clearly, (B2
1 , B

2
2 , . . . , B

2
d) = (W 1,W 2, . . . ,W d) corresponds to f and h(B2

1 , B
2
2 , . . . , B

2
d) is the expression

in the last line of (14). The high-level idea is that h is convex and, thus, its maximum on a convex polytope

is attained at a vertex of a polytope. We will construct polytopes in such a way that vertices correspond to

specific vectors of constant sparsity.

Proposition 3.3. The function h is convex.

Proof. We simply show that h is a composition of convex functions. First, for any t,

(W i)i∈[d] −→
∥∥∥∥

d∑

i=1

W i

(
d
i

)ei(g)
∥∥∥∥
t

is convex. Indeed, for any ³ ∈ [0, 1] and vectors (W i
1)i∈[d] and (W i

2)i∈[d], we have

∥∥∥∥
∑

i∈[d]

³W i
1 + (1− ³)W i

2(
d
i

) ei

∥∥∥∥
t

f
∥∥∥∥³
∑

i∈[d]

W i
1(
d
i

)ei
∥∥∥∥
t

+

∥∥∥∥(1− ³)
∑

i∈I[d]

W i
2(
d
i

)ei
∥∥∥∥
t

= ³

∥∥∥∥
∑

i∈[d]

W i
1(
d
i

)ei
∥∥∥∥
t

+ (1− ³)

∥∥∥∥
∑

i∈[d]

W i
2(
d
i

)ei
∥∥∥∥
t

,

by convexity of norms. Since x −→ xt for t g 2 is increasing and convex on [0,+∞), it follows that

(W i)i∈I −→
∥∥∥∥
∑

i∈[d]

W i

(
d
i

)ei(g)
∥∥∥∥
t

t

is also convex. Thus, h is convex as a linear combination with positive

coefficients of convex functions.
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Now, we will define suitable polytopes on which to apply the convexity argument as follows. For any

partition size Ξ ∈ [d], partition I = (IÀ)
Ξ
À=1 of [d] into Ξ disjoint sets, and non-negative vector w = (wÀ)

Ξ
À=1,

define the following product of simplices ∆I,w. It is given by 0 f W i for all i ∈ [d] and
∑

i∈IÀ W
i f wÀ

for all À ∈ [Ξ]. Using convexity of h on ∆I,w, we reach the following conclusion.

Corollary 3.4. For any ∆I,w defined as just above,

sup
(W i)di=1∈∆I,w

h
(
(W i)di=1

)
f sup

iÀ∈IÀ ∀À∈[Ξ]
1 +

k∑

t=2

(
k

t

)
Ξt

pt(1− p)t

(∑

À∈[Ξ]

∥∥∥∥
wÀ(
d
iÀ

)eiÀ
∥∥∥∥
t

t

)
.

Proof. Since h is convex by the previous theorem, its supremum over the convex polytope ∆I,w is attained

at a vertex. Vertices correspond to vectors (V i)di=1 of the following type. For each À ∈ [Ξ], there exists a

unique index iÀ ∈ IÀ such that V iÀ ̸= 0 and, furthermore, V iÀ = wÀ. Thus,

sup
(W i)di=1∈∆I,w

h
(
(W i)di=1

)
f sup

iÀ∈IÀ ∀À∈[Ξ]
1 +

k∑

t=2

(
k

t

)
p−t(1− p)−t

∥∥∥∥
∑

À∈[Ξ]

wÀ(
d
iÀ

)eiÀ
∥∥∥∥
t

t

.

Using triangle inequality and the simple inequality (
∑

À∈[Ξ] uÀ)
t f Ξt

∑
À∈[Ξ] u

t
À for non-negative reals uÀ,

we complete the proof

∥∥∥∥
∑

À∈[Ξ]

wÀ(
d
iÀ

)eiÀ
∥∥∥∥
t

t

f
(∑

À∈[Ξ]

∥∥∥∥
wÀ(
d
iÀ

)eiÀ
∥∥∥∥
t

)t
f Ξt

∑

À∈[Ξ]

∥∥∥∥
wÀ(
d
iÀ

)eiÀ
∥∥∥∥
t

t

.

Given the statement of Theorem 3.1, it should be no surprise that we will apply the intervals

I1, I2, . . . , I2m+3 defined right after Theorem 3.1. In doing so, however, we will need to bound the norms

of elementary symmetric polynomials which appear in Corollary 3.4. This is our next step.

3.3 Moments of Elementary Symmetric Polynomials

When dealing with norms of low-degree polynomials, one usually applies Theorem 2.7 for q = 2 due to the

simplicity of the formula for second moments. If we directly apply this inequality in our setup, however,

we obtain

∥ei(g)∥t f
∥∥(t− 1)i/2ei(g)

∥∥
2
= (t− 1)i/2

(
d

i

)1/2

.

This inequality becomes completely useless for our purposes when we consider large values of i. Specifi-

cally, suppose that i = d/2. Then, this bound gives (t− 1)d/42Θ(d), which is too large if t = É(1), since

∥ei(g)∥t f ∥ei(g)∥∞ f
(
d

i

)
f 2d.

Even though the L∞ bound is already much better, it is still insufficient for our purposes. Instead, we obtain

the following better bounds in Theorem 3.5. To the best of our knowledge, the second of them is novel.

Theorem 3.5. Suppose that d and t are integers such that d > 2te and t > 1. Take any s ∈ [0, d] and define

sm(s) = min(s, d− s). Then, we have the following bounds:

• For any s,

∥es∥t f
(
d

s

)1/2

(t− 1)
sm(s)

2 .
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• If, furthermore, sm(s) g d
2te
, then

∥es∥t f
(
d

s

)
exp

(
− d

4te

)
.

Finally, this second bound is tight up to constants in the exponent.

Proof. First, we show that we can without loss of generality assume s f d/2 and, hence, sm(s) = s. Indeed,

note that for any function q on the hypercube and any character ÉT , clearly ∥qÉT∥k = E[|qÉT |k]1/k =
E[|q|k]1/k = ∥q∥k . Thus,

∥es∥t =
∥∥∥É[d]

∑

S : |S|=s
ÉS

∥∥∥
t
=
∥∥∥É[d]

∑

S : |S|=s
ÉS

∥∥∥
t
=
∥∥∥
∑

S : |S|=s
ÉS̄

∥∥∥
t
= ∥ed−s∥t .

With this, we are ready to prove the first bound, which simply uses the hypercontractivity inequality Theo-

rem 2.7. Indeed, when s < d/2,

∥es∥t f
√
t− 1

s ∥es∥2 = (t− 1)
sm(s)

2

(
d

s

)1/2

.

We now proceed to the much more interesting second bound. Suppose that s g d
2et

and chose È such that

s − È = d
2et

(for notational simplicity, we assume d
2et

is an integer). The problem of directly applying

Theorem 2.7 is that the degree s of the polynomial es is too high. We reduce the degree as follows.

∥es∥t =
∥∥∥
∑

S : |S|=t
ÉS

∥∥∥
t

=

∥∥∥∥
∑

T : |T |=È

∑

A : |A|=s−È,A∩T=∅
ÉA∪T

(
s

È

)−1∥∥∥∥
t

f
∑

T : |T |=È

∥∥∥∥
∑

A : |A|=s−È,A∩T=∅
ÉAÉT

(
s

È

)−1∥∥∥∥
t

=
∑

T : |T |=È

∥∥∥∥
∑

A : |A|=s−È,A∩T=∅
ÉA

(
s

È

)−1∥∥∥∥
t

.

We used the following facts. Each S can be represented in
(
s
È

)
ways as A ∪ T, where A and T are disjoint

and |T | = È. Second, as A and T are disjoint, ÉA∪T = ÉAÉT . Finally, we used that for any polynomial q,
∥ÉT q∥t = ∥q∥t . Now, as the polynomial in the last equation is of degree s− È = d

2et
, which is potentially

much smaller than s, we can apply Theorem 2.7 followed by Parseval’s identity to obtain
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∑

T : |T |=È

∥∥∥∥
∑

A : |A|=s−È,A∩T=∅
ÉA

(
s

È

)−1∥∥∥∥
t

f
∑

T : |T |=È
(t− 1)

s−È
2

∥∥∥∥
∑

A : |A|=s−È,A∩T=∅
ÉA

(
s

È

)−1∥∥∥∥
2

=
∑

T : |T |=È
(t− 1)

s−È
2

√√√√
∑

A : |A|=s−È,A∩T=∅

(
s

È

)−2

=
∑

T : |T |=È
(t− 1)

s−È
2

√(
d− È

s− È

)(
s

È

)−2

2

=

(
d

È

)
(t− 1)

s−È
2

√(
d− È

s− È

)(
s

È

)−2

2

=

(
d

s

)√
(t− 1)s−È

(
d

È

)2(
d− È

s− È

)(
s

È

)−2(
d

s

)−2

.

We now use the simple combinatorial identity that

(
d

È

)(
d− È

s− È

)
=

(
s

È

)(
d

s

)
. One can either prove it by

expanding the factorials or note that both sides of the equation count pairs of disjoint subsets (T,A) of [d]
such that |T | = È, |A| = s− È. In other words, we have

(
d

s

)√
(t− 1)s−È

(
d

È

)2(
d− È

s− È

)(
s

È

)−2(
d

s

)−2

=

(
d

s

)√
(t− 1)s−È

(
d− È

s− È

)−1

f
(
d

s

)√
(t− 1)s−È

(
d− È

s− È

)−(s−È)

=

(
d

s

)(
(t− 1)(s− È)

d− È

) s−È
2

f
(
d

s

)(
2t(s− È)

d

) s−È
2

=

(
d

s

)
exp

(
− d

4et

)
,

as desired. Above, we used the bounds

(
d− È

s− È

)
g
(
d− È

s− È

)(s−È)
and d − È g d − s g d/2, and the

choice of È given by s− È =
d

2et
. With this, the proof of the bounds is complete.

All that remains to show is the tightness of the second bound. Note, however, that P[es(g) =
(
d
s

)
] = 1

2d

as this event happens when gi = 1 holds for all i. Therefore,

∥es∥t g
(

1

2d

(
d

s

)t)1/t

=

(
d

s

)
2d/t =

(
d

s

)
exp

(
−O

(
d

t

))
.

We make the following remarks about generalizing the inequality above. They are of purely theoretical

interest as we do not need the respective inequalities in the paper.

Remark 3.6. The exact same bounds and proof also work if we consider weighted versions with coefficients

in [−1, 1]. That is, polynomials of the form

q(g) =
∑

S : |S|=s
εSÉS(g),
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where εS ∈ [−1, 1] holds for each S. This suggests that as long as q has a small spectral infinity norm

(i.e., uniform small bound on the absolute values of its Fourier coefficients), one can improve the classical

theorem Theorem 2.7. We are curious whether this phenomenon extends beyond polynomials which have

all of their weight on a single level.

Remark 3.7. When d
2et

< s < d
2
, the same inequality with the exact same proof also holds when we evaluate

es at other random vectors such as standard Gaussian N (0, Id) and the uniform distribution on the sphere

since analogous inequalities to Theorem 2.7 hold (see [SA17, Proposition 5.48, Remark 5.50]).

3.4 Putting It All Together

Finally, we combine all of what has been discussed so far to prove our main technical result.

Proof of Theorem 3.1. First, we note that without loss of generality, we can make the following assump-

tions:

1. B4
1 = Om(

dp2(1−p)2
n3 ),

2. B4
d−1 = Om(

dp2(1−p)2
n3 ),

3. B4
d = Om(

p2(1−p)2
n3 ),

4. D2 = Om

(
exp( d

2en
)× p2(1−p)2

n3

)
.

Indeed, if one of those assumptions is violated, the bound on the TV-distance that we are trying to prove is

greater than 2 (for appropriate hidden constants depending only on m).

We now proceed to apply Corollary 3.4 with the intervals I1, I2, . . . , I2m+3 and the following weights.

• Iu = {u} and wu = B2
u for u ∈ [m],

• Im+u = {d− u} and wm+u = B2
d−u for u ∈ [m],

• I2m+1 = [m+ 1, d
2en

] ∪ [d− d
2en
, d−m− 1] and w2m+1 = Cm,

• I2m+2 = [ d
2en
, d− d

2en
] and w2m+2 = D,

• I2m+3 = {d} and w2m+3 = B2
d .

The defined weights vector w exactly bounds the weight of f on each respective level. Thus, the supremum

of h over ∆I,w is at least as large as the expression in (14) which gives an upper bound on the total variation

between the two random graph models of interest. Explicitly, using (4) and Corollary 3.4, we find

1 +
k∑

t=2

(
k

t

)
p−t(1− p)−tE[µt]

f 1 +
k∑

t=2

(
k

t

)
p−t(1− p)−t ∥f∥tt

f 1 + sup
iu∈Iu ∀u∈[2m+3]

∑

u∈[2m+3]

k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

∥∥∥∥
wu(
d
u

)eiu
∥∥∥∥
t

t

.

We now consider different cases based on u in increasing order of difficulty.
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Case 1) When u = 2m+ 3. Then, iu = d, so ∥eiu∥t = ∥ed∥t = 1. We have

k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t ∥wueiu∥tt

=
k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)tB2t

d

= (1 + È)k − 1− kÈ,

where È =
2m+ 3

p(1− p)
B2
d = o

(
1

n

)
= o

(
1

k

)
by the assumption on Bd at the beginning of the proof. It

follows that

(1 + È)k − 1− kÈ f e1+Èk − 1− Èk = O(È2k2).

Thus, for u = 2m+ 3,

k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t ∥wueiu∥tt = Om

(
k2

B4
d

p2(1− p)2

)
. (15)

Case 2) When u = 2m + 2. We bound
∑k

t=2

(
k
t

)
p−t(1 − p)−t(2m + 3)t

∥∥∥∥
w2m+2

( d
i2m+2

)
ei2m+2

∥∥∥∥
t

t

. Note that for

iu ∈ I2m+2, we have sm(i) g d
2ne
. Thus, ∥eiu∥t f ∥eiu∥n f

(
d
iu

)
exp(− d

4en
) by Theorem 3.5. It follows that

k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

Dt

(
d
iu

)t ∥eiu∥
t
t

f
k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

Dt

(
d
iu

)t
(
d

iu

)t
exp

(
− dt

4en

)

=

(
1 +

D(2m+ 3)

p(1− p)
exp

(
− d

4en

))k
− 1− k

D(2m+ 3)

p(1− p)
exp

(
− d

4en

)
.

Note, however, that

È :=
D(2m+ 3)

p(1− p)
exp

(
− d

4en

)
= o

(
1

n

)

by the assumption on D at the beginning of the proof. It follows that

(1 + È)k − 1− Èk = O(È2k2).

Thus, for u = 2m+ 2,

k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

∥∥∥∥
w2m+2(

d
iu

) eiu

∥∥∥∥
t

t

= Om

(
D2

p2(1− p)2
exp

(
− d

2en

))

for a large enough hidden constant depending only on m.

27



Case 3) When u = 2m + 1. Again, we assume without loss of generality that iu f d/2 and we want to

bound
k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

∥∥∥∥
w2m+1(

d
i2m+1

)eiu
∥∥∥∥
t

t

.

Using Theorem 3.5, we know that
∥∥ei2m+1

∥∥
t
f
(

d

i2m+1

)1/2

(t− 1)
i2m+1

2 , so

k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

Ct
m(
d

i2m+1

)t
∥∥ei2m+1

∥∥t
t

f
k∑

t=2

(
k

t

)
p−t(1− p)−t(2m+ 3)t

Ct
m(
d

i2m+1

)t
(

d

i2m+1

)t/2
(t− 1)i2m+1t/2.

This time we show exponential decay in the summands. More concretely, we prove the following inequality

(
k

t

)
 (2m+ 3)Cm

p(1− p)
(

d
i2m+1

)1/2



t

(t− 1)i2m+1t/2 g e

2

(
k

t+ 1

)
 (2m+ 3)Cm

p(1− p)
(

d
i2m+1

)1/2



t+1

ti2m+1(t+1)/2 .

This reduces to showing that

(
d

i2m+1

)1/2

g (2m+ 3)e

2

k − t

t+ 1

Cm
p(1− p)

ti2m+1/2

(
t

t− 1

)ti2m+1/2

.

Using that
(

t
t−1

)t f 4,
(

d
i2m+1

)
g
(

d
i2m+1

)i2m+1

, and n g k − t g k, we simply need to prove that

(
d

i2m+1

)i2m+1/2

g (2m+ 3)e

2
n

Cm
p(1− p)

ti2m+1/2−14i2m+1/2. (16)

Since t f k f n, the right-hand side is maximized when t = n, so we simply need to show that

(
d

i2m+1

)i2m+1/2

g (2m+ 3)e

2
ni2m+1/24i2m+1/2

Cm
p(1− p)

⇐⇒

d g i2m+1 × n× 4×
(
(2m+ 3)eCm
2p(1− p)

) 2
i2m+1

.

Now, the right-hand side has form KxM
1
x := Z(x) for x = i2m+1. The derivative of

logZ(x) is 1
x
(1 − 1

x
logM), which has at most one positive root, at x = logM. Thus, the maximum of

Z(x) on [m+ 1, d
2en

] is at either m+ 1 or d
2en
. Substitution at these values, we obtain the following expres-

sions for the right-hand side. First, when i2m+1 = m+ 1,

Om

(
n×

(
Cm

p(1− p)

) 2
m+1

)
f d,
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where the inequality holds from the assumptions in the theorem for large enough constant Km. Second,

when i2m+1 =
d

2en
,

2

e
d×

(
(2m+ 3)eCm
2p(1− p)

) 4en
d

=
2

e
d×

(
(2m+ 3)e

2

) 4en
d

×
((

C

p(1− p)

) 2
m+1

) en(m+1)
d

f 2

e
d×

(
(2m+ 3)e

2

) 4en
d

×
(

1

Km

× d

n

) en(m+1)
d

f 2

e
d×

(
(2m+ 3)e

2

) 4en
d

×K
− en(m+1)

d
m ee(m+1) ,

where we used
(
d
n

)n
d f exp(

((
d
n

)
− 1
)
n
d
) f e. Now, for a large enough value of Km, when d > Kmn, the

above expression is at most d. Since the exponential decay holds,

k∑

t=2

(
k

t

)
p−t(1− p)−t

Ct
m(
d

i2m+1

)t
(

d

i2m+1

)t/2
(t− 1)i2m+1t/2

= O

(
k2

C2
m

p2(1− p2)
(

d
i2m+1

)
)

= Om

(
k2

C2
m

p2(1− p2)dm+1

)
.

Case 4) When u f 2m. The cases u ∈ [2m]\{1,m+1} are handled in the exact same way as the previous

Case 3), except that we use wu = B2
u when u ∈ [m] and wu = B2

d−u+m when u ∈ [m + 1, 2m] instead of

wu = Cm. The only subtlety occurs when iu ∈ {1, d− 1}. Then, the analogue of (16) becomes

d1/2 g Om

(
n

wu
p(1− p)

t−1/2

)
.

This time, however, the right-hand side is maximized for t = 2. Thus, we need

d = Ωm

(
n2 w2

u

p2(1− p)2

)
,

which is satisfied by the assumption made in the beginning of the proof.

Combining all of these cases, we obtain that for any fixed k,

1 +
k∑

t=2

(
k

t

)
p−t(1− p)−tE[µt]

= 1 +Om

(
k2

m∑

i=1

B4
i

p2(1− p)2di
+ k2

m∑

i=0

B4
d−i

p2(1− p)2di
+ k2

C2
m

p2(1− p)2dm+1
+

D2

p2(1− p)2
exp

(
− d

en

))
.

Thus, the logarithm of this expression is at most

Km

(
k2

m∑

i=1

B4
i

p2(1− p)2di
+ k2

m∑

i=0

B4
d−i

p2(1− p)2di
+ k2

C2
m

p2(1− p)2dm+1
+ k2

D2

p2(1− p)2
exp

(
− d

en

))

for an appropriately chosen Km. Summing over k ∈ [n− 1], we arrive at the desired conclusion.
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4 Applications of the Main Theorem

As already discussed, part of the motivation behind the current work is to understand random geometric

graphs in settings in which the connection is not necessarily monotone or symmetric. We remove the

two assumptions separately. Initially, we retain symmetry and explore the implications of Theorem 3.1

in existing monotone and novel non-monotone setups. Then, we focus on two specific classes of non-

monotone connections which are obtained via simple modifications of symmetric connections. These two

classes will be of interest later in Section 6 as they lead to the failure of the commonly used signed-triangle

statistic, and in Section 8.1 as they rigorously demonstrate an inefficiency in Claim 1.5. Finally, we go truly

beyond symmetry by studying “typical” dense indicator connections.

4.1 Symmetric Connections

Consider Theorem 3.1 for symmetric functions. Then, B2
i = W i(Ã) f Var[Ã] f p(1 − p). Similarly, the

inequalities Cm f p(1 − p), D f p(1 − p) hold. In particular, this means that as long as d = Ωm(n), all

other conditions are automatically satisfied. Now, if d = Ω(n log n) for a large enough hidden constant, the

exponential term disappears. If we set m = 2, the term n3

p2(1−p)2
C2
m

dm+1 f n3

d3
= on(1) also disappears. We

have the following corollary.

Corollary 4.1. There exists an absolute constantK with the following property. Suppose that d > Kn log n.
Let Ã : {±1}d −→ [0, 1] be a symmetric connection. Then,

TV(RAG(n, {±1}d, Ã),G(n, p))2

= O

(
n3Wd(Ã)2

p2(1− p)2
+
n3(W1(Ã)2 +Wd−1(Ã)2)

p2(1− p)2d
+
n3(W2(Ã)2 +Wd−2(Ã)2)

p2(1− p)2d2

)
+ o(1).

For symmetric connections in the regime d = Ω(n log n), only Fourier weights on levels 1, 2, d− 1, d−
2, d− 1, d matter. In Section 4.1.4 we conjecture how to generalize this phenomenon.

Now, we proceed to concrete applications of Corollary 4.1. In them, we simply need to bound the

weights of Ã on levels 1, 2, d− 1, d− 2, d. All levels besides d are easy since they have a normalizing term

polynomial in d in the denominator. However, more care is needed to bound Wd(Ã). As we will see in

Section 4.1.3, this is not just a consequence of our proof techniques, but an important phenomenon related

to the “fluctuations” of Ã. In the forthcoming sections, we use the following simple bound, the proof of

which is deferred to Appendix B.

Lemma 4.2. Suppose that f : {±1}d −→ R is symmetric. Denote by fi the value of f when exactly i of its

arguments are equal to 1 and the rest are equal to −1. Then,

|f̂([d])| f 1

2
Ej∼Binomial(d−1, 1

2
)|fj+1 − fj| = O

(∑d
j=1 |fj+1 − fj|√

d

)
.

We remark that the quantity
∑d

j=1 |fj+1 − fj| is a direct analogue of the total variation appearing in

real analysis literature [SS05, p.117], which measures the “fluctuations” of a function. As the name “total

variation” is already taken by a more central object in our paper, we will call this new quantity fluctuation

instead. We denote it by Fl(f) :=
∑d

j=1 |fj+1 − fj|. We believe that the interpretation of |Ã̂([d])| as a

measure of fluctuations may be useful in translating our results to the Gaussian and spherical setups when

non-monotone connections are considered. We discuss this in more depth in Section 4.1.3.
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4.1.1 Lipschitz Connections

As the main technical tool for our indistinguishability results is Claim 1.5, we first consider Lipschitz con-

nections to which Racz and Liu originally applied the claim [LR23a]. We show that their result Theorem 1.4

can be retrieved using our framework even if one drops the monotonicity assumption. The first step is to

bound |f̂([d])|.

Proposition 4.3. If f : {±1}d −→ R is a symmetric L-Lipschitz function with respect to the Hamming

distance, meaning that

|f(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, x2, . . . , xi−1,−1, xi+1, . . . , xn)| f L

holds for all i and x1, x2, . . . , xi1 , xi, . . . , xn, then |f̂([d])| f L
2
.

Proof. The proof is immediate given Lemma 4.2. Note that

|fj+1 − fj| = |f(1, 1, . . . , 1︸ ︷︷ ︸
j+1

,−1, . . . ,−1︸ ︷︷ ︸
d−j+1

)− f(1, 1, . . . , 1︸ ︷︷ ︸
j

,−1, . . . ,−1︸ ︷︷ ︸
d−j

)| f L

holds for all j.

Using this statement, we obtain the following result.

Corollary 4.4. Suppose that Ã is a symmetric 1
r
√
d
-Lipschitz connection. If d = Ép(

n3

r4
) and d = Ω(n log n),

TV(RAG(n, {±1}d, Ã),G(n, p)) = o(1).

Proof. We will apply Corollary 4.1. By the well-known bounded difference inequality, [Han, Claim 2.4]

we know that since Ã is 1
r
√
d
-Lipschitz, Var[Ã] f 1

r2
, so each W i(Ã) is bounded by 1

r2
. On the other hand,

Wd(Ã) is bounded by 1
r2d

by Proposition 4.3. It follows that the expression in Corollary 4.1 is bounded by

O

(
n3

dr4
+

n3

d2r4
+

n3

d2r4

)
= o(1).

The flexibility of our approach allows for a stronger result when the map Ã is even.

Corollary 4.5. Suppose that Ã is a symmetric even 1
r
√
d
-Lipschitz connection in the sense that Ã(x) = Ã(−x)

also holds. If d is even, d = Ω(n log n), and d = Ép(
n3/2

r2
), then

TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1).

Proof. The proof is similar to the one in the previous proposition. However, we note that when Ã is even, all

Fourier coefficients on odd levels vanish. In particular, this holds for levels 1 and d−1. Thus, the expression

Corollary 4.1 is bounded by

O

(
n3

d2r4
+

n3

d2r4

)
= o(1).

Remark 4.6. The stronger results for even connections observed in this section is a general phenomenon,

which will reappear in the forthcoming results. It is part of our more general conjecture in Section 4.1.4.

We note that the requirement that d is even is simply needed to simplify exposition. Otherwise, one needs

to additionally bound Wd−1(Ã) which is a standard technical task (see Appendix D).
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4.1.2 Hard Threshold Connections

We now move to considering the classical setup of hard thresholds. Our tools demonstrate a striking new

phenomenon if we make just a subtle twist – by introducing a “double threshold” – to the original model.

We start with the basic threshold model. Let Äp be such that Px∼Unif({±1}d)[
∑

i xi g Äp] = p. Let Tp be

the map defined by 1 [
∑n

i=1 xi g Äp] . Again, we want to understand the Fourier coefficient on the last level.

Using that there exists a unique j such that fj+1 ̸= fj for f = Tp in Lemma 4.2, in Appendix B we obtain

the following bound.

Proposition 4.7. T̂p([d]) = O
(
p
√

log 1
p√

d

)
.

Corollary 4.8. Suppose that d = Ω(n log n), d = É(n3p2 log2 1
p
), and p = dO(1). Then,

TV
(
RAG(n, {±1}d,Tp),G(n, p)

)
= o(1).

Proof. From Theorem 2.8, we know that W1(Ã) = O(p2 log 1
p
),Wd−1(Ã) = O(p2 log 1

p
), W2(Ã) =

O(p2 log2 1
p
), and Wd−2(Ã) = O(p2 log2 1

p
). From Proposition 4.7, Wd(Ã) = O(d−1p2 log 1

p
). Thus, the

expression in Corollary 4.1 becomes

O

(
n3p2 log2 1

p

d
+
n3p2 log4 1

p

d2
+
n3p2 log2 1

p

d2

)
= o(1),

where we used the fact that p is polynomially bounded in d.

Remarkably, this matches the state of the art result for p = É( 1
n
) of [LMSY22]. As before, if we

consider an even version of the problem, we obtain a stronger result. Let ¶p be such that P[|∑n
i=1 xi| g

¶p] = p. Consider the “double threshold” connection given by the indicator Dp(x) = 1 [|∑n
i=1 xi| g ¶p] .

In Appendix B, we prove the following inequality.

Proposition 4.9. D̂p([d]) = O
(
p
√

log 1
p√

d

)
.

Corollary 4.10. Suppose that d is even, d = Ω(n log n), d = É(n3/2p log2 1
p
), and p = dO(1). Then,

TV
(
RAG(n, {±1}d,Dp),G(n, p)

)
= o(1).

Proof. As in the proof of Corollary 4.5, we simply note that when d is even, the weights on levels 1 and

d− 1 vanish as Dp is an even map. Thus, we are left with

O

(
n3p2 log4 1

p

d2
+
n3p2 log2 1

p

d2

)
= o(1).

Note that the complement of RAG(n, {±1}d, p,Dp) is the random algebraic graph defined with respect

to the connection Ã(x) := 1[
∑n

i=1 xi ∈ (−¶p, ¶p)]. This motivates us to ask: What if Ã is the indicator of a

union of more than one interval?
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4.1.3 Non-Monotone Connections, Interval Unions, and Fluctuations

To illustrate what we mean by fluctuations, consider first the simple connection for » ∈ [0, 1/2], given by

Ã»(x) :=
1

2
+ »É[d](x). (17)

When viewed as a function of the number of ones in x, this function “fluctuates” a lot for large values of ».
Note that Ã» only takes values 1/2 ± » and alternates between those when a single coordinate is changed.

In the extreme case » = 1/2, Ã» is the indicator of all x with an even number of coordinates equal to −1.
Viewed as a function of

∑d
i=1 xi, this is a union of d/2+O(1) intervals. A simple application of Claim 1.5

gives the following proposition.

Corollary 4.11. Whenever n»4/3 = o(1), TV
(
RAG(n, {±1}d, Ã»),G(n, 1/2)

)
= o(1).

Proof. Let µ» be the autocorrelation of Ã» − 1
2
. Clearly, µ» = »2É[d](x), so E[µt»] = 0 when t is odd and

E[µt»] = »2t when t is even. Since n»2 = o(1) holds as n»4/3 = o(1), we obtain

n−1∑

k=0

logE

[(
1 +

µ»(x)

p(1− p)

)k]

f
n−1∑

k=0

log

(
1 +

k∑

t=2

(
k

t

)
»2t

4t

)

=
n−1∑

k=0

log

((
1 +

»2

4

)k
− k

»2

4

)

=
n−1∑

k=0

log

(
1 +O

(
k2
»4

16

))
= O

(
n−1∑

k=0

k2 × »4

)
= O(n3»4),

from which the claim follows.

We will explore tightness of these bounds later on. The main takeaway from this example for now is the

following - when the connection “fluctuates” more, it becomes more easily distinguishable. Next, we show

that this phenomenon is more general. Recall the definition of fluctuations Fl from Lemma 4.2. We begin

with two simple examples of computing the quantity Fl.

Example 4.12. If Ã : {±1}d −→ [0, 1] is monotone, then Fl(Ã) f 1. Indeed, this holds as all differences

fi+1 − fi have the same sign and, so,
∑d−1

i=0 |fi+1 − fi| = |∑d−1
i=0 fi+1 − fi| = |fd − f0| f 1.

Example 4.13. Suppose that I = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [as, bs], where these are s disjoint intervals

with integer endpoints (bi + 1 < ai+1). Then, if Ã(x) = 1[
∑d

i=1 xi ∈ I], it follows that Fl(f) f 2s as

|fbi+1 − fbi | = 1, |fai − fai−1| = 1 and all other marginal differences equal 0.

We already saw in Lemma 4.2 that |f̂([d])| = O
(

Fl(Ã)√
d

)
. Using the same proof techniques developed

thus far, we make the following conclusion.

Corollary 4.14. Suppose that Ã is a symmetric connection. Whenever d = Ω(n log n) and

d = É

(
max

(
n3p2 log2

1

p
, n3/2Fl(Ã)2p−1

))
are satisfied,

TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1).
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If Ã and d are even, the weaker condition d = É

(
max

(
n3/2p log2

1

p
, n3/2Fl(Ã)2p−1

))
, is sufficient to

imply TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1).

Example 4.15. A particularly interesting case is when Ã is the indicator of s disjoint intervals as in Exam-

ple 4.13. We obtain indistinguishability rates by replacing Fl(Ã) with 2s above. Focusing on the case when

p = Ω(1) (so that the dependence on the number of intervals is clearer), we need

d = É(n3 + n3/2s2)

for indistinguishability for an arbitrary union of intervals and

d = É(n3/2s2)

for indistinguishability for a union of intervals symmetric with respect to 0.
We note that both of these inequalities make sense only when s = o(

√
d). The collapse of this behaviour

at s ≈
√
d is not a coincidence as discussed in Remark 6.7.

4.1.4 Conjecture for Connections Without Low-Degree and High-Degree Terms

We now present the following conjecture, which generalizes the observation that random algebraic graphs

corresponding to connections Ã satisfying Ã(x) = Ã(−x) are indistinguishable from G(n, p) for smaller

dimensions d. Let k g 0 be a constant. Suppose that the symmetric connection Ã : {±1}d −→ [0, 1]
satisfies W i(Ã) = 0 whenever i < k and W i(Ã) = 0 whenever i > d − k. Consider the bound on the KL

divergence between RAG(n, {±1}d, Ã) and G(n, p) in Theorem 3.1 for m = k + 1. Under the additional

assumption d = Ω(n log n), it becomes of order

n3B2
m

p2(1− p)2dm
+

n3Cm
p2(1− p)2dm+1

f n3Var[Ã]

p2(1− p)2dm
+

n3Var[Ã]

p2(1− p)2dm+1
= O

(
n3

dm

)
.

In particular, this suggests that whenever d = É(n3/m), TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1). Unfortu-

nately, in our methods, there is the strong limitation d = Ω(n log n).

Conjecture 4.16. Suppose that m ∈ N is a constant and Ã is a symmetric connection such that the weights

on levels {1, 2, . . . ,m− 1} ∪ {d−m+ 1, . . . , d} are all equal to 0. If d = Ω̃(n3/m), then

TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1).

Unfortunately, our methods only imply this conjecture for m = {1, 2, 3} as can be seen from Theo-

rem 3.1 as we also need d = Ω(n log n). In Section 6.1.3, we give further evidence for this conjecture by

proving a matching lower bound. Of course, one should also ask whether there exist non-trivial symmetric

functions satisfying the property that their Fourier weights on levels {1, 2, . . . ,m−1}∪{d−m+1, . . . , d}
are all equal to 0. In Appendix C, we give a positive answer to this question.

4.1.5 Low-Degree Polynomials

We end with a brief discussion of low-degree polynomials, which are a class of particular interest in the field

of Boolean Fourier analysis (see, for example, [EI22, O’D14]). The main goal of our discussion is to com-

plement Conjecture 4.16. One could hastily conclude from the conjecture that it is only the “low-degree”

terms of Ã that make a certain random algebraic graph RAG(n, {±1}d, Ã) distinct from an Erdős-Rényi
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graph for large values of d. This conclusion, however, turns out to be incorrect - symmetric connections

which are low-degree polynomials, i.e. everything is determined by the low-degrees, also become indis-

tinguishable from G(n, p) for smaller dimensions d. Thus, a more precise intuition is that the interaction

between low-degree and high-degree is what makes certain random algebraic graphs RAG(n, {±1}d, Ã)
distinct from Erdős-Rényi graphs for large values of d.

Corollary 4.17. Suppose that k ∈ N is a fixed constant and Ã : {±1}d −→ [0, 1] is a symmetric connection

of degree k. If d = Ω(n) and d = É
(
min(n3p2 log(1/p), n3/2p−1/2 log(1/p)k/2)

)
, then

TV
(
RAG(n, {±1}d, Ã),G(n, p)

)
= o(1).

Proof. We apply Corollary 4.1 for m = k and obtain

TV
(
RAG(n, {±1}d, Ã),G(n, p)

)2
= O

(
n3W1(Ã)

p2(1− p)2d
+

n3W2(Ã)

p2(1− p)2d2

)
= O

(
n3Var[Ã]

p2(1− p)2d

)

The conclusion when d = É (min(n3p2 log(1/p)) follows immediately from Theorem 2.8. For d =
É
(
n3/2p−1/2 log(1/p)k/2

)
, we use Proposition 2.9 to bound the right-hand side by

O

(
n3p(C log(1/p))k

p2d2

)
.

4.2 Transformations of Symmetric Connections

One reason why Theorem 3.1 is flexible is that it does not explicitly require Ã to be symmetric, but only

requires a uniform bound on the absolute values of Fourier coefficients on each level. This allows us, in

particular, to apply it to modifications of symmetric connections. In what follows, we present two ways to

modify a symmetric function such that the claims in Corollaries 4.4, 4.5, 4.8, 4.10 and 4.14 still hold. The

two modifications are both interpretable and will demonstrate further important phenomena in Section 6.2.

It is far from clear whether previous techniques used to prove indistinguishability for random geometric

graphs can handle non-monotone, non-symmetric connections. In particular, approaches based on analysing

Wishart matrices ([BDER14, BBN20]) seem to be particularly inadequate in the non-symmetric case as the

inner-product structure inherently requires symmetry. The methods of Racz and Liu in [LR23a] on the

other hand, exploit very strongly the representation of connections via CDFs which inherently requires

monotonicity. While our approach captures these more general settings, we will see in Section 6.2 an

example demonstrating that it is unfortunately not always optimal.

4.2.1 Coefficient Contractions of Real Polynomials

Suppose that f : {±1}d −→ R is given. We know that it can be represented as a polynomial

f(x1, x2, . . . , xd) =
∑

S¦[d]

f̂(S)
∏

i∈S
xi.

We can extend f to the polynomial f̃ : Rn −→ R, also given by

f̃(x1, x2, . . . , xd) =
∑

S¦[d]

f̂(S)
∏

i∈S
xi.

35



Now, for any vector ³ = (³1, ³2, . . . , ³d) ∈ [−1, 1]d, we can “contract” the coefficients of f̃ by considering

the polynomial

f̃³(x1, x2, . . . , xd) := f̃(x1³1, x2³2, . . . , xd³d) =
∑

S¦[d]

f̂(S)
∏

i∈S
³i
∏

i∈S
xi.

Subsequently, this induces the polynomial f³ : {±1}d −→ R given by

f³(x1, x2, . . . , xd) =
∑

S¦[d]

f̂(S)
∏

i∈S
³i
∏

i∈S
xi.

This is a “coefficient contraction” since |f̂³(S)| f |f̂(S)| clearly holds. Note, furthermore, that when

g ∈ {±1}d, clearly fg(x) = f(gx). In particular, this means that if f takes values in [0, 1], so does fg. This

turns out to be the case more generally.

Observation 4.18. For any function f : {±1}d −→ [0, 1] and vector ³ ∈ [−1, 1]d, f³ takes values in [0, 1].

Proof. Note that the corresponding real polynomials f̃ , f̃³ are linear in each variable. Furthermore, the sets

A =
∏d

i=1 [−|³i|, |³i|] , B = [−1, 1]d are both convex and A ¦ B. Thus,

sup
x∈{±1}d

f³(x) = sup
y∈B

f̃³(y) = sup
z∈A

f̃(z) f sup
z∈B

f̃(z) = sup
x∈{±1}d

f(x) f 1.

In the same way, we conclude that f³ g 0 holds.

In particular, this means that for any ³ ∈ [−1, 1]d and connection Ã on {±1}d, Ã³ is a well-defined

connection. Therefore, all of Corollaries 4.4, 4.5, 4.8, 4.10 and 4.14 hold if we replace the respective con-

nections in them with arbitrary coefficient contractions of those connections. As we will see in Section 6.2,

particularly interesting is the case when ³ ∈ {±1}d since this corresponds to simply negating certain vari-

ables in Ã. In particular, suppose that ³ = (1, 1, . . . , 1︸ ︷︷ ︸
ℓ

,−1,−1, . . . ,−1︸ ︷︷ ︸
d−ℓ

) for some 1 f ℓ f d. Then, the

connection Ã(x, y) becomes a function of

∑

ifℓ
xiyi −

∑

i>ℓ

xiyi.

The corresponding two-form is not PSD, so it is unlikely that approaches based on Gram-Schmidt and

analysing Wishart matrices could yield meaningful results in this setting.

4.2.2 Repulsion-Attraction Twists

Recall that one motivation for studying non-monotone, non-symmetric connections was that in certain real

world settings - such as friendship formation - similarity in different characteristics might have different

effect on the probability of forming an edge.

To model this scenario, consider the simplest case in which d = 2d1 and each latent vector has two

components of length d1, that is x = [y, z], where y, z ∈ {±1}d1 and [y, z] is their concatenation. Similarity

in the y part will “attract”, making edge formation more likely, and similarity in z will “repulse”, making

edge formation less likely. Namely, consider two symmetric connections a : {±1}d1 −→ [0, 1] and r :
{±1}d1 −→ [0, 1] with, say, means 1/2. We call the following function their repulsion-attraction twist

Äa,r([y, z]) =
1 + a(y)− r(z)

2
.
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One can check that Äa,r is, again, a connection with mean 1/2 and satisfies Var[Äa,r] =
1
4
(Var[a]+Var[r]).

Furthermore,

(Äa,r − 1/2) ∗ (Äa,r − 1/2) = (a− 1/2) ∗ (a− 1/2) + (r − 1/2) ∗ (r − 1/2).

Thus, if we denote µÄ =
(
Äa,r − 1

2

)
∗
(
Äa,r − 1

2

)
, µa = (a− 1/2) ∗ (a− 1/2), µr = (r − 1/2) ∗ (r − 1/2),

we have µÄ = µa + µr. Using ∥µa + µr∥p f ∥µa∥p + ∥µr∥p for each p, we can repeat the argument in

Theorem 3.1 losing a simple factor of 2 for µÄ. In particular, this means that when d = Ω(n log n), we have

that for any two symmetric connections a, r,

TV
(
RAG(n, {±1}d, p, Äa,r),G(n, p)

)

= O

(
n3Wd(a)2 +

n3(W1(a)2 +Wd−1(a)2)

d
+
n3(W2(a)2 +Wd−2(a)2)

d2

)

+O

(
n3Wd(r)2 +

n3(W1(r)2 +Wd−1(r)2)

d
+
n3(W2(r)2 +Wd−2(r)2)

d2

)
+ o(1).

as in Corollary 4.1. One can now combine with Corollaries 4.4, 4.5, 4.8, 4.10 and 4.14. As we will see in

Section 6.2, particularly interesting from a theoretical point of view is the case when a = r.
One could also consider linear combinations of more than two connections. We do not pursue this here.

4.3 Typical Indicator Connections

Finally, we turn to a setting which goes truly beyond symmetry. Namely, we tackle the question of de-

termining when a “typical” random algebraic graph with an indicator connection is indistinguishable from

G(n, p).More formally, we consider RAG(n, {±1}d, ÃA) for which ÃA(g) = 1[g ∈ A],where A is sampled

from AnteU({±1}d, p). AnteU({±1}d, p) is the distribution over subsets of {±1}d in which every element

is included independently with probability p as all elements over the hypercube have order at most 2 (see

Definition 1.14).

Theorem 4.19. Suppose that d = Ω(n log n).With probability at least 1−2−d over A ∼ AnteU({±1}d, p),

TV
(
RAG(n, {±1}d, ÃA),G(n, p)

)
= o(1).

As we will see in Section 7, the dependence of d on n is tight up to the logarithmic factor when p = Ω(1).
We use the following well-known bound on the Fourier coefficients of random functions.

Claim 4.20 ([O’D14]). Suppose that B is sampled from {±1}d by including each element independently

with probability p (i.e., B ∼ AnteU(G, p)). Let ÃB be the indicator of B. Then, with probability at least 1−
2−d, the inequalities |Ã̂B(∅)− p| f 21−d/2

√
d and |Ã̂B(S)| f 21−d/2

√
d for all S ̸= ∅ hold simultaneously.

Now, we simply combine Claim 4.20 and Theorem 3.1.

Proof of Theorem 4.19. We will prove the claim for all sets A ¦ {±1}d satisfying that |Ã̂A(∅) − p| f 2
√
d

2d/2

and |Ã̂A(S)| f 2
√
d

2d/2
holds for all S ̸= ∅. In light of Claim 4.20, this is enough. Let A be such a set and let

pA = E[ÃA] = Ã̂A(∅). Consider Theorem 3.1. It follows that Bi f ∆
(
d
i

)1/2
for each i, where ∆ = 2

√
d

2d/2
for
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brevity of notation. Take m = 1. Then,

Cm =
∑

2fif d
2en

∆2

(
d

i

)
+

∑

d− d
2en

fifd−2

∆2

(
d

i

)

= O

(
∆2

(
d
d

2en

))

= O

(
4d

2d
(2e2n)

d
2en

)

= O

(
2O(d logn/n)

2d

)
= O

(
1

2d/2

)
.

Similarly,

D =
∑

d
2en

<i<d− d
2en

∆2

(
d

i

)
f ∆22d = 4d.

Since d = Ω(n log n), the conditions of Theorem 3.1 are satisfied. Thus,

TV
(
RAG(n, {±1}d, 1/2, ÃA),G(n, pA)

)2
(18)

= O

(
n3

p2A
×
(
B4

1

d
+
B4
d−1

d
+B4

d +
O( 1

2d
)

d2
+ 4d exp

(
− d

2en

)))
(19)

= O

(
n3d3

p2A2
2d

+
n3

p2Ad
22d

+ n3d× exp

(
− d

2en

))
. (20)

The last expression is of order on(1) when d = Ω(n log n) for a large enough hidden constant. Finally, note

that

TV
(
G(n, p),G(n, pA)

)
= o(1)

whenever p = Ω(1/n2), and |pA − p| f 21−d/2
√
d. Indeed, this follows from the following observation.

Suppose that pA < p without loss of generality. Then, G(n, pA) can be sampled by first sampling G(n, p)
and then retaining each edge with probability pA

p
g 1 − 21−d/2

√
dp−1 = 1 − o(n−3). Thus, with high

probability (1 − o(n−3))(
n
2) = 1 − o(n−1), all edges are retained and the two distributions are a distance

o(1) apart in TV. We use triangle inequality and combine with (18).

Remark 4.21. The above proof provides a constructive way of finding connections Ã for which indistin-

guishability occurs when d = Ω̃(n). Namely, a sufficient condition is that all of the Fourier coefficients of

ÃA except for Ã̂A(∅) are bounded by 2
√
d

2d/2
and |Ã̂A(∅)−p| f 2

√
d

2d/2
In fact, one could check that the same argu-

ment holds even under the looser condition that all coefficients are bounded by dC

2d
for any fixed constant C.

Such functions with Fourier coefficients bounded by ϵ on levels above 0 are known as ϵ-regular [O’D14].

Perhaps the simplest examples for 2
√
d

2d/2
-regular indicators with mean 1/2 are given by the inner product mod

2 function and the complete quadratic function [O’D14, Example 6.4]. These provide explicit examples of

functions for which the phase transition to Erdős-Rényi occurs at d = Θ̃(n).

5 Indistinguishability of Typical Random Algebraic Graphs

We now strengthen Theorem 4.19 by (1) extending it to all groups of appropriate size and (2) replacing

the log n factor by a potentially smaller log 1
p

factor. The proof is probabilistic and, thus, does not provide

means for explicitly constructing functions for which the phase transition occurs at d = Ω̃(n).
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Theorem 5.1. An integer n is given and a real number p ∈ [0, 1]. Let G be any finite group of size at

least exp(Cn log 1
p
) for some universal constant C. Then, with probability at least 1 − |G|−1/7 over A ∼

AnteU(G, p), we have

KL
(
RRAG(n,G, ÃA)∥G(n, p)

)
= o(1).

The exact same holds for LRAG instead of RRAG.

Proof. In light of (4), we simply need to show that for typical sets A, the function

µA(g) = Ez∼Unif(G)[(ÃA(gz
−1)− p)(ÃA(z)− p)]

has sufficiently small moments. We bound the moments via the second moment method over A. Namely,

for t g 1, define the following functions:

ϕt(A) = Eg∼Unif(G)[µA(g)
t] and Φ(t) = EA∼AnteU(G,p)[ϕ

2
t (A)].

We show that for typical A, ϕt(A) is small by bounding the second moment Φ(t) and using Chebyshev’s

inequality. We begin by expressing ϕt(A) and Φ(t). First,

ϕt(A) = Eg∼Unif(G)[µA(g)
t] = Eg∼Unif(G)

[
Ez[(ÃA(gz

−1)− p)(ÃA(z)− p)]t
]

= Eg,{zi}ti=1∼iidUnif(G)

[
t∏

i=1

(ÃA(gz
−1
i )− p)(ÃA(zi)− p)

]
.

Therefore,

Φ(t) = EA∼AnteU(G,p)[ϕ
2
t (A)]

= EA∼AnteU(G,p)

[(
Eg,{zi}ti=1∼iidUnif(G)

[ t∏

i=1

(ÃA(gz
−1
i )− p)(ÃA(zi)− p)

])2]

= EA∼AnteU(G,p)

[
E

g(1),g(2),{z(1)i }ti=1,{z
(2)
i }ti=1∼iidUnif(G)

[ t∏

i=1

(ÃA(g
(1)(z

(1)
i )−1)− p)

×
t∏

i=1

(ÃA(z
(1)
i )− p)

t∏

i=1

(ÃA(g
(2)(z

(2)
i )−1)− p)

t∏

i=1

(ÃA(z
(2)
i )− p)

]]
.

The main idea now is that we can change the order of expectation between A and

{g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1}. Since EA∼AnteU(G,p)ÃA(h) = p for each h ∈ G by the definition of the

density AnteU(G, p), each of the terms of the type (ÃA(·) − p) has zero expectation over A. The lower

bound we have on the size of G will ensure that for “typical” choices of {g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1}, at

least one of the terms of the type (ÃA(·)− p) is independent of the others, which will lead to a (nearly) zero

expectation. Namely, rewrite the above expression as

E
g(1),g(2),{z(1)i }ti=1,{z

(2)
i }ti=1∼iidUnif(G)

[
EA∼AnteU(G,p)

[ t∏

i=1

(ÃA(g
(1)(z

(1)
i )−1)− p)

t∏

i=1

(ÃA(z
(1)
i )− p)

×
t∏

i=1

(ÃA(g
(2)(z

(2)
i )−1)− p)

t∏

i=1

(ÃA(z
(2)
i )− p)

]]
.

(21)

Now, observe that if there exists some À ∈ {g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1} such that À ̸= ·, À ̸= ·−1 for any

other · ∈ {g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1}, the above expression is indeed equal to 0 since this means that
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ÃA(À) is independent of all other terms ÃA(·). Call B = B

(
{g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1}

)
the event

that all À ∈ {g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1} satisfy this property. As discussed, over B we have

EA∼AnteU(G,p)

[
t∏

i=1

(ÃA(g
(1)(z

(1)
i )−1)−p)

t∏

i=1

(ÃA(z
(1)
i )−p)

t∏

i=1

(ÃA(g
(2)(z

(2)
i )−1)−p)

t∏

i=1

(ÃA(z
(2)
i )−p)

]
= 0,

and outside of B, we have

EA∼AnteU(G,p)

[
t∏

i=1

(ÃA(g
(1)(z

(1)
i )−1)− p)

t∏

i=1

(ÃA(z
(1)
i )− p)

t∏

i=1

(ÃA(g
(2)(z

(2)
i )−1)− p)

t∏

i=1

(ÃA(z
(2)
i )− p)

]

f
∥∥∥∥∥

t∏

i=1

(ÃA(g
(1)(z

(1)
i )−1)− p)

t∏

i=1

(ÃA(z
(1)
i )− p)

t∏

i=1

(ÃA(g
(2)(z

(2)
i )−1)− p)

t∏

i=1

(ÃA(z
(2)
i )− p)

∥∥∥∥∥
∞

f 1.

It follows that Φ(t) f 1−P[B]. Next, we will show that P[B] = 1−O
(
|G|−1/3

)
.

Denote byM ¦ G the set of group elements h for which the equation x2 = h has at least |G|1/3 solutions

x over G.By Markov’s inequality, |M | f |G|2/3.We now draw the elements {g(1),g(2), {z(1)i }ti=1, {z(2)i }ti=1}
sequentially in that order and track the probability with which one of the following conditions fails (we

terminate if a condition fails):

1. g(1) ̸∈M ∪ {1} and g(2) ̸∈M ∪ {1}.

2. z
(1)
i ̸∈ {z(1)j , (z

(1)
j )−1 : j < i} ∪ {(g(1)(z

(1)
j )−1, (g(1)(z

(1)
j )−1)−1 : j < i}.

3. g(1)(z
(1)
i )−1 ̸∈ {z(1)j , (z

(1)
j )−1 : j f i} ∪ {(g(1)(z

(1)
j )−1, (g(1)(z

(1)
j )−1)−1 : j < i}.

4. z
(2)
i ̸∈ {z(2)j , (z

(2)
j )−1 : j < i} ∪ {g(2)(z

(2)
j )−1, (g(2)(z

(2)
j )−1)−1 : j < i}, and

z
(2)
i ̸∈ {z(1)j , (z

(1)
j )−1,g(1)(z

(1)
j )−1, (g(1)(z

(1)
j )−1)−1 : j f n}.

5. g(2)(z
(2)
i )−1 ̸∈ {z(2)j , (z

(2)
j )−1 : j < i} ∪ {g(2)(z

(2)
j )−1, (g(2)(z

(2)
j )−1)−1 : j < i}, and

z
(2)
i ̸∈ {z(1)j , (z

(1)
j )−1,g(1)(z

(1)
j )−1, (g(1)(z

(1)
j )−1)−1 : j f n}.

Note that conditions 2-5 exactly capture that event B occurs, so conditions 1-5 hold together with probabil-

ity at most P[B]. Condition 1 is added to help with the proof. We analyze each step separately.

1. P[g(1) ∈M ∪ {1}] = |M |∪{1}
|G| = O(|G|−1/3) and the same for g(2). Thus, the drawing procedure fails

at this stage with probability at most O(|G|−1/3).

2. Since the elements z
(1)
i ̸∈ {z(1)j , (z

(1)
j )−1 : j < i} ∪ {(g(1)(z

(1)
j )−1, (g(1)(z

(1)
j )−1)−1 : j < i} are

independent of z
(1)
i and there are at most 4i f 4t f 4n of them, we fail with probability O(n/|G|) at

this step.

3. The calculation for g(1)(z
(1)
i )−1 is almost the same, except that we have to separately take care of the

cases g(1)(z
(1)
i )−1 = (z

(1)
i )−1 and g(1)(z

(1)
i )−1 = z

(1)
i . The first event can only happen if g(1) = 1, in

which case the drawing procedure has already terminated at Step 1. The second event is equivalent

to g(1) = (z
(1)
i )2. If the drawing procedure has not terminated at Step 1, this occurs with probability

at most |G|−2/3 since g(1) ̸∈M. Thus, the total probability of failure is O(n/|G|+ |G|−2/3).

4. As in Step 2, the calculation for z
(2)
i gives O(n/|G|).
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5. As in Step 5, the calculation for g(1)(z
(1)
i )−1 gives O(n/|G|+ |G|−2/3).

Summing over all j ∈ [t], ℓ ∈ {1, 2}, via union bound, we obtain a total probability of failure at most

O

(
1

|G|1/3
)
+O

(
t

|G|2/3
)
+O

(
tn

|G|

)
= O

(
1

|G|1/3
)

as t f n f log |G| by the definition of t and assumption on |G|.
Going back, we conclude that 1−P[B] f C|G|−1/3 for some absolute constant C, so Φ(t) f C|G|−1/3

for some absolute constant C.
Now, we can apply the moment method over A and conclude that

PA[|ϕt(A)| > |G|−1/12] f EA[ϕt(A)2]

|G|−1/6
=

Φ(t)

|G|−1/6
f C|G|−1/6.

Therefore, with high probability 1 − C|G|−1/6 over A ∼ AnteU(G, p), ϕt(A) f |G|−1/12. Taking a

union bound over t ∈ {1, 2, . . . , n−1}, we reach the conclusion that with high probability 1−Cn|G|−1/6 >
1− |G|−1/7 over A ∼ AnteU(G, p), ϕt(A) f |G|−1/12 holds for all t ∈ [n− 1].

Now, suppose that A is one such set which satisfies that ϕt(A) f |G|−1/12 holds for all t ∈ [n − 1].
Using (4), we obtain

n−1∑

k=0

log
k∑

t=0

(
k

t

)
Eg∼Unif(G)

[
µ(g)t

pt(1− p)t

]
f

n−1∑

k=0

log

(
1 +

k∑

t=1

(
k

t

) |G|−1/12

pt(1− p)t

)
.

Now, suppose that |G| > n24212np−12n(1 − p)−12n, which is of order exp(Cn log 1
p
) for some absolute

constant C when p f 1
2
. Then, the above expression is bounded by

n−1∑

k=0

log

(
1 +

1

n22n

k∑

t=1

(
k

t

)
pn(1− p)n

pt(1− p)t

)

f
n−1∑

k=0

log

(
1 +

1

n22n

k∑

t=1

(
k

t

))

f
n−1∑

k=0

log

(
1 +

1

n22n
2k

)
f

n−1∑

k=0

log

(
1 +

1

n2

)
f

n−1∑

k=0

1

n2
=

1

n
= o(1).

6 Detection via Signed Triangle Count Over the Hypercube

Here, we explore the power of counting signed triangles. We will first provide counterparts to the arguments

on symmetric connection in Section 4.1. As we will see in Section 6.2, there are fundamental difficulties

in applying the signed triangle statistic to non-symmetric connections. Section 7 shows an even deeper

limitation that goes beyond counting any small subgraphs.

6.1 Detection for Symmetric Connections

We first simplify Corollary 2.15.

Corollary 6.1. Suppose that d = É(n), p = Ω(1/n), and Ã is a symmetric connection. If

n6
( ∑

S : |S|∈{1,2,d−2,d−1,d}
Ã̂(S)3

)2
= É

(
n3p3 + n4

∑

|S|∈{1,d−1,d}
Ã̂(S)4

)
,

then the signed triangle statistic distinguishes between G(n, p) and RAG(n, {±1}d, Ã) with high probability.
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Proof. We will essentially show that the above inequality, together with d = É(n), p = Ω(1/n), imply the

conditions of Corollary 2.15. Denote

A =
∑

S : |S|∈{1,2,d−2,d−1,d}
Ã̂(S)3.

As
∑

|S|∈{1,d−1,d} Ã̂(S)
4 > 0, the conditions above imply that n6A2 = É(n3p3), so A = É(n−3/2p3/2). Note

however, that

B :=
∑

S : |S|̸∈{1,2,d−2,d−1,d}
Ã̂(S)3 f

∑

S : |S|̸∈{1,2,d−2,d−1,d}
|Ã̂(S)|3 =

∑

3fjfd−3

(
d

j

)(Wj(Ã)(
d
j

)
)3/2

,

where for the last equality we used the symmetry of Ã. However, as Wj(Ã) f Var[Ã] f p − p2 < p, the

last sum is bounded by

∑

3fjfd−3

(
d

j

)−1/2

p3/2 = O
(
d−3/2p3/2

)
= o(n−3/2p3/2) = o(A).

In particular, this means that A+B = Ω(A), and n3|A+B| = É(n3/2p3/2) = É(1). Thus,

n6
(∑

S ̸=∅
Ã̂(S)3

)2
= Ω

(
n6

∑

S : |S|∈{1,2,d−2,d−1,d}
Ã̂(S)3

)2

= É
(
n3p3 + n4

∑

|S|∈{1,d−1,d}
Ã̂(S)4

)
+ É

(
n3
∑

S ̸=∅
Ã̂(S)3

)

= É
(
n3p3 + n3

∑

S ̸=∅
Ã̂(S)3 + n4

∑

|S|∈{1,d−1,d}
Ã̂(S)4

)
,

where we used the assumptions of the corollary and the fact that n6(A + B)2 = É(|n3(A + B)|) which

follows from |n3(A+B)| = É(1). To finish the proof, we simply need to add the missing terms in the sum

of fourth powers. Using the same approach with which we bounded B, we have

n4
∑

S : |S|̸∈{1,2,d−2,d−1,d}
Ã̂(S)4 = n4

∑

2fjfd−2

(
d

j

)
p2
(
d

j

)−2

= O(n4p2d−2) = o(n2p2) = o(n3p3),

where in the last line we used the fact that pn = Ω(1). With this, the conclusion follows.

Note that this proposition gives an exact qualitative counterpart to Corollary 4.1 since it also depends

only on levels 1, 2, d− 2, d− 1, d.
We now transition to proving detection results for specific functions, which serve as lower bounds for

our indistinguishability results. We don’t give any lower-bound results for Corollary 4.4 and Corollary 4.8

as these already appear in literature (even though for the slightly different model over Gauss space). Namely,

in [LR23a], Liu and Racz prove that when there Ã is monotone 1
r
√
d
-Lipschitz, the signed triangle statistic

distinguishes the underlying geometry whenever d = o(n3/r6). In [LMSY22], the authors show that the

signed triangle statistic distinguishes the connection Tp when d = õ(n3p3).
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6.1.1 Hard Threshold Connections

Here, we prove the following bound corresponding to Corollary 4.10.

Corollary 6.2. When d is even and d = É(n), p = Ω( 1
n
) and d = o(n3/2p3/2),

TV(G(n, p),RAG(n, {±1}d,Dp)) = 1− o(1).

It should be no surprise that we need to calculate the Fourier coefficients of Dp to prove this statement.

From Proposition 4.9 we know that D̂p([d]) = Õ( p
d1/2

). In Appendix D.1, we prove the following further

bounds.

Proposition 6.3. When p = dO(1), the Fourier coefficients of Dp satisfy

1. D̂p([2]) = Ω(p
d
).

2. D̂p([d− 2]) = Õ( p
d3/2

).

These are enough to prove the corollary.

Proof of Corollary 6.2 . We simply apply Corollary 6.1. As all Fourier coefficients on levels, 1, d−1, equal

zero, we focus on levels 2, d− 2, d.

∑

S : |S|∈{1,2,d−2,d−1,d}
Ã̂(S)3 = Ω

(
p3

d3

(
d

2

))
+ Õ

((
d

2

)
p3

d9/2
+

p3

d3/2

)
= Ω

(
p3

d

)
,

∑

S : |S|∈{1,d−1,d}
Ã̂(S)4 = Õ

(
p4

d2

)
.

Therefore, by Corollary 6.1, we can detect geometry when

n6 p
6

d2
= É(n3p3) + É̃

(
p4

d2

)
.

One can easily check that this is equivalent to d = o(n3/2p3/2).

6.1.2 Non-Monotone Connections, Interval Unions, and Fluctuations

We now turn to the more general case of non-monotone connections and interval unions. We only consider

the case when p = Θ(1) so that we illustrate better the dependence on the correlation with parity, manifested

in the number of intervals and analytic total variation. We first handle the simple case of Ã».

Corollary 6.4. If n»2 = É(1), the signed triangle statistic distinguishes G(n, p) and

RAG(n, {±1}d, Ã») with high probability.

Proof. By Corollary 2.15, the signed triangle statistic distinguishes the two graph models with high proba-

bility whenever

n6»6 = É(n3 + n3»3 + n4»4).

Trivially, this is equivalent to n»2 = É(1).
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Remark 6.5. In particular, note that when » = Θ(1), one can distinguish with high probability G(n, 1/2)
and RAG(n, {±1}d, Ã») for any d. This phenomenon is clearly specific to the hypercube. In the Gaussian

setting, whenever d = É̃(n3), TV
(
G(n, p),RGG(n,Rd,N (0, Id), Ã)

)
= o(1) for any connection Ã(x,y)

depending only on ïx,yð simply because of the fact that Wishart and GOE matrices are indistinguishable

in this regime due to Theorem 1.2. One way to understand this difference between Gaussian space and

the hypercube is that the latter also posses an arithmetic structure, so connections such as Ã» which heavily

depend on the arithmetic might lead to a very different behaviour. In the particular case of Ã1/2, the resulting

graph RAG(n, {±1}d, Ã1/2) is bipartite: vertices i, j in this graph are adjacent if and only if the number of

coordinates equaling −1 has the same parity in xi and xj.

Remark 6.6. Note that Ã1/2 has a single large Fourier coefficient on non-zero levels, but this already makes

RAG(n, {±1}d, Ã1/2) detectable for any value of n. This is the qualitative converse of Theorem 3.1.

Remark 6.7. Finally, take any s = É(
√
d) and let h(x) := 1

[∑d
i=1 xi ∈ [−s, s]

]
. Then, the connection

Ã(x) := h(x) × Ã1/2(x) is an indicator of a union of O(s) intervals. Nevertheless, RAG(n, {±1}d, Ã) and

G(n, 1/2) are distinguishable with probability 1−o(1). Indeed, Pg∼Unif({±1}d)[Ã(g) = Ã1/2(g)] = 1−o(1),
which implies that TV

(
RAG(m, {±1}d, Ã),RAG(m, {±1}d, Ã1/2)

)
= o(1) for all small enough m. Thus,

one can distinguish RAG(n, {±1}d, Ã) and G(n, 1/2) by focusing on the induced subgraphs on vertices

{1, 2, . . . ,m} for a small enough m = É(1).

We now proceed to the more interesting interval unions. Note that in this case, the indistinguishability

rates we prove are d = É(n3 + n3/2s2) for a general union of intervals and d = É(n3/2s2) for a union of

intervals symmetric around 0. The counterparts to these rates that we present are based on the following

interval unions. For simplicity, assume that d is even and d = 2d1. We begin with the general case.

Corollary 6.8. Suppose that s = Ω̃(d1/3) and s = o(
√
d). Then, there exists a connection · which is the

indicator of a union of s intervals and E[·] = Ω(1). Furthermore, · is detected by the signed triangle

statistic whenever d = o(ns2).

We construct this function · as follows.

Proposition 6.9. Let s = o(
√
d) and consider the union of s intervals given by

Is = {d1, d1 + 2, d1 + 4, . . . , d1 + 2(s− 2)} ∪ [d1 +
√
d, d].

Let the connection ·s be defined as ·s(x) = 1[
d∑

i=1

xi ∈ Is]. Then, the following facts hold: E[·s] = Ω(1),

|·̂s([ℓ])| f
(
d

l

)−1/2

for ℓ ∈ {1, 2, d− 1, d− 2}, and ·̂s([d]) = Θ( s√
d
).

We defer the proof to Appendix D.2. We proceed to providing lower bounds for connections which are

indicators of interval unions.

Proof of Corollary 6.8. We use Corollary 6.1 for the interval union indicator ·s. The left-hand side becomes

n6

(
Θ̃

(
s3

d3/2

)
+ dO

((
d

1

)−3/2)
+

(
d

2

)
O

((
d

2

)−3/2))
= n6Θ̃

(
s3

d3/2

)
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as s = Ω̃(d1/3). Similarly, in the right-hand side is

Θ(n3) + n4Θ̃

(
s4

d2

)
+ n4dO

((
d

1

)−2)
+ n4s2O

((
d

2

)−2)
= O

(
n3 + n4 s

4

d2

)
.

Thus, we need the following inequality to hold for detection:

n6 s
6

d3
= É̃

(
n3 + n4 s

4

d2

)
.

This is equivalent to d = õ(ns2).

Our construction for the symmetric case is similar.

Proposition 6.10. Let s = o(
√
d) and consider the union of 2s− 1 intervals given by

Isyms = [−d,−d1 −
√
d] ∪ {d1 − 2(s− 2), . . . , d1, . . . , d1 + 2(s− 2)} ∪ [d1 +

√
d, d].

Define the connection ·syms (x) = 1

[∑d
i=1 xi ∈ Isyms

]
. Then, the following facts hold about ·syms : E[·syms ] =

Ω(1), |·̂syms ([ℓ])| f 1/
√(

d
l

)
for ℓ ∈ {1, 2, d− 1, d− 2}, and ·̂syms ([d]) = Θ(s/

√
d).

The same proof yields the following.

Corollary 6.11. Suppose that s = Ω(d1/6) and s = o(
√
d). Then, there exists a connection · which is the

indicator of a union of 2s − 1 intervals, symmetric around 0, and E[·] = Ω(1). Furthermore · is detected

by the signed triangle statistic whenever d = o(ns2).

6.1.3 Connections Without Low-Degree and High Degree Terms

Finally, we turn to proving a detection rate that matches the conjecture we stated in Conjecture 4.16.

Example 6.12. Suppose that m is fixed. There exists a symmetric connection Ã : {±1}d −→ [0, 1] such

that Wk(Ã1) = 0 for k ∈ {1, 2, . . . ,m−1}∪{d−m, . . . , d} and, furthermore, if d = É̃p(n
3/m), the graphs

G(n, p) and RAG(n, {±1}d, Ã) are distinguishable with high probability via the signed-triangle statistic.

To prove this result, we will use the following construction. Again, we focus on the case p = 1
2

to

illustrate better the dependence on m.

Proposition 6.13. For any constant m ∈ N, there exists a symmetric connection Ã : {±1}d −→ [0, 1] such

that

1. E[Ã1] =
1
2
,

2. Wm(Ã1) = Ω( 1
logm d

),

3. Wk(Ã1) = 0 for k ∈ {1, 2, . . . ,m− 1} ∪ {d−m, d−m+ 1, . . . , d}.

We construct this connection in Appendix C and now we continue to the proof of the detection statement.
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Proof of Example 6.12. We simply apply Corollary 2.15. To do so, we need to compute the sum of third

and fourth powers of Fourier coefficients. Let the sign on the m-th level of Ã be ϵ.

∑

S ̸=∅
Ã̂(S)3 =

∑

S:|S|=m
Ã̂1(S)

3 +
∑

S:m<|S|<d−m
Ã̂1(S)

3

= ϵ

(
d

m

)(Wm(Ã1)(
d
m

)
)3/2

+O


 ∑

m<j<d−m

(
d

j

)(
p2(
d
j

)
)3/2




= ϵ× Ω(d−m/2 log−3m/2 d) +O(d−(m+1)/2) = Ω(d−m/2 log−3m/2 d).

In the exact same way, we conclude that

∑

S ̸=∅
Ã̂(S)3 = O(d−m/2) and

∑

S ̸=∅
Ã̂(S)4 = O(d−m).

Thus, to detect the geometry, we simply need the following inequality to be satisfied.

n6d−m log−3m d = É(n3 + n3d−m/2 + n4d−m).

One can easily check that this is satisfied when d = o(n3/m log3 d) or , equivalently, d = õ(n3/m).

6.1.4 Low-Degree Polynomials

Our lower bounds for low-degree connections leave a large gap to Corollary 4.17.

Theorem 6.14. There exists a degree 1 symmetric connection Ã with expectation p such that the signed tri-

angle statistic distinguishes G(n, p) and RAG(n, {±1}d, Ã) with probability 1− o(1) when d = o((np)3/4).

Proof. Consider the connection Ã(g) = p+
∑d

i=1
p
d
gi and apply Corollary 6.1.

6.2 Failure of Signed Triangles: Fourier-Paired Connections

Thus far, we have used the signed triangle statistic as a useful tool in detecting geometry. However, this

technique is not foolproof - it might be the case that the signed triangle statistic does not yield any detection

rates. We must note that [BBH21b] explores a similar idea as the authors introduce a bipartite mask and,

thus, their graphs do not include any (signed) triangles. Here, we illustrate a different, perhaps more intrinsic

way, of making the signed triangle statistic fail. Indeed suppose that
∑

S ̸=∅ Ã̂(S)
3 = 0. Then, in expectation,

the signed triangle statistic applied to G(n, p) and RAG(n, {±1}d, Ã) gives the same count: zero.

Of course, one should ask: are there any interesting functions Ã which satisfy
∑

S ̸=∅ Ã̂(S)
3 = 0? We

show that the answer is yes. We analyze two concrete families of connections, both of which satisfy the

following broader definition.

Definition 6.15. We call a connection Ã : {±1}d −→ [0, 1] Fourier-paired if the following condition holds.

There exists a bijection ´ on the nonempty subsets of [d] such that Ã̂(S) = −Ã̂(´(S)) for each S ̸= ∅.

Trivially, any Fourier-paired connection Ã satisfies
∑

S ̸=∅ Ã̂(S)
k = 0 for every odd integer k. The con-

verse is also true – if
∑

S ̸=∅ Ã̂(S)
k = 0 holds for any odd k, the connection is Fourier-paired. So, how can

we construct Fourier-paired connections? It turns out that in Section 4.2. we already have.

First, note that for any connection Ã (not even necessarily, symmetric), its repulsion-attraction twist

ÄÃ,Ã is Fourier-paired. Another example can be derived using the approach of negating certain variables.
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Consider first the majority mapping over d = 2d1 variables defined as follows. Maj(g) = 1 if

d∑

i=1

gi > 0,

Maj(g) = 1/2 if
∑

gi = 0, and Maj(g) = 0 if
∑

gi < 0. Note that RAG(n, {±1}d,Maj) is just the

analogue of the usual dense random geometric graph with hard thresholds considered in [BDER14].6 One

can easily show using Corollary 6.1 that G(n, p) and RAG(n, {±1}d,Maj) are distinguishable when d =
o(n3) and this is tight in light of Corollary 4.8.

Now, consider the small modification of Maj, which we call the half-negated majority and denote by

HNMaj. Let h = (1, 1, . . . , 1︸ ︷︷ ︸
d1

,−1,−1, . . . ,−1︸ ︷︷ ︸
d1

) and HNMaj(g) := Maj(hg), which is just the coefficient

contraction with respect to h. It turns out that it is relatively easy to show that HNMaj is Fourier-paired.

Proposition 6.16. The mapping HNMaj is Fourier-paired.

Proof. First, we claim that all coefficients on even levels greater than 1 of HNMaj are equal to 0. Indeed,

consider f(g) := 2HNMaj(g)− 1. Clearly , f is odd in the sense that f(g) = −f(−g) holds for all g. Thus,

all coefficients of f on even levels equal 0, so this also holds for HNMaj except for level 0.
Now, for each S ¦ [d] of odd size, define s(S) = S ∩ [1, d1] and b(S) = S ∩ [d1 + 1, 2d]. We claim

that the bijection ´ sending S to a set T such that s(S) = b(T ) and s(T ) = b(S) proves that HNMaj

is Fourier paired. Indeed, this follows from the following fact. For any two g1, g2 ∈ {±1}d1 , we have7

HNMaj(g1, g2) = Maj(g1,−g2) = Maj(−g2, g1) = HNMaj(−g2,−g1). Combining these two statements,

we obtain:

ĤNMaj(S)ÉS(g1, g2) = ĤNMaj(T )ÉT (−g2,−g1) = −ĤNMaj(T )ÉT (g2, g1),

from which the claim follows as |T | = |S| and |S| is odd.

Now, for both ÄMaj,Maj and HNMaj, our Theorem 3.1 implies that the corresponding random algebraic

graphs are indistinguishable from G(n, 1/2) when d = É(n3). However, we cannot apply our usual statistic

for counting triangles to detect those graphs as the number of signed triangles matches the corresponding

quantity in the Erdős-Rényi model. Clearly, counting signed 4-cycles, one can hope to obtain some lower

bound as their number
∑

S ̸=∅ Ã̂(S)
4 (see Observation 2.13) is positive unless Ã is constant. Indeed, one can

easily verify the following facts:

EG∼G(n,1/2)[SW
1/2
C4

(G)] = 0,

VarG∼G(n,1/2)[SW
1/2
C4

(G)] = Θ(n4),

EG∼RAG(n,{±1}d,HNMaj)[SW
1/2
C4

(G)] = Θ
(n4

d

)
,

EG∼RAG(n,{±1}d,ÄMaj,Maj)[SW
1/2
C4

(G)] = Θ
(n4

d

)
.

These suggest that when d = o(n2), the two random algebraic graph models have a total variation of

1 − o(1) with G(n, 1/2). Of course, to make this conclusion rigorous, we also need to compute the quan-

tities VarG∼RAG(n,{±1}d,·)[SW
1/2
C4

(G)]. We choose not to take this approach in the current paper as it is

computationally cumbersome. Instead, we demonstrate that this in the case for the analogue of HNMaj with

Gaussian latent vectors using Theorem 1.3 from [BBH21b].

6Of course, there is the small difference at latent vectors xi,xj for which ïxi,xjð = 0 since the edge between them is not

formed deterministically. But we will ignore this.
7By g1, g2, below we mean their concatenation.
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Suppose that d = 2d1,Ω = Rd, D = N (0, Id) and Ã(x, y) := 1

[∑
ifd1 xiyi −

∑
j>d1

xjyj g 0
]
. We

want to understand when the following inequality holds.

TV
(
RGG(n,Rd,N (0, Id), Ã),G(n, 1/2)

)
= o(1). (22)

The edges of RGG(n,Rd,N (0, Id), Ã) are formed as follows. Each of the latent vectors x1,x2, . . . ,xn can

be represented as a concatenation of two iid standard Gaussian vectors in Rd1 , that is xi = (x1
i ,x

2
i ). With

respect to those, one forms the matrix W ∈ Rn×n, where Wi,j = ïx1
i ,x

1
jð− ïx2

i ,x
2
jð. Finally, one forms the

adjacency matrix A of RGG(n,Rd,N (0, Id), Ã) by taking Ai,j = sign(Wi,j). As in [BDER14], it is enough

to show that W is close in total variation to a symmetric matrix with iid entries to conclude that (22) holds.

This is our next result. Recall the definition of M(n) from Section 1.1.

Theorem 6.17. Define the law of the difference of two Wishart matrices as follows. W(n, d,−d) is the law

of XXT − YYT , where X,Y ∈ Rn×d are iid matrices with independent standard Gaussian entries. If

d = É(n2), then

TV
(
W(n, d,−d),

√
dM(n)

)
= on(1).

Proof. Since X,Y are independent Gaussian matrices, so are X−Y,X+Y. Thus

V =
1√
2

(
X−Y

X+Y

)
∼ N (0, Id1)

¹2n.

Now, consider the bipartite mask on VVT from Theorem 1.3. Specifically, focus on the lower-left tri-

angle. From VVT , we have 1
2
(X + Y)(X − Y)T and from

√
d1M(2n) + I2n, we have

√
d1Z, where

Z ∼ N (0, 1)n×n since it is the lower-left corner of a GOE matrix. From Theorem 1.3, when d = É(n2), we

conclude

TV
(1
2
(X+Y)(X−Y),

√
d1Z

)
= o(1).

By data-processing inequality (Theorem 2.3) for the function f(V ) = (V + V T ), we conclude that

TV
(
f

(
1

2
(X+Y)(X−Y)

)
, f
(√

d1Z
))

= o(1).

Now, f(1
2
(X+Y)(X−Y)) = XXT −YYT ∼ W(n, d,−d) and f(

√
d1Z) =

√
d1(Z+ZT ) ∼

√
dM(n).

The conclusion follows.

Conversely, [BBH21b, Theorem 3.2] directly shows that counting signed 4-cycles in the adjacency

matrix A distinguishes W from a GOE matrix and, thus, RGG(n,Rd,N (0, Id), Ã) from G(n, 1/2), so the

phase transition indeed occurs at d = Θ(n2).
We use this result in Section 8.1 to formally demonstrate the inefficiency of KL-convexity used to derive

Claim 1.5 in [LR23a].

6.2.1 Beyond Triangles

Thus far in this section, we showed that certain connections – for example, the Fourier-paired ones – result

in latent space graphs which cannot be distinguished from G(n, p) using signed triangle counts. One can

prove that something more is true. For any odd k and H, an induced subgraph of the k-cycle, the expected

number of copies of H in G(n, p) and {±1}d is the same whenever Ã is Fourier-paired.

At a first glance, the key word here turns out to be odd. Note that unless Ã is constant, the expected

number of signed k-cycles in RAG(n, {±1}d, Ã) for k even,
∑

S ̸=∅ Ã̂(S)
k, is positive and, thus, strictly
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greater than the expected number for G(n, p). Therefore, for any fixed Ã and d, if we take n to be large

enough, we can distinguish RAG(n, {±1}d, Ã) and G(n, p) by counting signed 4-cycles (or signed k-cycles

for some other k even). In particular, this demonstrates the following curious extremal property of Erdős-

Rényi graphs. For any fixed p, the latent space graph RAG(n, {±1}d, Ã) with the minimal expected number

of signed k-cycles for any even k is G(n, p). This difference between odd and even cycles in random graphs

which are close to Erdős-Rényi is not accidental. It plays a crucial role in the literature on quasi-random

graphs [KS06].

7 Detection for Typical Indicator Connections

We move on to establishing detection results for typical indicator connections in the set-ups of Theo-

rems 4.19 and 5.1.

Our key contribution here is a statistical-computational gap. While all random algebraic graphs over

groups that are of at most near-exponential size are statistically distinguishable from G(n, p), most random

algebraic graphs even over polynomially small groups cannot be detected by low-degree polynomial tests.

This result is in stark contrast to the conclusions in prior work on testing between various PLSG and

G(n, p), in which simple low-degree tests such as signed cycle counts can be shown to be nearly optimal.

7.1 Low-Degree Polynomial Tests Typically Fail to Detect Large Groups

Theorem 7.1. Let n ∈ N, p ∈ [0, 1]. Let ϵ > 0 be a universal constant. Suppose that G is an arbitrary

group of size É(n4). Let A ∼ AnteU(G, p). Consider the connection ÃA(x, y) := 1[xy−1 ∈ A]. Then, with

high probability over A, one cannot distinguish G(n, p) and RRAG(n,G, ÃA) using polynomials of degree

at most log2−ϵ n. The result holds even when the distinguisher knows A.

Note that an explicit description of A takesO(|G|) bits which is polynomially sized when |G| = poly(n).

Proof. We will strive to bound the second moments of signed subgraph counts and apply Theorem 2.12.

Similar to [DMW23, MWZ23], we will take a “conditional variant of the standard low-degree likelihood

calculation” in Theorem 2.12. Namely, we will identify a high-probability event E on the latent variables

x1,x2, . . . ,xn which will make Fourier coefficients small.

To give intuition about the concrete E we choose, we start with a simple expression for the expected

signed weight of a subgraph. Take any subgraph H. Then,

EA∼AnteU(G,p)EG∼RRAG(n,G,ÃA) [SW
p
H(G)]

= EA∼AnteU(G,p)E
x1,x2,...,xn

i.i.d.∼ Unif(G)

∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p)

= E
x1,x2,...,xn

i.i.d.∼ Unif(G)EA∼AnteU(G,p)
∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p).

(23)

We now record the following observation which follows immediately from Definition 1.14.

Observation 7.2. Suppose that (xi)i∈V (H) ∈ G are such that there exists some (i′j′) ∈ E(H) for which

xi′x
−1
j′ ̸∈ {xix−1

j , (xix
−1
j )−1} for any other (ij) ∈ E(H). Then,

EA

∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p) = 0.

This suggests the following natural condition to ensure that all Fourier coefficients are close to 0.
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Proposition 7.3. Suppose that |G| = É(n4). Then, the following event

E =

{
xi1x

−1
j1

̸= xi2x
−1
j2
,xi1x

−1
j1

̸= (xi2x
−1
j2
)−1 for any (i1, j1) ̸= (i2, j2)

}

holds with high probability 1−O(n4/|G|) over x1,x2, . . . ,xn
i.i.d.∼ Unif(G).

Proof. We simply expand P[E ] by sequentially conditioning on xi. Namely,

P[E ]

=
n∏

i=1

P[xix
−1
j ̸= xux

−1
v ∀j, u, v < i|xi1x−1

j1
̸= xi2x

−1
j2

∀i1, j1, i2, j2 < i s.t. (i1, j1) ̸= (i2, j2), (j2, i2)].

Conditioned on (xi1)i1<i, the element xi has to omit at most n3 values, xjxux
−1
v for j, u, v < i. Hence each

term in the product above is at least 1− n3/|G|. It follows that P[E ] g∏n
i=1

(
1− n3

|G|
)
g 1− n4

|G| .

Let P be the measure on x1,x2, . . . ,xn conditioned on E . The above proposition implies that

TV(P ,Unif(G)¹n) = o(1) when |G| = É(n4).
Let RRAG′(n,G, ÃA) be the distribution RRAG(n,G, ÃA) where x1,x2, . . . ,xn are drawn from P instead

of Unif(G)¹n. By data-processing inequality (forming the graph from the latent x1,x2, . . . ,xn), for any A,
TV(RRAG′(n,G, ÃA),RRAG(n,G, ÃA)) = o(1) holds as well when |G| = É(n4). This means that no test

(and certainly no low-degree test) can distinguish RRAG′(n,G, ÃA) and RRAG(n,G, ÃA) when |G| = É(n4).
Finally, we will prove that no degree log2−ϵ n test can distinguish RRAG′(n,G, ÃA),G(n, p) when |G| =

É(n4). To apply Theorem 2.12, we need to bound squares of Fourier coefficients of RRAG′(n,G, ÃA).
Proposition 7.4. Suppose that |G| = É(n4) and A ∼ AnteU(G, p). Let H be any graph without isolated

vertices for which |V (H)| g 2. Then,

EAEG∼RRAG′(n,G,ÃA) [SW
p
H(G)]2 f 2

( n2

|G|
)|V (H)|/2

(p− p2)|E(H)|.

Proof. We begin similarly to (23):

EAEG∼RRAG′(n,G,ÃA) [SW
p
H(G)]2

= EAEG1∼RRAG′(n,G,ÃA) [SW
p
H(G1)]EG2∼RRAG′(n,G,ÃA) [SW

p
H(G1)]

= EAE(xi)i∈[n]∼P
[ ∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p)

]
E(yi)i∈[n]∼P

[ ∏

(i,j)∈E(H)

(1[yiy
−1
j ∈ A]− p)

]

= E
(xi)i∈[n],(yi)i∈[n]

i.i.d.∼ PEA

[ ∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p)×

∏

(i,j)∈E(H)

(1[yiy
−1
j ∈ A]− p)

]
.

(24)

Recall Observation 7.2. For the expectation not to be equal to 0, for each (ij) ∈ E(H) and each xix
−1
j

there must exists some (i′j′) ∈ E(H) such that 1) xix
−1
j = xi′x

−1
j′ and (ij) ̸= (i′j′), (ij) ̸= (j′i′) or 2)

xix
−1
j = yi′y

−1
j′ . By the definition of P , the case 1) happens with probability 0. Hence, for the expectation

not to equal 0, there must exists some some bijection of the edges Ã : E(H) −→ E(H) where Ã((ij)) =
(ϕ(i), ϕ(j)) and

xix
−1
j = yϕ(i)y

−1
ϕ(j).

We now proceed in two steps. First, we bound the probability of the existence of such a permutation, which

we call event K. Second, conditioned on K, we bound

EA

[ ∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p)×

∏

(i,j)∈E(H)

(1[yiy
−1
j ∈ A]− p)

]
.
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Step 1: We use a very similar argument to Proposition 7.3. First, note that

P(xi)i∈[n],(yi)i∈[n]∼P [K]

= P
(xi)i∈[n],(yi)i∈[n]

i.i.d.∼ Unif(G)

[
K
∣∣ (xi)i∈[n] ∈ E , (yi)i∈[n] ∈ E

]

=
P

(xi)i∈[n],(yi)i∈[n]
i.i.d.∼ Unif(G)

[
K, (xi)i∈[n] ∈ E , (yi)i∈[n] ∈ E

]

P
(xi)i∈[n],(yi)i∈[n]

i.i.d.∼ Unif(G)

[
(xi)i∈[n] ∈ E , (yi)i∈[n] ∈ E

]

f
P

(xi)i∈[n],(yi)i∈[n]
i.i.d.∼ Unif(G)

[
K
]

P(yi)i∈[n]∼Unif(G)
[
(yi)i∈[n] ∈ E

]
P(xi)i∈[n]∼Unif(G)

[
(xi)i∈[n] ∈ E

]

=
P

(xi)i∈[n],(yi)i∈[n]
i.i.d.∼ Unif(G)

[
K
]

1− o(1)
f 2P

(xi)i∈[n],(yi)i∈[n]
i.i.d.∼ Unif(G)

[
K
]
.

(25)

Hence, it is enough to bound the probability of K under the uniform distribution.

To do so, order the vertices of H as v1, v2, . . . , vh such that for any i g +|V (H)|/2,, vi has a neighbour

in {v1, v2, . . . , vi−1} (this is possible since H has no isolated vertices). Let one such neighbour of vi be

v»(i). In particular, whenever K occurs, for each i, »(i), it must be the case that yiy
−1
»(i) ∈ {xux−1

v }(uv)∈E(H),

where we take E(H) to include both orderings of each edge. Equivalently, yi ∈ {y»(i)xux−1
v }(uv)∈E(H).

Revealing the variables yi sequentially,

P
(xi)i∈[n],(yi)i∈[n]

i.i.d.∼ Unif(G)

[
K
]

f P
(xi)i∈[n],(yi)i∈[n]

i.i.d.∼ Unif(G)

[
yi ∈ {y»(i)xux−1

v }(uv)∈E(H) ∀i g +|V (H)|/2,
]

f
|V (H)|∏

i=+|V (H)|/2,
P

(xi)i∈[n],(yi)i∈[n]
i.i.d.∼ Unif(G)

[
yi ∈ {y»(i)xux−1

v }(uv)∈E(H) | yj ∈ {y»(j)xux−1
v }(uv)∈E(H) ∀j < i

]
.

As (yi)i∈[n]
i.i.d.∼ Unif(G) and

∣∣{y»(i)xux−1
v }(uv)∈E(H)

∣∣ f |E(H)| f n2, the previous sum is at most

(n2/|G|)|V (H)|/2.

Step 2: Now, suppose that K holds. Then, by definition of AnteU,

∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p)×

∏

(i,j)∈E(H)

(1[yiy
−1
j ∈ A]− p) =

∏

g(ij)

(1[g(ij) ∈ A]− p)2,

where {g(ij)}(ij)∈E(H) are such that g(ij) ̸= g(i′j′) for any (ij) ̸= (i′j′). Thus, the variables

{1[g(ij) ∈ A]}(ij)∈E(H) are independent Bernoulli random variables. Conditioned on K,

EA

[ ∏

(i,j)∈E(H)

(1[xix
−1
j ∈ A]− p)×

∏

(i,j)∈E(H)

(1[yiy
−1
j ∈ A]− p)

]

= EX∼Bernoulli(p)[(X− p)2]|E(H)| = (p− p2)|E(H)|.

Combining 1) and 2), we reach the conclusion.
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Finally, we are ready to prove Theorem 7.1. All we need to show is that when |G| = É(n4), for

D = log2−ϵ n,

∑

H¦Kn, : 0<|E(H)|fD
(p(1− p))−|E(H)|EG∼RRAG′(n,G,ÃA)[SW

p
H(G)]2 = o(1).

Using Proposition 7.4, this is equivalent to showing that

∑

H¦Kn, : 0<|E(H)|fD

( n2

|G|
)|V (H)|

= o(1).

This is a standard calculation, appearing for example in [Hop18], which we include for completeness. We

split the sum into two parts, when |V (H)| f log1−ϵ/3 n and when |V (H)| > log1−ϵ/3 n.

Case 1) When |V (H)| f log1−ϵ/3 n, we use the fact that there are at most
(

n
|V (H)|

)
f n|V (H)| choices for

V (H). As there at most 2(
|V (H)|

2 ) choices for E(H) given V (H), the total number of choices of H is at most

n|V (H)|2(
|V (H)|

2 ) f n|V (H)|2|V (H)|2 . Hence,

∑

H¦Kn, : 0<|E(H)|fD,|V (H)|flog1−ϵ/3 n

( n2

|G|
)|V (H)|

=
∑

2fVflog1−ϵ/3 n

∑

H¦Kn, : |V (H)|=V

( n2

|G|
)V

=
∑

2fVflog1−ϵ/3 n

( n2

|G|
)V
nV 2V

2

=
∑

2fVflog1−ϵ/3 n

(n32V

|G|
)V

f
∑

2fVflog1−ϵ/3 n

( n4

|G|
)V

= o(1)

since |G| = É(n4).

Case 2) |V (H)| > (log n)1−ϵ/3. First note that as we only sum over H with no isolated vertices, V (H) f
2|E(H)| f 2 log2−ϵ n = 2D. There are at most

(
n

|V (H)|
)
f n|V (H)| choices for V (H). Given V (H), there at

most
D∑

i=1

((|V (H)|
2

)

i

)
f |V (H)|2D

choices for E(H). Hence, the total number of choices of H is at most n|V (H)||V (H)|2D. Hence,

∑

H¦Kn, : 0<|E(H)|fD,|V (H)|>log1−ϵ/3 n

( n2

|G|
)|V (H)|

=
∑

2D>V >log1−ϵ/3 n

∑

H¦Kn, : |V (H)|=V

( n2

|G|
)V

=
∑

2D>V >log1−ϵ/3 n

( n2

|G|
)V
nV V 2D

=
∑

2D>V >log1−ϵ/3 n

( n3

|G|
)V
V 2D.
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Note that V > log1−ϵ/3 implies V 2D f (2D)2D = 2O(log logn×log2−ϵ n) f 2V logn = nV . Hence,

∑

2D>V >log1−ϵ/3 n

( n3

|G|
)V
V 2D f

∑

2D>V >log1−ϵ/3 n

( n4

|G|
)V

= o(1).

Altogether, this means that

0 f EA

[ ∑

H¦Kn, : 0<|E(H)|fD
(p(1− p))−|E(H)|EG∼RRAG′(n,G,ÃA)[SW

p
H(G)]2

]
= o(1).

By Markov’s inequality,

∑

H¦Kn, : 0<|E(H)|fD
(p(1− p))−|E(H)|EG∼RRAG′(n,G,ÃA)[SW

p
H(G)]2 = o(1)

with high probability over A and the conclusion follows.

7.2 Low-Degree Test Based on Birthday Paradox

We show a lower bound when |G| = o(n2). We leave the question of closing the gap between n2 and n4 as

an open problem. Again, there is no difference in the argument for RRAG and LRAG.

Theorem 7.5. Suppose that G is an arbitrary group of size o(n2). LetA ¦ G be closed under taking inverses

and denote ÃA(x, y) := 1[xy−1 ∈ A] and p := E
x,y

i.i.d.∼ GÃA(x,y). Suppose that p = É(log n/n), 1 − p =

É(log n/n). Then, one can distinguish the graphs G(n, p) and RRAG(n,G, ÃA) with high probability in

polynomial time using a polynomial of degree O(log n).

Proof. Call two vertices u ̸= v neighbourhood-identical if for any w ̸∈ {v, u}, (v, w) is an edge if and

only if (u, w) is an edge. By the Birthday Paradox, whenever |G| = o(n2), with high probability there

exist two integers u, v ∈ {1, 2, . . . , n} such that xu = xv. Clearly, whenever xu = xv, the vertices u and v
are neighbourhood-identical. On the other hand, a simple argument shows that no two vertices in G(n, p)
are neighbourhood identical. Hence, one can test between G(n, p) and RRAG(n,G, ÃA) by the polynomial

time test of searching for neighbourhood-identical vertices. We translate this argument into low-degree

polynomials as follows.

Assume that p f 1/2. Otherwise, we can work with the complementary graphs. The key idea analyze

the supremum over all pairs (i, j) ∈ [n]¹ [n] of

Pi,j(G) :=
∑

k ̸∈{i,j}
Gi,kGj,k.

Under G(n, p), each Pi,j is the sum of n − 2 independent Bernoulli(p2) random variables. By Bernstein’s

inequality,

PG∼G(n,p)[Pi,j(G) g max((n− 2)p2 + 4
√
np2 log n, 4 log n)] = o(1/n2).

Hence, with high probability, maxi,j Pi,j(G) f max((n − 2)p2 + 4
√
np2 log n, 4 log n) =: M when G ∼

G(n, p).
On the other hand, under RRAG(n,G, ÃA), with high probability, there exist two vertices u, v such that

xu = xv. Hence,

Pu,v(G) =
∑

k ̸∈{u,v}
Gu,kGv,k =

∑

k ̸∈{u,v}
1[xkx

−1
u ∈ A]1[xkx

−1
v ∈ A] =

∑

k ̸∈{u,v}
1[xk ∈ Axu].
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Conditioned on xu,xv, this is a sum of n − 2 independent Bernoulli(p) random variables. When p =
É(log n/n), again by Bernstein’s inequality, with high probability

∑

k ̸∈{u,v}
1[xk ∈ Axu] g p(n− 2)− 4

√
np log n > 1.1×max((n− 2)p2 + 4

√
np2 log n, 4 log n) = 1.1M.

Now, we consider the following polynomial

Q(G) :=
∑

i<j

Pi,j(G)
100 logn.

It is clearly of degree 200 log n, According to the above discussion, with high probability

Q(G) f
(
n

2

)
M100 logn when G ∼ G(n, p),

Q(H) g (1.1M)100 logn >

(
n

2

)
M100 logn when H ∼ RRAG(n,G, ÃA).

Hence, comparing Q to
(
n
2

)
M100 logn distinguishes the two graph models with high probability.

7.3 Brute-Force Detection of Random Algebraic Graphs

So far, in this section we have provided strong evidence that |G| = exp(logO(1) n) is the computational

limit for detecting RRAG(h,G, ÃA) for a typical A ∼ AnteU(G, p). This leaves a large gap from the

|G| = Ω(n log 1
p
) in Theorem 5.1 above which we proved that the two graph models are statistically in-

distinguishable. So, a question remains - can we prove a better statistical detection rate, ideally on the order

of exp(Ω̃(n))? We obtain the following lower-bound, which matches our indistinguishability rate when

p = Ω(1). It holds in the more general setup of probabilistic latent space graphs.

Theorem 7.6. There exists an absolute constantC with the following property. Suppose that min(p, 1−p) =
É( 1

n2 ) and Ω is a latent space of size at most exp(CnH(p)), where

H(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy. Let D be an arbitrary distribution over

Ω and let Ã be an arbitrary {0, 1}-valued connection. Then,

TV
(
G(n, p),PLSG(n,Ω,D, Ã)

)
= 1− o(1).

Proof. We analyze the case of p f 1
2
, in which we simply have |Ω| f exp(C ′p log 1

p
n). We apply a simple

entropy argument. Consider the n latent variables, x1,x2, . . . ,xn. The n-tuple (x1,x2, . . . ,xn) can take at

most |G|n f exp(C ′n2p log 1
p
) values. Since edges are deterministic functions of latent vector (because Ã

is {0, 1}-valued), PLSG(n,Ω,D, Ã) is a distribution with support of size at most exp(C ′n2p log 1
p
). Denote

this support by S.
Now, consider H ∼ G(n, p). First, by standard Chernoff bounds,

P

[
|E(H)| f 1

2
E[|E(H)|]

]
f exp(−Ω(E[|E(H)|])) = exp(−Ω(n2p)) = o(1).

On the other hand, for any fixed graph K on at least 1
2
E|E(H)| = 1

2

(
n
2

)
p vertices, we have

P[H = K] = p|E(K)|(1− p)(
n
2)−|E(K)| f p|E(K)| f exp

(
log p

1

2

(
n

2

)
p

)
f exp

(
− 1

5
n2p log

1

p

)
.
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Combining these two inequalities, we conclude that

PH∼G(n,p)[H ∈ Sc] = 1−PH∼G(n,p)[H ∈ S]

g 1−P

[
|E(H)| f 1

2

(
n

2

)
p

]
−P

[
|E(H)| > 1

2

(
n

2

)
p,H ∈ S

]

g 1− o(1)− |S| × sup
K : |E(K)|> 1

2(
n
2)p

P[H = K]

g 1− o(1)− exp

(
− 1

5
n2p log

1

p

)
× |S|

= 1− o(1)− exp

(
− 1

5
n2p log

1

p

)
× exp

(
C ′n2p log

1

p

)
= 1− o(1)

for small enough C ′. The definition of total variation immediately implies the desired conclusion.

8 Discussion and Future Directions

We introduced random algebraic graphs, which turn out to be a very expressive family of random graph

models. In particular, it captures the well-studied random geometric graphs on the unit sphere with connec-

tions depending on inner products of latent vectors, the stochastic block model, and blow-ups and random

subgraphs of Cayley graphs. We studied in depth the model when the latent space is given by the group

{±1}d. The hypercube is of primary interest as it simultaneously captures a geometry of “uniformly ar-

ranged” directions like the sphere, but also has an Abelian-group structure. Using this duality of the hy-

percube, we exploited tools from Boolean Fourier analysis to study a wide range of non-monotone and/or

non-symmetric connections, many of which seem unapproachable with previous techniques for studying

random geometric graphs. Some of these connections revealed new phenomena. Perhaps most interesting

among them is a suggested nearly-exponential statistical-computational gap in detecting geometry over the

hypercube for almost all indicator connections with a prescribed density. We extended this to arbitrary

groups of appropriate size and interpreted the respective result in the language of random Cayley graphs.

As promised in the beginning, we briefly discuss which of our results on the hypercube can be attributed

to the algebraic structure of {±1}d and which to the geometric.

1. Algebraic. Two of our results stand out as algebraic. First, our results on indicators of s intervals

show that for s sufficiently large, even though Ã only depends on the inner product of latent vectors,

the dimension might need to be an arbitrary large function of n for the phase transition to Erdős-

Rényi to occur, Corollaries 4.14 and 6.8. This, as discussed in Remark 6.5, is a phenomenon specific

to the hypercube as it captures the arithmetic property of parity. As follows Theorem 1.2, random

geometric graphs with Gaussian latent vectors become indistinguishable from Erdős-Rényi when Ã
only depends on the inner product for d = É(n3), regardless of the specific form of Ã. Second, our

result on typical indicator connections Theorem 4.19 not only relies on the fact that the hypercube is

a group, but it also utilizes the fact that it is a finite latent space. It is far from obvious how to define

“typical dense indicator connections” when the latent space is, say, the sphere. In Theorem 5.1, we

extend Theorem 4.19 to more general groups of appropriate size, which is further evidence for the

dependence of this result on the underlying group structure.

2. Geometric. We believe that most of the other results are a feature of the geometry of ({±1}d,Unif, Ã)
and, thus, likely extend to other random geometric graphs such as ones defined over the sphere. First,

we extended the result of Liu and Racz on Lipschitz connections Corollary 4.4 to non-monotone

connections, which we believe can be also done over the sphere or Gaussian space (potentially, via
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arguments close to the ones of [LR23a]). Next, we showed that if Ã is even — that is, depends

on |ïx,yð| — phase transitions occur at d = Θ̃(n3/2) instead of d = Θ̃(n3) (Corollaries 4.5, 4.10

and 4.14). Again, this behaviour seems to be purely geometric and we expect it to extend to Gauss

space and the unit sphere.

Since this work is the first to explicitly study random algebraic graphs and to apply tools from Boolean

Fourier analysis to random geometric graphs in high dimension, it opens the door to many new exciting

lines of research.

8.1 On the Indistinguishability Argument of Liu and Racz

Our indistinguishability results are based on Claim 1.5 due to Liu and Racz. Unfortunately, as the authors

themselves note in [LR23a], the statement of this claim is suboptimal. We join Liu and Racz in posing the

task of improving Claim 1.5.

The current paper demonstrates that such an improvement can have further interesting consequences

beyond closing the gap in Theorem 1.4. Of special interest is its relevance to the Boolean analogue of Con-

jecture 1.1 demonstrated in Corollary 4.8. In light of this connection, one could hope to close Conjecture 1.1

with an improved Claim 1.5. Further applications related to the current paper are Conjecture 4.16 and the

gaps in the setting of union of intervals (Corollaries 4.14 and 6.8), low-degree polynomials (Sections 4.1.5

and 6.1.4) coefficient contractions and repulsion-attraction twists (Sections 4.2 and 6.2), and the statistical

phase transition for typical random algebraic graphs Theorems 5.1 and 7.6.

Here, we formally prove two limitations of Claim 1.5.

1. Sublinear dimensions for indicator connections. First, we show that if Ã is an indicator with ex-

pectation p < 1/2, one cannot hope to prove indistinguishability for d = o(n) over the hypercube using

Claim 1.5. Suppose that n > 8d and Ã is {0, 1}-valued, in which case

sup
g
µ(g) = sup

g

∑

S ̸=∅
Ã̂(S)2ÉS(g) =

∑

S ̸=∅
Ã̂(S)2 = Var[Ã] = p(1− p).

Consider the term t = 2d for k = 4d in (4). Using ∥µ∥tt g 1
2d
∥µ∥t∞ = 1

2d
Var[Ã]t = pt(1−p)t

2d
, together with

the positivity in Proposition 3.2, we conclude

4d∑

t=0

(
4d

t

)
E[µt]

pt(1− p)t

g
(
4d

2d

)
E[µ2d]

p2d(1− p)2d

g
(
4d

2d

)
× p2d(1− p)2d

2d
1

p2d(1− p)2d

g
(
4d

2d

)
1

2d
g 2d.

This shows that the bound used in Claim 1.5 gives a KL-divergence at least d and, thus, no non-trivial bound

on total variation. Note that there is a significant gap to the entropy bound of d = Ω̃(np) when p = o(1) in

Theorem 7.6.
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2. Inefficiency in KL-Convexity. Using our observation on differences of Wishart matrices in Sec-

tion 4.2, we give a formal proof that the KL-convexity used by Racz and Liu in deriving Claim 1.5 is

indeed at least sometimes suboptimal. Consider (Ω,D) = (Rd,N (0, Id)), where without loss of generality

d is even, d = 2d1. Consider the following two indicator connections:

Ã+(x, y) = 1[
d∑

i=1

xiyi g 0],

Ã+,−(x, y) = 1[

d1∑

i=1

xiyi −
2d1∑

i=d1+1

xiyi g 0].

Clearly, both have expectation 1/2. From [BDER14], we know that RGG(n,Rd,N (0, Id), Ã+) converges to

G(n, 1/2) in TV if and only if d = É(n3). However, Theorem 6.17 shows that

RGG(n,Rd,N (0, Id), Ã+,−) already converges to G(n, 1/2) in TV when d = É(n2).
Despite this difference, once KL-convexity is applied as in [LR23a], the bounds on the two models

become identical. Namely, the proof in [LR23a] goes as follows. Let A be the adjacency matrix of

RGG(n,Rd,N (0, Id), Ã, 1/2) and let B be the adjacency matrix of G(n, 1/2). Let Ak,Bk be the princi-

ple minors of order k, and let ak,bk be the respective last rows. Finally, let X = (x1,x2, . . . ,xn)
T ∈ Rn×d

be the matrix of latent vectors and Xk its k × d submatrix on the first k rows. Clearly, Xk determines Ak.
Then, Racz and Liu write:

KL
(
RGG(n,Rd,N (0, Id), Ã)∥G(n, 1/2)

)
= KL(A∥B)

=
n−1∑

k=0

EAk
KL
(
ak+1|Ak∥bk+1|Bk = Ak

)

=
n−1∑

k=0

EAk
KL
(
ak+1|Ak∥bk+1

)

f
n−1∑

k=0

EXk,Ak
KL
(
ak+1|Ak,Xk∥bk+1

)

=
n−1∑

k=0

EXk
KL
(
ak+1|Xk∥bk+1

)
.

We claim that at this point, there is noting distinguishing Ã+ and Ã+,−. Namely, we claim that a
(+)
k+1|Xk and

a
(+,−)
k+1 |Xk have identical distributions for any fixed k (where the subscripts show the dependence on Ã).

This captured by the following simple fact. Take any v ∈ {0, 1}k. Then,

P[a
(+)
k+1 = v|Xk]

= P

[
1

[ d∑

i=1

(xk+1)i(xj)i

]
= vj ∀j ∈ [k]

]

= P

[
1

[ d1∑

i=1

(xk+1)i(xj)i −
2d∑

i=d1

(−(xk+1)i)(xj)i

]
= vj ∀j ∈ [k]

]

P[a
(+,−)
k+1 = v|Xk],
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which follows from the fact that

(x1, x2, . . . , xd1 , xd1+1, xd1+2, . . . , xd) −→ (x1, x2, . . . , xd1 ,−xd1+1,−xd1+2, . . . ,−xd)

is a measure preserving map on

(
Rd,N (0, Id)

)
.

The fact that the Claim 1.5 cannot distinguish between Ã+ and Ã+,− also has a natural interpretation

in the hypercube setting. Note that Ã+ is just the Maj connection and Ã+,− is the HNMaj connection (see

Section 6.2). However, those two functions only differ in the signs of their Fourier coefficients. However,

any information about signs is lost when one analyses the respective autocorrelation µ as Fourier coefficients

are squared (see Section 2.3).

8.2 Groups Beyond the Hypercube

As already discussed, the random algebraic model is very expressive and, for that reason, it would be inter-

esting to consider further instances of it, especially over groups other than {±1}d. Nevertheless, these other

groups remain challenging and interesting, especially in the case of concrete rather than typical connections.

1. Abelian Groups. We believe that products of small (of, say, constant size) cyclic groups can be han-

dled in nearly the same way in which we handled the hypercube. In particular, for such groups a very strong

hypercontractivity result analogous to Theorem 2.7 holds (see [O’D14, Ch. 10]). Nevertheless, analysing

more general groups - even in the finite case - seems challenging. If one chooses to study those via Fourier

analysis, this could lead to a fruitful investigation of complex Wishart matrices since functions of finite

groups are spanned by their representations over the complex plane. Similarly, one would encounter com-

plex representations when studying connections over finite-dimensional tori. High-dimensional random

geometric graphs over tori are studied, for example, in [FGKS24a, FGKS24b].8

2. Non-Abelian Groups. The situation with non-Abelian groups seems more challenging even in the

finite case due to the fact that 1-dimensional characters are insufficient to span all functions. Several alter-

native directions seem viable. As a first step, one could study connections depending only on conjugacy

classes, which are spanned by 1-dimensional characters. Alternatively, one could try to develop hyper-

concentration tools in the non-Abelian case as in [FKLM24]. This seems like a difficult but extremely

worthwhile pursuit even independently of random geometric graphs. Finally, in the finite case, one could

undertake a purely combinatorial approach based on the relationship between random algebraic graphs and

Cayley graphs outlined in Section 1.3.

In the infinite case, it could be especially fruitful to study the orthogonal group, which is relevant to

spherical random geometric graphs (see Section 1.3). In the special case over the sphere when Ã(x, y) only

depends on ïx, yð, Gegenbauer polynomials provide a convenient orthonormal basis. This basis is used in

[LS23] in the context of random geometric graphs.

8.3 The Statistical-Computational Gap

In Section 7, we gave evidence for a new statistical-computational gap. We propose several further direc-

tions to studying it.

First, we would like to close the n2- to n4 gap for our current low-degree results Theorems 7.1 and 7.5.

One observation in that direction is that the low-degree polynomial in Theorem 7.5 is oblivious to A. One

may hope to improve this result by choosing a polynomial that depends on A.

8After the original version of this work was made public, the work [BB24a] on high-dimensional random geometric graphs

over Td appeared.
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Second, we would like to close the exp(Θ̃(np)) - to exp(Θ̃(n)) gap in our statistical distinguishing

results Theorems 5.1 and 7.6. As noted in Section 8.1, improving the exp(Θ̃(n)) lower bound requires

substantially new ideas.

Another natural direction is proving hardness results against other computational models than low-

degree polynomials. We note that our current result leaves many possible poly-time algorithms unaddressed

such as ones based on arithmetic. Low-degree polynomials over F2 are not necessarily low-degree polyno-

mials over R (see [O’D14]). Refuting the statistical-computational gap we proposed for general groups via

arithmetic-based polynomial-time algorithms does not seem completely unfeasible due to the underlying

arithmetic in random algebraic graphs.

8.4 Boolean Fourier Analysis and Probability

We end with a few directions in Boolean Fourier analysis and probability related to the current paper that

might be of independent interest.

1. Wishart Matrices. Theorem 6.17 suggests that differences of Wishart matrices might behave very

differently from Wishart matrices. It could be interesting to study more general linear combinations of

Wishart matrices. Specifically, it could be interesting to study the following problem asking for the linear

combination closest to GOE.

Problem 8.1. Given are n, d1, d2, . . . , dk ∈ N. Let X1, X2, . . . , Xk be k independent Gaussian matrices

where, Xi ∼ N (0, Idi)
¹n ∈ Rn×di . Find

a ∈ arg min
a : ∥a∥2=1

TV
( k∑

i=1

aiXiX
T
i ,

√√√√
k∑

i=1

diM(n) +

(
k∑

i=1

di³i

)
In

)
.

Tools related to the eigenvalues of Wishart matrices similar to the ones developed in [KC20] for the

complex case may be useful.

2. Hypercontractivity. In Theorem 3.5, we developed novel, to the best of our knowledge, bounds on the

moments of elementary symmetric polynomials of Rademacher variables in certain regimes. As discussed,

these also hold with standard Gaussian and uniform spherical arguments. We noted that these bounds

improve the classical hypercontractivity result of Theorem 2.7 because of the small spectral ∞-norm of

the respective polynomials. We wonder whether one can generalize this phenomenon beyond (signed)

elementary symmetric polynomials.

3. Interpretable Boolean Functions Without Low-Degree and High-Degree Terms. In Proposition 6.13

we constructed a function Ã : {±1}d −→ [0, 1] with weight 0 on levels 1, 2, . . . ,m − 1, d − m + 1, d −
m + 2, . . . , d and variance of order Ω̃(1) when m is a constant. We wonder whether there are interpretable

functions satisfying these properties when m > 3.
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[LR23a] Suqi Liu and Miklós Z. Rácz. A probabilistic view of latent space graphs and phase transitions.

Bernoulli, 29(3):2417 – 2441, 2023.

[LR23b] Suqi Liu and Miklós Z. Rácz. Phase transition in noisy high-dimensional random geometric

graphs. Electronic Journal of Statistics, 17(2):3512 – 3574, 2023.

[LS23] Shuangping Li and Tselil Schramm. Spectral clustering in the gaussian mixture block model,

2023.

[MW22] Andrea Montanari and Alexander S. Wein. Equivalence of approximate message passing and

low-degree polynomials in rank-one matrix estimation, 2022.

[MWZ23] Cheng Mao, Alexander S. Wein, and Shenduo Zhang. Detection-recovery gap for planted

dense cycles. In Gergely Neu and Lorenzo Rosasco, editors, Proceedings of Thirty Sixth

Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research,

pages 2440–2481. PMLR, 12–15 Jul 2023.

[MWZ24] Cheng Mao, Alexander S. Wein, and Shenduo Zhang. Information-theoretic thresholds for

planted dense cycles, 2024.

[MZ24] Cheng Mao and Shenduo Zhang. Impossibility of latent inner product recovery via rate dis-

tortion, 2024.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press;, 2014.

[Pen03] Mathew Penrose. Random Geometric Graphs. Oxford University Press, 05 2003.

[PW24] Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge

University Press, 2024.
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A Variance of the Signed Triangle Statistic

Proof of Proposition 2.14. Denote SW
p
△(i,j,k)(G) = (Gi,j − p)(Gj,k − p)(Gk,i − p). For

G ∼ RAG(n, {±1}d, Ã), as in [LR23a, Section 4.3.], we have

Var[SWp
△(G)] =

(
n

3

)
Var[SWp

△(1,2,3)(G)]

+O

((
n

4

))
Cov[SWp

△(1,2,3)(G), SWp
△(1,2,4)(G)]

+O

((
n

5

))
Cov[SWp

△(1,2,3)(G), SWp
△(1,4,5)(G)]

+O

((
n

6

))
Cov[SWp

△(1,2,3)(G), SWp
△(4,5,6)(G)].

We bound each of the four terms separately.

Case 1) Covariance when the two triangles have overlap of size 3. Using that each edge is an indicator,

E[SWp
△(1,2,3)(G)] = E[(G1,2 − p)2(G2,3 − p)2(G3,1 − p)2]

= E[(1− 2p)(G1,2 − p) + (p− p2)][(1− 2p)(G2,3 − p) + (p− p2)][(1− 2p)(G3,1 − p) + (p− p2)]

= (1− 2p)3SWp
△(1,2,3)(G) + (p− p2)3.

We used the simple observations that E[Gi,j − p] = 0 and

E[(Gi,j−p)(Gj,k−p)] = E[(Ã(x−1
i xj)−p)(Ã(x−1

j xk)−p)] = Eg,h∼iidUnif({±1}d)[(Ã(g)−p)(Ã(h)−p)] = 0.

It follows that
(
n

3

)
Var[SWp

△(1,2,3)(G)2] =

(
n

3

)(
(p− p2)3 + (1− 2p)3E[SWp

△(1,2,3)(G)]− E[SWp
△(1,2,3)(G)]2

)

=

(
n

3

)
(p− p2)3 + (1− 2p)3

∑

S ̸=∅
Ã̂(S)3 −


∑

S ̸=∅
Ã̂(S)3




2
 = O


n3p3 + n3

∑

S ̸=∅
Ã̂(S)3


 .

Case 2) When the two triangles have an overlap of size 2.

E[SWp
△(1,2,3)(G)SWp

△(1,2,4)(G)] =

E[(G1,2 − p)2(G1,3 − p)(G2,3 − p)(G1,4 − p)(G2,4 − p)] =

E
[
E
[
(G1,2(1− 2p) + p2)(G1,3 − p)(G2,3 − p)(G1,4 − p)(G2,4 − p)|x1,x2,x2,x4,x5

]]
=

E
[
(Ã(x−1

1 x2)(1− 2p) + p2)(Ã(x−1
1 x3)− p)(Ã(x−1

2 x3)− p)(Ã(x−1
1 x4)− p)(Ã(x−1

2 x4)− p)
]
=

E
[
(Ã(x−1

1 x2)(1− 2p) + p2)Ex3

[
(Ã(x−1

1 x3)− p)(Ã(x−1
2 x3)− p)

]
Ex4

[
(Ã(x−1

1 x4)− p)(Ã(x−1
2 x4)− p)

]]
.

64



Now, observe that

Ex3

[
(Ã(x1,x3)− p)(Ã(x−1

2 x3)− p)
]
Ex4

[
(Ã(x−1

1 x4)− p)(Ã(x−1
2 x4)− p)

]

= Ex

[
(Ã(x−1

1 x)− p)(Ã(x−1
2 x)− p)

]2 g 0.

Therefore, as (Ã(x−1
1 x2)(1− 2p) + p2) ∈ [0, 1] (as Ã takes values in 0, 1), the above expression is bounded

by

E
[
Ex3

[
(Ã(x−1

1 x3)− p)(Ã(x−1
2 x3)− p)

]
Ex4

[
(Ã(x−1

1 x4)− p)(Ã(x−1
2 x4)− p)

]]

= E
[
(Ã(x−1

1 x3)− p)(Ã(x−1
2 x3)− p)(Ã(x−1

1 x4)− p)(Ã(x−1
2 x4)− p)

]

=
∑

S ̸=∅
Ã̂(S)4,

where the last equality follows from Observation 2.13. Thus, the total contribution to the variance from this

case is O


n4

∑

S ̸=∅
Ã̂(S)4


 .

Case 3) When the two triangles have an overlap of size 1.

E[SWp
△(1,2,3)(G)SWp

△(1,4,5)(G)]

= E[(Ã(x−1
1 x2)− p)(Ã(x−1

2 x3)− p)(Ã(x−1
3 x1)− p)(Ã(x−1

1 x4)− p)(Ã(x−1
4 x5)− p)(Ã(x−1

5 x1)− p))]

= E[(Ã(g)− p)(Ã(h)− p)(Ã(g−1h−1)− p)(Ã(k)− p)(Ã(ℓ)− p)(Ã(k−1ℓ−1)− p))]

= E[(Ã(g)− p)(Ã(h)− p)(Ã(g−1h−1)− p)]E[(Ã(k)− p)(Ã(ℓ)− p)(Ã(k−1ℓ−1)− p)]

= E[SWp
△(1,2,3)(G)]SWp

△(1,4,5)(G)],

so the covariance equals 0 in that case.

Case 4) When the two triangles have an overlap of size 0.

E[SWp
△(1,2,3)(G)SWp

△(4,5,6)(G)] = E[SWp
△(1,2,3)(G)]E[SWp

△(4,5,6)(G)],

so the covariance is also zero in this case. The conclusion follows by adding the four covariances.

B Fourier Weights on Level d

Proof of Lemma 4.2. Suppose that f : {±1}d −→ [0, 1] is a symmetric function. Define by fi the value

of f when exactly i of its coordinates are equal to 1. Let ai = fi+1 − fi and a0 = f0, so fi =
∑i

j=0 aj.
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Consider f̂([d]), which is the correlation of f with the parity function É[d](x). By definition,

f̂([d]) = E[f(x)É[d](x)]

=
1

2d

d∑

i=0

(
d

i

)
(−1)d−if(1, 1, . . . , 1︸ ︷︷ ︸

i

−1,−1, . . . ,−1︸ ︷︷ ︸
d−i

)

=
1

2d

d∑

i=0

(
d

i

)
(−1)d−i

i∑

j=0

aj

=
1

2d

d∑

j=0

aj

d∑

i=j

(
d

i

)
(−1)d−i

=
1

2d

d∑

j=0

aj(−1)d−j
(
d− 1

j − 1

)
,

(26)

where in the last line we used the simple combinatorial fact that

d∑

i=j

(
d

i

)
(−1)d−i = (−1)d−j

(
d− 1

j − 1

)
,

which can be easily proved by induction and Pascal’s identity
(
d−1
j−1

)
−
(
d
j

)
= −

(
d−1
j

)
. In particular, when

j = 0, the corresponding sum equals zero. We modify this expression even further, showing that

|f̂([d])| =
∣∣∣∣∣
1

2d

d∑

j=1

aj(−1)d−j
(
d− 1

j − 1

)∣∣∣∣∣ =
1

2

∣∣∣Ej∼Binomial(d−1, 1
2
)(−1)d−j(fj+1 − fj)

∣∣∣

f 1

2
Ej∼Binomial(d−1, 1

2
)|fj+1 − fj| = O

(∑d
j=1 |fj+1 − fj|√

d

)
= O

(
Fl(f)√
d

)
.

We now continue to bounding T̂p([d]) and D̂p([d]). In what follows, we omit all floor and ceiling signs

for simplicity of exposition. Clearly, they don’t affect the asymptotics.

Proof of Proposition 4.7. Note that for f = Tp, we only have one non-negative value a, which corresponds

to the case when
∑d

i=1 xi = Äp− 1 or, equivalently, there are exactly t = Äp−1+d

2
ones in the vector x. Thus,

at = 1 and as = 0 when s ̸= t. In other words,

|T̂p([d])| =
1

2d

(
d− 1

t− 1

)
.

Thus, we simply need to bound the binomial coefficient
(
d
t

)
. To do so, we first bound Äp. As each xi is

supported on [−1, 1], it is 1-subgaussian. Therefore,
∑d

i=1 xi is d-subgaussian9 and, thus,

p = P
[∑

xi g Äp

]
f exp

(
− Ä

2
p

2d

)
,

so Äp f
√

2d log 1
p
. By taking a large enough constant in O

(
p
√

log 1
p√

d

)
, we can also assume that

Äp g
√
d/10. Indeed, this is true because

P

[
d∑

i=1

xi g
√
d/10

]
=

1

2
− 1

2d

d/2+
√
d/10∑

s=d/2

(
d

s

)
g 1

2
− 1

2d
×

√
d

10

(
d

d/2

)
g 1

2
− 1

2d
× 2d√

d

√
d

10
= Ω(1).

9For these simple applications of subgaussian concentration, see [Han, Ch.3].

66



Now, let È = d
Äp
< 10

√
d. We claim that

(
d

t+È

)
g C

(
d
t

)
for some absolute constant C, independent of d

and p. Indeed, note that

(
d

t+È

)
(
d
t

) =

È−1∏

i=0

d− t− i

t+ i+ 1
g
(
d− t− È

t+ È

)È

g
(

d
2
− Äp−1

2
− È

d
2
+ Äp−1

2
+ È

)È

=

(
1− Äp − 1 + 2È

d
2
+ Äp−1

2
+ È

)È

g
(
1− 2Äp + 4È

d

)È

g exp

(
−2ÄpÈ + 4È2

d

)
g exp

(
−2d+ 100d

d

)
= exp(−102),

as desired.

Now, by definition of t, the function Tp is equal to one if and only if there are at least
Äp+d

2
ones among

x1, x2, . . . , xd. It follows that

p =
1

2d

d∑

j=t

(
d

j

)
g 1

2d

È−1∑

i=0

(
d

t+ i

)
g CÈ

1

2d

(
d

t

)
.

Thus,

1

2d

(
d− 1

t− 1

)
f 1

2d

(
d

t

)
= O

(
p

È

)
= O

(pÄp
d

)
= O



p
√

log 1
p√

d


 .

The proof of Proposition 4.9 is a nearly trivial consequence.

Proof of Proposition 4.9. Note that ¶p = Ä p
2
. For the function f = Dp, we easily see that if t =

Äp/2−1+d

2
, we

have a0 = 1, ad−t = −1, at = 1, and all the other differences are equal to 0. Thus, we simply need to bound

1
2d

((
d
t

)
+
(
d
d−t
))

as above. Using the result of the previous proof, this expression is just O

(
p
2

√

log 2
p√

d

)
=

O

(
p
√

log 1
p√

d

)
.

We we end with a remark which will be useful later on and shows that our estimate for
(
d
t

)
is optimal

up to the small logarithmic factor.

Corollary B.1. When p = dO(1),
1

2d

(
d

d+Äp−1

2

)
= Ω

(
p√
d

)
.

Proof. Again, let t = d+Äp−1

2
. Note that t ∈ [d/2, 2d/3] by the assumption on p. We will first show that

whenever z g d
2
, it is the case that (

d

z + 2
√
d

)
f C

(
d

z

)

for C = e−1/2 < 1. Indeed, this is nearly trivial as

(
d

z+2
√
d

)
(
d
z

) =
2
√
d−1∏

i=0

d− z − i

z + i+ 1
f

2
√
d−1∏

i=
√
d

d− z − i

d/2
f
(
d−

√
d

d/2

)√
d

=

(
1− 1

2
√
d

)√
d

f e−1/2.
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This, however, is sufficient as

p =
1

2d

d∑

j=t

(
d

j

)
f 1

2d

∞∑

s=0

2
√
d

(
d

t+ s2
√
d

)
f 1

2d
2
√
d

(
d

t

) ∞∑

s=0

Cs = O

(√
d
1

2d

(
d

t

))
,

from which the conclusion follows.

C Boolean Functions Without Low-Degree and High-Degree Terms

Proposition C.1. For every integer d and integer m < d/2, there exists a symmetric function

f : {±1}d −→ [−1, 1] such that:

1. W1(f) = W2(f) = · · · = Wm−1(f) = 0,

2. Wd−m(f) = Wd−m+1(f) = · · · = Wd(f) = 0,

3. Wm(f) = Ω
(

1
m13/2 logm d

)
.

We only prove the statement when d and m are both odd, but explain how to remove these parity

assumptions. Our construction is based on modifying the majority function Maj = T1/2, about which we

first recall the following fact.

Lemma C.2 ([O’D14]). Suppose that d is odd and k < d. If k is even, Wk(Maj) = 0. If k is odd and

k < d/2,Wk(Maj) = Θ( 1
k3/2

).

Now, define the threshold operator T (·) over real functions on the hypercube as follows. T (f)[x] =
min(f(x), 1) when f(x) g 0 and T (f)[x] = max(f(x),−1) when f(x) < 0. Define also the operator Rm

on real functions over {±1}d removing layers {1, 2, . . . ,m − 1} ∪ {d −m, d −m + 1, . . . , d}. Formally,

for any h,

Rm(h) = h−
m−1∑

i=1

h=i −
d∑

j=d−m
h=j =

∑

S : mf|S|fd−m
ĥ(S)ÉS.

With this definition in mind, we are ready to prove the statement of Proposition C.1 in the case when d
and m are both odd. Our goal will be to roughly construct a function satisfying the desired properties by

combining the operators T and Rm over Maj.

Proof of Proposition C.1 when m and d are both odd. LetA =
(
e(4m+ 1)(2m+ 2) logm/2 d

)−1

(we will

demystify this number in the proof). We will show that the function 1
2
Rm ◦ T ◦ (A × Rm ◦Maj) satisfies

the desired properties. We do this in steps and begin with analyzing the mapping

g(x) : = A×Rm(Maj)[x]

= A

(
Maj(x)−

∑

0<i<m

Maj=i(x)−
∑

d−mfjfd
Maj=j(x)

)

= A

(
Maj(x)−

∑

0<i<m

M̂aj([i])pi(x)−
∑

d−mfjfd
M̂aj([j])pj(x)

)
.
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Note that Wm(g) = A2Wm(Maj) = Ω( 1
m11/2 logm d

) and

ĝ([m]) =

(
d

m

)−1/2

Wm(g)1/2 = Ω

((
d

m

)−1/2
1

m11/4 logm/2 d

)
.

We will show that with probability at least 1
d3m

, it is the case that g(x) ∈ [−1, 1]. Indeed, note that

|g(x)| f A|Maj(x)|+ A
∑

1fi<m
|M̂aj([i])| × |ei(x)|+ A

∑

d−mfjfd
|M̂aj([j])| × |ej(x)|.

The first term is clearly bounded by A. Note also that for each i,
(
d
i

)
|M̂aj([i])|2 = W i(Maj) f 1, so

|M̂aj([i])| f
(
d
i

)−1/2
. Finally, we bound each |ei| in high probability using the moment method and Theo-

rem 2.7. Suppose first that i < m. For t = (4m+ 1) log d and a = 1
A(2m+2)

= e(4m+ 1) logm/2 d,

P

[
|ei(x)| > a

√(
d

i

)]
f ∥ei(x)∥tt
at
√(

d
i

)t f
√
t− 1

it ∥ei(x)∥t2
at
√(

d
i

)t .

Now, observe that ∥ei∥22 = E[
∑

S,T |S|=|T |=i ÉSÉT ] =
(
d
i

)
. Thus, the above expression becomes

(
(t− 1)i/2

a

)t
f
(
(t− 1)m/2

a

)t
f
(
(4m+ 1)m/2 logm/2 d

a

)(4m+1) log d

f e−(4m+1) log d f 1

d4m+1
.

The same conclusion follows for i g d−m by observing that |ei(x)| = |É[d]ei(x)| = |ed−i(x)| holds for all

x. By union bound, with probability at least 1− 2m
d4m+1 g 1− 1

d4m
, the event

K =

{
x : |ei(x)| f a

√(
d

i

)
∀i ∈ {1, 2, . . . ,m− 1} ∪ {d−m, d−m+ 1, . . . , d}

}

occurs. Note that on K, however,

|g(x)| f A

(
1 +

∑

1fi<m

(
d

i

)−1/2

a

(
d

i

)1/2

+
∑

d−mfjfd

(
d

j

)−1/2

a

(
d

j

)1/2
)

f A(1 + (2m+ 1)a) f Aa(2m+ 2) = 1.

Thus, on K, the function g is bounded by 1. Outside of K, we can just bound g by its L∞ norm

|g(x)| f A

(
∥Maj∥∞ +

∑

1fi<m

(
d

i

)−1/2

∥ei∥∞ +
∑

d−mfjfd

(
d

j

)−1/2

∥ej∥∞

)

f A

(
1 +

∑

1fi<m

(
d

j

)−1/2(
d

i

)
+

∑

d−mfjfd

(
d

j

)−1/2(
d

j

))
f dm.

Now, define h(x) := g(x)− T ◦ g(x). Note that h ≡ 0 on K. Therefore, any Fourier coefficient of h is

bounded as follows.

|ĥ(S)| = |E[h(x)ÉS(x)]| = |E[h(x)ÉS(x)1Kc(x)]|
f E[|h(x)ÉS(x)|1Kc(x)] f ∥h∥∞ E[1Kc ]

f (∥g∥∞ + ∥T ◦ g∥∞)P[Kc]

f (dm + 1)
1

d4m
<

1

d2m
.

69



Therefore, for any set S, we have that | ̂[T ◦ g − g](S)| f 1
d2m

. In particular, this means that

Wm(T ◦ g) g
(
d

m

)(
ĝ([i])− 1

d2m

)2

= Ω



(
d

m

)((
d

m

)−1/2
1

m11/4 logm/2 d
− 1

d2m

)2

 = Ω

(
1

m11/2 logm/2
d

)
.

Furthermore, for i ∈ {1, 2, . . . ,m−1}∪{d−m, d−m+1, . . . , d}, |T̂ ◦ g([i])| = ∥ ̂[T ◦ g − g]([i])∥ f 1
d2m

.
Finally, we will show that the symmetric function 1

2
Rm ◦ T ◦ g satisfies the desired properties. First, note

that Wm(1
2
Rm ◦ T ◦ g) = 1

2
Wm(T ◦ g) = Ω( 1

m11/2 logm/2 d
). Since Rm is the last operator applied, also

W i(1
2
Rm ◦ T ◦ g) = 0 for i ∈ {1, 2, . . . ,m − 1} ∪ {d −m, d −m + 1, . . . , d}. Finally, we need to show

that 1
2
Rm ◦ T ◦ g is bounded in [−1, 1]. This, however, is simple.

∥∥∥∥
1

2
Rm ◦ T ◦ g

∥∥∥∥
∞

=
1

2

∥∥∥∥∥T ◦ g −
m−1∑

i=1

(T ◦ g)=i −
d∑

j=d−m
(T ◦ g)=j

∥∥∥∥∥
∞

f 1

2
∥T ◦ g∥∞ +

1

2

m−1∑

i=1

∥∥(T ◦ g)=i
∥∥
∞ +

1

2

d∑

j=d−m

∥∥(T ◦ g)=j
∥∥
∞

f 1

2
+

1

2

m−1∑

i=1

|T̂ ◦ g([i])| × ∥ei∥∞ +
1

2

d∑

j=d−m
|T̂ ◦ g([j])| × ∥ej∥∞

f 1

2
+

1

2

m−1∑

i=1

1

d2m

(
d

i

)
+

1

2

d∑

j=d−m

1

d2m

(
d

j

)
f 1,

with which the proof is complete.

Remark C.3 (Removing parity assumptions). Removing the assumption on d being odd is easy as we can

just consider the majority function over an even number of elements, introduced in Section 6.2. Removing

the parity assumption on m is also not hard. We need to repeat the above argument with some function

instead of Maj, which also has Ω( 1
m3/2 log d

) weight on even levels. Using the same reasoning as above, we

can prove that such a function is

H(x) := T

(
Maj(x)

∑
i=1 xi

log d
√
d

)
= T

(∣∣∣∣∣

∑d
i=1 xi√
d log d

∣∣∣∣∣

)

Now, suppose that f satisfies the conditions in Proposition C.1 and let ³ = E[f ]. Then, h = f−³
2

also

satisfies the conditions in Proposition C.1 and has mean zero. Thus, for any p f 1/2, the mapping p(1+ h)
has mean p and takes values in [0, 1]. With this, we are ready to state our main corollary in this appendix.

Corollary C.4. For every integer d, integer m < d/2, and real number p ∈ [0, 1] there exists a symmetric

connection Ã : {±1}d −→ [0, 1] such that:

1. W1(Ã) = W2(Ã) = · · · = Wm−1(Ã) = 0,

2. Wd−m(Ã) = Wd−m+1(Ã) = · · · = Wd(Ã) = 0,

3. Wm(Ã) = Ω
(

p2

m13/2 logm d

)
.

4. E[Ã] = p.
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D Further Computations of Fourier Coefficients

D.1 The Case of Symmetric Thresholds

Proof of Proposition 6.3. Suppose that S has size 2 or d− 2, in particular |S| is even. Then,

D̂p(S) = E[Dp(x)ÉS(x)] = E
[
1[
∑

xi g Äp/2]ÉS(x)
]
+ E

[
1[
∑

xi f −Äp/2]ÉS(x)
]

= E
[
1[
∑

xi g Äp/2]ÉS(x)
]
+ E

[
1[
∑

(−xi) g Äp/2]ÉS(−x)
]

= 2E
[
1[
∑

xi g Äp/2]ÉS(x)
]
= 2T̂p/2(S),

where we used the fact x and −x have the same distribution and |S| is even. Thus, we simply need to find

the Fourier coefficients of Tp/2 for our purposes. We do this in a similar manner to [O’D14, Chapter 5].

Namely, suppose that |S| = 2k and, without loss of generality due to symmetry, S = {d} ∪ S1, where S1

has size 2k − 1 it follows that

E[Tp/2(x)ÉS(x)]

=
1

2
E
[(
Tp/2(x1,x2, . . . ,xd−1, 1)− Tp/2(x1,x2, . . . ,xd−1,−1)

)
ÉS1

]
=

1

2
E[J(y)ÉS1(y)] =

1

2
Ĵ(S1),

where y = (x1,x2, . . . ,xd−1) and

J(y) :=
(
Tp/2(y1,y2, . . . ,yd−1, 1)− Tp/2(y1,y2, . . . ,yd−1,−1)

)
= 1

[
d−1∑

i=1

yi = Äp/2 − 1

]
.

We now find the coefficients of J via the noise-stability operator. Namely, pick the all-ones vector b = 1

and let z be Ä−correlated with b. On the one hand,

P[J(z) = 1] =

(
d− 1

d−1+Äp/2−1

2

)(
1

2
+
Ä

2

) d−1+Äp/2−1

2
(
1

2
− Ä

2

) d−1−Äp/2+1

2

as we need exactly
d−1+Äp/2−1

2
of the coordinates of y to equal 1 and each yi is iid Bernoulli(1

2
+ Ä

2
) as y and

b = 1 are Ä−correlated. On the other hand, by the definition of the noise operator

P[J(z) = 1] = E[J(z)] = TÄJ(b) =
∑

S

Ä|S|Ĵ(S)ÉS(b) =
d−1∑

s=0

Äs
(
d

s

)
Ĵ(S1).

Now, we simply compare coefficients of the two polynomial expressions as

d−1∑

s=0

Äs
(
d− 1

s

)
Ĵ([s]) =

(
d− 1

d−1+Äp/2−1

2

)(
1

2
+
Ä

2

) d−1+Äp/2−1

2
(
1

2
− Ä

2

) d−1−Äp/2+1

2

holds for all Ä ∈ [−1, 1]. For notational purposes, we set t =
d−1+Äp/2−1

2
.

Case 1) When s = 1. Then, we have(
d− 1

1

)
Ĵ([1]) =

1

2d

(
d− 1

t

)
(t− (d− t− 1))

=
1

2d

(
d− 1

t

)
(2t− d+ 1)

= Ω

(√
d

2d

(
d

t

))
= Ω(p),
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using the bounds t = d
2
+ Ω(

√
d) and 1

2d

(
d
t

)
= Ω( p√

d
) in Appendix B on t and

(
d
t

)
. Thus, Ĵ([1]) = Ω(p

d
)

and so D̂p([2]) = Ω(p
d
). Using the bounds t = d

2
+ Õ(

√
d) and 1

2d

(
d
t

)
= Õ( p√

d
), we similarly conclude that

D̂p([2]) = Õ(p
d
).

Case 2) When s = d− 3, we similarly have

(
d− 1

d− 3

)
Ĵ([d− 2])

=
1

2d

(
d− 1

t

)((
t

t− 2

)
(−1)d−t +

(
t

t− 1

)(
d− 1− t

d− 2− t

)
(−1)d−t−1 +

(
d− 1− t

d− 3− t

)
(−1)d−t−2

)

=
1

2d

(
d− 1

t

)
O

((
t

t− 2

)
−
(

t

t− 1

)(
d− 1− t

d− 2− t

)
+

(
d− 1− t

d− 3− t

))

=
1

2d

(
d− 1

t

)
O

(
t(t− 1) + (d− t− 1)(d− t− 2)− 2t(d− 1− t)

2

)

=
1

2d

(
d− 1

t

)
O

(
t(t− 1) + (d− t− 1)(d− t− 2)− 2t(d− 1− t)

2

)

=
1

2d

(
d− 1

t

)
O

(
(Äp/2 − 1)2 − (d− 1)

2

)

= Õ

(
p√
d
d

)
= Õ

(
p
√
d
)
,

where we used the fact that t =
d−1+Äp/2−1

2
to expand the expression and the bounds Äp/2 = Õ

(√
d
)

and

1
2d

(
d−1
t

)
= Õ( p√

d
). Hence, we know that D̂p([d− 2]) = 1

2
Ĵ([d− 2]) = Õ

(
pd−3/2

)
, as desired.

D.2 Interval Unions

Proof of Proposition 6.9. We have to prove three things about ·s. First, note that

E[·s] g P
[∑

xi g d1 +
√
d
]
= Ω(1).

Second, for each ℓ, we have that

1 g E[·2s ] g Wℓ(·s) =

(
d

ℓ

)
·̂s([ℓ])

2,

from which the bound on coefficients on levels 1, 2, d− 1, d− 2 follow. Lemma 4.2 implies that

∣∣∣·̂s
∣∣∣ =

∣∣∣∣∣
1

2d

s−2∑

j=0

(−1)d−d1−2j

(
d− 1

d1 + 2j − 1

)
+ (−1)d−d1−

√
d

(
d− 1

d1 +
√
d− 1

)∣∣∣∣∣

= Ω

(
s− 1√
d

+ (−1)d1−
√
d 1√

d

)
= Ω

(
s√
d

)
,

where we used the fact that 1
2d

(
d−1
d1+È

)
= Θ( 1√

d
) whenever È = O(

√
d).

72



E Variance of Symmetric Low-Degree Polynomials

Here we prove Proposition 2.9. The proof was suggested to us by Jason Gaitonde. We begin by introducing

some facts about low-degree univariate polynomials.

Theorem E.1 (Markov Brothers’ Inequality). For a given polynomial q : [−1, 1] −→ R of degree k,

max
x∈[−1,1]

|q(ℓ)(x)| f k2ℓ

(2ℓ− 1)!!
max
x∈[−1,1]

|q(x)|.

Above, (2ℓ− 1)!! :=
∏ℓ

j=1(2j − 1).

Corollary E.2. If q : [−1, 1] −→ [0, 1] is a degree k polynomial, then |q′(0)| f k2
√
cq(0) for some

absolute constant c.

Proof. By Theorem E.1, maxx∈[−1,1] |q(ℓ)(x)| f k2ℓmaxx∈[−1,1] |q(x)|/(2ℓ− 1)!! f k2ℓ/(2ℓ− 1)!! for each

ℓ. Now, for each x ∈ [−1, 1],

0 f q(x) =
k∑

i=0

q(i)(0)xi

i!(2i− 1)!!
f q(0) + q′(0)x+

k∑

j=2

k2j|x|j
j!(2j − 1)!!

.

Now, take x = −q′(0)/k4. This is in [−k−2, k−2] ¦ [−1, 1] as |q′(0)| f k2. We conclude that

0 f q(0)− q′(0)2

k4
+

k∑

j=2

k2j|q′(0)|jk−4j

j!(2j − 1)!!

= q(0)− q′(0)2

k4
+

k∑

j=2

(|q′(0)|k−2)j

j!(2j − 1)!!

f f(0)− q′(0)2

k4
+
q′(0)2

k4

k∑

j=2

1

j!(2j − 1)!!
,

where we used the fact that | q′(0)2
k4

| f 1. Finally, note that

q(0)− q′(0)2

k4
+
q′(0)2

k4

k∑

j=2

1

j!(2j − 1)!!
f q(0)− q′(0)2

k4
+
q′(0)2

k4

k∑

j=2

1

j!3
= q(0)− q′(0)2

k4
(1− e

3
).

As e < 3, the conclusion follows.

Now, we are ready to prove Proposition 2.9.

Proof of Proposition 2.9. From Theorem 2.8, we know that for some C ′, C ′′

Var[f ] = Wfk(f) f (C ′ ln(1/p))kE[f ]2 = (C ′ ln(1/p))kp2 f (C ′′ ln(1/p))kp2/8k4.

Thus, we only have to prove the statement under the assumption that 8k4/d f p.
Now, since f : {±1}d −→ [0, 1] is symmetric, it can be written as a univariate polynomial

f(x1, x2, . . . , xd) = q(
1

d
(x1 + x2 + · · ·+ xd)).
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Furthermore, if x ∼ Unif({±1}d), and Y ∼ 1
d
(Binomial(1/2, d) − d/2), then clearly f(x) and q(Y) have

the same distribution. Note that Y ∈ [−1, 1] with probability 1.

Let D be 1
d
(Binomial(1/2, d) − d/2). Note that E[Y t] = 0 whenever t is odd and E[Y t] f Ct/d

t

whenever d is even for some constant depending only on t. For example, C2 = 1. First, we will show that

q(0) f 4p. Note that

p = EY[q(Y)]

= q(0) + E
[ k∑

j=1

q(j)(0)xj

j!

]

= q(0) +

+k/2,∑

j=1

E
[q(2j)(0)x2j

(2j)!

]

g q(0)−
+k/2,∑

j=1

k4jCjd
−j

(2j)!(2j − 1)!

g q(0)− 2
k4

d
,

for large enough d, where we used the fact that C2 = 1 and k is constant. Using that p g 8k4/d, the

conclusion follows.

Now, we are ready to compute the variance of q as follows.

Var[q] f E[(q(Y)− q(0))2]

= E

[( k∑

j=1

q(j)(0)Yj

j!

)2
]

∑

j1,j2

E[
q(j1)(0)q(j2)(0)Yj1+j2

j1!j2!
].

Now, observe that E[Yj1+j2 ] = 0 unless j1+j2 is even. Furthermore if j1+j2 g 4,E[Yj1+j2 ] = O(1/d2) =
O(p/d), as desired. The only case left is j1 + j2 = 2, or equivalently j1 = j2 = 1. We use q(0) f 4p and

Corollary E.2. We conclude

E[q(1)(0)2Y2] f 1

d
q(1)(0)2 = O(

q(0)

d
) = O(

p

d
),

as desired.
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