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Abstract

The study of moss calyptra form and function began almost
250 years ago, but calyptra research has remained a niche
endeavor focusing on only a small number of species. Recent
advances have focused on calyptra cuticular waxes, which
function in dehydration protection of the immature sporophyte
apex. The physical presence of the calyptra also plays a role in
sporophyte development, potentially via its influence on auxin
transport. Progress developing genomic resources for mosses
beyond the model Physcomitrium patens, specifically for spe-
cies with larger calyptrae and taller sporophytes, in combina-
tion with advances in CRISPR-Cas9 genome editing will
enable the influence of the calyptra on gene expression and
the production of RNAs and proteins that coordinate sporo-
phyte development to be explored.
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Introduction

Successful development and reproduction are central
processes for biological organisms. In the vast majority of
plants, the results of fertilization are highly branching,
free-living diploid sporophytes, whereas in bryophytes,
the diploid sporophytes are unbranched, physically
attached to and dependent on the parental gametophyte
throughout their life [1]. Bryophyte sporophytes are

covered by a waxy cuticle which is impervious to water
uptake and thus they acquire water and mineral nutri-
ents from their parental gametophyte [2]. While bryo-
phyte sporophytes can photosynthesize, most taxa also
acquire the majority of their photosynthates from their
parental gametophyte [3]. All of these resources are
transferred through the foot, which is located at the base
of the sporophyte [4]. Thus the survival and develop-
ment of bryophyte sporophytes are intimately connec-
ted with the parental gametophyte.

In mosses, the apical region of the sporophyte also in-
teracts with the gametophyte. During the early stages of
development, the sporophyte apex is covered by a cap of
gametophyte tissue, which is called the -calyptra
(plural = calyptrae; Figure 1a; [5]). The calyptra forms
early during development from the archegonium and, in
some taxa, also from the subtending gametophyte stem
(Figure 2; [6]). In some species, the calyptra separates
from the leafy gametophyte below via a ring of dehiscent
cells (e.g., Funaria in Ref. [7]). Once disconnected from
the rest of the gametophyte the calyptra persists atop
the sporophyte apex during capsule expansion
(Figure 1b) and can remain alive for a time, but does not
continue to grow and ultimately dies [8,9].

Sporophyte development and the calyptra

The calyptra plays a critical role in moss sporophyte
development (Figure 3). When calyptrae are removed
during early development under high humidity condi-
tions the apical region remains undifferentiated and the
sporophyte does not transition to capsule expansion and
differentiation (Figure 1c,d; [10,11]). Typically during
this transition, the seta meristem ceases cell divisions.
However, calyptra removal results in this meristem
continuing to divide [12]. Without the calyptra it no
longer builds a narrow cylindrical seta and instead pro-
duces an expanded, obconic-shaped stalk (Figure 1c).
To test whether this was a physiological and/or physical
interaction, calyptrac were experimentally removed,
boiled using multiple solvents to extract any physio-
logically active compounds, and then replaced on the
sporophyte apex [13]. Even after this experimental
manipulation, the sporophytes continued through their
regular developmental transitions, producing both a seta
and capsule with normal morphology. These
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Funaria hygrometrica sporophytes with and without calyptrae. (a,b)
Reproduced with permission from Ref. [21]. (a) Parental gametophyte
calyptra covering an immature, unexpanded sporophyte. Arrow indicates
sporophyte apex. (b) Moss calyptra on the top of a mature sporophyte
capsule. (¢,d) Calyptra removed from sporophyte apex in a high humidity
chamber. Sporophyte continues to grow via the activity of the seta meri-
stem and the capsule does not expand or differentiate. (c) Instead of
producing a narrow cylindrical seta the meristem produces an expanded
obconic-shaped stalk. Reproduced with permission from Ref. [5]. (d)
Median longitudinal section of the sporophyte apex. Reproduced with
permission from Ref. [12].

observations point toward the physical presence of the
calyptra coordinating both seta development and
capsule differentiation, but further exploration of po-
tential physiological influences has not
been undertaken.

The plant hormone auxin also plays a role in moss
sporophyte development (Figure 3). During early
development, auxin is transported basipetally through
the sporophyte and later, during capsule differentiation,
it is transported both acropetally and basipetally
[14,15]. Experimental disruption of the basipetal flow of

auxin results in sporophytes with multiple sporangia,
demonstrating its role in branching suppression in the
moss sporophyte [15,16] The acropetal flow of auxin has
been proposed to play a role in capsule differentiation
[14], and thus calyptra removal during early develop-
ment, which results in a sporophyte that does not
transition to capsule differentiation (Figure 1c,d), may
be due to disruption of this auxin flow. Further studies of
auxin transport in moss sporophytes are needed to
determine which tissues auxin is moving through (i.e.,
epidermis, cortex, and/or central strand), the role
transmembrane proteins play (e.g., auxin efflux PIN-
FORMED [PIN] proteins; [17]), and how the phys-
ical presence of the calyptra may influence
auxin transport.

The moss calyptra also protects the undifferentiated
sporophyte apex from dehydration (Figure 3). Re-
searchers long observed that when calyptrae are
removed during early development under low humidity
conditions, the apex withers and the moss sporophyte
dies [18,19]. The ability of the calyptra to protect the
sporophyte from dehydration was attributed to a waxy
cuticle [7,20]. Despite the early articulation of this
hypothesis, it took nearly 100 years to confirm that a
waxy cuticle is present on the calyptra [21] and that it
develops precociously relative to the cuticle of the
sporophyte [22]. Under low humidity conditions,
experimental removal of calyptra cuticle waxes nega-
tively impacts survival, development, and fitness of the
sporophyte, thus demonstrating the importance of the
calyptra cuticle for dehydration protection [23].

Calyptra morphological diversity

Comparative chemistry may enable us to better un-
derstand the structure and function of the calyptra
cuticle. In Funaria hygrometrica the calyptra was found
to have thicker cuticle wax coverage in Comlz)arison to
the leafy 2gametophyte (2.0 pg cm™°  versus
0.94 png cm™“, respectively; [24]). While the calyptra
of this species has a smooth morphology (Figure 1a,b),
other taxa, such as members of the Polytrichaceae and
Orthotrichaceae, have calyptrae that are covered in
epidermal hairs (Figure 4a—c). Ongoing research in
our laboratory is testing the hypothesis that species
with smooth calyptrac have thicker layers of cuticle
waxes in comparison to species with hairy calyptrae,
due to the added dehydration protection provided by
the hairs. In a separate study, a comparison of three
Polytrichaceae species indicated potential differences
in wax chemical composition between two species
with hairy calyptrae (Pogonatum pensilvanicum and Poly-
trichum  jumiperinum) and one species with smooth
calyptrac  (Polytrichadelphus  pseudopolytricum; [25]).
Considering the results from these studies together
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Diagram of moss sporophyte development. Sporophytes begin development completely surrounded and protected by tissues of the parental gameto-
phyte. Initially the sporophyte grows by divisions of a single apical cell. Later a second meristematic region, the seta meristem, produces the seta/stalk,
which elevates the undifferentiated apical region. This region later differentiates into the sporangium/capsule. The sporangium includes cells that will

undergo meiosis to produce haploid spores, a operculum/lid that enables spore release, and an apophysis/neck that, if present, is where stomata are
located in some species. Throughout sporophyte development the apical region and seta meristem are covered by the gametophyte calyptra. Repro-

duced with permission from Ref. [5].

[24,25] a potential pattern emerges. The two species
with smooth calyptrae (/' /Zygrometrica in Figure la,b
and P, pseudopolytricum) have wax mixtures that include
alcohols and low levels of alkanes, but lack aldehydes.
In contrast, the two species with hairy calyptrae
(P pensilvanicum and P juniperinum) lack alcohols, have
high levels of alkanes, and aldehydes are present.
These differences in wax composition suggest that
cuticles on smooth and hairy calyptrac may function
differently, though our current level of understanding
does not enable us to determine the precise functional
differences for these compounds. Further exploration
of calyptrae with different hairiness levels will enable
us to determine if these patterns are consistent across
a wider array of species.

In addition to having different levels of calyptra hairi-
ness, calyptrae also vary in size and shape across the
approximately 13,000 species of mosses [26]. Calyptra
size ranges from very small (0.2 mm) in Physcomitrium
(Physcomitrella) patens (Hedw.) Mitt. [27] to relatively
large (up to 20 mm) in Dawsonia polytrichoides R. Br. [28].

Evolutionary reductions in calyptra size appear to be
correlated with smaller sporophytes and faster life
cycles, but this hypothesis remains to be tested in a
phylogenetic context. Calyptra shape ranges from spe-
cies that have a narrow rostrum apically that abruptly
transitions to a wider inflated base (Figure 4d,e) to those
that become gradually wider from the top to bottom
(Figure 4f—h) to species that have a narrow tube-shape
throughout (Figure 4i—k). These morphologies have
historically been divided into two broad categories.
Cucullate calyptrae have a slit up one side (Figure 4i—k)
and mitrate calyptrae lack a prominent single slit, but
can have one to multiple small slits at the bottom edge
(Figure 4d—h). These morphological disruptions occur
after calyptra development is complete. They are
caused by the expansion of the underlying sporophyte
and are influenced by capsule morphology, which can
range from upright, resulting in mitrate calyptrae, to
inclined, resulting in cucullate calyptrac. Connecting
this structural diversity in size, shape, and hairiness of
the calyptrae to their functional abilities, in terms of
protection and developmental coordination as well as
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Roles of the calyptra in sporophyte development. These roles include protection from dehydration [18,19] and the physical presence of the calyptra
coordinating development [10—13]. Cuticular waxes on the surface of the parental calyptrae [21,22,24] have been demonstrated to provide dehydration
protection for the sporophyte [23]. Epidermal hairs on the calyptrae may also play a role in dehydration protection, but this has yet to be studied
experimentally. Auxin transport in moss sporophytes occurs basipetally during the early development and later, during capsule differentiation, auxin is
transported both acropetally and basipetally [14,15]. Disruption of the basipetal flow of auxin results in sporophytes with multiple sporangia, demonstrating
its role in branching suppression [15,16]. The physical presence of the calyptra may play a role in coordinating sporophyte development by influencing
auxin transport, but this hypothesis has yet to be test. This illustration was created with BioRender.com.

the diverse habitats these species occupy remains an
underexplored area of study.

Model systems for studying calyptra
function

The majority of research studies that integrate func-
tional genomics and development in mosses focus on
the model species Physcomitrium patens (Funariaceae;
[29—33]. This species was developed as a model system
due to its rapid life cycle [34], sequenced genome [35],
and its ability to be genetically transformed using ho-
mologous recombination [36]. Research employing
P, patens has expanded our understanding of plant growth
and development, but unfortunately this species is not
an optimal system for studying the functional relation-
ships between the parental calyptra and sporophyte. In
this species, both the calyptra and sporophyte are
morphologically reduced (0.2 and 0.4 mm in height,
respectively) and the capsule lacks structures that aid in
spore dispersal, including peristome teeth and an
operculum [27]. The rapid life cycle also results in a
short time span for studying sporophyte development in
relation to the calyptra. Due to these challenges, there
do not appear to be any published studies focusing on
calyptra cuticle waxes or the calyptra—sporophyte rela-
tionship in P, patens.

Species with larger calyptrae and taller sporophytes
devote more time to sporophyte development, enabling
this relationship to be studied at multiple develop-
mental stages [22] and their larger size facilitates easier
manipulation experiments [11,23]. These larger species
are also often morphologically complex, enabling ex-
plorations of the developmental influence of the calyp-
trae on structures such as the peristome, which has been
identified as a key innovation in the evolution and
diversification of mosses [37]. Genomic resources have
been developed for several species that have both rela-
tively large calyptrae and sporophytes, as well as com-
plex sporophyte morphologies, including Ceratodon
purpureus (Hedw.) Brid. [38], Syntrichia caninervis Mitt.
[39], Takatkia lepidozioides S.Hatt. & Inoue [40], Entodon
seductrix (Hedw.) Mull. Hal. [41], Hypnum curvifolium
Hedw. [41], E /hygrometrica Hedw. [42], and Physcomi-
trium pyriforme (Hedw.) Brid. [42]. The latter two spe-
cies, along with P, patens, are in the Funariaceae and thus
are well positioned for comparative developmental
studies [43]. Combining these genetic resources with
advances in CRISPR-Cas9 genome editing [44] will
enable us to develop these species as model systems to
study the influence of the calyptra on gene expression
and the production of RNAs and proteins that coordi-
nate sporophyte development.
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Calyptra morphological diversity. (a—c) Calyptrae with hairs on the
epidermis. (a) Polytrichum hyperboreum R.Br. (b) Orthotrichum laeviga-
tum J.E.Zetterst. (¢) Ulota crispa (Hedw.) Bridel. (d—h) Mitrate calyptrae
lack a prominent single slit, but can have one to multiple small slits at the
bottom edge. (d) Encalypta texana Magill. (€) Ptychomitrium gardneri
Lesq. (f) Callicostella pallida (Hornsch.) Angstr. (g) Campylostelium
saxicola (F.Weber & D.Mohr) Bruch & Schimp. (h) Pterygoneurum kozlovii
Laz. (i—k) Cucullate calyptrae have a single slit up one side. (i) Calyptra
on top of sporophyte capsule of Didymodon bistratosus Hébr. &
R.B.Pierrot. (j) Bartramiopsis lescurii (James) Kindb. (k) Weissia
muhlenbergiana (Sw.) W.D.Reese & B.A.E.Lemmon. (a,b,d,e,g-k)
Reproduced with permission from Ref. [49]. (c,f) Reproduced with
permission from Ref. [50].

Conclusions and future directions

Despite the fact that studies of calyptra form and
function began almost 250 years ago [45,46], calyptra
research has remained a niche endeavor that has focused
on only a few taxa [5]. Enhancing our understanding of
the calyptra will necessitate an examination of a wider
array of species, including taxa with diverse sporophyte
morphologies (Figure 4), different sexual systems that
result in different levels of relatedness between the
gametophytes and sporophytes and thus different levels
of parent-offspring conflict [47], and diverse growth
forms that range from parental gametophytes that sup-
port the development of a single sporophyte at a time
(e.g., acrocarpous) to gametophytes that support mul-
tiple sporophytes concurrently (e.g., pleurocarpous;
[48]). Examining the relationship between these biotic
features and abiotic aspects of the habitats where these
species live, such as substrate and moisture, in
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combination with phylogenetic comparative methods
will enable us to expand both our ecological and evolu-
tionary understanding of moss calyptrae.
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