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Abstract

In this paper we consider the problem of sampling from the low-temperature exponential
random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but
Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing
time due to metastable states. We instead consider metastable mizing, a notion of approximate
mixing relative to the stationary distribution, for which it turns out to suffice to mix only within
a collection of metastable states. We show that the Glauber dynamics for the ERGM at any
temperature — except at a lower-dimensional critical set of parameters — when initialized at
G(n,p) for the right choice of p has a metastable mixing time of O(n?logn) to within total
variation distance exp(—Q(n)).

1 Introduction

Given a vector of real-valued parameters 8 := (8o, 1,...,0x) € R x (RT)X | the exponential
random graph model ERGM(n, 3) is defined to be the probability measure over all simple graphs
with n vertices

K
pp(X) = Ziﬁexp <Zn2ﬂiNi(X)> .
i=0

The N; are subgraph counts corresponding to finite graphs Gy, G1, ..., Gk (such as edges, triangles,
4-cycles, 5-cycles, 2-stars, etc.) and Z(/3) denotes the normalizing constant. This is an exponential
family where the sufficient statistics are the subgraph counts. The model significantly generalizes
the Erdos-Rényi random graph and is used to model a variety of complex networks like social
networks and biological networks [10, 16, 8, 9, 31]. Early analysis was carried out by statistical
physicists [24, 25, 4], and probabilists and statisticians have further studied various questions about
these models including sampling, estimation, large deviations theory, concentration of measure, and
phase transitions [1, 5, 26, 7, 11, 23, 32, 27].

The basic problem we consider in this work is that of producing a sample from the ERGM
probability distribution in polynomial time. A popular approach to sampling is to use the Glauber
dynamics, a simple reversible Markov chain with the desired stationary distribution, and to run it
for sufficiently long that it is close to stationarity.



Definition 1.1 (Glauber Dynamics). Given any probability distribution 7 over € = {0, 1}(3) with
m(x) > 0 for all x € Q, the Glauber dynamics with respect to 7 is the discrete time Markov chain
over () with single step transition from X to X’ as follows:

1. Pick a coordinate F € [(g)] uniformly at random.

2. Form X' by keeping all edges except for E the same as in X and sample X, ~ 7(-| X< g)
conditional on the other edges.

The Glauber dynamics with respect to 7 is reversible for 7 ([20]), so in particular 7 is stationary.

The mixing time of the Glauber dynamics, i.e., the time until the distribution is within total
variation 1/4 of stationarity, determines whether the approach is feasible and as shown by Bhamidi
et al. [1] turns out to be essentially characterized by the function Lg : [0,1] — R defined as

K
Lg(p) = > BiplP — I(p) (1)
i=0

where I(p) := 2plogp+ 3(1 —p)log(1 — p). (Bhamidi et al. [1] actually formulated their results in
an equivalent way in terms of the function ¢4 defined in Section 2.2, while Lg was studied by [6].)

Theorem 1.2 ([1]). Consider the ERGM(n, 3) distribution. There are three regimes for [3:

1. High temperature: If Lg has a unique local maximum with a non-vanishing second derivative,
then the Glauber dynamics Markov chain for ERGM(n, B) mizes in time O(n?logn).

2. Low temperature: If Lg has multiple local maxima with non-vanishing second derivatives, then
any local Markov chain with stationary distribution ERGM(n, 8) must suffer a mizing time of

exp(Q2(n)).
3. Critical temperature: If any local mazima of Lg has a vanishing second derivative.

In this work, we use a loose and intuitive notion of metastability since this is not important in
order to state our technical results: consider subsets of the state space A, B C () such that A C B.
We will call B to be metastable with respect to a given markov dynamics if the markov dynamics
initialized inside the set A takes a long time to exit the set B. In this work, we interpret ‘long
time’ as being exponential in n. Slow mixing in the low-temperature phase is due to the existence
of multiple, disconnected metastable states from which it takes the Glauber dynamics exponential
time to leave. The question is therefore: can one efficiently produce a sample from the ERGM in
the low temperature regime?

An important insight into the structure of the ERGM distribution was developed by Chatterjee
and Diaconis [6], and this will constitute a useful step towards our goal. They showed that the
ERGM distribution is close to a finite mixture of constant graphons with respect to the cut-metric:

Theorem 1.3 (Theorem 4.2 of [6]). Denote by Mg the set of global mazima of Lg. The ERGM(n, /3)
distribution converges, in probability with respect to the cut-metric, to a mizture ofNG(n,p*) for
p* € Mg. Formally, let X, ~ ERGM(n, 8) and X,, be its corresponding graphon and Mg be the set

of all constant graphons with value p* for some p* € Mpg. For every fized n > 0, there are constants
C(n),c(n) > 0 such that

P(65(Xn, Mg) > 1) < C(n) exp(—c(n)n?) .



Graphons and the cut metric are reviewed in Section 2.1.

Given the approximation results of Chatterjee and Diaconis, can one simply find p* and ob-
tain a sufficiently accurate approximation of the ERGM by sampling G(n,p*)? Unfortunately, no:
Theorem 1.3 is in cut metric, which turns out to be too weak to control total variation distance.
Indeed, the paper [3] shows that dtv(ERGM,G(n,p*)) — 1 even for the simple ERGM consisting
of edges and 2-stars. The approximation results of Eldan and Gross [7] show that even in the
low-temperature regime, the ERGM can be approximated in a certain Wasserstein metric by an
appropriate mixture of stochastic block models, endowing it with richer structure compared to
G(n,p*). However, these results also do not imply approximation in the total variation distance.

The ERGM is closely related to the ferromagnetic Ising model and, in fact, the ERGM with the
2-star can be written as an Ising model. Just as for the ERGM, the Glauber dynamics is known to
mix exponentially slowly for the Ising model at low temperatures. Nevertheless, there are Markov
chains mixing in polynomial-time which can sample efficiently from arbitrary ferromagnetic Ising
models based on random cluster dynamics [15] and the Swendsen-Wang dynamics [29, 30]. For the
ERGM it is not at all clear how to write down the corresponding random cluster model such that
the associated random cluster dynamics mixes rapidly. We instead pursue a more direct approach.

The starting point of our approach is the observation that if our aim is only to produce a sample
from nearly the correct distribution, then there is no need for the dynamics to transition between
all metastable states. In order to implement this intuition, it is necessary to slightly modify the
standard definition of mixing time of a Markov chain. The usual definition measures the distance
to stationarity starting from a worst-possible initial state. Instead, we use the following definition.

Definition 1.4. Given a Markov transition kernel P with stationary 7* we start from some initial
distribution my and say that P is (m, 7%, 7, §)-mixing if for every ¢t > 7

drv(moPt,m*) < 6. (2)

Note that an immediate consequence of the data processing inequality for total variation is that
P is (mg, 7*, 7,6)-mixing if and only if dty(mgP7,7*) < 6.

The role of §y merits some discussion. Incorporating the starting distribution into the definition
of mixing time invalidates one of the basic lemmas: it is no longer true that the total variation
decreases exponentially fast once the mixing time is exceeded. The basic reason is that in a
Markov chain with multiple metastable states requiring exponential time to leave, any initial error
in probability assigned to the metastable states might persist for exponential time. Thus, one might
think of dg as capturing this initial (possibly unavoidable) error. Gheissari and Sinclair’s work [14]
on mixing in low-temperature Ising models also considers mixing up to a TV distance of Jg.

Our main result, Theorem 3.1 given in Section 3, shows that whenever § > ¢y = exp(—Qg(n)),
with 7y being a mixture of G(n, p*) for some carefully chosen distribution p*, the Glauber dynamics
for ERGM is (mg, 7*, C'ﬁn2 log %, 0)-mixing even in the low temperature regime. That is, as long as
as the target TV distance is > dg, then the mixing time of the Glauber dynamics is O(n?logn).
This gives a counterpoint to the criticism of these models in [1] based on the difficulty of sampling
these models at low temperature. The following is a corollary of Theorem 3.1.

Theorem 1.5. Suppose that p* is the unique global maximizer of Lg and moreover that Lg has
nonzero second derivative at p*. Let mo = G(n,p*). There exist positive constants cg,Cz and
no(B), such that if n > ng(B), then whenever 6 > exp(—cgn), the Glauber dynamics for pg is
(0, 1, Cgn*log(n?/6), §) -mizing.



In fact, Theorem 3.1 is richer and shows that even when there are multiple global maximizers
in the low temperature regime, we can sample efficiently from the conditional distribution of being
close to any of these maximizers. In Theorem 3.3, we establish a surprising richness which can
be present in the ERGM at low temperature. Even within a small cut-metric neighborhood of
the constant p* graphon where the ERGM measure concentrates (and looks very close to G(n, p*))
[6], we establish the existence of metastable states for certain choices of 5 whose total probability
is exp(—O(n)). The Glauber dynamics takes an exponentially long time to escape this set of
metastable states. In contrast, Bhamidi et al. [1] constructed metastable states as sets of graphs
similar to G(n,p), where p was a local maximizer of Lg, and these have a total probability of

exp(—Q(n?)).

1.1 Overview and Proof Sketch

We now give a high level overview of the ideas behind the main results, which are stated in Section 3.

Sufficient Conditions for Path Coupling The large deviations results in [6] stated here as
Theorem 1.3 show that a sample from the ERGM is w.h.p. close in cut-metric to some constant
graphon with value p*. Sufficient conditions established in [1] for the path coupling argument to
work requires much stronger control on small subgraph counts than provided by the cut-metric:
the increase in homomorphism density of G in X formed by adding any edge e to X (denoted by
Ag,(X)) must be approximately 2n 2| E(G)|(p*) P@)I=1 for every fixed subgraph G. We will show
that A% (X) indeed concentrates close to this value with probability 1 —exp(—£g(n)). The coupling
argument showing how this statement implies our main theorem is contained in Sections 4 and 5.

Fixed Point Equations for Subgraph Concentration Theorem 1.3 shows that X ~ p is
close to the constant graphon with value p*. Section 6 reduces the task of showing concentration of
A% (X) to show additionally that: (1) every node degree uniformly concentrates close to p* and (2)
that the number of common neighbors of any two vertices u and v is close n(p*)2. We show these
two properties as follows. First, concentration of degrees is established using the cavity method,
discussed momentarily. For the second property, we make use of the concentration of degrees to
derive a fixed point equation for the common neighbor counts and use the concentration results
for fixed point equations established in [5, Theorem 1.5]. We note that the concentration results
given by [5, Theorem 1.5] in themselves do not seem to be sufficient to establish the concentration
of A%(X) and the concentration of degrees as established by the cavity method is essential.

Cavity Method for Degrees We use the cavity method as developed in Section 8 to first show
that conditioned on the exponential random graph X being close to the constant p* graphon, the
normalized degree of every vertex concentrates close to p*. Graphon convergence can show that
most vertices have degree close to p* (see Lemma 7.2). To obtain the uniform concentration, we
look at the law of the the edges emanating from a single vertex (called the cavity) conditioned on the
rest of the graph being close to the constant graphon p*. We show that the “mean field” generated
by the rest of the graph forces the cavity vertex to have degree close to p* with high probability.
This is established in Theorem 8.9 and Corollary 8.10 and is our main technical innovation.



1.2 Discussion and Future Work

Fast mixing of a Markov chain can be used to establish concentration of measure, central limit theo-
rems, and estimation of the partition function. Concentration of measure, CLTs and approximation
by G(n,p) ([11, 27]) have been explored in the literature for high-temperature ERGM models. It
would be interesting to consider their extension to low-temperature ERGM via the approximate
mixing established in this work. Maximum likelihood estimation often involves estimation of the
partition function. There are multiple works ([17, 28, 12, 13, 18]) that efficiently approximate par-
tition functions of a parametric family with a given parameter 8 by efficiently generating samples
from the distribution for every choice of the parameter 5’. We leave open the problem of estimating
the partition function of the low-temperature ERGM.

1.3 Related Work

Polynomial or quasipolynomial time mixing from a well-chosen initial distribution has been explored
for the mean field Ising model by Levin et al. [19] and more recently for the Ising model on the
lattice Z? by Gheissari and Sinclair [14]. Lubetzky and Sly [22] consider mixing from specific initial
conditions for the 1-dimensional Ising model and identify initial states which allow faster mixing
than the worst case by constant factors. The work [21] considers an idea similar to ours in isolating
the ‘modes’ of a probability distribution in order to aid sampling. Their approach consider multiple,
coupled, random instantiations of the Markov chains, which are all allowed to interact as the evolve,
whereas our work considers a single instance of such a Markov chain.

2 Background and Notation

This section contains the basic definitions and notation for graphons and the Glauber dynamics.

2.1 Graphon Theory

Our work relies heavily on the theory of graph limits and graphons; our notation follows [6]. Let
W denote the space of symmetric measurable functions f : [0,1]2 — [0, 1], where the space [0, 1]
is endowed with the uniform probability measure. For f,g € W, define their cut distance to be

oo(f,g9) = sup
S,7C[0,1]

/ (f(z,y) — g(z,y))dzdy|
SxT

where the supremum is over Borel measurable sets S,T. Define the equivalence relation ~ on W
by f ~ g iff there exists a measure preserving bijection o : [0,1] — [0,1] such that f(z,y) =
gloxz,oy) == go(z,y). Let W be the quotient space with respect to this equivalence relation. For
f €W, let f denote its orbit in W. A metric 65 on W can now be defined as

5D(f7§) = H;f 6D(f7 go’) :

An important fact in the theory of graph limits is that (W, dn) is a compact metric space.
For a graph X with vertex set [n], we can associate the function fX € W where X (z,y) =
L na),lny)eEx) = X|ne),|ny)- We define its corresponding graphon to be X = fX € W. Note



that under this mapping, vertex isomorphic graphs correspond to the same element of W. We will
denote the graphon with the constant value p € [0, 1] by p1.

For a finite simple graph H with vertex set [k] for some k € N and a graphon h € W, we define
the homomorphism density ¢(H, h) as

t(H,h) :/ H h(xi, xj)dxy ... dxy .
0% (i jyeE )

In particular, the subgraph counts N;(X) appearing in the Hamiltonian Hg(X) are defined as the
homomorphism densities 3
Ni(X) = t(Gi, ). (3)

When emphasizing a particular graph G we will also use the notation Ng(X).

The classical theory of graph limits is too coarse to understand convergence of Markov chains
because the cut metric does not control degrees of individual vertices (or neighborhoods of two
vertices), which can have a large impact on the evolution of the Glauber dynamics. The following
quantities will allow us to establish a fine-grained understanding of the measure u. Given a graph
X with n vertices, whenever u € [n], we define the normalized degree

_ degree of vertex u

pu(X) = [ Pty @

n

Similarly, define the normalized wedge count for nodes u,v by

number of vertices to which both u and v have edges
Puv (X ) =

2 /0 1 /; /; X (@, 2) f)73 (. 2)dwdyd: . (5)

2.2 Glauber Dynamics for the ERGM

As described in the introduction, at each step of the Glauber dynamics for u a pair of vertices
e = {u,v} is chosen uniformly at random from the (;L) possibilities and the variable X, indicating
presence of edge e is updated according to the conditional probability

Pe(Xne) = Exmp [Xe| Xoe] - (6)

It will be useful to express the update probability in terms of subgraph counts. For any graph
G = (V, E) define
AG(X) = Ng(X™) = No(X™9) (7)

and let
1

_(M2AL(X)\ TET
oo (S5

The update probability can be expressed as

exp(260 + S, 261 Erlra, (X, €)1

Pe(Xne) = Exop[Xe|Xne] = .
1+ exp(260 + 25, 26| Eilre, (X, e) Bil-1)

6



It follows from the definitions that if X ~ G(n,p), then r¢(X,e) ~ p with high probability. If,
conversely, it were the case that rg(X,e) = p for all Gy,...,Gk, then the update probability takes
the following simpler form (with some abuse of notation) given by ¢z : [0,1] — [0,1] with

Pa(p) = exp(35 26| Ei|plPil-1)
p\P) = 1 —l—exp(zilio 26;|E;|plEil-1)

Let Mg denote the set of global maximizers of Lg. Let Ug C Mg be the global maximizers where
the second derivative of Lg is nonzero. It can be shown that p* € Ug only if p* = ¢g(p*) and
qS’B (p*) < 1. What this implies is that p* is a stable fized point: if the chain is started at X where
rq(X,e) = p* for all G € Gy,...,Gg, then that continues to hold for exponentially many steps.
This was shown in Lemma 17 from [1] and is stated in our paper as Lemma 4.8.

We will also need to consider the Glauber dynamics for distributions m that assign zero proba-
bility to some graphs.

(®)

Definition 2.1 (Glauber Dynamics). Given any probability distribution = over €2 = {0, 1}(3), we
define the Glauber dynamics with respect to m to be the discrete time Markov chain over 2 with
single step transitions (to obtain X’) as follows:

1. Pick a coordinate FE € [(g)] uniformly at random.

2. Given the coordinate E, define X®F to be X with edge F flipped, and let
. .1 T(XPE .
X®E with probability m if 7(X)#0
X' = ¢ X with probability 1 if 7(X) =0 (9)
The Glauber dynamics with respect to 7 is reversible for 7 ([20]), so in particular 7 is stationary.
When 7(X) > 0 for every X, this reduces to the definition given in Definition 1.1

2.3 Notation

For any simple graph X, we denote by V(X) its vertex set and by F(X) its edge set. Given an
unordered pair e = (u,v) for some u,v € V(X), we define X, = X, = Xy, = 1(e € E(X)).
Without loss of generality, we take V(X) = [n], where |V (X)| = n, and identify the space of finite
simple graphs on n vertices with the space Q := {0, 1}(3), where the coordinates are indexed by
tuples (u,v) for u < v, u,v € [n]. Throughout, we will reserve u, v, w to denote vertices of size n
random graphs for large n and i, j,[ to denote vertices of fixed graphs like Gg,G1, ... above.

By X.. we denote the graph formed by all edges other than the edge e. Given X € 2, define
Xte e Q (resp. X7¢ € Q) by (XT) e = Xee (resp. (X 7¢)we = Xoe) and (XT¢), = 1 (resp.
(X9 =0) ie., we add (resp. remove) edge e to the graph X.

We use the standard asymptotic notation O(-),Q(-), and ©(-). For z,y € Rt y = O,(x),
we mean y < C,x for some constant C, which depends only on ~ (and similarly for €2, and ©,).
In the statement of the results, expressions of the form € < ¢(v) mean “e smaller than a constant
depending only on 4" and n > ng(y) means “n larger than a constant depending only on ~”.

We will occasionally use the function I : [0,1] — —[1/2,0] given by I(p) := %p logp + %(1 —
p)log(1l — p). This is just —1/2 times the binary entropy function.



3 Main Results

Fix 8 € R x (R*)K, and recall that Mg denotes the set of global maximizers of Lg. Let Ug C Mg
be the global maximizers where the second derivative of Lg is nonzero. Throughout, we will always
take p* € Ug. When |Ug| = |Mg| = 1, our main result, stated below in Theorem 3.1, shows that the
Glauber dynamics for ERGM when initialized at the G(n,p*) distribution rapidly approximately
mixes as long as the target total variation distance dyp > exp(—cgn) (see Definition 1.4). Note that
|Ug| = |Mp| =1 even in the low temperature regime for Lebesgue almost all 3.

In the case that |Ug| > 1, we show that Glauber dynamics with the same initialization as above
can efficiently and approximately sample from the ERGM conditioned on being close in cut metric
to the constant p* graphon. Note that Theorem 1.3 shows that with a very large probability, a
sample from the ERGM is close to the constant p graphon for some p € Ug. If the probability of
being close in cut-metric to each p € Ug under the measure u is known, then we can initialize the
Glauber dynamics to the correct mixture of (G(n,p))pev, and show that it mixes rapidly as long as
the target total variation distance dy > exp(—cgn). In this work, we do not consider the problem
of estimating these mixture probabilities.

For n > 0 denote the n-ball in cut metric around p* by

BE(p*) ={X € Q:0n(X,p*1) <n}.
Let P, be the kernel of the Glauber dynamics with respect to the measure f( - |BE (p*)) and let P
be the kernel of the Glauber dynamics with respect to the measure pu.

Theorem 3.1. Let mg := G(n,p*) for any p* € Ug. Let Xo ~ 79, X1, Xo, ..., evolve according to
P, and Xo ~ o, X1, Xo,... evolve according to P. There exist positive constants 1o(f3), can, Can
and ng(B,n) such that whenever n < no(B) and n > ng(B,7n), the following hold:

1. (Xo,X1,...,X7) can be coupled with (Xo,...,Xr) such that with probability at least 1 —
TC(B,n) exp(—cgyn), we have

(XQ,Xl,...,XT) = (XQ,Xl,...,XT).

2. Whenever § > exp(—cgyn), P, is (ﬂo,u(-\BE(p*)), Cpn?log(n?/8),8)-mizing.
3. If |Ug| = [Mg| = 1, then whenever § > exp(—cgn), P is (mo, p, Cgn*log(n?/d),8)-mizing.

This theorem shows that we can achieve metastable mixing by disregarding a portion of the
state space of probability exp(—cg,n) under the measure ,u(-\BE (p*)). One might wonder if this is
necessary, and in particular whether it is possible to improve the second item due to BE (p*) being
possibly well-connected. We next answer this question in the negative and gain insight into the
structure of the ERGM measure at low temperature.

The paper [1] constructs metastable states where the graph is close to G(n,p) for some p which
is a local maximizer of Lg, from which any local Markov chain takes exp(£2(n)) time to escape. The
large deviations theory based results established in [6] show that when p is not the global minimizer
of Lg, then these metastable states collectively have mass exp(—€(n?)). One might hypothesize
that the metastable states can be fully characterized by the behavior of local maximizers of Lz and
the cut-metric neighborhoods, and moreover that they have total mass exp(—Q(n?)) .



Perhaps surprisingly, it turns out instead that the low-temperature ERGM landscape is remark-
ably intricate even within the neighborhood BE(p*) around the global optimizer p*. We show
by construction that this set can contain multiple metastable states which collectively have mass
exp(—0(n)) and from which the Glauber dynamics takes exp(§2(n)) time to escape. These states are
close in cut-metric to the constant graphon p* and it follows that cut-metric based large deviations
analysis cannot capture the intricacies of Markov chain mixing in the ERGM at low-temperatures.

Example 3.2. Suppose K = 1 and let G} be the triangle graph (i.e, the 3 clique). Let o(x) :=
e”/(1+ e”). There exist parameters (g, 31 € R x RT and real numbers p} # p3 such that:

1. p} and p} satisfy pf = (280 + 681 (p})?), Us = {p}}, and p} is a local maximizer of Lg;

2. There exists ¢* € [0,1], ¢* ¢ {p},p5}, such that ¢* = o(25p + 651¢*p7);

3. Taking f(x) = (280 +68122) and g(z) = (2Bo +6817p}), we have f'(p}) < 1 and ¢'(¢*) < 1.
We numerically check that the choice By = —1.8 and 81 = 2 has p],p3, and ¢* satisfying the

relations above. As shown next, this turns out to imply metastability.

Theorem 3.3. Consider Example 3.2 given above. Let n > 0 be any small enough constant. Let
the initial state Xo be such that (Xo)1; ~ Ber(¢*) and (Xo)i; ~ Ber(p}) fori,j # 1 and i < j
are independently distributed. Suppose Xo, X1,... is the trajectory of the Glauber dynamics with
respect to p with B as given in Example 3.2. Define the set of graphs Qg4p(n) for ¢,p € [0,1] by

Qqp(n) :=={X € Q:0(X,p) <n/2 and |p1(X) —q| < n}.
Then the following hold:

1. The set Qg 2 () is metastable: There is a constant o > 0 such that
P (Ni<exp(an) {Xt € Qg=pr(1)}) = 1 — exp(—Qy(n)).
2. The set Qg+ p=(n) has sizable probability:
(g py (1)) = exp(=6y(n)) .
3. Most of the mass lies in Qpx = (n):
1 Qs p; () = 1 = exp(=Qy(n)) .

The theorem is proved in Section 9.

In order to see why the set of states described in the theorem above are metastable, consider the
first step of Glauber dynamics taking Xy to X;. The number of triangles formed by including an
edge e = (1, j) is approximately ng*p] (which is 6npiq* after counting re-labelings), i.e., A (Xo) ~
6’2#. Thus, the Glauber dynamics updates this coordinate to 1 with probability ~ o(28y +
6619 p;) = ¢*. Similarly, if an edge e = (7, 7) is to be updated with 7,j # 1, then the number of

*\2
triangles formed is n(p})? (which is 6npiq* after counting re-labelings) i.e., Ag, (Xo) ~ 6(2 §) , and
the probability of setting this coordinate to 1 is ~ (28 + 651 (p})?) = p}. Therefore, the Glauber
dynamics update still makes X; look approximately like the initial distribution. Not only that, but

this is a stable fixed point, which follows from the conditions f/(pf) <1 and ¢'(¢*) < 1.




4 Showing Metastable Mixing for Glauber Dynamics

4.1 Couplings, Contraction, and Mixing

Consider a Markov chain over the finite state space X’ and with transition kernel P. Let d : X x X —
R be such that sup,, ,cv d(,y) < dax and infy2, d(2,y) > dmin. We will use the following lemma
to establish metastable mixing, proved in Appendix C.

Lemma 4.1. Let A C X x X be such that for (x,y) € A there exists a y-contractive coupling @y
of P(z,-) and P(y,-), i.e. for (X')Y') ~ Quy we have

Ed(X',Y") < (1 —~)d(x,y).

Then, given any jointly distributed (Xo, Yy) € X X X, there exists a coupling between the trajectories
(Xk)k>0 and (Yi)g>o of the Markov chain P such that

Ed(Xit1, Yir1) < (1 —v)Ed(Xk, Yi) + dmaxPk »

where py := P((Xg, Yy) € AY). Unrolling this recursion, we conclude that

Subr< K Pk

Ed(XK,YK) < dmax |:(1 - ’Y)K + ol

The following corollary is immediate from the coupling characterization of total variation.

Corollary 4.2. In the setting of Lemma 4.1, if additionally inf,.,d(z,y) > dyin, then
drv(Xg, Yi) < Gmex [(1 — 9)K + v~ sup, o pi] -

min

In essence, the result above shows that whenever two trajectories can be coupled such that
with high probability they lie in a set A where a contractive coupling exists, then the laws of their
iterates converge until a certain lower threshold. In particular, taking Yy to be drawn from the
stationary distribution of P, we can establish metastable mixing for Xy, X1,....

We will use the monotone coupling, defined next.

Definition 4.3 (Monotone coupling). When P is the kernel of the Glauber dynamics with respect
to u, the following coupling between P(x,-) and P(y,-) is called the monotone coupling. For
any two x,y € ), we obtain the one step Glauber dynamics updates X', Y’ as follows:

1. Pick the update edge F € ([Z]) uniformly at random to be the same for both X’ and Y.

2. Draw U ~ Unif([0, 1]) independent of everything else and set

(10)

+E ;
X — {a: ifU e [0, ¢E(xNE)) and J =

2~ E otherwise

, {y+E if U €[0,¢p(y~r))

y~F otherwise.

For any two graphs X,Y € ), the relation X <Y denotes that X, <Y, for every e € ([72’}). It
follows immediately from the definition of the monotone coupling that given X <Y, if X', Y’ are
obtained via the monotone coupling, then X’ <Y’ almost surely. We next identify a region of the
state space over which the coupling is contractive (as required by Lemma 4.1).

10



4.2 Control of Subgraph Counts Implies Contraction

We will now follow the results established in [1] to show the path coupling of Glauber dynamics and
use the notations they introduced. Recall that the update probability under the Glauber dynamics
for u is given by

exp(Bo + 208, 281 Bilra, (X, e)FiT
PelXne) = K E-1}’
L+ exp(Bo + Y1ty 261 Eilra, (X, e)Eal=1)

nerG(X)>7E(Gl)|—1
2|E(G)|

where
TG(X7 6) = <

and A% (X) = Ng(XT¢) — Ng(X ™).
Let G, denote the set of finite simple graphs with at most L vertices (omitting the graph with
1 edge and 2 vertices), where L is a fixed constant satisfying L > max;<x |V;|. Define the set

Tpeci={X :ra(X,e) € [p* —€,p" +¢ forallec ([Z]) and G € GL}. (11)

Note that whenever X € T'p« ¢, ¢e(Xe) = ¢5(p*) = p*. That is, each edge updates approximately
like G(n,p*). The significance of I'y« . is that in this set the monotone coupling is contractive,
as shown in [1, Lemma 18] and stated next. We will additionally state a theorem in the next
subsection that I'p« ¢ has high probability under ,u(-\BE (p*)).

Lemma 4.4 (Contraction within 'y ¢, [1]). Let p* € Ug, € > 0 small enough as a function of j3,
and n large enough as a function of 5,e. Let A = {(z,y) € Ipre X Tpec : x < y}. Let X', Y be
obtained from x,y via one step of the Glauber dynamics under the monotone coupling. There is a
constant c(3,€) > 0 such that if (z,y) € A, then

By (X V) < (1= D)),

and moreover, X' XY’ almost surely.

4.3 Key Theorem

We first recall Theorem 1.3 which state that Uy«cp, BE(p*) has probability 1 — exp(—Q(n?)) under
the measure pu, that is, most of the mass of p is concentrated in the cut-metric balls BE (p*). The
following theorem shows that ,u( . ‘BE(p*)) concentrates over the set I'y« ., where path coupling is
possible (as per Lemma 4.4).

Theorem 4.5. Suppose p* € Ug. Given € > 0, we can pick n < ¢(B,€) such that

BE(p*)) >1-C(n,¢,8)exp (= Qgep(n)) .

We prove the theorem in Section 6, modulo lemmas proved via the cavity method in Section 8.

#(Fp*,e

Remark 4.6. Notice that rg(X,e) € [p* — €,p* + €| uniformly for every e is not implied by
60(X,p*) < n (for any constant 7 > 0). An example is given in Theorem 3.3, where metastability
occurs despite being close to the p* graphon with high probability: The edges emanating from a
single vertex prevent uniform concentration of rg(X,e) in the set [p* — €,p* + €], but the single
vertex neighborhood has a vanishingly small impact on 55()2 ,p).

11



While it can easily be proved directly, the following is also a corollary of the above theorem.

Corollary 4.7. Fiz any ¢ > 0. Then there exists do(€) > 0 such that for all 0 < 6 < dp(€), if
Z ~ G(n,p*+9), then P(Z € T'p» ) > 1 — exp(Qe(n)).

4.4 Metastability

We intend to invoke Lemma 4.1 to show approximate mixing and prove Theorem 3.1. The prior
subsection shows that G(n,p*) and at p(- |BE (p*)) are both within the set I'y« . with high probabil-
ity. We show that the Glauber chains with these initializations do not leave I',« . with probability
1 — exp(—2(n)) until time exp(2(n)). Some intuition behind this was given in Section 2.2.

We next state Lemma 17 from [1], after adapting it to our situation.

Lemma 4.8 (Staying in I',« ). Let € > 0 be a small enough constant independent of n and suppose
p* € Ug. Let Xo,X1,... evolve according Glauber dynamics with respect to the measure p. If
Xo € Ty ¢, then for some o = a(fB, €, L), we have

IP’(Xt € L'peoc forallt < eom) >1—exp ( - QB,L,e(n)) .
The proofs of the following lemmas are given in Appendix C.

Lemma 4.9 (G(n,p"*e) sandwich). Let p* € Ug. Let constants e,n > 0 be such that € < €o(8), n <
no(B,¢€), and n > no(B,€,m). Let X ~ ,u(-\BE(p*)), Y ~G(n,p*+¢€), and Y ~ G(n,p* —¢€). Then,
there exists a coupling between X,Y, and Y such that with probability at least 1 — exp(—£2g,,.(n))

Y<X=<Y.

Lemma 4.10 (Staying in BT?/z(p*)). Suppose p* € Ug, n > 0 such that n < no(B) and n >

no(n,B). Let Xo ~ G(n,p*) and generate the trajectory Xo,...,Xr via Glauber dynamics with
respect to . The entire trajectory Xo,..., X7 stays within the ball BE/Q(p*) with probability at

least 1 —TC(B,n) exp(—c(B,n)n).

5 Proof of Main Result, Theorem 3.1

We now show how the main theorem follows from the various lemmas stated in the last section.
Recall that my := G(n,p*), Xo ~ my,X1,Xo,..., is a trajectory of the Markov chain P, and
Xo ~ mg, X1, Xs,... is a trajectory of the Markov chain P.

5.1 Proof of Theorem 3.1, Part 1

We will couple the trajectories Xp,...,Xr and Xg,...,X7 such that the event E :=
{(Xo,X1,...,X1) # (Xo,...,X7)} satisfies E C UL {X; € (Bnmp(p*))c}. We can then con-
clude the result from Lemma 4.10. The main observation is that whenever n is large enough as a

function of n, if X € BE/Q (p*), then P,(X,-) = P(X,-). We construct the following coupling:

1. Xo = Xy almost surely.

2. Xi11, X1 are drawn from the TV optimal coupling between P(Xy,-) and Pn(Xt, ).

12



It is clear that {X;1 # Xp1} C{X; # X3} U {Xt € (BE/z(p*))C}. Now, noting that {Xg # Xo}

is the empty event, we conclude that {X; # X;} Q{XO € (BE/2 (p*))c} An induction argument

with the same basic step shows that E C UL {X; € (BE/2 (p*))c} O

5.2 Proof of Theorem 3.1, Part 2

Let Yy ~ p (‘BE(p*)) and consider the trajectory Yy, Yi,...,Yr with respect to the transition
kernel F,. Similarly, let Yo ~ pu (-‘Bnm(p*)), but with the trajectory Yi,...,Yp generated with
respect to the transition kernel P. Using Lemma 7.1 to bound P(Y; € B,7D (p*)), a similar proof as
in Item 1 shows that

drv((Yo,...,Yr),(Yo,...,Y7)) < Texp ( — Qﬁ,n(nz)) . (12)

From Item 1, we have

dTV((XO, ‘e ,XT), (XQ, e ,XT)) < Texp(—Qﬁm(n)) . (13)

These last two displays allow us to consider the total variation distance between the distributions
of X7 and Y7 instead of X7 and Yp. Let € > 0 be small enough to satisfy the conditions in
Lemma 4.8. By Lemma 4.9 and Theorem 4.5, we conclude that for some 0 < & < §o(5,¢€,7m),
n < no(d,€ B), and n > ng(d, 8,1, €), we can couple Zy ~ G(n,p* + §) with Xy and Y such that
with probability at least 1 — exp(—£gs4.(n)), the following hold:

1. X(] = ZO and Yb = Z(), and
2. Xo,Y0, Zo € Tpec.

Now, we consider the Markov chain Zy, Z1, ..., Zp with respect to P. We consider the monotone
coupling between Yp,...,Yr and Zy,..., Zp as in Definition 4.3: conditional on Yy < Zj, we have
Y; = Z; almost surely for every ¢t < T'. Recall I'j«  from (11) and the set A := {(x,y) € I'pr ¢ XTpe ¢ :
x <X y} defined in Lemma 4.4. Now, (Y}, Z;) € AC implies either Yy A Zy, Y3 & Tpe e, o8 Zp & Tpe .
The first of these is ruled out by monotonicity of the coupling. For the latter two, Lemma 4.8
shows that starting in I',« . the trajectory stays there for some time, and it follows that

P((Y:, Z) € AY) < exp (— Qg 5,(n)) -

Applying Lemmas 4.1 and 4.4 with Hamming distance dg over 2, we conclude that whenever
T < exp(con) for small enough ¢y as a function of €, 0,7, 8

Ed(Yr, Zr) < %2 [(1 - C(;’f)>T + c(ZQﬁ) exp(—Qn,@E,(g(n))] .

Similarly, we have

Ed(Xr, Zr) < ”; {(1 _des ))T + C(Z;) eXp(—Qn,ﬁ@(;(n))} .
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Combining the two displays above, the coupling characterization of TV distance implies

drv(Xr,Yr) <P(Xp # Yr) <P(Xp # Z7) + P(Z7 # Y1)
< ]P)(d(XT, ZT) > 1) + ]P)(d(YT, ZT) > 1)

< Ed(X7, Zr) + Ed(YT, ZT)

n2

<n? [(1 _ c(e,ﬁ))T 4 e p P (- ng,e’g(n))} . (14)

n2

Now, we will allow €,d to be small enough constants as a function of 5 such that Lemmas 4.8
and 4.4 hold. Whenever 7 is small enough as a function 8 and n is large enough, combining
Equations (12), (13), and (14), yields

e,ﬁ))T n’T

drv(Xr, Yr) < n” [(1 - C(nz + .5 P (- Qnﬁ(ﬂ))} :

This yields the second part of the theorem statement by considering T = Cg,nn2 log(n?/9). O

5.3 Proof of Theorem 3.1, Part 3
Whenever |Ug| = 1, the concentration result of [6] (stated here as Theorem 1.3) implies that
drv (i, (- B (7)) < exp (= Qgy(n?).

Meta-stable mixing to u follows from the second part and the triangle inequality. O

6 Uniform Subgraph Concentration and Proof of Theorem 4.5

In this section we reduce the proof of Theorem 4.5 on the concentration of AE(X) := Ng(X1¢) —
Ng(X¢) to control of both the vertex degrees p,(X) and common neighbors p,,(X). The latter
are stated here as corollaries and will be proved via the cavity method in Section 8.

Theorem 4.5 states that if we sample X ~ u( . ‘BE(p*)), then X € I'p» . with probability
1—C(B,¢e,m)exp ( — Qg@n(n)). Unpacking the definitions, it suffices to show that for some small
enough h(e, L),

(15)

B 2IE(G)I(p*)E(G)"1|‘ < e L)
5 <

AG(X)

n n2

for every G € Gy, and e € ([72‘]), with probability at least 1 — C(53,1,¢€, L) exp(—Qgp.e,.(1)).

We start with a lemma (proved in Appendix A) which shows that (15) (and hence Theorem 4.5)
follows from uniform control of both the vertex degrees p, (X) and common neighbors p,,,(X). Some
notation is needed. Given a fixed graph G = ([k], E') and vertices i, j € [k] such that (i,7) € E, let

In words, d;;(G) is the number of common neighbors of vertices ¢ and j in G.

Lemma 6.1. Suppose X € Q, e = (u,v), and p* € [0,1] are such that sup,cp, [pu(X) —p*| < €.
For any fired graph G and for some constant Cg depending only on G, we have

uv LY _ C > % _
NSNS (p(pf)f))d%p eI < 98 (e oo (%) + 1)
(1,5)€E(G)
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Corollary 6.2. Let C(L) = maxgeg, Cq for Cg in Lemma 6.1 and h(e,L) be as in (15). Let
a(e, L) = h(e,L)/3C(L). Then X € I'y« . holds if

1. X is a(e, L)-close to the constant graphon p* in the cut-metric,
2. pu(X) is uniformly close to p* for every vertex u, i.e., sup, |py(X) — p*| < a(e, L), and

3. puwn(X) is close to (p*)? uniformly for every pair of vertices u # v, i.e.,

up Puv(X) — (p%)?| < p*ale, L)/3L. (17)

It follows that Theorem 4.5 is proved if these conditions are each shown to hold for X ~
,u(-|BE(p*)) with probability at least 1 — C(B,€,1m, L) exp(—Qg e (1))

Item 1 holds by Theorem 1.3. We address Items 2 and 3 below.

6.1 Uniform Control of Degrees

Section 8 develops the cavity method for the ERGM and demonstrates the following uniform control
on vertex degrees.

Corollary 8.10. Suppose p* € Ug and let € > 0 be an arbitrary fized constant. Then, we can take
0 <n<c(B,e) and n > ng(B,€,m) such that

u( sup |pu(X) —p| < e
u€[n]

BY(p7)) 2 1 - exp(~$,(n))

We take n < ¢(8,a(e, L) in Corollary 8.10, implying that if we sample X ~ ,u( . |BE(p*)) then
Item 2 of Corollary 6.2 holds with probability 1 — C(j,¢€,n, L) exp(—£g,¢,.(n)).

It remains to show Item 3 of Corollary 6.2. As a step towards this, it turns out that if p, (X) is
close to p* uniformly for every vertex u (as stated in Corollary 8.10) and X is close to the constant
graphon p*, then most of the common neighbor counts p,,(X) are close to (p*)2. This follows from
the definition of cut-metric.

Corollary 8.11. Suppose that p* € Ug. Given arbitrary €,6 > 0, suppose n < c(B,€,9) and
n > no(d,€,8,n). Then, for every u € [n], there exists a random set S, C [n] \ {u} such that
|Su| < dn and

u( sup sup [pu(X) = (7)) < €| BY (1)) = 1 = exp(~Qs,e(n)
u€[n] vest

We refer to Appendix D.1 for the proof.
Next, to establish Equation (17), we boost control of py,(X) from most pairs u, v to all pairs.

6.2 Uniform Control of Common Neighbors

Let X’ be obtained from X ~ ,u( . |BE(p*)) via one step of the Glauber dynamics with respect
to ,u(- |BE(p*)), so that we also have X' ~ ,u(- ‘BE(p*)). As shown in Lemma 7.1, with high

15



probability X is n/2 away from the boundary of BE(p*) and the expected Glauber update for py,
with respect to p( - |BE (p*)) is the same as with respect to u(-), which is

E [puv(X")[X]
= <1 - %)puv(X) + %(n_l Z ¢uw(X~uw)Xvw + n_l Z ¢vw(X~Uw)qu) .
we[n]\{u,v} we[n]\{u,v}

The next lemma shows that under the conditions shown in Corollaries 8.10 and 8.11 to hold with
high probability for X ~ ,u( . |BE (p*)), each of the normalized sums in the last displayed equation
is close to (p*)? uniformly for every u # v. The Glauber dynamics with respect to ,u( . |B,7D (p*)),
therefore, tries to regress every py,(X) close to (p*)2.

Lemma 6.3. Suppose X € Q, p* € [0,1] are such that the following conditions hold:
1. supyepn) [pu(X) —p*| <€, and

2. For every u € [n], there exist sets S, C [n] such that |S,| < én and

sup sup |puw(X) — (p)?| < e.
u€[n] west

Then, for every u,v € [n], we have

‘n_l Z ¢uw(X~uw)Xvw - (p*)2‘ < Cﬁ (6 +0+ (5D(X,p*) + Tl_l) .
we[n]\{u,v}

The lemma is proved in the next subsection.

Intuitively, this suggests that the stationary distribution of the Glauber dynamics, ,u(- |BE (p*)),
should be such that p,,(X) ~ (p*)? for every u # v with high probability. The next lemma
formalizes this sentiment using Stein’s method for concentration developed in [5, Theorem 1.5].

Lemma 6.4. For any u,v € [n] such that u # v, define

1
guv(X) = puv(X) - % Z (¢uw(X~uw)Xvw + (bvw(Xva)qu) .
we[n]\{u,v}

Then, for any v > 0 which is independent of n, we have

({193 > 7} U (B0 | BIW")) < C0, B) exp(~Qy5(n). (18)
Corollary 6.5. Item 8 of Corollary 6.2 holds with the desired probability.

Proof. Combining the last two lemmas with Corollary 8.10 proves (17). O
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6.3 Proof of Lemma 6.3

First, note that by definition

exp(3[ n?BiAM (X)) ‘
1+ exp(31y n2BiAM (X))

¢uw (quw) -

Now, suppose w € 55. Then, using Lemma 6.1, we conclude that
Zn252A“w Z2|E|ﬁ |E| 1:|:Og(€+5D(Xp)+n ) .

Using the fact that the function z — is 1-Lipschitz, we have for w € SC that

1+ez
exp(Xito 21 EilBi () B 1)
L+ exp(3075, 2/ Eil Bi (p*) 1 Fil=1)

Now, the fact that p* € Ug implies that L’B(p*) = 0. It can be easily checked that this implies
p* = ¢p(p*). It follows that whenever w € St

Guw(Xoww) = + Op (6+5D(X,p*) —i—n_l) .

¢uw(X~uw) = p* + OB (E + 5D(X7p*) + n_l) .

An application of the triangle inequality now shows that

_ X Su
‘Tl ! Z (buw(XNuw)Xvw -Dp pv(X)‘ = ’ ’ + OB (6+ 5D(X p ) 1) .
wen]\{u,v}
The assumption that |S,| < dn and the fact that |p,(X) — p*| < € imply the result. O

7 Some Graphon Estimates

In this section, we state several technical results that will be needed later. Results from other works
are stated without proof and otherwise the proofs are given in the appendix.

Even though Theorem 3.2 in [6] considers the probability over the entire space of graphons,
we can easily adapt its proof to show the following lemma which considers only the neighborhood

B17D+5( *) for p* € Ug.

Lemma 7.1. Suppose p* € Ug. Then, there exists a constant cg > 0 such that whenever 1,6 €
(0,cp) are fized constants independent of n, we have

p(n < on(X,p*) <n+0)
p(oo(X,p*) <n)

We state three technical lemmas below, whose proofs appear in Appendix A.

< C(n,6) exp(—c(n, 6)n?).
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Lemma 7.2. For any graph X over n wvertices, p € [0,1], and § > 0, there exists a set S C [n]
such that |S| < én and

200(X, p1
sup [p(X) — p| < 2O (19)
ueSC
It follows as an application that for X ~ ERGM(n,3) and any given fixed constants §,n > 0, with
probability at-least 1 — C(n) exp(—c(n)n?), there exists a (random) set S C [n] such that |S| < én
and 5
inf sup |p,(X) —p*| < il iy
p €U ueSC g

Lemma 7.3. If Y < X < Z, then 5(X,pl) < max ((55(}7,])1),65(2,]91)).

Lemma 7.4. Consider any fized graph G = (V, E). For any vertex i, let d; denote the degree of
the vertex i. Suppose p,q € [0,1]. If G = Gg, the graph consisting of a single edge, then

|4

> ghp!Fld = 2gFl 4 (V] = 2)pl Pl (20)
i=1

If G is connected and G # Gy, then there is a constant C' depending only on (d;)cy and |E| such
that

29/ 4 (V] = 2)p!"l = Clp — g
V]
<Y gt < 2Pl (V] = 2)pl"T = ¢(Ip—ql)
=1

where ¢ : [0,1] — R is a continuous function depending only on G such that {(x) > 0 for x # 0.

8 The Cavity Method

In this section we address the degrees and show that every vertex u has nearly the same degree
pu(X) = p* € Ug with high probability for X ~ ,u(-\BE (p*)). While the cut-metric based con-
vergence does not allow us to control all the degrees, it is nevertheless possible to conclude that
a large portion of the vertices have degree p,(X) ~ p*. We boost this to a uniform statement, in
Theorem 8.9 and Corollary 8.10, via the cavity method: most of the vertices and the corresponding
edges are conditioned on being close to the constant graphon p*1, which generates the mean field
with which the remaining cavity vertices interact. We can then reason about the behavior of the
cavity vertices.
We start by adapting several of the graphon definitions to incorporate a cavity.

8.1 Restricted Homomorphism Densities and Restricted Cut Metric

Recall from Section 2.1 the function representative f*(z,y) of a graph X over n vertices. We will
need the homomorphism density of a graph forced to contain a particular vertex v of X. To that
end, for every u € [n], define the event

o et [F51.)
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and

kE_ k... u—1 u . ki
Au—{xG[O,l] .xle[ - ,n>f0rsomeze } UA (21)
i€k]
For the sake of clarity in the results below, given a fixed graph G, we take its vertex set
V(G) = [k] during calculations.

Definition 8.1 (Homomorphism density w.r.t. a vertex). Define the homomorphism density of G
in X with respect to vertex u (which counts only homomorphisms which include the vertex u) as

Ne(Xiu) = /[0 R IR Hda;, (22)

(i,7)€E(G)

For ease of computation, we also introduce the quantity

N2(X;u) = 2/01] (AR H f (xi,25) Hdmz (23)

(4,J)€E(G
The next lemma follows from elementary arguments; see Appendix A.
Lemma 8.2. 0 < N2(X,u) — Ng(X,u) < |V(G)]*/n?.

We will now show that whenever the graphon corresponding to X is close to a constant graphon
pl, then Ng(X,u) can be approximated as a polynomial of p,(X) and p. This will allow us to
control the fine-grained structure of X in terms of the counts Ng(X, u) just based on nearness to a
constant graphon and the normalized degrees of the vertices of X. The proof, given in Appendix A,
follows from a slight modification of the proof technique of [2, Lemma 4.4], which establishes the
continuity of homomorphism densities with respect to the graphon metric via a repeated application
of the triangle inequality.

Lemma 8.3. Suppose Dg = (d1,...,d)y(q)|) is the degree sequence of the fived graph G considered
above. For any graph X with vertex set [n] and u € [n], we have

n(X,p)  V(@Q)P
Ng(X;u) —n~! Z pu(X) P PG < |V(@)||E(G)| D(n )+‘ 512)‘
deDg

Let S C [n]| be the “cavity set”. Define
Ak = U,esAF  and Alé’i i= Uyes ART,
We have that
Na(X) = Na(X;S) +/[ . {45 I f (24, 25) del,
0,1
’ (1,7)EE(G

where the subgraph count Ng(X;S) restricts to subgraphs containing a cavity vertex,

k
Na(X;S) /[01]k 1{A%} H X (i, ) Hdml

(i,7)€E(G)

The proofs of the next two lemmas are deferred to Appendix A.
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Lemma 8.4. Let X be any simple graph with vertex set [n] and let S C [n] be arbitrary. Then

k3’5’2
n2

Na(X;S) - ZNG(X§U)‘ <
ues

We now define the graphon metric restricted to SC.
Definition 8.5 (Restricted Graphon Metric). Let p* € [0,1]. Define

FX (@1, 29) if [nai], [nag] € SC

24
p* otherwise, (24)

fX’S’p*(ﬂfl,xz) — {

and let X" be the graphon corresponding to f~*5?". We define the restricted cut metric to be
S7 * ~ Pp— % J. *
5[]10 (X7p*) = 5D(Xsp 7p*) .
The restricted graphon distance to p* can be approximated in terms of the unrestricted distance:

Lemma 8.6. For any S C [n], we have

o _ 15120 —|S])

oo (X, p") 5 < OE7(X,p7) < 0a(X,p") .

n

We are now ready to establish the cavity decomposition of the Hamiltonian.

8.2 Cavity Decomposition of the Hamiltonian

It will be convenient to let r := |S|. Given a simple graph X over n vertices, we define p,(X) to
be the number of edges from vertex u € [n] to the set SC, normalized by n:

Here and throughout we hide the dependence on S to streamline the notation. Additionally,
whenever it is clear, we will denote p,(X) by p,. Note that |p,(X) — pu(X)| < |S|/n.
Denote the portion of the Hamiltonian associated to the cavity by

K
,H%av(X; S) = ZTL25@NZ(Xa S) ’
1=0

which is the same as Hg except that the homomorphism densities are restricted to have at least
one vertex in the set S. Denote the rest of the Hamiltonian by

HEE(X;9) = Hp(X) — HFV(X;9).
We next bound the difference between Hz(X) and HF®"(X;.S).

Lemma 8.7 (Cavity Decomposition). Assume that 5; > 0 for some i = 1,..., K. We have the
following upper and lower bounds.
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1. Upper Bound:

K
Hp(X) < HF"(X;S) + Op(nrd” (X, p*) +12) + > Bner|Vi|(p*) P!
=0

20 [La(pa) + 1) = L") = 107) = Gollpu = p*)] (25
2. Lower Bound:
K
Hp(X) > HF"(X;S) — Op(nrd” (X,p*) + 1)+ Binr|Vi|(p*) 1]
7=0

+2n )" [ La(pa) + 1(B.) = Lo(") — 1(p") = Colpu — ' (26)

Here (g is a function with the same properties of the function ¢ in Lemma 7.4

Proof. Let D; be the tuple of the degrees of vertices in G; (as in Lemma 8.3). In the equations
below, we will take Zdi ep, to mean summation over all elements of the tuple. We have

Hal(X) = HF= (X, ) + 1" 5)

_ ,ngan(X; S) + Z Z ﬁmzNz(X, U) + Oﬁ(rz)
ueS i=0

_,Hmean X:9) +ZZ Z IBanu Ei— ’:tOﬁ(nrég(X,p*)+r2)

ueS =0 d;eD;

HFE"(X;S) + Z Z Z Binpi (p*)Ei=% £ Og(nron(X, p*) +172). (27)

ueS =0 d;eD;

The first step is by the definition of the cavity Hamiltonian. The second step uses Lemma 8.4 to
approximate N(G;S) and the third step uses Lemma 8.3 to approximate N;(X;u). In the fourth
step, we have used the fact that [p, — py| < r/n.

We now apply Lemma 7.4 to the second term of Equation (27), yielding

Z S Bl (p) " d1<25[2p‘E‘+<rvr—2>< BN = Ca([pu — p))

1=0 d;€D; =0
- var )V 42| Lg(pu) + 1) = Lo(p) = 1(0") = Go(pu — 1)) - (28)

In the first step we have used Lemma 7.4 and the fact that for Gg the inequality is an equality
which allows for all 5y € R. For ¢ > 0, notice that §; > 0 and the inequality goes in the right
direction. The function (g is as defined in the statement of Lemma 7.4 and exists since 3; > 0 for
some i € [K]. To see this, observe that the Equation 20 is an equality when G = Ggy. Therefore, in
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order to establish the strict inequality involving  as shown in Lemma 7.4, we need at-least one of
the 5; > 0.

The upper bound in the lemma statement follows by combining Equations (27) and (28) along
with Lemma 8.6 to show that

nrén(X,p*) < m“éé’p* (X,p*) +2r2.

The lower bound on the Hamiltonian follows from a similar argument by replacing the upper bound
in Lemma 7.4 with the lower bound. U

8.3 Controlling Degrees of Cavity Vertices

Given a sequence ¢, € {0,1/n,2/n,... 1} for u € S, we define the tuple qs = (qu)ucs. Given
arbitrary and fixed n > 0, p* € [0, 1], we define the events

A(S,as,p" 1) = {X : pu(X) = Gy for u e S} N {657 (X, p*) < n} (29)

and L
B(S,p*,n) = {657 (X,p") < n}. (30)

Note that by definition, B((, p*,n) = BE(p*). We want to show that whenever p* € Ug, if qg is
not close to p*, then the event A(S,qg,p*,n) has exponentially small probability compared to the
event B(S,p*,n), whenever n and S are small enough.

We now note that ”nga“(X; S) and 55"”* (X,p*) depend only on X, for u,v € SC. Therefore,
whenever | S| is small, we will think of HF**"(X; S) as the mean field which controls the behavior of
the cavity, i.e., the edges emanating from the vertices in S. Now, fixing X such that 5%”’ ’ (X' ") <n,
we look at the joint law of (X,,) such that at least one of w or v is in the set S. By Xpean(S) we
denote the coordinates (Xuv)u,ue gt We denote the rest of the coordinates by Xcav(S). Therefore,
we want to understand the conditional law X,y (S)|Xmean(S) under the measure pu. We first record
the following combinatorial lemma, whose proof can be found in Appendix A.

Lemma 8.8. Suppose r/n < 1/2 and Xmean(S) is fized. Let the count of Xcav(S) such that
Pu(X) = qu for u € S be denoted by Heay(qs). Heav(Qs) satisfies

exp (—r? [4+ 2log(£)] — 5 log(2n)) < Heay(as) exp (20" (q.)) < 1.
ues

Below we present the main result of this section.

Theorem 8.9. Let p* € Ug be such that r/n < p* <1—r/n andr < n/2. Given any qs = (Gu)ues
as defined above for n sufficiently large as a function of B,n, we have

w(A(S, qs,p*,n))
w(B(S,p*,n)) = oxp <

2”2 <L5(q_u) — Lg(p*) — ¢3(|qu —p*|)) + lower 0rder> ,

u€esS

where lower order = Og(nrn + r?log(n/r) + rlogn).
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Proof. Fix a p* € Ug. For the sake of convenience, only in this proof, we will denote A(S, qs,p*,n)
by A, B(S,p*,n) by B and Og by O. Let C be the event {X : p,(X) = ¢, for u € S}. Let n be
large enough so that the sets A, B and C' are non-empty. Note that 1{X € B} is a function of
Xmean and 1{X € C} is a function of Xcay. Therefore we write Xmean € B and X, € C in place
of X € B and X € C, respectively.

With this notation in place, we have

Z Z exp(Hp(X

XCBVGC Xmean GB
Z_ > > ep(HF(X;S5)) exp (O(nrn +1%) + T(p*) + Alas, p*))
Xcavec Xmean€B
Hcav mean * A *
# Z exp(HF"(X;5)) exp (O(nrn + %) + T(p*) + A(as, p*))
P XmeneB
Zgﬁean ) B . - .
< == e (Olrn-+7%)+ 203 [ Lo(@) = Lat") - Gallau =D} ) (31)
ues
where
Zﬁmr|V| )EL
Aas.p") =20 [Lﬁ @) + (@) = Ls(0") = 1(0") = Gllau — v°])]
ues
and

Zpon = 3 exp(HIEN(X; S)) exp(—2n/S|T(p*) + T(p"))
Kmean€B

In the second step of (31) we have applied the cavity decomposition from Lemma 8.7. In the third
step, we have used the fact that |C| = Hcav(qs) and in the fourth step, we have used Lemma 8.8
to upper bound this count.

Now, note that under the condition p* < 1 — |S|/n, there exists an admissible restricted degree
g €{0,1/n,...,1 —|S|/n} such that |§ — p*| < 1/n. Denote by q the degree tuple with q, = ¢
for every u € S. Clearly, u(B) > u(A(S,q,p*,n)). Repeating the calculation in Equation (31), but
with corresponding lower bounds instead of upper bounds, we conclude that

dean
Zg

u(B) = exp(—O(nrn +r?log(%) + rlogn) + A(@,p*)). (32)

where

Ags,p") =2n) [Lﬁ u) p") = Csla —p*\] -

ues

Using the properties of the Shannon entropy (i.e, sup,co1-1/s) [H(p) — H(p + 1/n)| = [H(0) —
H(1/n)| <n~1(1+logn)), we have that

log n

Ls(p) —L/3<p+ %)( <Cp

sup
pe[0,1-1/n]
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for some positive constant Cg. This implies that A(q,p*) < Cgrlog(n). Plugging this into the
lower bound on p(B) in Equation (32), and then combining it with the upper bound on p(A) in
Equation (31), we obtain the claim. O

From this result we derive the following corollary, which establishes that sup,c(, |pu(X) — p*|
must be close to zero with high probability under the measure u(-!BnD (p*)) Observe that in the
statement of Theorem 8.9, the term in the exponent, Lg(q.) — Lg(p*) — (5(|qu — p*|) < —d0p < 0
whenever |g, —p*| is large. Therefore, this the event where |G, — p*| is large incurs an exponentially
small probability. We refer to Section D for its complete proof.

Corollary 8.10. Suppose p* € Ug and let € > 0 be an arbitrary fized constant. Then, we can take
0<n<ec(B,e) and n > ny(B,€,n) such that

u( sup |pu(X) = p7| < €| B ) = 1= exp(—Qs.(n))

u€[n]

Recall that in Lemma 7.2, we showed that whenever X is close to the constant graphon p*, then
most of the degrees concentrate close to p*. In the result below we show that when p, (X) is close to
p* uniformly for every vertex u (as shown in Corollary 8.10) and X is close to the constant graphon
p*, most of the degrees py,(X) concentrate close to (p*)2. This will be useful in Section 6, where
we will prove Theorem 4.5, which is the important component behind the proof of Theorem 3.1.

Corollary 8.11. Suppose that p* € Ug. Given arbitrary €,6 > 0, suppose n < c(fB,€,9) and
n > no(d,€,8,n). Then, for every u € [n], there exists a random set S, C [n] \ {u} such that
|Su] < on and

p(( sup sup [pul(X) = (7)) < €[ BY (7)) = 1= exp(—p,0(n)
u€[n] ve St

We refer to Appendix D.1 for the proof.

9 Proof of Theorem 3.3

Before proceeding with the proof of Theorem 3.3, we will establish generalizations of [1, Lemma 12
and Lemma 17]. Therefore, we will not instantiate to the model parameters given in Example 3.2
but consider a general ERGM with parameter 5. We need to treat the vertex 1 separately from the
other vertices. Following the notation preceding Lemma 12 in [1], we define for some fixed, finite
set of graphs G:
Tmax(X) := max < max p,(X), sup ra(X, e))
wuFl

e=(u,v):u,v#1
Geg

and
Pmi X:zmin(min X inf r Xe).
min (X) u:u;ﬂpu( ),e:(u’v):u’v#l (X, e)
Geg
Here, we consider the evolution of the vertices 2,...,n — 1 when they are close to G(n — 1,p*) in
terms of the subgraph counts and the edges connecting vertex 1 are arbitrary. Notice that we have

included the degrees p,(X) here in addition to rg(X,e), which will be useful to us later in the
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proof. The lemma below follows from a rewriting of the proof of Lemma 17 in [1], by noting that
the edges connected to vertex 1 do not influence the evolution of AZ(X) in the leading order term
as considered in [1, Lemma 12 and Lemma 14] and a straightforward tweak to also consider p, (X).
Therefore, we skip the proof.

Lemma 9.1. Suppose G = Gy, (the set of all graphs with at-most L vertices) and let € > 0 be a
small enough constant independent of n. Suppose p* € Ug and let Xo, X1,... are drawn from the
Glauber dynamics with respect to the measure p. For some large enough L € N, independent of
n, if Xo is such that p* — € < Fpin(Xo) < Tmax(Xo) < p* + €, then for some o depending only on
B8,¢, L, we have

]P’(tiug)n Tmax(Xt) > p* + 26) < exp(—Qs,1(n))

and
]P’( inf 7Fpin(Xy) <p* — 26> < exp(—Qg,1(n)).

t<eon

We now instantiate our discussion to the case of the exponential random graph model defined
in Example 3.2 and use the notation established in this example. Recall p;(X) and p1,(X). Define

(1) _ Pru(X) W xy - pru(X)
Prax (X) = max (pl(X)J%?i? P ) and  ppi,(X) = min (pl(X),g;%rll} T )

Lemma 9.2. Consider the same setting as Lemma 9.1 instantiated to the parameter B given in
Example 3.2, with p* = p}. Given €1 > 0, we can pick € in Lemma 9.1 small enough such that the
following holds: Suppose q* — €1 < pgi)n(Xo) < pggx(Xo) < g* + €1, then for some « depending only
on B,¢€,¢e1, L, we have

]P)<tiu}3n pggX(Xt) >q" + 261> < exp(—Qg,1.(n))

and
]P’( inf pl) (X;) < ¢ — 261) <exp(—Qg,1.(n)) -

t<ean

Proof. Let N := (g) Recall the function g defined in Example 3.2 and ¢4 as defined in Section 2.
It is easy to show using similar techniques as in [1, Lemma 12] that

X)) | 9, p(X0) | g(piuas)
N N

N N ) < E[p1(Xeg1) — pr(Xe) [ Xe] < —

Similarly, for every u € [n] and u # 1, denoting 7max(Xt), Tmin(Xt) DY Tmax, Tmin respectively,

_2p1u(Xt) + g(pr(l’llz)ix)fmax + pr(ée)xx(b(fmax)

E [pro(Xt41) — pra(Xe) | Xe] <

N N N
and (1) (1)
2p1u(Xt) g(p i )fmin P (b(fmin)
E [p1, (X, — p1a (X)) | Xt > — i LLLNE .
[P1u(Xe41) — Pru(Xe)| X N + N + N
Now, notice that by Lemma 9.1, Fax(X¢)/pi <1 +2% and Tmin(X¢)/p > 1— 2% with probability

at-least exp(—Q(n)) whenever ¢t < exp(an). Therefore, we can consider the evolution of 1%;(15)
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akin to the evolution of pi(X;) with g(z) replaced by w. Notice that the functions g and

$(g9(x)+z) play the role of ¢() in the proof of [1, Lemma 12] and satisfy the relationship g(¢*) = ¢*

and ¢'(¢*) < 1 (same for W) This allows us to conclude the statement of the lemma with
minor modifications to the proof of Lemma 17 in [1] O

Proof of Theorem 3.3. Let the initial state Xy be sampled as in the theorem statement.

1. Recall (5‘5”) " given in Definition 8.5. Consider this with § = {1}. By Lemma 8.6, in order to
show that X, € BE (p*) it is sufficient to show that (%’p ’ (Xt,p*) < n/4 with high probability.
With similar arguments as in the proof of Lemma 4.10 with ryin, "max replaced with i, Ffmax
we conclude that with probability at-least 1 — T"exp(—£2, g(n)), we have that every point in
the trajectory Xo, Xi,..., X7 € BE (p*). Using Lemma 9.2 and the result above we conclude
the statement.

2. This follows from a straightforward application of Theorem 8.9 along with Theorem 1.3 and
the fact that p] is the unique global maximizer of Ug.

3. This follows from the same considerations as the proof of Item 2.
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A  Proofs of Technical Lemmas

A.1 Proof of Lemma 7.2

Fix any p € [0,1] and § > 0 and consider the sets ST :={u : p,(X) —p > 255(X,p1)/5} and
S— = {u:pu(X) —p < —260(X,p1)/d}. By the definition of the cut-metric it follows that
o 1 2|5F |0 (X, p1)
X,pl) > — wW(X) —p > .
o(X.pl) >~ > pu(X)—p>

ueS+

no

Thus, |ST| < dn/2 and similarly |S~| < én/2. Therefore, |ST U S~| < dn, which allows us to
conclude the first inequality by taking S = St U S~. The second inequality follows by directly
applying Theorem 1.3 to Equation (19). O

A.2 Proof of Lemma 7.3

We note that when considering distance from any constant graphon pl we have 55()2 ,pl) =
5o(f~,pl), since measure-preserving operators do not affect the constant graphon. Now, notice
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that since f¥ (z1,29)—p < fX(2x1,22)—p < f#(x1,22)—p, for any Borel measurable sets S, T C [0, 1]
we have

/ (f¥ (21, 22) — p)darday < / (f%(x1,22) — p)dzrdzy < 60(Z,p) -
SxT SxT
Similarly,

/ (f¥ (21, 22) — p)daydzy > / (f¥ (1, 32) — p)dardas > —6a(Y,p) .

SxT SxT
These together establish that
‘ / (X (@1, 22) — p)dﬂfldwz‘ < max(6p(Y,p),60(Z,p)) -
SxT

Taking the suprememum over S, T yields the lemma. U

A.3 Proof of Lemma 7.4

In case d; < |E| for some i, we start with Young’s product inequality, which states that for every
a,b >0 and «, 8 > 0 such that a=' 4+ 871 = 1, we have ab < a"'a® + 7105, We take a = ¢%,
b=plPl=d o = |E|/d; and 8 = |E|/(|E| — d;). In case d; = |E|, we check that the inequalities
below hold trivially. Hence

V]

B| -
|Bl—d: < B 1Bl = diimy
q'p + —
Z Z|E| T
1% %
_ S d gy VB S5 d
|E] |E]
=29/l 4 ([V| - 2)p!"l. (33)

In the last step, we have used the fact that for any finite simple graph G, ZM d; = 2|E|. Equality
when G = G follows by a straightforward calculation.

Now suppose that G # Gg. Then, it is easy to show that there exists a vertex j such that
d; < |E|. We note that Young’s product inequality is strict whenever a® # b®. For the choice of
a,b,a, B above, this condition means p # ¢q. Now, consider the function: f(p,q) = —q%pl®l=% +
|E|q‘E‘+ |E|| |d IE]. This is continuous over the set [0, 1]2. Define A5 := {(p,q) € [0,1]? : [p—q| > J}.
Clearly, As is a compact set for every 6 > 0. Define ((9) = inf(, yea; f(p,q). It is clear from the
strictness of the Young’s inequality that f(p,q) > 0 for every (p,q) € As whenever § > 0. Therefore,
we conclude by compactness of A5 and continuity of f that ((§) > 0 whenever 6 > 0. The continuity
of ¢ follows from the continuity of f. Therefore, we conclude that there exists ¢ as in the statement
of the lemma such that:

Bl-d; _ &y |E]—d;

~Clp—q| < q%p

The inequality above holds with { = 0 for every 4, even when d; = |E|. This allows us to sum the
inequality above and conclude the result. O

29



A.4 Proof of Lemma 8.2

Since the proof is elementary, we only provide a brief sketch. The statement N2 (X, u) > Na(X, u)
follows from the fact that A% = UF_ lAu and the union bound. Now, note that 0 < Zl 1 1(A A l)

1(A¥) < k and the sum is non zero only when the event A%’ N A%™ holds for some I # m, I,m € [k].
Noting that under the uniform measure over [0, 1]k the measure of Aﬁ’l N Aﬁ’m isn~2 and using the
union bound, we conclude the result. O

A.5 Proof of Lemma 8.3

Suppose d; is the degree of vertex i € [k]. In light of Lemma 8.2 we may replace Ng(X,u) in the
lemma statement by Ng(X ;u) and then by considering a specific term in the sums we see that it
is sufficient to prove that

)dzp\E(Gﬂ—dz

'/[ol] A 11 @) del !

(i,7)€E(G)

5D(X7p) )

n

< |E(G)]

Notice that

[ T S dez
[0,1]*

(i,5)€E(G

:/[ouk]l(Aﬁ’l) H Fave) [I ey decz (34)

(1,i)EE(G) (4,9)€EE(G)
i,j#l
A simple computation shows that
di | E(G)|—dy k
Pu(X)"p - / ]l(AZ’l)< I1 fX(xl,:m)pE(G)‘ledxi. (35)
" [0,1]% (L) e E(G) i=1
Therefore,
X\l E(G)|—d;
‘/ 1(ARh H X (i, 25) Hdaz, X)%p
0,1}¢ (15)EE(G) "
k
:‘ [y 1 s m,xl)[ T ) - E<G>I—dz}Hd$i o 36)
[0,1]% (1,1)EE(G) (i.5) Es«]fl(G i=1
7]

Following the proof of [2, Lemma 4.4] with minor modifications, consider any ordering among
the set of edges (i, j) € F(G) such that ¢,j # [ and index these ordered edges by (i1,j1), .-, (in, jn)
where h = |E(G)| — d;. Then

[ H X (@i, z5) — pIE(G)—dl]

(1,4)EE(G)
i,J#1
|E(G)|-di—1  [E(G)|—d |E(G)|—d
_ T X r+1
- p H f (xim Y ‘ij) - p H f xlm Y x]m) N
r=0 m=r+1 m=r+2
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Now, we use the above decomposition in Equation (36) and consider the terms in the summation
one by one. We then follow the technique used in the proof of [2, Lemma 4.4] along with the fact
that Aﬁ’l depends only on x, and the fact that the measure of the event Aﬁ’l under the uniform

measure over [0,1]% is 1/n to conclude the result. O

A.6 Proof of Lemma 8.4

Only in this proof, we will take the probability space to be [0,1]* equipped with the Borel sigma
algebra and the uniform measure P.
First, note that by the union bound, ) .o Ng(X;u) > Ng(X;S). Now, almost surely

> 14k <k,
uesS

since there are at most k vertices in the graph G. We conclude that almost surely

> ou(Ak) —1(4f) <k -1

u€es

Now let BE be the event that Y, 1(A¥) £ 1(A%). This can happen only when two events AB and
A% hold simultaneously for some i, j € [k], u,v € S, i # j and u # v. Therefore, we have

Bs=J U Abnaps.

u,v€S 1,5€ k]
uFv ikj
By the union bound,
k 9,2 oy ki ~ akgy  [SIPK?

Now combining the considerations above, we have

> Na(X;l) — Na(X;9)
les

- /[o,uk

1 (4f) + > 1(4f)

k
H fX(l‘Z,:Ej)Hdl‘Z
) =1

leS (i,J)eE(G
k
<t-n [ ash) I[P [Jdn
[0.1] (i.4)EE(G) i=1
S2k3
< kP(BE) < | L2 : (37)
The lemma statement follows. O

A.7 Proof of Lemma 8.6

In this proof alone, we will abuse notation to denote the set Uyeg[%=L, %) C [0,1] also by S (and

n ’n
similarly for SE). Since we are considering the cut-metric between X and a constant graphon, we
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can write

Sp* /o *
05" (X,p") = sup
A,BC|[0,1]

/ [fX’S’p* (x1,22) — p*] dxidzo
AxB

= sup / [fX(:El,l‘Q) —p*] dxidxs
A,BC[0,1]| J AnSE x BNSC

= sup / [fX(acl,wg) —p*] dxydas| . (38)
A,BcSCl JAXB

From the last equality above, we conclude that (5‘5”) ’ (X' ,p") < 55()2 ,p*). To conclude the lower
bound, note that

0a(X,p) < (X, X57) + 6a(X5P",p*) = 60(X, X577) + 657 (X, p") .

It is now easy to show that 65(X, X5%") < 1—|S%2/n2, which when combined with the last display
above proves the lower bound. O
A.8 Proof of Lemma 8.8

By Stirling’s formula, we have that for any & € N and p € [0, 1] such that kp is an integer,

exp(—2kI(p)) k
(2P <kp) < exp(~2k1(p)).

A counting argument shows that Neay(qs) = [[,cq ("q_uf‘) For the upper bound, note that

11 <” (I—U7|15|> < H <qun> < exp ( =3 [(qu)> _ (39)

uesS uesS

Now, for the lower bounds, we note that whenever ¢, < ¢ <1 and ¢ > 1/2: |2¢qI(q./q) — 21(qu)| <
(2 +1log(1/(1 —q)))(1 —q). Taking g = (n — |S|)/n =1 —r/n below, we have

n— IS _ 0 (= Dues 200~ ISDI(245))
1;[,5< dun > - (m)"
> exp ( Z 2nl(q [4+2log(2)] — %10g(2n)> . (40)
ues
O

B Proofs of lemmas from Section 6

B.1 Proof of Lemma 6.1

Before proving the lemma, we derive an estimate for A% (X).
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Recall the event A% in (21) in Section 8. Suppose the fixed graph G has the vertex set [k]. We
now define for u,v € [n],

ARG .= {z €0, 1% (|na), lnz;]) € {(u,v), (v,u)} for some (i,5) € E(G)}.
For i,j € [k] define
Al = {z € [0,1]% : (lnai ), [na;)) € {(u,0), (v,u)}} -
Now, the definition of homomorphism density yields

AG(X) = Na(X™%) = Na(X ™)

/ H fX+e (xi, xj) Hda:t H fX (xi, x)) Hdmt

(1,5)€E(G) ( 1,J)EE(G

= /]l(Aﬁg;) H fXJre(:Ei,:Ej)Hd:Et . (41)
t=1

(i,))€E(G)

A computation similar to the proof of Lemma 8.2 shows that

\_/
w

/‘]l AkG Amg
(4,9 EE(G)

Using this in Equation (41), we conclude that

Ag(X)—/ Z TOCN xa,xb)ﬁdxtj:0<E§g)3>

(i,))€E(G (a,b)EE(G) t=1

= Z / (AFi) H P (@, my det :|:O< B(G) > (42)
(i.5)EE(G (a,b)EE(G)
(a,b)#(i,5)

We are now ready for the proof.

Proof. We will prove the result by replacing py, (X), pu(X), and d5(X, p*) with p, (X T¢), pu (X ),
and 6o(X 1€, p*), noting that dg(X, XT¢) < 2/n2, |pu(X) — pue(X1°)| < 1/n, and |p.(X) —
Pu(X7)] < 1/n.

We will use E and E(G) interchangeably in this proof. For (i,j) € E(G), first consider the
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quantity

k
[t T 7 e [T e
t=1

(a,b)eE
(a,b)#(,7)
k
) te
/ 1AM T A @nz) I A @) I A ez [ do
(4,1)eE (4)eE (a,b)eE t=1
l;éj l;éz a,b¢{i,j}
k
Z(p*)E_di_de/ 1AM T £ @z TT £ @2 [] doe
(@er (J,\)eE t=1
I#j I#i

| 2E(G)|dn(X e, p)
; .
n

(43)

In the last step we have used a similar peeling argument as in Lemma 8.3. Recalling the sets A’“
from Section 8, we note that whenever i # j, 1(As?) = 1(A* N A%7) + 1(A¥ N AK)). Now,

K
/]l(AZiﬂAﬁj) H X (g, 1) H fX+e($j733l)Hd$t
t=1

(S (J,H)eE
15 1
/ 1A NAY T A @na) T P @y m)x
(aer Jh)eE
I#] I#i
lQEij(G) lEEi]‘(G)
+ + k
T A @oa) 7 g I dae
leE;;(G) t=1
1 eds —1—ds e —1—ds e s
= —(pu(X7 ) (py (X)) I (pyy (X)) B (44)

In the last step, we have used the definitions of degrees p, and p,, given in Equations (4) and (5)
in terms of integrals over fX. Using this in Equation (43), and shortening p,(X:), p,(XF) and
pUU(X(j_) to Pus Pv and DPuv, WE Obtain

k
nz/ﬂ(Aﬁﬁ,j) H X :Ea,:Eb)Hd:Et
t=1

(a,b)eE
(a,b)#(,7)
_ (p*)|E|—di—dj+1(pu)di—l—dij (p )dj—l—dij(puv)dij
+ (p) P it ()1 (p, )6 () £ 2| B(G) 60 (X, pT). (45)

Using the condition sup, |p,(X) — p*| < €, Equation (42), and the equation above, we conclude the
statement of the lemma. O
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B.2 Proof of Lemma 6.4

We first state a simple modification of [5, Theorem 1.5] below, which follows by essentially rewriting
its proof with minor changes.

Lemma B.1 (Modification of Theorem 1.5 in [5]). Under the same notation as [5, Theorem 1.5],
we suppose the same conditions as the original theorem hold, except condition (ii), where we replace
the assumption A(X) < Bf(X)+ C, with

1. A(X) < al(A) 4+ y1(AY) for some event A € o(X), o,y € RT
2. |f(X)| < M almost surely.

Then, we have

v exp(BoM)P(AC)y 6%a
P(f(X)| >t) < <1+ o >0€1[187f90}exp (T—9t>.

Proof. In the proof of [5, Theorem 1.5], in the display below Equation (7), we have for 6 € [0, 6]

|m/(0)] < ||E exp®X) A(X)
< |6]am(8) + 0] exp (1| M)P(AL)
< |0]am(8) + |6]y exp(|6o| M)P(AL).

In the second step we have used the hypothesis that A(X) < al(A) + y1(A%) and |f(X)| < M.
Therefore

d ¥ eXp(GoM)]P’(AC)
L) < .

The result then follows by an application of Gronwall’s lemma and the Chernoff bound. O

We will consider Glauber dynamics with respect to the measure u(-[BE (p*)) (Definition 1.1) in
order to generate the exchangeable pairs required by [5, Theorem 1.5] (and Lemma B.1), where the
event BE (p*) is as defined in Equation (30). In the notation of [5, Theorem 1.5], we consider

uv X X Z quXvw - Z XQ/L’LUX’l/}’LU .
weE[n] we(n]
wé{u,v} wé{u,v}

With the help of Lemma B.1, we will now prove Lemma 6.4.

Proof of Lemma 6.4. By Lemma 7.1, we conclude that whenever p* € Ug and 7 > 0 is small
enough,

#(Bya()| By w")") < €8, m) exp(—c(5,mn?)

Let X be drawn from the distribution ,u('|BE(p*)) and let X’ be obtained by taking a single
step of Glauber dynamics with respect to the measure u(-|B,7D(p*)). Clearly, (X, X’) form an

exchangeable pair. Let
fun(X) = E [F(X, X')| X] .
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Notice that |fu,(X)| < 1 almost surely since |Fy,,, (X, X’)| < 1. For n large enough as a function of
7, whenever X € Bgl/z (p*), the Glauber dynamics over ,u(‘BE (p*)) is exactly equal to the Glauber

dynamics w.r.t. pu. Therefore, a simple calculation yields the following for X € BnD/2 (p*):

~Apyu(X) n\
fUU(X) - ﬁ - <2> w%[:n] qbuw(XNuw)Xvw + ¢vw(X~vw)qu . (46)
wé{u,v}

exp(C R n?BiA% (X))
I4+exp(3 1L, n2B; A% (X))

For any edge e, we consider ¢.(X..) = . Note that

[fe(Xne) = de(XLo)| < C(B)? e |AT(X) = AF(XT)]. (47)

Now, X.. and X/ . can differ at most in one edge, by construction. Suppose this edge is h. When
e = h, then Af(X) = A%(X’). Now suppose e # h. Invoking Equation (41) with k& = |V;|, we
obtain

A7 (X) = A7(XT)]

[1a] TT P euar- T % )] [[an
( ) t=1

a,b)eE(G (a,b)€E(G)

n3

| T E(Gy))?
< / ]l(A’gGl)]l(A'fLG’)tl;[ldxt < IEG)F (48)

Combining Equations (46), (47) and (48), we conclude that whenever X € Bs/z(p*),

)

[fur(X) = fun(X)] < —3 (49)

Observe that whenever the Glauber dynamics does not update an edge of the form (u,w) or
(v,w), Fuy(X,X") = 0. Let A"P4 denote the event where F,,(X,X’) # 0. Clearly, P(A"P94|X) <
4/n. Tt is also clear that |Fy,, (X, X")| <1 almost surely. Therefore, we have for any X € Q

4

[FOOI <E[IF(X X X] < P(A™]X) < —. (50)

Now consider the local variance proxy A,,(X) (where the notation is once again derived from
[5, Theorem 1.5]) whenever X € BnD/2 (),

Ap(X) := %E [(fur(X) = fuu(X")) Fuu(X, X")| X]
C(B) C(B) ‘

n? n3

< E[1(AY)|X] < (51)

Here, we have used Equation (49). Whenever, X ¢ BE/2 (p*), we will use the crude bound
C
Auv(X) § m )
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obtained by plugging in | f(X)— f(X")| < |f(X)]+]f(X")| < 8/n (which follows from Equation (50))
into the the definition of A,,. Combining these bounds, we get that

c(B) C(8)

Aun(X) < = 521X € Byy(p) + = - 1(X & By o (7))

n/2

By Lemma 7.1,

u(X ¢ BD,(0")

Byja(r")) < Caexp(—c(B,m)n?)

Now, applying Lemma B.1, with M = 4/n, and 6y = C’Bn2 for some large enough Cg and t =
4~ /(n — 1), we conclude the result. O

C Deferred Proofs for Path Coupling

C.1 Proof of Lemma 4.1

Consider the following coupling between the trajectories Xg,..., Xg and Yy, ..., Yk
1. Generate (Xo, Yp) from the specified initial distribution.

2. Given Xy, Yy, we generate Xy11, Yit1 as follows:

(Xks1, Yir1) ~ _
P(Xk, ) x P(Yg,-) otherwise

Now we consider the distance d(Xy11, Yx+1). We have

Ed(Xkt1, Vir1) = Bd(Xgy1, Yier1) L((Xg, Yi) € A x A)
+ Ed(Xps1, Yir1)L((Xp, Yy) € AD)
< E(1 = 9)d(Xp, Yi)L((Xg, Yi) € A)
+ Ed(Xps1, Yir 1) 1((Xg, Yi) € A°)
< (1= 7)Ed(Xp, Yi) + Ed(Xpi1, Yer1)1((Xx, i) € A°)
< (1 - 7)Ed(Xy, Yi) + DP((X, Y;) € A°)
< (1 —y)Ed(Xy, Yx) + Dpy, . (53)

We conclude the result by unrolling the recursion. O
C.2 Proof of Lemma 4.9
In both this and the next proof, we let

Tmin(X) = inf rqg(X,e) and Tmax(X) := sup r¢(X,e).

ee n n
ot <)
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Proof. We will only prove the coupling for G(n,p* + €). The other coupling follows analogously.
Let N = (3). Let ei,...,en be any enumeration of ([g}). Let X ~ ,u(-|BE(p*)) and obtain the
sequence Xy, ..., Xy by updating as follows: Given X;_1, define (X;). = (X;—-1)e whenever e # ¢;
and let (X;)e, be independently re-sampled from the conditional distribution (Xi_l)ei|(Xi_1)Nei.
In other words, we obtain X; by re-sampling the coordinate e; in X;_;. Clearly, Xy ~ u(-[BE ().

Now, consider Yy = 0 € 2 almost surely. Let eq, ..., ex be the same as before. We will construct
Y1,..., Yy as follows: Given Y;_1, we construct Y; such that (Y;)we, = (Yi—1)~e, and (Y;)e, is freshly
drawn from Ber(p* + €). It is clear that Yy ~ G(n,p* + €).

By Theorem 4.5, we have that p* — € < rpin(Xi) < rmax(X;) < p* + € with probability at-
least 1 — C(n, 5,€) exp(—c(n, B,€)n). Recall the definition of ¢g from Section 2 and note that
P((Xi)e; = 1| Xi—1) < ¢5(Tmax(Xi—1)) < p*+€. Therefore the fresh draws can be coupled such that
(Xi)e; < (Y3)e, with probability at least 1 — C(n, 5,€) exp(—c(n, 8, €)n). Since (X;)e; = (Xn)e, and
(Yi)e; = (YN)e,;, we conclude via a union bound over ¢ < N that Xy < Yx with probability at least
1—C(n, B, €) exp(—c(n, B,€)n). This gives the desired coupling by taking X = Xy and Y = Yy in
the statement of the lemma. O

C.3 Proof of Lemma 4.10

We first show that with probability at-least 1 — C'(n)exp(—c(n)n), we must have p* — n/4 <
Tmin(XO) S Tmax(XO) S p* + 77/4
This can be shown for example by using Lemma 6.1 and simple concentration bounds for the
degrees p,(Xo) and py,(Xp). The fact that 5D(X0,p*) is small follows from Theorem 1.3 since
G(n,p*) is also (a very special case of) an exponential random graph. Now, invoking Lemma 4.8,
we conclude that with probability at least 1 — T'C(5,n) exp(—c(5,n7)n), we have for every t < T
that
P = 3 < ruin(X) < Fmax(Xe) <P+ 3. (54)
Now consider Markov chains Yy, ..., Yy and Zy,...,Zp where Yy ~ G(n,p* —n/2) and Zy ~
G(n,p* + 3). Here, we generate the respective trajectories by Glauber dynamics with respect to

G(n,p* —n/2) (resp. G(n,p* + ) ) We couple the trajectories as follows:

Ui

1. At step 0, we pick Xy, Yp, Zy such that almost surely
Yo 2 Xo 2 Zp.

2. At step t, pick the same edge F; ~ unif(([g})) to update for each X;_1,Y;_1 and Z;_1.

3. Pick u; ~ unif(]0, 1]) independently of everything else and set
(X =L < ¢ (X)~m)); (Yo)m =L uw <p* = 3); (Z)m = L(u <p"+3).

For n small enough, we verify that under the event in Equation (54)

P = 3 < 63(rmax(X0)) < 65, (X)) < @3(rmax(Xe) S p™+ 7.

This implies that (Y;)g, < (X¢)g, < (Zy)g,- We conclude that with probability at least 1 —

TC(B8,n)exp(—c(8,n)n) we have Y; < X; < Z;. Now, we will apply Theorem 7.3 to obtain

60(Xy, p*) < max (60(Yz, p*), 60(Ze, p*)) - (55)
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Now, since Y; ~ G(n,p* —n/2) and Z; ~ G(n,p* +1n/2), we have
P(max (50(¥,p7), 00(Ze,p")) > 1) < 1= Cln) exp(—c(n)n?).

Using this in Equation (55), we conclude the statement of the claim. O

D Proof of Corollary 8.10

Proof. Let 6 > 0 and n > 0. We are given X € Q such that X € BE(p*), ie., op(X,p*) < n.
Consider the set S(X) := {u: |py(X) — p*| > 2n/0}. By Lemma 7.2, we note that |S(X)| < dn, so

s 0= | (s(x

SCln]
1<|S|<én
By the union bound,
#(ISCO1# 018, 0" = S|B("))
r=1 SC n]
|S|=r
om n
=2 <T>N(5(X) = [r]| B, (»")) - (56)
r=1

Here, the second step follows from the permuation invariance of the vertices with respect to the
measure g. In order to evaluate the upper bound in Equation (56), we will consider the measure
of the event {S(X) = [r]} for r < dn.

Consider the restricted degrees p,, with respect to the set [r] and suppose that 62 < 27). Let the
set D(p*,«, S) := {qg : infycs |gy — p*| > a} and note that

{S(X) = [r]} = {lpu(X) —p*[ > 2n/6,Vu € [r]}
C {lpu(X) —p*| > 2n/6 — 6,Vu € [r]}
= U {Pu(X) = qu,Vu € [r]}. (57)

q[r]ED(p*y%n_&[r})

Therefore whenever §,n satisfy €/2 = 2n/§ — d, we have

{S(X) =[]} n{X € B([r],p",m)} < U Allaw.»n)- (58)
Q[T]GD(;D*,%,[TD
Note that with the above choice of 7 in the definition of S(X), we can take 0 < €¢/2 to conclude

that for all u € S(X)C, |p,(X) — p*| < e. We will note a simple result which follows from standard
arguments in calculus.

Lemma D.1. Suppose p* € Ug and q € [0,1] is such that |qg — p*| > €/2. Then, Lg(q) — Lg(p*) —
Gallg —p*]) < =C(B,e) <0
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Pick § to be small enough such that p* € (4,1 —9). Combining Lemma D.1 with Equation (58)
and Theorem 8.9 we conclude that whenever r < né:

p({S(X) =7} B([r],p",n)) w(A([r], ap, 0% M)
W(B( ) D>

Qi €D(p*,5,[r])
|D(p*, 5, [r])| exp(—nrC(B,€) + Og(nrn + r* log(
exp(=2nrC (8, €) + O(nrn + r* log(%) + rlog n)
exp (—nr (20(5, €) — Og(n + dlog(L) + loi;n)>>
= exp (—Qg(nr)) . (59)

< )+ rlogn))
<

)

The first step follows from the union bound on Equation (58) and in the second step we used
Theorem 8.9 along with Lemma D.1. In the third step, we used that |D(p*, ¢, [r])| < n”. In the last
step, we have picked 7, small enough (as functions of €, 3) so that 2n/d — 6 =€/2, 0 < €/2, n <
no(e, B) and n large enough as a function of €, 8 such that Og(n+ §log(1/8) +n"togn)) < C(B,€).

By Lemma 8.6, whenever r < én, we must have BnD(p*) = B(0,p*,n) € B([r],p*,n) C

B(@,p*,n + ¢). Along with Lemma 7.1, we conclude that whenever 7,0 are smaller than some
constant cg > 0, we have

w(B, (p*)) = c(B,m,0)u(B([r], p*,n)) -

Therefore whenever n is larger than a constant depending only on (3, € and 7y, we have

RUS(X) = [} 0 BOp"m) _ p({SCX) = 7} 0 Bl p* )
(B0 ) < (B0, )
u({S(X) = r} 0 B(r].p* )
< OG0 === BT )
< exp(—Qg(nr)). (60)

Using the fact that () < n", it follows using Equations (56) and (60) that

no
p(1S(X)| #0|B) () <D n" exp(=Qp (nr))
r=1
< exp(=Qp.(n)),
which proves the corollary. O

D.1 Proof of Corollary 8.11

Recall the sets AN .= {x € [0,1]F : 2; € [4=1 %)} Let n > 0 be arbitrary for now. Suppose that
X € BE (p*). We have by definition

Puv(X) = n2/fX(xl,$3)fX($2,$3)]1(Ai’1)]l(Ai’z)diﬂld!Ezdl?s-

A simple calculation reveals that
Pun(X) — pu(X)p* = n2/fX(:171,:173) (fX(xg,xg) —p*) ]l(Ai’l)]l(Af’;2)d:E1dx2dx3.
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Now, define S; := {v : puup(X) — p*pu(X) > €/2} and S = {v : pu(X) — p*pu(X) < —¢/2}.
Summing the display above for v € S;I', we have

S+ € *
277,2’ < Z; a:l, 1’3 (fX(xg, xg) —p ) ]].(Az’l)]].(Ai’2)dx1dx2dx3
vESy

= / N X (21, z3) (fX(:Eg,:Eg) — p*) ]l(Az’l)dxldzngdxg
To€A

_ ¥ .
a /xle[u_l u |:/.CB2€AI (f ($37$2) — P )dﬂj2d$3] dxl

T’n) x3€C(x1)
< 6D(Xn,p ) (61)

where A} := Uvesj[” vy and C(z1) := {x € [0,1] : fX(z1,2) = 1}.

n 'n

Taking n < de/2, we conclude that

€ 2
and similarly )
57| < 2nog (X, p*) < on

€ 2
Therefore, whenever dq(X, p*) < n < d¢/2, the sets S, := S U S are such that

sup sup ‘puv(X) - p*pu(X)’ S (62)

u€[n] ye st

Nlm

Now, invoking Corollary 8.10, we conclude that for any n < ¢(f,¢,d) and whenever n is larger
than a constant depending only on (3, ¢,7 and § we have

i sup pu(X) = '] < 5| BI()) 21— exp(~ s (n)

u€(n]

and from Equation (62), we have

* € *
p(( sup sup [pun(X) — p'pu(X)| < 5| BIY) = 1.
u€[n] ve St

Combining the two displays above, the statement of the corollary follows. O
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