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Abstract

In this paper we consider the problem of sampling from the low-temperature exponential
random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but
Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing
time due to metastable states. We instead consider metastable mixing, a notion of approximate
mixing relative to the stationary distribution, for which it turns out to suffice to mix only within
a collection of metastable states. We show that the Glauber dynamics for the ERGM at any
temperature – except at a lower-dimensional critical set of parameters – when initialized at
G(n, p) for the right choice of p has a metastable mixing time of O(n2 logn) to within total
variation distance exp(2Ω(n)).

1 Introduction

Given a vector of real-valued parameters ³ := (³0, ³1, . . . , ³K) * R × (R+)K , the exponential
random graph model ERGM(n, ³) is defined to be the probability measure over all simple graphs
with n vertices

µ³(X) =
1

Z³
exp

( K
∑

i=0

n2³iNi(X)

)

.

The Ni are subgraph counts corresponding to finite graphs G0, G1, . . . , GK (such as edges, triangles,
4-cycles, 5-cycles, 2-stars, etc.) and Z(³) denotes the normalizing constant. This is an exponential
family where the sufficient statistics are the subgraph counts. The model significantly generalizes
the Erdős-Rényi random graph and is used to model a variety of complex networks like social
networks and biological networks [10, 16, 8, 9, 31]. Early analysis was carried out by statistical
physicists [24, 25, 4], and probabilists and statisticians have further studied various questions about
these models including sampling, estimation, large deviations theory, concentration of measure, and
phase transitions [1, 5, 26, 7, 11, 23, 32, 27].

The basic problem we consider in this work is that of producing a sample from the ERGM

probability distribution in polynomial time. A popular approach to sampling is to use the Glauber
dynamics, a simple reversible Markov chain with the desired stationary distribution, and to run it
for sufficiently long that it is close to stationarity.
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Definition 1.1 (Glauber Dynamics). Given any probability distribution Ã over Ω = {0, 1}(n2) with
Ã(x) > 0 for all x * Ω, the Glauber dynamics with respect to Ã is the discrete time Markov chain
over Ω with single step transition from X to X 2 as follows:

1. Pick a coordinate E *
[(n

2

)]

uniformly at random.

2. Form X 2 by keeping all edges except for E the same as in X and sample X 2
E > Ã(·|X>E)

conditional on the other edges.

The Glauber dynamics with respect to Ã is reversible for Ã ([20]), so in particular Ã is stationary.

The mixing time of the Glauber dynamics, i.e., the time until the distribution is within total
variation 1/4 of stationarity, determines whether the approach is feasible and as shown by Bhamidi
et al. [1] turns out to be essentially characterized by the function L³ : [0, 1] ³ R defined as

L³(p) =

K
∑

i=0

³ip
|Ei| 2 I(p) (1)

where I(p) := 1
2p log p+

1
2(12 p) log(12 p). (Bhamidi et al. [1] actually formulated their results in

an equivalent way in terms of the function Ç³ defined in Section 2.2, while L³ was studied by [6].)

Theorem 1.2 ([1]). Consider the ERGM(n, ³) distribution. There are three regimes for ³:

1. High temperature: If L³ has a unique local maximum with a non-vanishing second derivative,
then the Glauber dynamics Markov chain for ERGM(n, ³) mixes in time O(n2 log n).

2. Low temperature: If L³ has multiple local maxima with non-vanishing second derivatives, then
any local Markov chain with stationary distribution ERGM(n, ³) must suffer a mixing time of
exp(Ω(n)).

3. Critical temperature: If any local maxima of L³ has a vanishing second derivative.

In this work, we use a loose and intuitive notion of metastability since this is not important in
order to state our technical results: consider subsets of the state space A,B ¦ Ω such that A ¦ B.
We will call B to be metastable with respect to a given markov dynamics if the markov dynamics
initialized inside the set A takes a long time to exit the set B. In this work, we interpret ‘long
time’ as being exponential in n. Slow mixing in the low-temperature phase is due to the existence
of multiple, disconnected metastable states from which it takes the Glauber dynamics exponential
time to leave. The question is therefore: can one efficiently produce a sample from the ERGM in
the low temperature regime?

An important insight into the structure of the ERGM distribution was developed by Chatterjee
and Diaconis [6], and this will constitute a useful step towards our goal. They showed that the
ERGM distribution is close to a finite mixture of constant graphons with respect to the cut-metric:

Theorem 1.3 (Theorem 4.2 of [6]). Denote by M³ the set of global maxima of L³. The ERGM(n, ³)
distribution converges, in probability with respect to the cut-metric, to a mixture of G(n, p7) for
p7 * M³ . Formally, let Xn > ERGM(n, ³) and X̃n be its corresponding graphon and M̃³ be the set
of all constant graphons with value p7 for some p7 * M³ . For every fixed · > 0, there are constants
C(·), c(·) > 0 such that

P(·�(X̃n, M̃³) > ·) f C(·) exp(2c(·)n2) .
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Graphons and the cut metric are reviewed in Section 2.1.
Given the approximation results of Chatterjee and Diaconis, can one simply find p7 and ob-

tain a sufficiently accurate approximation of the ERGM by sampling G(n, p7)? Unfortunately, no:
Theorem 1.3 is in cut metric, which turns out to be too weak to control total variation distance.
Indeed, the paper [3] shows that dTV(ERGM, G(n, p7)) ³ 1 even for the simple ERGM consisting
of edges and 2-stars. The approximation results of Eldan and Gross [7] show that even in the
low-temperature regime, the ERGM can be approximated in a certain Wasserstein metric by an
appropriate mixture of stochastic block models, endowing it with richer structure compared to
G(n, p7). However, these results also do not imply approximation in the total variation distance.

The ERGM is closely related to the ferromagnetic Ising model and, in fact, the ERGM with the
2-star can be written as an Ising model. Just as for the ERGM, the Glauber dynamics is known to
mix exponentially slowly for the Ising model at low temperatures. Nevertheless, there are Markov
chains mixing in polynomial-time which can sample efficiently from arbitrary ferromagnetic Ising
models based on random cluster dynamics [15] and the Swendsen-Wang dynamics [29, 30]. For the
ERGM it is not at all clear how to write down the corresponding random cluster model such that
the associated random cluster dynamics mixes rapidly. We instead pursue a more direct approach.

The starting point of our approach is the observation that if our aim is only to produce a sample
from nearly the correct distribution, then there is no need for the dynamics to transition between
all metastable states. In order to implement this intuition, it is necessary to slightly modify the
standard definition of mixing time of a Markov chain. The usual definition measures the distance
to stationarity starting from a worst-possible initial state. Instead, we use the following definition.

Definition 1.4. Given a Markov transition kernel P with stationary Ã7 we start from some initial
distribution Ã0 and say that P is (Ã0, Ã

7, Ç, ·)-mixing if for every t g Ç

dTV(Ã0P
t, Ã7) f · . (2)

Note that an immediate consequence of the data processing inequality for total variation is that
P is (Ã0, Ã

7, Ç, ·)-mixing if and only if dTV(Ã0P
Ç , Ã7) f ·.

The role of ·0 merits some discussion. Incorporating the starting distribution into the definition
of mixing time invalidates one of the basic lemmas: it is no longer true that the total variation
decreases exponentially fast once the mixing time is exceeded. The basic reason is that in a
Markov chain with multiple metastable states requiring exponential time to leave, any initial error
in probability assigned to the metastable states might persist for exponential time. Thus, one might
think of ·0 as capturing this initial (possibly unavoidable) error. Gheissari and Sinclair’s work [14]
on mixing in low-temperature Ising models also considers mixing up to a TV distance of ·0.

Our main result, Theorem 3.1 given in Section 3, shows that whenever · g ·0 = exp(2Ω³(n)),
with Ã0 being a mixture of G(n, p7) for some carefully chosen distribution p7, the Glauber dynamics
for ERGM is (Ã0, Ã

7, C³n
2 log n

· , ·)-mixing even in the low temperature regime. That is, as long as
as the target TV distance is g ·0, then the mixing time of the Glauber dynamics is O(n2 log n).
This gives a counterpoint to the criticism of these models in [1] based on the difficulty of sampling
these models at low temperature. The following is a corollary of Theorem 3.1.

Theorem 1.5. Suppose that p7 is the unique global maximizer of L³ and moreover that L³ has
nonzero second derivative at p7. Let Ã0 := G(n, p7). There exist positive constants c³, C³ and
n0(³), such that if n > n0(³), then whenever · g exp(2c³n), the Glauber dynamics for µ³ is
(

Ã0, µ, C³n
2 log(n2/·), ·

)

-mixing.
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In fact, Theorem 3.1 is richer and shows that even when there are multiple global maximizers
in the low temperature regime, we can sample efficiently from the conditional distribution of being
close to any of these maximizers. In Theorem 3.3, we establish a surprising richness which can
be present in the ERGM at low temperature. Even within a small cut-metric neighborhood of
the constant p7 graphon where the ERGM measure concentrates (and looks very close to G(n, p7))
[6], we establish the existence of metastable states for certain choices of ³ whose total probability
is exp(2Θ(n)). The Glauber dynamics takes an exponentially long time to escape this set of
metastable states. In contrast, Bhamidi et al. [1] constructed metastable states as sets of graphs
similar to G(n, p), where p was a local maximizer of L³, and these have a total probability of
exp(2Ω(n2)).

1.1 Overview and Proof Sketch

We now give a high level overview of the ideas behind the main results, which are stated in Section 3.

Sufficient Conditions for Path Coupling The large deviations results in [6] stated here as
Theorem 1.3 show that a sample from the ERGM is w.h.p. close in cut-metric to some constant
graphon with value p7. Sufficient conditions established in [1] for the path coupling argument to
work requires much stronger control on small subgraph counts than provided by the cut-metric:
the increase in homomorphism density of G in X formed by adding any edge e to X (denoted by
∆e

G(X)) must be approximately 2n22|E(G)|(p7)|E(G)|21 for every fixed subgraph G. We will show
that ∆e

G(X) indeed concentrates close to this value with probability 12exp(2Ω³(n)). The coupling
argument showing how this statement implies our main theorem is contained in Sections 4 and 5.

Fixed Point Equations for Subgraph Concentration Theorem 1.3 shows that X > µ is
close to the constant graphon with value p7. Section 6 reduces the task of showing concentration of
∆e

G(X) to show additionally that: (1) every node degree uniformly concentrates close to p7 and (2)
that the number of common neighbors of any two vertices u and v is close n(p7)2. We show these
two properties as follows. First, concentration of degrees is established using the cavity method,
discussed momentarily. For the second property, we make use of the concentration of degrees to
derive a fixed point equation for the common neighbor counts and use the concentration results
for fixed point equations established in [5, Theorem 1.5]. We note that the concentration results
given by [5, Theorem 1.5] in themselves do not seem to be sufficient to establish the concentration
of ∆e

G(X) and the concentration of degrees as established by the cavity method is essential.

Cavity Method for Degrees We use the cavity method as developed in Section 8 to first show
that conditioned on the exponential random graph X being close to the constant p7 graphon, the
normalized degree of every vertex concentrates close to p7. Graphon convergence can show that
most vertices have degree close to p7 (see Lemma 7.2). To obtain the uniform concentration, we
look at the law of the the edges emanating from a single vertex (called the cavity) conditioned on the
rest of the graph being close to the constant graphon p7. We show that the “mean field” generated
by the rest of the graph forces the cavity vertex to have degree close to p7 with high probability.
This is established in Theorem 8.9 and Corollary 8.10 and is our main technical innovation.
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1.2 Discussion and Future Work

Fast mixing of a Markov chain can be used to establish concentration of measure, central limit theo-
rems, and estimation of the partition function. Concentration of measure, CLTs and approximation
by G(n, p) ([11, 27]) have been explored in the literature for high-temperature ERGM models. It
would be interesting to consider their extension to low-temperature ERGM via the approximate
mixing established in this work. Maximum likelihood estimation often involves estimation of the
partition function. There are multiple works ([17, 28, 12, 13, 18]) that efficiently approximate par-
tition functions of a parametric family with a given parameter ³ by efficiently generating samples
from the distribution for every choice of the parameter ³2. We leave open the problem of estimating
the partition function of the low-temperature ERGM.

1.3 Related Work

Polynomial or quasipolynomial time mixing from a well-chosen initial distribution has been explored
for the mean field Ising model by Levin et al. [19] and more recently for the Ising model on the
lattice Zd by Gheissari and Sinclair [14]. Lubetzky and Sly [22] consider mixing from specific initial
conditions for the 1-dimensional Ising model and identify initial states which allow faster mixing
than the worst case by constant factors. The work [21] considers an idea similar to ours in isolating
the ‘modes’ of a probability distribution in order to aid sampling. Their approach consider multiple,
coupled, random instantiations of the Markov chains, which are all allowed to interact as the evolve,
whereas our work considers a single instance of such a Markov chain.

2 Background and Notation

This section contains the basic definitions and notation for graphons and the Glauber dynamics.

2.1 Graphon Theory

Our work relies heavily on the theory of graph limits and graphons; our notation follows [6]. Let
W denote the space of symmetric measurable functions f : [0, 1]2 ³ [0, 1], where the space [0, 1]2

is endowed with the uniform probability measure. For f, g * W, define their cut distance to be

·�(f, g) = sup
S,T¢[0,1]

∣

∣

∣

∣

∫

S×T

(

f(x, y)2 g(x, y)
)

dxdy

∣

∣

∣

∣

,

where the supremum is over Borel measurable sets S, T . Define the equivalence relation > on W
by f > g iff there exists a measure preserving bijection Ã : [0, 1] ³ [0, 1] such that f(x, y) =
g(Ãx, Ãy) := gÃ(x, y). Let W̃ be the quotient space with respect to this equivalence relation. For
f * W, let f̃ denote its orbit in W. A metric ·� on W̃ can now be defined as

·�(f̃ , g̃) = inf
Ã

·�(f, gÃ) .

An important fact in the theory of graph limits is that (W̃, ·�) is a compact metric space.
For a graph X with vertex set [n], we can associate the function fX * W where fX(x, y) =

1(+nx+,+ny+)*E(X) = X+nx+,+ny+. We define its corresponding graphon to be X̃ = f̃X * W̃. Note
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that under this mapping, vertex isomorphic graphs correspond to the same element of W̃. We will
denote the graphon with the constant value p * [0, 1] by p1.

For a finite simple graph H with vertex set [k] for some k * N and a graphon h * W̃ , we define
the homomorphism density t(H,h) as

t(H,h) =

∫

[0,1]k

∏

(i,j)*E(H)

h(xi, xj)dx1 . . . dxk .

In particular, the subgraph counts Ni(X) appearing in the Hamiltonian H³(X) are defined as the
homomorphism densities

Ni(X) := t(Gi, f̃
X) . (3)

When emphasizing a particular graph G we will also use the notation NG(X).
The classical theory of graph limits is too coarse to understand convergence of Markov chains

because the cut metric does not control degrees of individual vertices (or neighborhoods of two
vertices), which can have a large impact on the evolution of the Glauber dynamics. The following
quantities will allow us to establish a fine-grained understanding of the measure µ. Given a graph
X with n vertices, whenever u * [n], we define the normalized degree

pu(X) :=
degree of vertex u

n
= n

∫ 1

0

∫ u
n

u21

n

fX(x, y)dxdy . (4)

Similarly, define the normalized wedge count for nodes u, v by

puv(X) :=
number of vertices to which both u and v have edges

n

= n2

∫ 1

0

∫ u
n

u21

n

∫ v
n

v21

n

fX(x, z)fX(y, z)dxdydz . (5)

2.2 Glauber Dynamics for the ERGM

As described in the introduction, at each step of the Glauber dynamics for µ a pair of vertices
e = {u, v} is chosen uniformly at random from the

(n
2

)

possibilities and the variable Xe indicating
presence of edge e is updated according to the conditional probability

Çe(X>e) := EX>µ

[

Xe

∣

∣X>e

]

. (6)

It will be useful to express the update probability in terms of subgraph counts. For any graph
G = (V,E) define

∆e
G(X) = NG(X

+e)2NG(X
2e) (7)

and let

rG(X, e) :=

(

n2∆e
G(X)

2|E|

)

1
|E|21

.

The update probability can be expressed as

Çe(X>e) = EX>µ[Xe|X>e] =
exp(2³0 +

∑K
l=1 2³l|El|rGl

(X, e)|El|21)

1 + exp(2³0 +
∑K

l=1 2³l|El|rGl
(X, e)|El|21)

.
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It follows from the definitions that if X > G(n, p), then rG(X, e) j p with high probability. If,
conversely, it were the case that rG(X, e) = p for all G1, . . . , GK , then the update probability takes
the following simpler form (with some abuse of notation) given by Ç³ : [0, 1] ³ [0, 1] with

Ç³(p) =
exp(

∑K
i=0 2³i|Ei|p|Ei|21)

1 + exp(
∑K

i=0 2³i|Ei|p|Ei|21)
. (8)

Let M³ denote the set of global maximizers of L³. Let U³ ¢ M³ be the global maximizers where
the second derivative of L³ is nonzero. It can be shown that p7 * U³ only if p7 = Ç³(p

7) and
Ç2
³(p

7) < 1. What this implies is that p7 is a stable fixed point : if the chain is started at X where
rG(X, e) j p7 for all G * G1, . . . , GK , then that continues to hold for exponentially many steps.
This was shown in Lemma 17 from [1] and is stated in our paper as Lemma 4.8.

We will also need to consider the Glauber dynamics for distributions Ã that assign zero proba-
bility to some graphs.

Definition 2.1 (Glauber Dynamics). Given any probability distribution Ã over Ω = {0, 1}(n2), we
define the Glauber dynamics with respect to Ã to be the discrete time Markov chain over Ω with
single step transitions (to obtain X 2) as follows:

1. Pick a coordinate E *
[(n

2

)]

uniformly at random.

2. Given the coordinate E, define X·E to be X with edge E flipped, and let

X 2 =

ù

ü

ü

ú

ü

ü

û

X·E with probability Ã(X·E)
Ã(X·E)+Ã(X)

if Ã(X) 6= 0

X·E with probability 1 if Ã(X) = 0

X with probability Ã(X)
Ã(X·E)+Ã(X)

(9)

The Glauber dynamics with respect to Ã is reversible for Ã ([20]), so in particular Ã is stationary.
When Ã(X) > 0 for every X, this reduces to the definition given in Definition 1.1

2.3 Notation

For any simple graph X, we denote by V (X) its vertex set and by E(X) its edge set. Given an
unordered pair e = (u, v) for some u, v * V (X), we define Xe = Xuv = Xvu = 1(e * E(X)).
Without loss of generality, we take V (X) = [n], where |V (X)| = n, and identify the space of finite

simple graphs on n vertices with the space Ω := {0, 1}(n2), where the coordinates are indexed by
tuples (u, v) for u < v, u, v * [n]. Throughout, we will reserve u, v, w to denote vertices of size n
random graphs for large n and i, j, l to denote vertices of fixed graphs like G0, G1, . . . above.

By X>e we denote the graph formed by all edges other than the edge e. Given X * Ω, define
X+e * Ω (resp. X2e * Ω) by (X+e)>e = X>e (resp. (X2e)>e = X>e) and (X+e)e = 1 (resp.
(X2e)e = 0) i.e., we add (resp. remove) edge e to the graph X.

We use the standard asymptotic notation O( · ),Ω( · ), and Θ( · ). For x, y * R
+ y = O³(x),

we mean y f C³x for some constant C³ which depends only on ³ (and similarly for Ω³ and Θ³).
In the statement of the results, expressions of the form ë < c(³) mean “ë smaller than a constant
depending only on ³” and n > n0(³) means “n larger than a constant depending only on ³”.

We will occasionally use the function I : [0, 1] ³ 2[1/2, 0] given by I(p) := 1
2p log p + 1

2(1 2
p) log(12 p). This is just 21/2 times the binary entropy function.

7



3 Main Results

Fix ³ * R× (R+)
K
, and recall that M³ denotes the set of global maximizers of L³. Let U³ ¢ M³

be the global maximizers where the second derivative of L³ is nonzero. Throughout, we will always
take p7 * U³. When |U³| = |M³ | = 1, our main result, stated below in Theorem 3.1, shows that the
Glauber dynamics for ERGM when initialized at the G(n, p7) distribution rapidly approximately
mixes as long as the target total variation distance ·0 g exp(2c³n) (see Definition 1.4). Note that
|U³| = |M³ | = 1 even in the low temperature regime for Lebesgue almost all ³.

In the case that |U³ | > 1, we show that Glauber dynamics with the same initialization as above
can efficiently and approximately sample from the ERGM conditioned on being close in cut metric
to the constant p7 graphon. Note that Theorem 1.3 shows that with a very large probability, a
sample from the ERGM is close to the constant p graphon for some p * U³. If the probability of
being close in cut-metric to each p * U³ under the measure µ is known, then we can initialize the
Glauber dynamics to the correct mixture of (G(n, p))p*Uβ

and show that it mixes rapidly as long as
the target total variation distance ·0 g exp(2c³n). In this work, we do not consider the problem
of estimating these mixture probabilities.

For · > 0 denote the ·-ball in cut metric around p7 by

B�
· (p

7) := {X * Ω : ·�(X, p71) f ·} .

Let P· be the kernel of the Glauber dynamics with respect to the measure µ( · |B�
· (p

7)) and let P
be the kernel of the Glauber dynamics with respect to the measure µ.

Theorem 3.1. Let Ã0 := G(n, p7) for any p7 * U³. Let X̄0 > Ã0, X̄1, X̄2, . . . , evolve according to
P· and X0 > Ã0,X1,X2, . . . evolve according to P . There exist positive constants ·0(³), c³,·, C³,·

and n0(³, ·) such that whenever · < ·0(³) and n > n0(³, ·), the following hold:

1. (X0,X1, . . . ,XT ) can be coupled with (X̄0, . . . , X̄T ) such that with probability at least 1 2
TC(³, ·) exp(2c³,·n), we have

(X0,X1, . . . ,XT ) = (X̄0, X̄1, . . . , X̄T ) .

2. Whenever · g exp(2c³,·n), P· is (Ã0, µ(·|B�
· (p

7)), C³,·n
2 log(n2/·), ·)-mixing.

3. If |U³| = |M³| = 1, then whenever · g exp(2c³,·n), P is (Ã0, µ, C³,·n
2 log(n2/·), ·)-mixing.

This theorem shows that we can achieve metastable mixing by disregarding a portion of the
state space of probability exp(2c³,·n) under the measure µ(·|B�

· (p
7)). One might wonder if this is

necessary, and in particular whether it is possible to improve the second item due to B�
· (p

7) being
possibly well-connected. We next answer this question in the negative and gain insight into the
structure of the ERGM measure at low temperature.

The paper [1] constructs metastable states where the graph is close to G(n, p) for some p which
is a local maximizer of L³ , from which any local Markov chain takes exp(Ω(n)) time to escape. The
large deviations theory based results established in [6] show that when p is not the global minimizer
of L³, then these metastable states collectively have mass exp(2Ω(n2)). One might hypothesize
that the metastable states can be fully characterized by the behavior of local maximizers of L³ and
the cut-metric neighborhoods, and moreover that they have total mass exp(2Ω(n2)) .

8



Perhaps surprisingly, it turns out instead that the low-temperature ERGM landscape is remark-
ably intricate even within the neighborhood B�

· (p
7) around the global optimizer p7. We show

by construction that this set can contain multiple metastable states which collectively have mass
exp(2Θ(n)) and from which the Glauber dynamics takes exp(Ω(n)) time to escape. These states are
close in cut-metric to the constant graphon p7 and it follows that cut-metric based large deviations
analysis cannot capture the intricacies of Markov chain mixing in the ERGM at low-temperatures.

Example 3.2. Suppose K = 1 and let G1 be the triangle graph (i.e, the 3 clique). Let Ã(x) :=
ex/(1 + ex). There exist parameters ³0, ³1 * R× R

+ and real numbers p71 6= p72 such that:

1. p71 and p72 satisfy p7i = Ã(2³0 + 6³1(p
7
i )

2), U³ = {p71}, and p72 is a local maximizer of L³;

2. There exists q7 * [0, 1], q7 /* {p71, p72}, such that q7 = Ã(2³0 + 6³1q
7p71);

3. Taking f(x) = Ã(2³0+6³1x
2) and g(x) = Ã(2³0+6³1xp

7
1), we have f

2(p71) < 1 and g2(q7) < 1.

We numerically check that the choice ³0 = 21.8 and ³1 = 2 has p71, p
7
2, and q7 satisfying the

relations above. As shown next, this turns out to imply metastability.

Theorem 3.3. Consider Example 3.2 given above. Let · > 0 be any small enough constant. Let
the initial state X0 be such that (X0)1j > Ber(q7) and (X0)ij > Ber(p71) for i, j 6= 1 and i < j
are independently distributed. Suppose X0,X1, . . . is the trajectory of the Glauber dynamics with
respect to µ with ³ as given in Example 3.2. Define the set of graphs Ωq,p(·) for q, p * [0, 1] by

Ωq,p(·) := {X * Ω : ·�(X, p) f ·/2 and |p1(X) 2 q| f ·} .

Then the following hold:

1. The set Ωq7,p7
1
(·) is metastable: There is a constant ³ > 0 such that

P
(

+tfexp(³n){Xt * Ωq7,p7
1
(·)}

)

g 12 exp(2Ω·(n)) .

2. The set Ωq7,p7
1
(·) has sizable probability:

µ(Ωq7,p7
1
(·)) = exp(2Θ·(n)) .

3. Most of the mass lies in Ωp7
1
,p7

1
(·):

µ(Ωp7
1
,p7

1
(·)) g 12 exp(2Ω·(n)) .

The theorem is proved in Section 9.
In order to see why the set of states described in the theorem above are metastable, consider the

first step of Glauber dynamics taking X0 to X1. The number of triangles formed by including an
edge e = (1, j) is approximately nq7p71 (which is 6np71q

7 after counting re-labelings), i.e., ∆e
G1

(X0) j
6p7

1
q7

n2 . Thus, the Glauber dynamics updates this coordinate to 1 with probability j Ã(2³0 +
6³1q

7p71) = q7. Similarly, if an edge e = (i, j) is to be updated with i, j 6= 1, then the number of

triangles formed is n(p71)
2 (which is 6np71q

7 after counting re-labelings) i.e., ∆e
G1

(X0) j 6(p7
1
)2

n2 , and
the probability of setting this coordinate to 1 is j Ã(2³0 + 6³1(p

7
1)

2) = p71. Therefore, the Glauber
dynamics update still makes X1 look approximately like the initial distribution. Not only that, but
this is a stable fixed point, which follows from the conditions f 2(p71) < 1 and g2(q7) < 1.
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4 Showing Metastable Mixing for Glauber Dynamics

4.1 Couplings, Contraction, and Mixing

Consider a Markov chain over the finite state space X and with transition kernel P . Let d : X×X ³
R
+ be such that supx,y*X d(x, y) f dmax and infx 6=y d(x, y) g dmin. We will use the following lemma

to establish metastable mixing, proved in Appendix C.

Lemma 4.1. Let A ¦ X × X be such that for (x, y) * A there exists a ³-contractive coupling Qxy

of P (x, ·) and P (y, ·), i.e. for (X 2, Y 2) > Qxy we have

Ed(X 2, Y 2) f (12 ³)d(x, y) .

Then, given any jointly distributed (X0, Y0) * X ×X , there exists a coupling between the trajectories
(Xk)kg0 and (Yk)kg0 of the Markov chain P such that

Ed(Xk+1, Yk+1) f (12 ³)Ed(Xk, Yk) + dmaxpk ,

where pk := P((Xk, Yk) * A#). Unrolling this recursion, we conclude that

Ed(XK , YK) f dmax

[

(12 ³)K +
supkfK pk

³

]

.

The following corollary is immediate from the coupling characterization of total variation.

Corollary 4.2. In the setting of Lemma 4.1, if additionally infx 6=y d(x, y) g dmin, then
dTV(XK , YK) f dmax

dmin

[

(12 ³)K + ³21 supkfK pk
]

.

In essence, the result above shows that whenever two trajectories can be coupled such that
with high probability they lie in a set A where a contractive coupling exists, then the laws of their
iterates converge until a certain lower threshold. In particular, taking Y0 to be drawn from the
stationary distribution of P , we can establish metastable mixing for X0,X1, . . . .

We will use the monotone coupling, defined next.

Definition 4.3 (Monotone coupling). When P is the kernel of the Glauber dynamics with respect
to µ, the following coupling between P (x, ·) and P (y, ·) is called the monotone coupling. For
any two x, y * Ω, we obtain the one step Glauber dynamics updates X 2, Y 2 as follows:

1. Pick the update edge E *
(

[n]
2

)

uniformly at random to be the same for both X 2 and Y 2.

2. Draw U > Unif([0, 1]) independent of everything else and set

X 2 =

{

x+E if U * [0, ÇE(x>E))

x2E otherwise
and y2 =

{

y+E if U * [0, ÇE(y>E))

y2E otherwise.
(10)

For any two graphs X,Y * Ω, the relation X � Y denotes that Xe f Ye for every e *
(

[n]
2

)

. It
follows immediately from the definition of the monotone coupling that given X � Y , if X 2, Y 2 are
obtained via the monotone coupling, then X 2 � Y 2 almost surely. We next identify a region of the
state space over which the coupling is contractive (as required by Lemma 4.1).
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4.2 Control of Subgraph Counts Implies Contraction

We will now follow the results established in [1] to show the path coupling of Glauber dynamics and
use the notations they introduced. Recall that the update probability under the Glauber dynamics
for µ is given by

Çe(X>e) =
exp(³0 +

∑K
l=1 2³l|El|rGl

(X, e)|El|21)

1 + exp(³0 +
∑K

l=1 2³l|El|rGl
(X, e)|El |21)

,

where

rG(X, e) :=
(n2∆e

G(X)

2|E(G)|
)

1
|E(G)|21

and ∆e
G(X) = NG(X

+e)2NG(X
2e).

Let GL denote the set of finite simple graphs with at most L vertices (omitting the graph with
1 edge and 2 vertices), where L is a fixed constant satisfying L > maxifK |Vi|. Define the set

Γp7,ë :=
{

X : rG(X, e) * [p7 2 ë, p7 + ë] for all e *
([n]
2

)

and G * GL

}

. (11)

Note that whenever X * Γp7,ë, Çe(X>e) j Ç³(p
7) j p7. That is, each edge updates approximately

like G(n, p7). The significance of Γp7,ë is that in this set the monotone coupling is contractive,
as shown in [1, Lemma 18] and stated next. We will additionally state a theorem in the next
subsection that Γp7,ë has high probability under µ(·|B�

· (p
7)).

Lemma 4.4 (Contraction within Γp7,ë, [1]). Let p7 * U³, ë > 0 small enough as a function of ³,
and n large enough as a function of ³, ë. Let A := {(x, y) * Γp7,ë × Γp7,ë : x � y}. Let X 2, Y 2 be
obtained from x, y via one step of the Glauber dynamics under the monotone coupling. There is a
constant c(³, ë) > 0 such that if (x, y) * A, then

EdH(X 2, Y 2) f
(

12 c(³, ë)

n2

)

dH(x, y) ,

and moreover, X 2 � Y 2 almost surely.

4.3 Key Theorem

We first recall Theorem 1.3 which state that *p7*Uβ
B�

· (p
7) has probability 12 exp(2Ω(n2)) under

the measure µ, that is, most of the mass of µ is concentrated in the cut-metric balls B�
· (p

7). The

following theorem shows that µ
(

·
∣

∣B�
· (p

7)
)

concentrates over the set Γp7,ë, where path coupling is
possible (as per Lemma 4.4).

Theorem 4.5. Suppose p7 * U³. Given ë > 0, we can pick · < c(³, ë) such that

µ
(

Γp7,ë

∣

∣B�
· (p

7)
)

g 12 C(·, ë, ³) exp
(

2 Ω³,ë,·(n)
)

.

We prove the theorem in Section 6, modulo lemmas proved via the cavity method in Section 8.

Remark 4.6. Notice that rG(X, e) * [p7 2 ë, p7 + ë] uniformly for every e is not implied by
·�(X̃, p7) < · (for any constant · > 0). An example is given in Theorem 3.3, where metastability
occurs despite being close to the p7 graphon with high probability: The edges emanating from a
single vertex prevent uniform concentration of rG(X, e) in the set [p7 2 ë, p7 + ë], but the single
vertex neighborhood has a vanishingly small impact on ·�(X̃, p7).

11



While it can easily be proved directly, the following is also a corollary of the above theorem.

Corollary 4.7. Fix any ë > 0. Then there exists ·0(ë) > 0 such that for all 0 < · < ·0(ë), if
Z > G(n, p7 + ·), then P(Z * Γp7,ë) g 12 exp(Ωë(n)).

4.4 Metastability

We intend to invoke Lemma 4.1 to show approximate mixing and prove Theorem 3.1. The prior
subsection shows that G(n, p7) and at µ

(

·
∣

∣B�
· (p

7)
)

are both within the set Γp7,ë with high probabil-
ity. We show that the Glauber chains with these initializations do not leave Γp7,ë with probability
12 exp(2Ω(n)) until time exp(Ω(n)). Some intuition behind this was given in Section 2.2.

We next state Lemma 17 from [1], after adapting it to our situation.

Lemma 4.8 (Staying in Γp7,ë). Let ë > 0 be a small enough constant independent of n and suppose
p7 * U³ . Let X0,X1, . . . evolve according Glauber dynamics with respect to the measure µ. If
X0 * Γp7,ë, then for some ³ = ³(³, ë, L), we have

P
(

Xt * Γp7,2ë for all t f e³n
)

g 12 exp
(

2 Ω³,L,ë(n)
)

.

The proofs of the following lemmas are given in Appendix C.

Lemma 4.9 (G(n, p7±ë) sandwich). Let p7 * U³. Let constants ë, · > 0 be such that ë < ë0(³), · <
·0(³, ë), and n > n0(³, ë, ·). Let X > µ(·|B�

· (p
7)), Ȳ > G(n, p7 + ë), and Y > G(n, p7 2 ë). Then,

there exists a coupling between X, Ȳ , and Y such that with probability at least 12 exp(2Ω³,·,ë(n))

Y � X � Ȳ .

Lemma 4.10 (Staying in B�
·/2(p

7)). Suppose p7 * U³, · > 0 such that · < ·0(³) and n >

n0(·, ³). Let X0 > G(n, p7) and generate the trajectory X0, . . . ,XT via Glauber dynamics with
respect to µ. The entire trajectory X0, . . . ,XT stays within the ball B�

·/2(p
7) with probability at

least 12 TC(³, ·) exp(2c(³, ·)n).

5 Proof of Main Result, Theorem 3.1

We now show how the main theorem follows from the various lemmas stated in the last section.
Recall that Ã0 := G(n, p7), X̄0 > Ã0, X̄1, X̄2, . . . , is a trajectory of the Markov chain P· and
X0 > Ã0,X1,X2, . . . is a trajectory of the Markov chain P .

5.1 Proof of Theorem 3.1, Part 1

We will couple the trajectories X̄0, . . . , X̄T and X0, . . . ,XT such that the event E :=

{(X̄0, X̄1, . . . , X̄T ) 6= (X0, . . . ,XT )} satisfies E ¦ *T
t=0

{

Xt *
(

B�
·/2(p

7)
)#}

. We can then con-
clude the result from Lemma 4.10. The main observation is that whenever n is large enough as a
function of ·, if X * B�

·/2(p
7), then P·(X, ·) = P (X, ·). We construct the following coupling:

1. X0 = X̄0 almost surely.

2. Xt+1, X̄t+1 are drawn from the TV optimal coupling between P (Xt, ·) and P·(X̄t, ·).

12



It is clear that {Xt+1 6= X̄t+1} ¦ {Xt 6= X̄t} *
{

Xt *
(

B�
·/2(p

7)
)#}

. Now, noting that {X0 6= X̄0}
is the empty event, we conclude that {X1 6= X̄1} ¦

{

X0 *
(

B�
·/2(p

7)
)#}

. An induction argument

with the same basic step shows that E ¦ *T
t=0

{

Xt *
(

B�
·/2(p

7)
)#}

.

5.2 Proof of Theorem 3.1, Part 2

Let Ȳ0 > µ
(

·
∣

∣B�
· (p

7)
)

and consider the trajectory Ȳ0, Ȳ1, . . . , ȲT with respect to the transition

kernel P·. Similarly, let Y0 > µ
(

·
∣

∣B�
· (p

7)
)

, but with the trajectory Y1, . . . , YT generated with

respect to the transition kernel P . Using Lemma 7.1 to bound P(Ȳt * B�
· (p

7)), a similar proof as
in Item 1 shows that

dTV
(

(Ȳ0, . . . , ȲT ), (Y0, . . . , YT )
)

f T exp
(

2Ω³,·(n
2)
)

. (12)

From Item 1, we have

dTV((X̄0, . . . , X̄T ), (X0, . . . ,XT )) f T exp(2Ω³,·(n)) . (13)

These last two displays allow us to consider the total variation distance between the distributions
of XT and YT instead of X̄T and ȲT . Let ë > 0 be small enough to satisfy the conditions in
Lemma 4.8. By Lemma 4.9 and Theorem 4.5, we conclude that for some 0 < · < ·0(³, ë, ·),
· < ·0(·, ë, ³), and n > n0(·, ³, ·, ë), we can couple Z0 > G(n, p7 + ·) with X0 and Y0 such that
with probability at least 12 exp(2Ω³,·,·,ë(n)), the following hold:

1. X0 � Z0 and Y0 � Z0, and

2. X0, Y0, Z0 * Γp7,ë .

Now, we consider the Markov chain Z0, Z1, . . . , ZT with respect to P . We consider the monotone
coupling between Y0, . . . , YT and Z0, . . . , ZT as in Definition 4.3: conditional on Y0 � Z0, we have
Yt � Zt almost surely for every t f T . Recall Γp7,ë from (11) and the set A := {(x, y) * Γp7,ë×Γp7,ë :

x � y} defined in Lemma 4.4. Now, (Yt, Zt) * A# implies either Y0 6� Z0, Yt 6* Γp7,ë, or Zt 6* Γp7,ë.
The first of these is ruled out by monotonicity of the coupling. For the latter two, Lemma 4.8
shows that starting in Γp7,ë the trajectory stays there for some time, and it follows that

P
(

(Yt, Zt) * A#
)

f exp
(

2 Ω³,·,ë,·(n)
)

.

Applying Lemmas 4.1 and 4.4 with Hamming distance dH over Ω, we conclude that whenever
T f exp(c0n) for small enough c0 as a function of ë, ·, ·, ³

Ed(YT , ZT ) f
n2

2

[

(

12 c(ë, ³)

n2

)T
+

n2

c(ë, ³)
exp(2Ω·,³,ë,·(n))

]

.

Similarly, we have

Ed(XT , ZT ) f
n2

2

[

(

12 c(ë, ³)

n2

)T
+

n2

c(ë, ³)
exp(2Ω·,³,ë,·(n))

]

.
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Combining the two displays above, the coupling characterization of TV distance implies

dTV(XT , YT ) f P(XT 6= YT ) f P(XT 6= ZT ) + P(ZT 6= YT )

f P(d(XT , ZT ) > 1) + P(d(YT , ZT ) > 1)

f Ed(XT , ZT ) + Ed(YT , ZT )

f n2

[

(

12 c(ë, ³)

n2

)T
+

n2

c(ë, ³)
exp

(

2 Ω·,³,ë,·(n)
)

]

. (14)

Now, we will allow ë, · to be small enough constants as a function of ³ such that Lemmas 4.8
and 4.4 hold. Whenever · is small enough as a function ³ and n is large enough, combining
Equations (12), (13), and (14), yields

dTV(X̄T , ȲT ) f n2

[

(

12 c(ë, ³)

n2

)T
+

n2T

c(ë, ³)
exp

(

2Ω·,³(n)
)

]

.

This yields the second part of the theorem statement by considering T = C³,·n
2 log(n2/·).

5.3 Proof of Theorem 3.1, Part 3

Whenever |U³ | = 1, the concentration result of [6] (stated here as Theorem 1.3) implies that

dTV
(

µ, µ
(

· |B�
· (p

7)
))

f exp
(

2 Ω³,·(n
2)
)

.

Meta-stable mixing to µ follows from the second part and the triangle inequality.

6 Uniform Subgraph Concentration and Proof of Theorem 4.5

In this section we reduce the proof of Theorem 4.5 on the concentration of ∆e
G(X) := NG(X

+e)2
NG(X

2e) to control of both the vertex degrees pu(X) and common neighbors puv(X). The latter
are stated here as corollaries and will be proved via the cavity method in Section 8.

Theorem 4.5 states that if we sample X > µ
(

·
∣

∣B�
· (p

7)
)

, then X * Γp7,ë with probability
1 2 C(³, ë, ·) exp

(

2 Ω³,ë,·(n)
)

. Unpacking the definitions, it suffices to show that for some small
enough h(ë, L),

∣

∣

∣
∆e

G(X) 2 2|E(G)|(p7)|E(G)|21|
n2

∣

∣

∣
f h(ë, L)

n2
(15)

for every G * GL and e *
([n]
2

)

, with probability at least 12C(³, ·, ë, L) exp(2Ω³,·,ë,L(n)).
We start with a lemma (proved in Appendix A) which shows that (15) (and hence Theorem 4.5)

follows from uniform control of both the vertex degrees pu(X) and common neighbors puv(X). Some
notation is needed. Given a fixed graph G = ([k], E) and vertices i, j * [k] such that (i, j) * E, let

Eij(G) :=
{

l : l * [k], l 6= i, l 6= j, (l, i) * E, (l, j) * E
}

and dij(G) = |Eij(G)| . (16)

In words, dij(G) is the number of common neighbors of vertices i and j in G.

Lemma 6.1. Suppose X * Ω, e = (u, v), and p7 * [0, 1] are such that supu*[n] |pu(X) 2 p7| f ë.
For any fixed graph G and for some constant CG depending only on G, we have

∣

∣

∣
∆e

G(X) 2 2

n2

∑

(i,j)*E(G)

(puv(X)

(p7)2

)dij
(p7)|E(G)|21

∣

∣

∣
f CG

n2

(

ë+ ·�(X̃, p7) + n21
)

.
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Corollary 6.2. Let C(L) = maxG*GL
CG for CG in Lemma 6.1 and h(ë, L) be as in (15). Let

a(ë, L) = h(ë, L)/3C(L). Then X * Γp7,ë holds if

1. X is a(ë, L)-close to the constant graphon p7 in the cut-metric,

2. pu(X) is uniformly close to p7 for every vertex u, i.e., supu |pu(X)2 p7| f a(ë, L), and

3. puv(X) is close to (p7)2 uniformly for every pair of vertices u 6= v, i.e.,

sup
u 6=v

|puv(X) 2 (p7)2| f p7a(ë, L)/3L . (17)

It follows that Theorem 4.5 is proved if these conditions are each shown to hold for X >
µ(·|B�

· (p
7)) with probability at least 12 C(³, ë, ·, L) exp(2Ω³,ë,·,L(n))

Item 1 holds by Theorem 1.3. We address Items 2 and 3 below.

6.1 Uniform Control of Degrees

Section 8 develops the cavity method for the ERGM and demonstrates the following uniform control
on vertex degrees.

Corollary 8.10. Suppose p7 * U³ and let ë > 0 be an arbitrary fixed constant. Then, we can take
0 < · < c(³, ë) and n > n0(³, ë, ·) such that

µ
(

sup
u*[n]

|pu(X) 2 p7| f ë
∣

∣

∣
B�

· (p
7)
)

g 12 exp(2Ω³,ë(n)) .

We take · < c(³, a(ë, L) in Corollary 8.10, implying that if we sample X > µ
(

·
∣

∣B�
· (p

7)
)

then
Item 2 of Corollary 6.2 holds with probability 12 C(³, ë, ·, L) exp(2Ω³,ë,·,L(n)).

It remains to show Item 3 of Corollary 6.2. As a step towards this, it turns out that if pu(X) is
close to p7 uniformly for every vertex u (as stated in Corollary 8.10) and X is close to the constant
graphon p7, then most of the common neighbor counts puv(X) are close to (p7)2. This follows from
the definition of cut-metric.

Corollary 8.11. Suppose that p7 * U³. Given arbitrary ë, · > 0, suppose · < c(³, ë, ·) and
n > n0(·, ë, ³, ·). Then, for every u * [n], there exists a random set Su ¦ [n] \ {u} such that
|Su| f ·n and

µ
(

sup
u*[n]

sup
v*S#

u

|puv(X)2 (p7)2| f ë
∣

∣

∣
B�

· (p
7)
)

g 12 exp(2Ω³,ë(n)) .

We refer to Appendix D.1 for the proof.
Next, to establish Equation (17), we boost control of puv(X) from most pairs u, v to all pairs.

6.2 Uniform Control of Common Neighbors

Let X 2 be obtained from X > µ
(

·
∣

∣B�
· (p

7)
)

via one step of the Glauber dynamics with respect

to µ
(

·
∣

∣B�
· (p

7)
)

, so that we also have X 2 > µ
(

·
∣

∣B�
· (p

7)
)

. As shown in Lemma 7.1, with high
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probability X is ·/2 away from the boundary of B�
· (p

7) and the expected Glauber update for puv
with respect to µ

(

·
∣

∣B�
· (p

7)
)

is the same as with respect to µ(·), which is

E
[

puv(X
2)
∣

∣X
]

=
(

12 2

N

)

puv(X) +
1

N

(

n21
∑

w*[n]\{u,v}

Çuw(X>uw)Xvw + n21
∑

w*[n]\{u,v}

Çvw(X>vw)Xuw

)

.

The next lemma shows that under the conditions shown in Corollaries 8.10 and 8.11 to hold with
high probability for X > µ

(

·
∣

∣B�
· (p

7)
)

, each of the normalized sums in the last displayed equation

is close to (p7)2 uniformly for every u 6= v. The Glauber dynamics with respect to µ
(

·
∣

∣B�
· (p

7)
)

,
therefore, tries to regress every puv(X) close to (p7)2.

Lemma 6.3. Suppose X * Ω, p7 * [0, 1] are such that the following conditions hold:

1. supu*[n] |pu(X) 2 p7| f ë, and

2. For every u * [n], there exist sets Su ¦ [n] such that |Su| f ·n and

sup
u*[n]

sup
w*S#

u

|puw(X)2 (p7)2| f ë .

Then, for every u, v * [n], we have

∣

∣

∣
n21

∑

w*[n]\{u,v}

Çuw(X>uw)Xvw 2 (p7)2
∣

∣

∣
f C³

(

ë+ · + ·�(X, p7) + n21
)

.

The lemma is proved in the next subsection.
Intuitively, this suggests that the stationary distribution of the Glauber dynamics, µ

(

·
∣

∣B�
· (p

7)
)

,
should be such that puv(X) j (p7)2 for every u 6= v with high probability. The next lemma
formalizes this sentiment using Stein’s method for concentration developed in [5, Theorem 1.5].

Lemma 6.4. For any u, v * [n] such that u 6= v, define

guv(X) := puv(X)2 1

2n

∑

w*[n]\{u,v}

(

Çuw(X>uw)Xvw + Çvw(X>vw)Xuw

)

.

Then, for any ³ > 0 which is independent of n, we have

µ
(

{|guv(X)| > ³} * (B�
·/2(p

7))#
∣

∣

∣
B�

· (p
7)
)

f C(·, ³) exp(2Ω³,·,³(n)) . (18)

Corollary 6.5. Item 3 of Corollary 6.2 holds with the desired probability.

Proof. Combining the last two lemmas with Corollary 8.10 proves (17).
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6.3 Proof of Lemma 6.3

First, note that by definition

Çuw(X>uw) =
exp(

∑K
i=0 n

2³i∆
uw
i (X))

1 + exp(
∑K

i=0 n
2³i∆uw

i (X))
.

Now, suppose w * S#
u. Then, using Lemma 6.1, we conclude that

K
∑

i=0

n2³i∆
uw
i (X) =

K
∑

i=0

2|Ei|³i(p7)|Ei|21 ±O³

(

ë+ ·�(X, p7) + n21
)

.

Using the fact that the function x ³ ex

1+ex is 1-Lipschitz, we have for w * S#
u that

Çuw(X>uw) =
exp(

∑K
i=0 2|Ei|³i(p7)|Ei|21)

1 + exp(
∑K

i=0 2|Ei|³i(p7)|Ei|21)
±O³

(

ë+ ·�(X, p7) + n21
)

.

Now, the fact that p7 * U³ implies that L2
³(p

7) = 0. It can be easily checked that this implies

p7 = Ç³(p
7). It follows that whenever w * S#

u,

Çuw(X>uw) = p7 ±O³

(

ë+ ·�(X, p7) + n21
)

.

An application of the triangle inequality now shows that

∣

∣

∣
n21

∑

w*[n]\{u,v}

Çuw(X>uw)Xvw 2 p7pv(X)
∣

∣

∣
f |Su|

n
+O³

(

ë+ ·�(X, p7) + n21
)

.

The assumption that |Su| f ·n and the fact that |pv(X) 2 p7| f ë imply the result.

7 Some Graphon Estimates

In this section, we state several technical results that will be needed later. Results from other works
are stated without proof and otherwise the proofs are given in the appendix.

Even though Theorem 3.2 in [6] considers the probability over the entire space of graphons,
we can easily adapt its proof to show the following lemma which considers only the neighborhood
B�

·+·(p
7) for p7 * U³.

Lemma 7.1. Suppose p7 * U³. Then, there exists a constant c³ > 0 such that whenever ·, · *
(0, c³) are fixed constants independent of n, we have

µ(· f ·�(X, p7) f · + ·)

µ(·�(X, p7) f ·)
f C(·, ·) exp(2c(·, ·)n2) .

We state three technical lemmas below, whose proofs appear in Appendix A.
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Lemma 7.2. For any graph X over n vertices, p * [0, 1], and · > 0, there exists a set S ¦ [n]
such that |S| f ·n and

sup
u*S#

|pu(X)2 p| f 2·�(X̃, p1)

·
. (19)

It follows as an application that for X > ERGM(n, ³) and any given fixed constants ·, · > 0, with
probability at-least 1 2 C(·) exp(2c(·)n2), there exists a (random) set S ¦ [n] such that |S| f ·n
and

inf
p7*Uβ

sup
u*S#

|pu(X)2 p7| f 2·

·
.

Lemma 7.3. If Y � X � Z, then ·�(X̃, p1) f max
(

·�(Ỹ , p1), ·�(Z̃, p1)
)

.

Lemma 7.4. Consider any fixed graph G = (V,E). For any vertex i, let di denote the degree of
the vertex i. Suppose p, q * [0, 1]. If G = G0, the graph consisting of a single edge, then

|V |
∑

i=1

qdip|E|2di = 2q|E| + (|V | 2 2)p|E| . (20)

If G is connected and G 6= G0, then there is a constant C depending only on (di)i*V and |E| such
that

2q|E| + (|V | 2 2)p|E| 2C|p2 q|

f
|V |
∑

i=1

qdipE2di f 2q|E| + (|V | 2 2)p|E| 2 ·(|p2 q|) ,

where · : [0, 1] ³ R
+ is a continuous function depending only on G such that ·(x) > 0 for x 6= 0.

8 The Cavity Method

In this section we address the degrees and show that every vertex u has nearly the same degree
pu(X) j p7 * U³ with high probability for X > µ(·|B�

· (p
7)). While the cut-metric based con-

vergence does not allow us to control all the degrees, it is nevertheless possible to conclude that
a large portion of the vertices have degree pu(X) j p7. We boost this to a uniform statement, in
Theorem 8.9 and Corollary 8.10, via the cavity method : most of the vertices and the corresponding
edges are conditioned on being close to the constant graphon p71, which generates the mean field
with which the remaining cavity vertices interact. We can then reason about the behavior of the
cavity vertices.

We start by adapting several of the graphon definitions to incorporate a cavity.

8.1 Restricted Homomorphism Densities and Restricted Cut Metric

Recall from Section 2.1 the function representative fX(x, y) of a graph X over n vertices. We will
need the homomorphism density of a graph forced to contain a particular vertex u of X. To that
end, for every u * [n], define the event

Ak,i
u :=

{

x * [0, 1]k : xi *
[u2 1

n
,
u

n

)}
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and

Ak
u =

{

x * [0, 1]k : xi *
[u2 1

n
,
u

n

)

for some i * [k]
}

=
⋃

i*[k]

Ak,i
u . (21)

For the sake of clarity in the results below, given a fixed graph G, we take its vertex set
V (G) = [k] during calculations.

Definition 8.1 (Homomorphism density w.r.t. a vertex). Define the homomorphism density of G
in X with respect to vertex u (which counts only homomorphisms which include the vertex u) as

NG(X;u) :=

∫

[0,1]k
1(Ak

u)
∏

(i,j)*E(G)

fX(xi, xj)
k
∏

i=1

dxi . (22)

For ease of computation, we also introduce the quantity

N0
G(X;u) :=

k
∑

l=1

∫

[0,1]k
1(Ak,l

u )
∏

(i,j)*E(G)

fX(xi, xj)
k
∏

i=1

dxi . (23)

The next lemma follows from elementary arguments; see Appendix A.

Lemma 8.2. 0 f N0
G(X,u)2NG(X,u) f |V (G)|3/n2.

We will now show that whenever the graphon corresponding to X is close to a constant graphon
p1, then NG(X,u) can be approximated as a polynomial of pu(X) and p. This will allow us to
control the fine-grained structure of X in terms of the counts NG(X,u) just based on nearness to a
constant graphon and the normalized degrees of the vertices of X. The proof, given in Appendix A,
follows from a slight modification of the proof technique of [2, Lemma 4.4], which establishes the
continuity of homomorphism densities with respect to the graphon metric via a repeated application
of the triangle inequality.

Lemma 8.3. Suppose DG = (d1, . . . , d|V (G)|) is the degree sequence of the fixed graph G considered
above. For any graph X with vertex set [n] and u * [n], we have

∣

∣

∣
NG(X;u)2 n21

∑

d*DG

pu(X)dp|E(G)|2d
∣

∣

∣
f |V (G)||E(G)|·�(X̃, p)

n
+

|V (G)|3
n2

.

Let S ¢ [n] be the “cavity set”. Define

Ak
S := *u*SA

k
u and Ak,i

S := *u*SA
k,i
u .

We have that

NG(X) = NG(X;S) +

∫

[0,1]k
1

{

(Ak
S)

#
}

∏

(i,j)*E(G)

fX(xi, xj)
k
∏

i=1

dxi ,

where the subgraph count NG(X;S) restricts to subgraphs containing a cavity vertex,

NG(X;S) :=

∫

[0,1]k
1

{

Ak
S

}

∏

(i,j)*E(G)

fX(xi, xj)
k
∏

i=1

dxi .

The proofs of the next two lemmas are deferred to Appendix A.
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Lemma 8.4. Let X be any simple graph with vertex set [n] and let S ¢ [n] be arbitrary. Then

∣

∣

∣
NG(X;S) 2

∑

u*S

NG(X;u)
∣

∣

∣
f k3|S|2

n2
.

We now define the graphon metric restricted to S#.

Definition 8.5 (Restricted Graphon Metric). Let p7 * [0, 1]. Define

fX,S,p7(x1, x2) =

{

fX(x1, x2) if +nx1+, +nx2+ * S#

p7 otherwise ,
(24)

and let X̃S,p7 be the graphon corresponding to fX,S,p7. We define the restricted cut metric to be

·S,p
7

� (X̃, p7) := ·�(X̃
S,p7 , p7) .

The restricted graphon distance to p7 can be approximated in terms of the unrestricted distance:

Lemma 8.6. For any S ¦ [n], we have

·�(X̃, p7)2 |S|(2n 2 |S|)
n2

f ·S,p
7

� (X̃, p7) f ·�(X̃, p7) .

We are now ready to establish the cavity decomposition of the Hamiltonian.

8.2 Cavity Decomposition of the Hamiltonian

It will be convenient to let r := |S|. Given a simple graph X over n vertices, we define p̄u(X) to
be the number of edges from vertex u * [n] to the set S#, normalized by n:

p̄u(X) =
1

n

∑

v*S#

Xuv .

Here and throughout we hide the dependence on S to streamline the notation. Additionally,
whenever it is clear, we will denote p̄u(X) by p̄u. Note that |p̄u(X) 2 pu(X)| f |S|/n.

Denote the portion of the Hamiltonian associated to the cavity by

Hcav
³ (X;S) :=

K
∑

i=0

n2³iNi(X;S) ,

which is the same as H³ except that the homomorphism densities are restricted to have at least
one vertex in the set S. Denote the rest of the Hamiltonian by

Hmean
³ (X;S) = H³(X)2Hcav

³ (X;S) .

We next bound the difference between H³(X) and Hmean
³ (X;S).

Lemma 8.7 (Cavity Decomposition). Assume that ³i > 0 for some i = 1, . . . ,K. We have the
following upper and lower bounds.
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1. Upper Bound:

H³(X) f Hmean
³ (X;S) +O³(nr·

S,p7

� (X̃, p7) + r2) +

K
∑

i=0

³inr|Vi|(p7)|Ei|

+ 2n
∑

u*S

[

L³(p̄u) + I(p̄u)2 L³(p
7)2 I(p7)2 ·³(|p̄u 2 p7|)

]

(25)

2. Lower Bound:

H³(X) g Hmean
³ (X;S)2O³(nr·

S,p7

� (X̃, p7) + r2) +
K
∑

i=0

³inr|Vi|(p7)|Ei|

+ 2n
∑

u*S

[

L³(p̄u) + I(p̄u)2 L³(p
7)2 I(p7)2 C³|p̄u 2 p7|

]

(26)

Here ·³ is a function with the same properties of the function · in Lemma 7.4

Proof. Let Di be the tuple of the degrees of vertices in Gi (as in Lemma 8.3). In the equations
below, we will take

∑

di*Di
to mean summation over all elements of the tuple. We have

H³(X) = Hmean
³ (X;S) +Hcav

³ (X;S)

= Hmean
³ (X;S) +

∑

u*S

K
∑

i=0

³in
2Ni(X;u) ±O³(r

2)

= Hmean
³ (X;S) +

∑

u*S

K
∑

i=0

∑

di*Di

³inp
di
u (p7)Ei2di ±O³(nr·�(X̃, p7) + r2)

= Hmean
³ (X;S) +

∑

u*S

K
∑

i=0

∑

di*Di

³inp̄
di
u (p7)Ei2di ±O³(nr·�(X̃, p7) + r2) . (27)

The first step is by the definition of the cavity Hamiltonian. The second step uses Lemma 8.4 to
approximate N(G;S) and the third step uses Lemma 8.3 to approximate Ni(X;u). In the fourth
step, we have used the fact that |p̄u 2 pu| f r/n.

We now apply Lemma 7.4 to the second term of Equation (27), yielding

K
∑

i=0

∑

di*Di

³ip̄
di
u (p7)Ei2di f

K
∑

i=0

³i

[

2p̄|Ei|
u + (|Vi| 2 2)(p7)|Ei|

]

2 ·³(|p̄u 2 p7|)

=

K
∑

i=0

³i|Vi|(p7)|Ei| + 2
[

L³(p̄u) + I(p̄u)2 L³(p
7)2 I(p7)2 ·³(|p̄u 2 p7|)

]

. (28)

In the first step we have used Lemma 7.4 and the fact that for G0 the inequality is an equality
which allows for all ³0 * R. For i > 0, notice that ³i g 0 and the inequality goes in the right
direction. The function ·³ is as defined in the statement of Lemma 7.4 and exists since ³i > 0 for
some i * [K]. To see this, observe that the Equation 20 is an equality when G = G0. Therefore, in

21



order to establish the strict inequality involving · as shown in Lemma 7.4, we need at-least one of
the ³i > 0.

The upper bound in the lemma statement follows by combining Equations (27) and (28) along
with Lemma 8.6 to show that

nr·�(X̃, p7) f nr·S,p
7

� (X̃, p7) + 2r2 .

The lower bound on the Hamiltonian follows from a similar argument by replacing the upper bound
in Lemma 7.4 with the lower bound.

8.3 Controlling Degrees of Cavity Vertices

Given a sequence q̄u * {0, 1/n, 2/n, . . . , 1} for u * S, we define the tuple qS = (q̄u)u*S . Given
arbitrary and fixed · > 0, p7 * [0, 1], we define the events

A(S,qS , p
7, ·) = {X : p̄u(X) = q̄u for u * S} + {·S,p7� (X̃, p7) f ·} (29)

and
B(S, p7, ·) := {·S,p7� (X̃, p7) f ·} . (30)

Note that by definition, B(', p7, ·) = B�
· (p

7). We want to show that whenever p7 * U³, if qS is
not close to p7, then the event A(S,qS , p

7, ·) has exponentially small probability compared to the
event B(S, p7, ·), whenever · and S are small enough.

We now note that Hmean
³ (X;S) and ·S,p

7

� (X̃, p7) depend only on Xuv for u, v * S#. Therefore,
whenever |S| is small, we will think of Hmean

³ (X;S) as the mean field which controls the behavior of

the cavity, i.e., the edges emanating from the vertices in S. Now, fixingX such that ·S,p
7

� (X̃, p7) f ·,
we look at the joint law of (Xuv) such that at least one of u or v is in the set S. By Xmean(S) we
denote the coordinates (Xuv)u,v*S# . We denote the rest of the coordinates by Xcav(S). Therefore,
we want to understand the conditional law Xcav(S)|Xmean(S) under the measure µ. We first record
the following combinatorial lemma, whose proof can be found in Appendix A.

Lemma 8.8. Suppose r/n f 1/2 and Xmean(S) is fixed. Let the count of Xcav(S) such that
p̄u(X) = qu for u * S be denoted by Hcav(qS). Hcav(qS) satisfies

exp
(

2r2
[

4 + 2 log(nr )
]

2 r

2
log(2n)

)

f Hcav(qS) exp
(

2n
∑

u*S

I(qu)
)

f 1 .

Below we present the main result of this section.

Theorem 8.9. Let p7 * U³ be such that r/n < p7 < 12r/n and r < n/2. Given any qS = (q̄u)u*S
as defined above for n sufficiently large as a function of ³, ·, we have

µ(A(S,qS , p
7, ·))

µ(B(S, p7, ·))
f exp

(

2n
∑

u*S

(

L³(q̄u)2 L³(p
7)2 ·³(|q̄u 2 p7|)

)

+ lower order

)

,

where lower order = O³(nr· + r2 log(n/r) + r log n).
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Proof. Fix a p7 * U³ . For the sake of convenience, only in this proof, we will denote A(S,qS , p
7, ·)

by A, B(S, p7, ·) by B and O³ by O. Let C be the event {X : p̄u(X) = q̄u for u * S}. Let n be
large enough so that the sets A,B and C are non-empty. Note that 1{X * B} is a function of
Xmean and 1{X * C} is a function of Xcav. Therefore we write Xmean * B and Xcav * C in place
of X * B and X * C, respectively.

With this notation in place, we have

µ(A) =
1

Z³

∑

Xcav*C

∑

Xmean*B

exp(H³(X))

f 1

Z³

∑

Xcav*C

∑

Xmean*B

exp(Hmean
³ (X;S)) exp

(

O(nr· + r2) + Γ(p7) + ∆̄(qS , p
7)
)

=
Hcav(qS)

Z³

∑

Xmean*B

exp(Hmean
³ (X;S)) exp

(

O(nr· + r2) + Γ(p7) + ∆̄(qS , p
7)
)

f
Zmean
³

Z³
exp

(

O(nr· + r2) + 2n
∑

u*S

[

L³(q̄u)2 L³(p
7)2 ·³(|q̄u 2 p7|)

])

, (31)

where

Γ(p7) :=

K
∑

i=0

³inr|Vi|(p7)|Ei| ,

∆̄(qS , p
7) := 2n

∑

u*S

[

L³(q̄u) + I(q̄u)2 L³(p
7)2 I(p7)2 ·³(|q̄u 2 p7|)

]

,

and
Zmean
³ :=

∑

Xmean*B

exp(Hmean
³ (X;S)) exp(22n|S|I(p7) + Γ(p7)) .

In the second step of (31) we have applied the cavity decomposition from Lemma 8.7. In the third
step, we have used the fact that |C| = Hcav(qS) and in the fourth step, we have used Lemma 8.8
to upper bound this count.

Now, note that under the condition p7 < 12 |S|/n, there exists an admissible restricted degree
q̄ * {0, 1/n, . . . , 1 2 |S|/n} such that |q̄ 2 p7| f 1/n. Denote by q̄ the degree tuple with q̄u = q̄
for every u * S. Clearly, µ(B) g µ(A(S, q̄, p7, ·)). Repeating the calculation in Equation (31), but
with corresponding lower bounds instead of upper bounds, we conclude that

µ(B) g
Zmean
³

Z³
exp(2O(nr· + r2 log(nr ) + r log n) + ∆(q̄, p7)) , (32)

where
∆(qS , p

7) = 2n
∑

u*S

[

L³(q̄u)2 L³(p
7)2 C³|q̄l 2 p7|

]

.

Using the properties of the Shannon entropy (i.e, supp*[0,121/n] |H(p)2H(p+ 1/n)| = |H(0)2
H(1/n)| f n21(1 + log n)), we have that

sup
p*[0,121/n]

∣

∣

∣
L³(p)2 L³

(

p+
1

n

)∣

∣

∣
f C³

log n

n

23



for some positive constant C³. This implies that ∆(q̄, p7) f C³r log(n). Plugging this into the
lower bound on µ(B) in Equation (32), and then combining it with the upper bound on µ(A) in
Equation (31), we obtain the claim.

From this result we derive the following corollary, which establishes that supu*[n] |pu(X) 2 p7|
must be close to zero with high probability under the measure µ

(

·
∣

∣B�
· (p

7)
)

. Observe that in the
statement of Theorem 8.9, the term in the exponent, L³(q̄u) 2 L³(p

7) 2 ·³(|q̄u 2 p7|) < 2·0 < 0
whenever |q̄u2p7| is large. Therefore, this the event where |q̄u2p7| is large incurs an exponentially
small probability. We refer to Section D for its complete proof.

Corollary 8.10. Suppose p7 * U³ and let ë > 0 be an arbitrary fixed constant. Then, we can take
0 < · < c(³, ë) and n > n0(³, ë, ·) such that

µ
(

sup
u*[n]

|pu(X) 2 p7| f ë
∣

∣

∣
B�

· (p
7)
)

g 12 exp(2Ω³,ë(n)) .

Recall that in Lemma 7.2, we showed that whenever X is close to the constant graphon p7, then
most of the degrees concentrate close to p7. In the result below we show that when pu(X) is close to
p7 uniformly for every vertex u (as shown in Corollary 8.10) and X is close to the constant graphon
p7, most of the degrees puv(X) concentrate close to (p7)2. This will be useful in Section 6, where
we will prove Theorem 4.5, which is the important component behind the proof of Theorem 3.1.

Corollary 8.11. Suppose that p7 * U³. Given arbitrary ë, · > 0, suppose · < c(³, ë, ·) and
n > n0(·, ë, ³, ·). Then, for every u * [n], there exists a random set Su ¦ [n] \ {u} such that
|Su| f ·n and

µ
(

sup
u*[n]

sup
v*S#

u

|puv(X)2 (p7)2| f ë
∣

∣

∣
B�

· (p
7)
)

g 12 exp(2Ω³,ë(n)) .

We refer to Appendix D.1 for the proof.

9 Proof of Theorem 3.3

Before proceeding with the proof of Theorem 3.3, we will establish generalizations of [1, Lemma 12
and Lemma 17]. Therefore, we will not instantiate to the model parameters given in Example 3.2
but consider a general ERGM with parameter ³. We need to treat the vertex 1 separately from the
other vertices. Following the notation preceding Lemma 12 in [1], we define for some fixed, finite
set of graphs G:

r̄max(X) := max
(

max
u:u 6=1

pu(X), sup
e=(u,v):u,v 6=1

G*G

rG(X, e)
)

and
r̄min(X) := min

(

min
u:u 6=1

pu(X), inf
e=(u,v):u,v 6=1

G*G

rG(X, e)
)

.

Here, we consider the evolution of the vertices 2, . . . , n 2 1 when they are close to G(n 2 1, p7) in
terms of the subgraph counts and the edges connecting vertex 1 are arbitrary. Notice that we have
included the degrees pu(X) here in addition to rG(X, e), which will be useful to us later in the
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proof. The lemma below follows from a rewriting of the proof of Lemma 17 in [1], by noting that
the edges connected to vertex 1 do not influence the evolution of ∆e

G(X) in the leading order term
as considered in [1, Lemma 12 and Lemma 14] and a straightforward tweak to also consider pu(X).
Therefore, we skip the proof.

Lemma 9.1. Suppose G = GL (the set of all graphs with at-most L vertices) and let ë > 0 be a
small enough constant independent of n. Suppose p7 * U³ and let X0,X1, . . . are drawn from the
Glauber dynamics with respect to the measure µ. For some large enough L * N, independent of
n, if X0 is such that p7 2 ë f r̄min(X0) f r̄max(X0) f p7 + ë, then for some ³ depending only on
³, ë, L, we have

P

(

sup
tfeαn

r̄max(Xt) g p7 + 2ë
)

f exp(2Ω³,L,ë(n))

and
P

(

inf
tfeαn

r̄min(Xt) f p7 2 2ë
)

f exp(2Ω³,L,ë(n)) .

We now instantiate our discussion to the case of the exponential random graph model defined
in Example 3.2 and use the notation established in this example. Recall p1(X) and p1u(X). Define

p(1)max(X) = max
(

p1(X),max
u 6=1
u*[n]

p1u(X)

p71

)

and p
(1)
min(X) = min

(

p1(X), min
u 6=1
u*[n]

p1u(X)

p71

)

.

Lemma 9.2. Consider the same setting as Lemma 9.1 instantiated to the parameter ³ given in
Example 3.2, with p7 = p71. Given ë1 > 0, we can pick ë in Lemma 9.1 small enough such that the

following holds: Suppose q72 ë1 f p
(1)
min(X0) f p

(1)
max(X0) f q7+ ë1, then for some ³ depending only

on ³, ë, ë1, L, we have

P

(

sup
tfeαn

p(1)max(Xt) g q7 + 2ë1

)

f exp(2Ω³,L,ë(n))

and
P

(

inf
tfeαn

p
(1)
min(Xt) f q7 2 2ë1

)

f exp(2Ω³,L,ë(n)) .

Proof. Let N :=
(n
2

)

. Recall the function g defined in Example 3.2 and Ç³ as defined in Section 2.
It is easy to show using similar techniques as in [1, Lemma 12] that

2p1(Xt)

N
+

g(p
(1)
min)

N
f E [p1(Xt+1)2 p1(Xt)|Xt] f 2p1(Xt)

N
+

g(p
(1)
max)

N
.

Similarly, for every u * [n] and u 6= 1, denoting r̄max(Xt), r̄min(Xt) by r̄max, r̄min respectively,

E [p1u(Xt+1)2 p1u(Xt)|Xt] f 22p1u(Xt)

N
+

g(p
(1)
max)r̄max

N
+

p
(1)
maxÇ(r̄max)

N

and

E [p1u(Xt+1)2 p1u(Xt)|Xt] g 22p1u(Xt)

N
+

g(p
(1)
min)r̄min

N
+

p
(1)
minÇ(r̄min)

N
.

Now, notice that by Lemma 9.1, r̄max(Xt)/p
7
1 f 1+2 ë

p71
and r̄min(Xt)/p

7
1 g 122 ë

p71
with probability

at-least exp(2Ω(n)) whenever t f exp(³n). Therefore, we can consider the evolution of p1u(Xt)
p71
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akin to the evolution of p1(Xt) with g(x) replaced by g(x)+x
2 . Notice that the functions g and

1
2(g(x)+x) play the role of Ç() in the proof of [1, Lemma 12] and satisfy the relationship g(q7) = q7

and g2(q7) < 1 (same for g(x)+x
2 ). This allows us to conclude the statement of the lemma with

minor modifications to the proof of Lemma 17 in [1]

Proof of Theorem 3.3. Let the initial state X0 be sampled as in the theorem statement.

1. Recall ·S,p
7

� given in Definition 8.5. Consider this with S = {1}. By Lemma 8.6, in order to

show that Xt * B�
· (p

7) it is sufficient to show that ·1,p
7

� (Xt, p
7) f ·/4 with high probability.

With similar arguments as in the proof of Lemma 4.10 with rmin, rmax replaced with r̄min, r̄max

we conclude that with probability at-least 12 T exp(2Ω·,³(n)), we have that every point in
the trajectory X0,X1, . . . ,XT * B�

· (p
7). Using Lemma 9.2 and the result above we conclude

the statement.

2. This follows from a straightforward application of Theorem 8.9 along with Theorem 1.3 and
the fact that p71 is the unique global maximizer of U³ .

3. This follows from the same considerations as the proof of Item 2.
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A Proofs of Technical Lemmas

A.1 Proof of Lemma 7.2

Fix any p * [0, 1] and · > 0 and consider the sets S+ :=
{

u : pu(X) 2 p > 2·�(X̃, p1)/·
}

and

S2 := {u : pu(X) 2 p < 22·�(X̃, p1)/·}. By the definition of the cut-metric it follows that

·�(X̃, p1) g 1

n

∑

u*S+

pu(X) 2 p g 2|S+|·�(X̃, p1)

n·
.

Thus, |S+| f ·n/2 and similarly |S2| f ·n/2. Therefore, |S+ * S2| f ·n, which allows us to
conclude the first inequality by taking S = S+ * S2. The second inequality follows by directly
applying Theorem 1.3 to Equation (19).

A.2 Proof of Lemma 7.3

We note that when considering distance from any constant graphon p1 we have ·�(X̃, p1) =
·�(f

X , p1), since measure-preserving operators do not affect the constant graphon. Now, notice
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that since fY (x1, x2)2p f fX(x1, x2)2p f fZ(x1, x2)2p, for any Borel measurable sets S, T ¦ [0, 1]
we have

∫

S×T
(fX(x1, x2)2 p)dx1dx2 f

∫

S×T
(fZ(x1, x2)2 p)dx1dx2 f ·�(Z̃, p) .

Similarly,

∫

S×T
(fX(x1, x2)2 p)dx1dx2 g

∫

S×T
(fY (x1, x2)2 p)dx1dx2 g 2·�(Ỹ , p) .

These together establish that

∣

∣

∣

∫

S×T
(fX(x1, x2)2 p)dx1dx2

∣

∣

∣
f max(·�(Ỹ , p), ·�(Z̃, p)) .

Taking the suprememum over S, T yields the lemma.

A.3 Proof of Lemma 7.4

In case di < |E| for some i, we start with Young’s product inequality, which states that for every
a, b g 0 and ³, ³ > 0 such that ³21 + ³21 = 1, we have ab f ³21a³ + ³21b³. We take a = qdi ,
b = p|E|2di , ³ = |E|/di and ³ = |E|/(|E| 2 di). In case di = |E|, we check that the inequalities
below hold trivially. Hence

|V |
∑

i=1

qdip|E|2di f
|V |
∑

i=1

di
|E|q

|E| +
|E| 2 di

|E| p|E|

=

∑|V |
i=1 di
|E| q|E| +

|V ||E| 2∑|V |
i=1 di

|E| p|E|

= 2q|E| + (|V | 2 2)p|E| . (33)

In the last step, we have used the fact that for any finite simple graph G,
∑|V |

i=1 di = 2|E|. Equality
when G = G0 follows by a straightforward calculation.

Now suppose that G 6= G0. Then, it is easy to show that there exists a vertex j such that
dj < |E|. We note that Young’s product inequality is strict whenever a³ 6= b³. For the choice of
a, b, ³, ³ above, this condition means p 6= q. Now, consider the function: f(p, q) = 2qdjp|E|2dj +
di
|E|q

|E|+ |E|2di
|E| p|E|. This is continuous over the set [0, 1]2. Define A· := {(p, q) * [0, 1]2 : |p2q| g ·}.

Clearly, A· is a compact set for every · g 0. Define ·(·) = inf(p,q)*Aδ
f(p, q). It is clear from the

strictness of the Young’s inequality that f(p, q) > 0 for every (p, q) * A· whenever · > 0. Therefore,
we conclude by compactness of A· and continuity of f that ·(·) > 0 whenever · > 0. The continuity
of · follows from the continuity of f . Therefore, we conclude that there exists · as in the statement
of the lemma such that:

2C|p2 q| f qdjp|E|2dj 2 di
|E|q

|E| 2 |E| 2 di
|E| p|E| f 2·(|p2 q|) .

The inequality above holds with · = 0 for every i, even when di = |E|. This allows us to sum the
inequality above and conclude the result.
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A.4 Proof of Lemma 8.2

Since the proof is elementary, we only provide a brief sketch. The statement N0
G(X,u) g NG(X,u)

follows from the fact that Ak
u = *k

l=1A
k,l
u and the union bound. Now, note that 0 f ∑k

l=1 1(A
k,l
u )2

1(Ak
u) f k and the sum is non zero only when the event Ak,l

u +Ak,m
u holds for some l 6= m, l,m * [k].

Noting that under the uniform measure over [0, 1]k the measure of Ak,l
u +Ak,m

u is n22 and using the
union bound, we conclude the result.

A.5 Proof of Lemma 8.3

Suppose di is the degree of vertex i * [k]. In light of Lemma 8.2 we may replace NG(X,u) in the
lemma statement by N0

G(X;u) and then by considering a specific term in the sums we see that it
is sufficient to prove that

∣

∣

∣

∣

∫

[0,1]k
1(Ak,l

u )
∏

(i,j)*E(G)

fX(xi, xj)
k
∏

i=1

dxi 2
pu(X)dlp|E(G)|2dl

n

∣

∣

∣

∣

f |E(G)|·�(X̃, p)

n
.

Notice that
∫

[0,1]k
1(Ak,l

u )
∏

(i,j)*E(G)

fX(xi, xj)

k
∏

i=1

dxi

=

∫

[0,1]k
1(Ak,l

u )
∏

(l,i)*E(G)

fX(xl, xi)
∏

(i,j)*E(G)
i,j 6=l

fX(xi, xj)
k
∏

i=1

dxi . (34)

A simple computation shows that

pu(X)dlp|E(G)|2dl

n
=

∫

[0,1]k
1(Ak,l

u )

(

∏

i:(l,i)*E(G)

fX(xl, xi)

)

pE(G)2dl

k
∏

i=1

dxi . (35)

Therefore,
∣

∣

∣

∣

∫

[0,1]k
1(Ak,l

u )
∏

(i,j)*E(G)

fX(xi, xj)
k
∏

i=1

dxi 2
pu(X)dlp|E(G)|2dl

n

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

[0,1]k
1(Ak,l

u )
∏

(l,i)*E(G)

fX(xl, xi)

[

∏

(i,j)*E(G)
i,j 6=l

fX(xi, xj)2 p|E(G)|2dl

] k
∏

i=1

dxi

∣

∣

∣

∣

. (36)

Following the proof of [2, Lemma 4.4] with minor modifications, consider any ordering among
the set of edges (i, j) * E(G) such that i, j 6= l and index these ordered edges by (i1, j1), . . . , (ih, jh)
where h = |E(G)| 2 dl. Then

[

∏

(i,j)*E(G)
i,j 6=l

fX(xi, xj)2 p|E(G)|2dl

]

=

|E(G)|2dl21
∑

r=0

pr
|E(G)|2dl

∏

m=r+1

fX(xim , xjm)2 pr+1

|E(G)|2dl
∏

m=r+2

fX(xim , xjm) .
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Now, we use the above decomposition in Equation (36) and consider the terms in the summation
one by one. We then follow the technique used in the proof of [2, Lemma 4.4] along with the fact

that Ak,l
u depends only on xu and the fact that the measure of the event Ak,l

u under the uniform
measure over [0, 1]k is 1/n to conclude the result.

A.6 Proof of Lemma 8.4

Only in this proof, we will take the probability space to be [0, 1]k equipped with the Borel sigma
algebra and the uniform measure P .

First, note that by the union bound,
∑

u*S NG(X;u) g NG(X;S). Now, almost surely

∑

u*S

1(Ak
u) f k ,

since there are at most k vertices in the graph G. We conclude that almost surely

∑

u*S

1(Ak
u)2 1(Ak

S) f k 2 1 .

Now let Bk
S be the event that

∑

l 1(A
k
u) 6= 1(Ak

S). This can happen only when two events Ak,i
u and

Ak,j
v hold simultaneously for some i, j * [k], u, v * S, i 6= j and u 6= v. Therefore, we have

Bk
S =

⋃

u,v*S
u 6=v

⋃

i,j*[k]
i 6=j

Ak,i
u +Ak,j

v .

By the union bound,

P (Bk
S) f |S|2k2P (Ak,i

l +Ak,j
m ) =

|S|2k2
n2

.

Now combining the considerations above, we have

∑

l*S

NG(X; l) 2NG(X;S)

=

∫

[0,1]k

[

21
(

Ak
S

)

+
∑

l*S

1(Ak
l )

]

∏

(i,j)*E(G)

fX(xi, xj)

k
∏

i=1

dxi

f (k 2 1)

∫

[0,1]k
1(Bk

S)
∏

(i,j)*E(G)

fX(xi, xj)

k
∏

i=1

dxi

f kP (Bk
S) f

|S|2k3
n2

. (37)

The lemma statement follows.

A.7 Proof of Lemma 8.6

In this proof alone, we will abuse notation to denote the set *u*S [
u21
n , un) ¦ [0, 1] also by S (and

similarly for S#). Since we are considering the cut-metric between X̃ and a constant graphon, we
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can write

·S,p
7

� (X̃, p7) = sup
A,B¢[0,1]

∣

∣

∣

∣

∫

A×B

[

fX,S,p7(x1, x2)2 p7
]

dx1dx2

∣

∣

∣

∣

= sup
A,B¢[0,1]

∣

∣

∣

∣

∫

A+S#×B+S#

[

fX(x1, x2)2 p7
]

dx1dx2

∣

∣

∣

∣

= sup
A,B¢S#

∣

∣

∣

∣

∫

A×B

[

fX(x1, x2)2 p7
]

dx1dx2

∣

∣

∣

∣

. (38)

From the last equality above, we conclude that ·S,p
7

� (X̃, p7) f ·�(X̃, p7). To conclude the lower
bound, note that

·�(X̃, p) f ·�(X̃, X̃S,p7) + ·�(X̃
S,p7 , p7) = ·�(X̃, X̃S,p7) + ·S,p

7

� (X̃, p7) .

It is now easy to show that ·�(X̃, X̃S,p7) f 12|S#|2/n2, which when combined with the last display
above proves the lower bound.

A.8 Proof of Lemma 8.8

By Stirling’s formula, we have that for any k * N and p * [0, 1] such that kp is an integer,

exp(22kI(p)):
2k

f
(

k

kp

)

f exp(22kI(p)) .

A counting argument shows that Ncav(qS) =
∏

u*S

(n2|S|
qun

)

. For the upper bound, note that

∏

u*S

(

n2 |S|
qun

)

f
∏

u*S

(

n

qun

)

f exp
(

2 2n
∑

u*S

I(qu)
)

. (39)

Now, for the lower bounds, we note that whenever qu f q f 1 and q g 1/2: |2qI(qu/q)2 2I(qu)| f
(2 + log(1/(1 2 q)))(1 2 q). Taking q = (n2 |S|)/n = 12 r/n below, we have

∏

u*S

(

n2 |S|
qun

)

g
exp

(

2∑

u*S 2(n 2 |S|)I( nqu
n2|S|)

)

(:
2n

)r

g exp
(

2
∑

u*S

2nI(qu)2 r2
[

4 + 2 log(nr )
]

2 r

2
log(2n)

)

. (40)

B Proofs of lemmas from Section 6

B.1 Proof of Lemma 6.1

Before proving the lemma, we derive an estimate for ∆e
G(X).
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Recall the event Ak
u in (21) in Section 8. Suppose the fixed graph G has the vertex set [k]. We

now define for u, v * [n],

AkG
uv :=

{

x * [0, 1]k : (+nxi+, +nxj+) * {(u, v), (v, u)} for some (i, j) * E(G)
}

.

For i, j * [k] define

Akij
uv :=

{

x * [0, 1]k : (+nxi+, +nxj+) * {(u, v), (v, u)}
}

.

Now, the definition of homomorphism density yields

∆e
G(X) = NG(X

+e)2NG(X
2e)

=

∫

∏

(i,j)*E(G)

fX+e

(xi, xj)
k
∏

t=1

dxt 2
∏

(i,j)*E(G)

fX2e

(xi, xj)
k
∏

t=1

dxt

=

∫

1(AkG
uv )

∏

(i,j)*E(G)

fX+e

(xi, xj)

k
∏

t=1

dxt . (41)

A computation similar to the proof of Lemma 8.2 shows that

∫

∣

∣

∣
1(AkG

uv )2
∑

(i,j)*E(G)

1(Akij
uv )

∣

∣

∣

k
∏

t=1

dxt f
E(G)3

n3
.

Using this in Equation (41), we conclude that

∆e
G(X) =

∫

∑

(i,j)*E(G)

1(Akij
uv )

∏

(a,b)*E(G)

fX+e

(xa, xb)
k
∏

t=1

dxt ±O
(E(G)3

n3

)

=
∑

(i,j)*E(G)

∫

1(Akij
uv )

∏

(a,b)*E(G)
(a,b)6=(i,j)

fX+e

(xa, xb)

k
∏

t=1

dxt ±O
(E(G)3

n3

)

. (42)

We are now ready for the proof.

Proof. We will prove the result by replacing puv(X), pu(X), and ·�(X, p7) with puv(X
+e), pu(X

+e),
and ·�(X

+e, p7), noting that ·�(X,X+e) f 2/n2, |puv(X) 2 puv(X
+e)| f 1/n, and |pu(X) 2

pu(X
+e)| f 1/n.

We will use E and E(G) interchangeably in this proof. For (i, j) * E(G), first consider the
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quantity

∫

1(Akij
uv )

∏

(a,b)*E
(a,b)6=(i,j)

fX+e

(xa, xb)
k
∏

t=1

dxt

=

∫

1(Akij
uv )

∏

(i,l)*E
l 6=j

fX+e

(xi, xl)
∏

(j,l)*E
l 6=i

fX+e

(xj , xl)
∏

(a,b)*E
a,b/*{i,j}

fX+e

(xa, xb)

k
∏

t=1

dxt

= (p7)|E|2di2dj+1

∫

1(Akij
uv )

∏

(i,l)*E
l 6=j

fX+e

(xi, xl)
∏

(j,l)*E
l 6=i

fX+e

(xj, xl)

k
∏

t=1

dxt

± 2|E(G)|·�( ˜X+e, p7)

n2
. (43)

In the last step we have used a similar peeling argument as in Lemma 8.3. Recalling the sets Aki
u

from Section 8, we note that whenever i 6= j, 1(Akij
uv ) = 1(Aki

u +Akj
v ) + 1(Akj

u +Aki
v ). Now,

∫

1(Aki
u +Akj

v )
∏

(i,l)*E
l 6=j

fX+e

(xi, xl)
∏

(j,l)*E
l 6=i

fX+e

(xj , xl)
k
∏

t=1

dxt

=

∫

1(Aki
u +Akj

v )
∏

(i,l)*E
l 6=j

l 6*Eij(G)

fX+e

(xi, xl)
∏

(j,l)*E
l 6=i

l*Eij(G)

fX+e

(xj , xl)×

∏

l*Eij(G)

fX+e

(xi, xl)f
X+e

(xj, xl)
k
∏

t=1

dxt

=
1

n2
(pu(X

+e))di212dij (pv(X
+e))dj212dij (puv(X

+e))dij . (44)

In the last step, we have used the definitions of degrees pu and puv given in Equations (4) and (5)
in terms of integrals over fX . Using this in Equation (43), and shortening pu(X

+
e ), pv(X

+
e ) and

puv(X
+
e ) to pu, pv and puv, we obtain

n2

∫

1(Akij
uv )

∏

(a,b)*E
(a,b)6=(i,j)

fX+e

(xa, xb)

k
∏

t=1

dxt

= (p7)|E|2di2dj+1(pu)
di212dij (pv)

dj212dij(puv)
dij

+ (p7)|E|2di2dj+1(pv)
di212dij (pu)

dj212dij (puv)
dij ± 2|E(G)|·�( ˜X+e, p7) . (45)

Using the condition supu |pu(X)2 p7| < ë, Equation (42), and the equation above, we conclude the
statement of the lemma.
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B.2 Proof of Lemma 6.4

We first state a simple modification of [5, Theorem 1.5] below, which follows by essentially rewriting
its proof with minor changes.

Lemma B.1 (Modification of Theorem 1.5 in [5]). Under the same notation as [5, Theorem 1.5],
we suppose the same conditions as the original theorem hold, except condition (ii), where we replace
the assumption ∆(X) f Bf(X) + C, with

1. ∆(X) f ³1(A) + ³1(A#) for some event A * Ã(X), ³, ³ * R
+

2. |f(X)| f M almost surely.

Then, we have

P(|f(X)| > t) f
(

1 +
³ exp(»0M)P(A#)

³

)

inf
»*[0,»0]

exp
(»2³

2
2 »t

)

.

Proof. In the proof of [5, Theorem 1.5], in the display below Equation (7), we have for » * [0, »0]

|m2(»)| f |»|E exp»f(X) ∆(X)

f |»|³m(») + |»|³ exp(|»|M)P(A#)

f |»|³m(») + |»|³ exp(|»0|M)P(A#) .

In the second step we have used the hypothesis that ∆(X) f ³1(A) + ³1(A#) and |f(X)| f M .
Therefore

d

d»
log

(

m(») + ³ exp(»0M)P(A#)
³

)

f »³ .

The result then follows by an application of Gronwall’s lemma and the Chernoff bound.

We will consider Glauber dynamics with respect to the measure µ(·|B�
· (p

7)) (Definition 1.1) in
order to generate the exchangeable pairs required by [5, Theorem 1.5] (and Lemma B.1), where the
event B�

· (p
7) is as defined in Equation (30). In the notation of [5, Theorem 1.5], we consider

Fuv(X,X 2) :=
∑

w*[n]
w/*{u,v}

XuwXvw 2
∑

w*[n]
w/*{u,v}

X 2
uwX

2
vw .

With the help of Lemma B.1, we will now prove Lemma 6.4.

Proof of Lemma 6.4. By Lemma 7.1, we conclude that whenever p7 * U³ and · > 0 is small
enough,

µ
(

B�
·/2(p

7))
∣

∣

∣
B�

· (p
7)

#
)

f C(³, ·) exp(2c(³, ·)n2) .

Let X be drawn from the distribution µ(·|B�
· (p

7)) and let X 2 be obtained by taking a single

step of Glauber dynamics with respect to the measure µ(·|B�
· (p

7)). Clearly, (X,X 2) form an
exchangeable pair. Let

fuv(X) := E
[

Fuv(X,X 2)|X
]

.
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Notice that |fuv(X)| f 1 almost surely since |Fuv(X,X 2)| f 1. For n large enough as a function of
·, whenever X * B�

·/2(p
7), the Glauber dynamics over µ(

∣

∣B�
· (p

7)) is exactly equal to the Glauber

dynamics w.r.t. µ. Therefore, a simple calculation yields the following for X * B�
·/2(p

7):

fuv(X) =
4puv(X)

n2 1
2
(

n

2

)21
∑

w*[n]
w/*{u,v}

Çuw(X>uw)Xvw + Çvw(X>vw)Xuw . (46)

For any edge e, we consider Çe(X>e) =
exp(

∑K
i=1 n

2³i∆
e
i (X))

1+exp(
∑K

i=1 n
2³i∆e

i (X))
. Note that

|Çe(X>e)2 Çe(X
2
>e)| f C(³)n2 sup

i*[K]
|∆e

i (X) 2∆e
i (X

2)| . (47)

Now, X>e and X 2
>e can differ at most in one edge, by construction. Suppose this edge is h. When

e = h, then ∆e
i (X) = ∆e

i (X
2). Now suppose e 6= h. Invoking Equation (41) with k = |Vi|, we

obtain

|∆e
i (X)2∆e

i (X
2)|

=

∣

∣

∣

∣

∫

1(AkGi
e )

[

∏

(a,b)*E(G)

fX+
e (xa, xb)2

∏

(a,b)*E(G)

f (X2
e)

+
(xa, xb)

]

k
∏

t=1

dxt

∣

∣

∣

∣

f
∫

1(AkGi
e )1(AkGi

h )

k
∏

t=1

dxt f
|E(Gi)|2

n3
. (48)

Combining Equations (46), (47) and (48), we conclude that whenever X * B�
·/2(p

7),

|fuv(X)2 fuv(X
2)| f C(³)

n2
. (49)

Observe that whenever the Glauber dynamics does not update an edge of the form (u,w) or
(v,w), Fuv(X,X 2) = 0. Let Aupd denote the event where Fuv(X,X 2) 6= 0. Clearly, P(Aupd|X) f
4/n. It is also clear that |Fuv(X,X 2)| f 1 almost surely. Therefore, we have for any X * Ω

|f(X)| f E
[

|F (X,X 2)||X
]

f P
(

Aupd|X
)

f 4

n
. (50)

Now consider the local variance proxy ∆uv(X) (where the notation is once again derived from
[5, Theorem 1.5]) whenever X * B�

·/2(p
7),

∆uv(X) :=
1

2
E
[(

fuv(X)2 fuv(X
2)
)

Fuv(X,X 2)
∣

∣X
]

f C(³)

n2
E
[

1(Aupd)
∣

∣X
]

f C(³)

n3
. (51)

Here, we have used Equation (49). Whenever, X /* B�
·/2(p

7), we will use the crude bound

∆uv(X) f C

n2
,
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obtained by plugging in |f(X)2f(X 2)| f |f(X)|+|f(X 2)| f 8/n (which follows from Equation (50))
into the the definition of ∆uv. Combining these bounds, we get that

∆uv(X) f C(³)

n3
1(X * B�

·/2(p
7)) +

C(³)

n2
1(X 6* B�

·/2(p
7)) .

By Lemma 7.1,

µ
(

X 6* B�
·/2(p

7)
∣

∣

∣
B�

·/2(p
7)
)

f C³,· exp(2c(³, ·)n2) .

Now, applying Lemma B.1, with M = 4/n, and »0 = C³n
2 for some large enough C³ and t =

4³/(n2 1), we conclude the result.

C Deferred Proofs for Path Coupling

C.1 Proof of Lemma 4.1

Consider the following coupling between the trajectories X0, . . . ,XK and Y0, . . . , YK :

1. Generate (X0, Y0) from the specified initial distribution.

2. Given Xk, Yk, we generate Xk+1, Yk+1 as follows:

(Xk+1, Yk+1) >
{

QXk,Yk
if (Xk, Yk) * A

P (Xk, ·) × P (Yk, ·) otherwise
(52)

Now we consider the distance d(Xk+1, Yk+1). We have

Ed(Xk+1, Yk+1) = Ed(Xk+1, Yk+1)1((Xk, Yk) * A×A)

+ Ed(Xk+1, Yk+1)1((Xk, Yk) * A#)

f E(12 ³)d(Xk, Yk)1((Xk, Yk) * A)

+ Ed(Xk+1, Yk+1)1((Xk, Yk) * A#)

f (12 ³)Ed(Xk, Yk) + Ed(Xk+1, Yk+1)1((Xk, Yk) * A#)

f (12 ³)Ed(Xk, Yk) + D̄P((Xk, Yk) * A#)

f (12 ³)Ed(Xk, Yk) + D̄pk . (53)

We conclude the result by unrolling the recursion.

C.2 Proof of Lemma 4.9

In both this and the next proof, we let

rmin(X) := inf
e*(n2)
G*GL

rG(X, e) and rmax(X) := sup
e*(n2)
G*GL

rG(X, e) .
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Proof. We will only prove the coupling for G(n, p7 + ë). The other coupling follows analogously.
Let N =

(n
2

)

. Let e1, . . . , eN be any enumeration of
([n]
2

)

. Let X0 > µ(·|B�
· (p

7)) and obtain the
sequence X0, . . . ,XN by updating as follows: Given Xi21, define (Xi)e = (Xi21)e whenever e 6= ei
and let (Xi)ei be independently re-sampled from the conditional distribution (Xi21)ei

∣

∣(Xi21)>ei .
In other words, we obtain Xi by re-sampling the coordinate ei in Xi21. Clearly, XN > µ(·|B�

· (p
7)).

Now, consider Y0 = 0 * Ω almost surely. Let e1, . . . , eN be the same as before. We will construct
Y1, . . . , YN as follows: Given Yi21, we construct Yi such that (Yi)>ei = (Yi21)>ei and (Yi)ei is freshly
drawn from Ber(p7 + ë). It is clear that YN > G(n, p7 + ë).

By Theorem 4.5, we have that p7 2 ë f rmin(Xi) f rmax(Xi) f p7 + ë with probability at-
least 1 2 C(·, ³, ë) exp(2c(·, ³, ë)n). Recall the definition of Ç³ from Section 2 and note that
P((Xi)ei = 1|Xi21) f Ç³(rmax(Xi21)) f p7+ ë. Therefore the fresh draws can be coupled such that
(Xi)ei f (Yi)ei with probability at least 12C(·, ³, ë) exp(2c(·, ³, ë)n). Since (Xi)ei = (XN )ei and
(Yi)ei = (YN )ei , we conclude via a union bound over i f N that XN � YN with probability at least
12C(·, ³, ë) exp(2c(·, ³, ë)n). This gives the desired coupling by taking X = XN and Ȳ = YN in
the statement of the lemma.

C.3 Proof of Lemma 4.10

We first show that with probability at-least 1 2 C(·) exp(2c(·)n), we must have p7 2 ·/4 f
rmin(X0) f rmax(X0) f p7 + ·/4.

This can be shown for example by using Lemma 6.1 and simple concentration bounds for the
degrees pu(X0) and puv(X0). The fact that ·�(X̃0, p

7) is small follows from Theorem 1.3 since
G(n, p7) is also (a very special case of) an exponential random graph. Now, invoking Lemma 4.8,
we conclude that with probability at least 1 2 TC(³, ·) exp(2c(³, ·)n), we have for every t f T
that

p7 2 ·

2
f rmin(Xt) f rmax(Xt) f p7 +

·

2
. (54)

Now consider Markov chains Y0, . . . , YT and Z0, . . . , ZT where Y0 > G(n, p7 2 ·/2) and Z0 >
G(n, p7 + ·

2 ). Here, we generate the respective trajectories by Glauber dynamics with respect to
G(n, p7 2 ·/2) (resp. G(n, p7 + ·

2 ) ) We couple the trajectories as follows:

1. At step 0, we pick X0, Y0, Z0 such that almost surely

Y0 � X0 � Z0 .

2. At step t, pick the same edge Et > unif
(([n]

2

))

to update for each Xt21, Yt21 and Zt21.

3. Pick ut > unif([0, 1]) independently of everything else and set

(Xt)Et = 1(ut f ÇEt((Xt)>Et)); (Yt)Et = 1(ut f p7 2 ·
2 ); (Zt)Et = 1(ut f p7 + ·

2 ) .

For · small enough, we verify that under the event in Equation (54)

p7 2 ·

2
f Ç³(rmax(Xt)) f ÇEt((Xt)>Et) f Ç³(rmax(Xt)) f p7 +

·

2
.

This implies that (Yt)Et f (Xt)Et f (Zt)Et . We conclude that with probability at least 1 2
TC(³, ·) exp(2c(³, ·)n) we have Yt � Xt � Zt. Now, we will apply Theorem 7.3 to obtain

·�(X̃t, p
7) f max

(

·�(Ỹt, p
7), ·�(Z̃t, p

7)
)

. (55)
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Now, since Yt > G(n, p7 2 ·/2) and Zt > G(n, p7 + ·/2), we have

P

(

max
(

·�(Ỹt, p
7), ·�(Z̃t, p

7)
)

> ·
)

f 12C(·) exp(2c(·)n2) .

Using this in Equation (55), we conclude the statement of the claim.

D Proof of Corollary 8.10

Proof. Let · > 0 and · > 0. We are given X * Ω such that X * B�
· (p

7), i.e., ·�(X̃, p7) < ·.
Consider the set S(X) := {u : |pu(X)2 p7| > 2·/·}. By Lemma 7.2, we note that |S(X)| f ·n, so

{S(X) 6= '} =
⋃

S¦[n]
1f|S|f·n

{S(X) = S} .

By the union bound,

µ
(

|S(X)| 6= '
∣

∣B�
· (p

7)
)

f
·n
∑

r=1

∑

S¦[n]
|S|=r

µ
(

S(X) = S|B�
· (p

7)
)

=
·n
∑

r=1

(

n

r

)

µ
(

S(X) = [r]|B�
· (p

7)
)

. (56)

Here, the second step follows from the permuation invariance of the vertices with respect to the
measure µ. In order to evaluate the upper bound in Equation (56), we will consider the measure
of the event {S(X) = [r]} for r f ·n.

Consider the restricted degrees p̄u with respect to the set [r] and suppose that ·2 < 2·. Let the
set D(p7, ³, S) := {qS : infu*S |q̄u 2 p7| > ³} and note that

{S(X) = [r]} = {|pu(X)2 p7| > 2·/·,"u * [r]}
¦ {|p̄u(X)2 p7| > 2·/· 2 ·,"u * [r]}
=

⋃

q[r]*D(p7, 2η
δ
2·,[r])

{p̄u(X) = q̄u,"u * [r]} . (57)

Therefore whenever ·, · satisfy ë/2 = 2·/· 2 ·, we have

{S(X) = [r]} + {X * B([r], p7, ·)} ¦
⋃

q[r]*D(p7,
ë
2 ,[r])

A([r],q[r], p
7, ·) . (58)

Note that with the above choice of · in the definition of S(X), we can take · < ë/2 to conclude
that for all u * S(X)#, |pu(X)2 p7| f ë. We will note a simple result which follows from standard
arguments in calculus.

Lemma D.1. Suppose p7 * U³ and q * [0, 1] is such that |q 2 p7| > ë/2. Then, L³(q)2 L³(p
7)2

·³(|q 2 p7|) < 2C(³, ë) < 0.
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Pick · to be small enough such that p7 * (·, 12 ·). Combining Lemma D.1 with Equation (58)
and Theorem 8.9 we conclude that whenever r f n·:

µ({S(X) = r} +B([r], p7, ·))

µ(B([r], p7, ·))
f

∑

q[r]*D(p7,
ë
2 ,[r])

µ(A([r],q[r], p
7, ·))

µ(B([r], p7, ·))

f |D(p7, ë
2 , [r])| exp(2nrC(³, ë) +O³(nr· + r2 log(nr ) + r log n))

f exp(22nrC(³, ë) +O³(nr· + r2 log(nr ) + r log n))

= exp
(

2nr
(

2C(³, ë)2O³(· + · log(1· ) +
logn
n )

))

= exp (2Ω³,ë(nr)) . (59)

The first step follows from the union bound on Equation (58) and in the second step we used
Theorem 8.9 along with Lemma D.1. In the third step, we used that |D(p7, ë, [r])| f nr. In the last
step, we have picked ·, · small enough (as functions of ë, ³) so that 2·/· 2 · = ë/2, · < ë/2, · <
·0(ë, ³) and n large enough as a function of ë, ³ such that O³(·+ · log(1/·)+n21log n)) < C(³, ë).

By Lemma 8.6, whenever r f ·n, we must have B�
· (p

7) = B(', p7, ·) ¦ B([r], p7, ·) ¦
B(', p7, · + ·). Along with Lemma 7.1, we conclude that whenever ·, · are smaller than some
constant c³ > 0, we have

µ(B�
· (p

7)) g c(³, ·, ·)µ(B([r], p7 , ·)) .

Therefore whenever n is larger than a constant depending only on ³, ë and ·0, we have

µ({S(X) = [r]} +B(', p7, ·))
µ(B(', p7, ·)) f µ({S(X) = r} +B([r], p7, ·))

µ(B(', p7, ·))

f C(³, ·, ·)
µ({S(X) = r} +B([r], p7, ·))

µ(B([r], p7, ·))

f exp(2Ω³,ë(nr)) . (60)

Using the fact that
(

n
r

)

f nr, it follows using Equations (56) and (60) that

µ
(

|S(X)| 6= '
∣

∣B�
· (p

7)
)

f
n·
∑

r=1

nr exp(2Ω³,ë(nr))

f exp(2Ω³,ë(n)) ,

which proves the corollary.

D.1 Proof of Corollary 8.11

Recall the sets Ak,i
u := {x * [0, 1]k : xi * [u21

n , un)}. Let · > 0 be arbitrary for now. Suppose that
X * B�

· (p
7). We have by definition

puv(X) = n2

∫

fX(x1, x3)f
X(x2, x3)1(A

3,1
u )1(A3,2

v )dx1dx2dx3 .

A simple calculation reveals that

puv(X)2 pu(X)p7 = n2

∫

fX(x1, x3)
(

fX(x3, x2)2 p7
)

1(A3,1
u )1(A3,2

v )dx1dx2dx3 .
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Now, define S+
u := {v : puv(X) 2 p7pu(X) > ë/2} and S2

u := {v : puv(X) 2 p7pu(X) < 2ë/2}.
Summing the display above for v * S+

u , we have

|S+
u |ë

2n2
<

∑

v*S+
u

∫

fX(x1, x3)
(

fX(x3, x2)2 p7
)

1(A3,1
u )1(A3,2

v )dx1dx2dx3

=

∫

x2*A
+
u

fX(x1, x3)
(

fX(x3, x2)2 p7
)

1(A3,1
u )dx1dx2dx3

=

∫

x1*[
u21
n ,

u
n )

[

∫

x2*A
+
u

x3*C(x1)

(

fX(x3, x2)2 p7
)

dx2dx3

]

dx1

f ·�(X̃, p7)

n
, (61)

where A+
u := *v*S+

u
[v21

n , v
n) and C(x1) := {x * [0, 1] : fX(x1, x) = 1}.

Taking · < ·ë/2, we conclude that

|S+
u | f

2n·�(X̃, p7)

ë
f ·n

2

and similarly

|S2
u | f

2n·�(X̃, p7)

ë
f ·n

2
.

Therefore, whenever ·�(X̃, p7) < · < ·ë/2, the sets Su := S+
u * S2

u are such that

sup
u*[n]

sup
v*S#

u

|puv(X)2 p7pu(X)| f ë

2
. (62)

Now, invoking Corollary 8.10, we conclude that for any · < c(³, ë, ·) and whenever n is larger
than a constant depending only on ³, ë, · and · we have

µ
(

sup
u*[n]

|pu(X)2 p7| f ë

2

∣

∣

∣
B�

· (p
7)
)

g 12 exp(2Ω³,ë(n))

and from Equation (62), we have

µ
(

sup
u*[n]

sup
v*S#

u

|puv(X) 2 p7pu(X)| f ë

2

∣

∣

∣
B�

· (p
7)
)

= 1 .

Combining the two displays above, the statement of the corollary follows.
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