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ABSTRACT

The random geometric graph RGG(=, S321, ?) is formed by sam-

pling = i.i.d. vectors {+8 }=8=1 uniformly on S321 and placing an edge

between pairs of vertices 8 and 9 for which ï+8 ,+9 ï g g?3 ,where g
?

3
is

such that the expected density is ?.We study the low-degree Fourier

coe�cients of the distribution RGG(=, S321, ?) and its Gaussian

analogue.

Our main conceptual contribution is a novel two-step strategy

for bounding Fourier coe�cients which we believe is more widely

applicable to studying latent space distributions. First, we localize

the dependence among edges to few fragile edges. Second, we parti-

tion the space of latent vector con�gurations (S321)·= based on

the set of fragile edges and on each subset of con�gurations, we

de�ne a noise operator acting independently on edges not incident

(in an appropriate sense) to fragile edges.

We apply the resulting bounds to: 1) Settle the low-degree poly-

nomial complexity of distinguishing spherical and Gaussian random

geometric graphs from Erdős-Rényi both in the case of observing

a complete set of edges and in the non-adaptively chosen mask

M model recently introduced by Mardia, Verchand, and Wein; 2)

Exhibit a statistical-computational gap for distinguishing RGG and

a planted coloring model in a regime when RGG is distinguish-

able from Erdős-Rényi; 3) Reprove known bounds on the second

eigenvalue of random geometric graphs.
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1 INTRODUCTION

Random graphs with a latent high-dimensional geometric struc-

ture are increasingly relevant in an era of massive networks over

complex computer, social, or biological populations. Such graphs

provide a fruitful, even if idealized, model in which to study algorith-

mic and statistical questions. For these reasons, in the last 15 years

random geometric graphs have seen a surge of attention in the com-

binatorics, statistics, and computer science communities. Tasks ad-

dressed in the literature include: 1)Detecting the presence of a latent

geometric structure [4, 5, 11, 12, 14, 16, 18, 26, 28, 29], 2) Estimating

the dimension of the latent geometry [4, 14, 20], 3) Embedding the

graph in a geometric space and clustering [24, 30, 35], 4) Matching

unlabelled noisy copies of the same geometric graph [25, 39]. In a

di�erent direction of study, high-dimensional random geometric

graphs exhibit an intricate and useful combinatorial structure. Most

notably, in [27], the authors show that in certain regimes spheri-

cal random geometric graphs are e�cient 2-dimensional expanders,

objects for which no other simple randomized constructions are

known as of now.

Two of the most common models, studied since the early works

[14, 16], are spherical and Gaussian (hard thresholds) random geo-

metric graphs.

De�nition 1 (Spherical and Gaussian Random Geometric Graphs).

The spherical random geometric graph RGG(=, S321, ?) on = ver-

tices [=] = {1, 2, . . . , =} of dimension 3 with expected density ?

is de�ned as follows. First, = independent vectors +1, . . . ,+= are

drawn iid from the uniform distribution on the sphere S321 . Then,
an edge between 8 and 9 is formed if and only if ï+8 ,+9 ï g g?3 . Here,
g
?

3
is chosen so that ? = IP[ï+8 ,+9 ï g g?3 ] .
Similarly, in the Gaussian case RGG(=,N(0, 1

3
�3 ), ?), one sam-

ples /1, . . . , /= > N(0, 1
3
�3 ) and forms an edge ( 98) whenever

ï/8 , / 9 ï g d
?

3
with d

?

3
chosen such that the expected density is ?.

The main goal of the current paper is to analyse the low-degree

Fourier coe�cients of the probability mass functions of those two

distributions. The Fourier coe�cients of an =-vertex random graph

distribution R are parametrized by edge-subgraphs�. The ?-biased

Fourier coe�cient corresponding to � is de�ned by

§
?
R
(� ) := (? (1 2 ?))2|� (� ) |/2 × IE

G>R

[ ∏

( 98 ) *� (� )
(G98 2 ?)

]

= (? (1 2 ?))2|� (� ) |/2 × IE
G>R

[
SW

?
�
(G)

]
.

(1)

SW
?
�
(G) is the signed weight of � de�ned by the above equation.

Fourier coe�cients are (signed) expectations of subgraphs.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

549



STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Kiril Bangachev and Guy Bresler

Low-degree Fourier coe�cients of distributions (and, more gener-

ally, Boolean functions) are at the core of many milestone results in

theoretical computer science and combinatorics such as construct-

ing succinct nearly :-wise independent distributions [2], learning

various classes of Boolean functions [13, 19], theMargulis-Russo for-

mula on sharp-thresholds [33, 38] and many more (see [36]). More

recently, low-degree Fourier coe�cients have become central to

the design of e�cient algorithms for problems in high-dimensional

statistics, as well as providing evidence for computational hardness,

via the low-degree polynomial framework [21, 22].

Unfortunately, estimating Fourier coe�cients is a highly non-

trivial task for complex distributions with dependencies among

variables. We introduce a conceptually novel approach (described

shortly in Section 3.2) for bounding the Fourier coe�cients of distri-

butions with random latent structure and use it for RGG(=, S321, ?)
andRGG(=,N(0, 1

3
�3 ), ?) . This unlocks the powerful methodsmen-

tioned above which leads to several applications, described next.

1. Testing. Testing against Erdős-Rényi is one of the most natural

and well-studied questions on high-dimensional random geometric

graphs, starting with [16]. Testing is a prerequisite for more so-

phisticated tasks: if one cannot even distinguish a graph from pure

noise, one can hardly hope to do any other meaningful inference

about its structure.

In the spherical case, one observes a graph G and the goal is to

test between the two hypotheses

�0 : G > G(=, ?) and �1 : G > RGG(=, S321, ?) .
The state-of-the-art results for ? f 1/2 and ? = �(1/=) are as

follows. By counting signed triangles, one succeeds with high prob-

ability whenever 3 f (=?)3 (log 1/?)� for some constant� [14, 26].

Counting signed triangles is conjectured to be information theo-

retically optimal, i.e., for 3 k (=?)3 (log 1/?)� it is believed to be

impossible to test between the two graph distributions [5, 12, 26].

The best bounds on when RGG(=, S321, ?) and G(=, ?) are indistin-
guishable, due to [26], are: 1) 3 g =3?2 (log 1/?)� for all ? f 1/2;
2) 3 g (=?)3 (log 1/?)� = polylog(=) for ? = �(1/=) . In particu-

lar, the threshold in dimension 3 at which testing becomes pos-

sible is only known (up to lower order terms) when ? = �̃(1) or
? = �(1/=).

Wemake progress in the intermediate regime 1/= j ? j 1/2 by
showing that the signed triangle statistic is computationally optimal

with respect to low-degree polynomial tests at all densities, even in

a stronger non-adaptive edge query model recently introduced by

[32]. Surprisingly, we show that this is not the case for Gaussian

random geometric graphs. For small ?, low-degree tests other than

the signed-triangle statistics are much more powerful: when ? =

�(1/=), one can distinguish RGG(=,N(0, 1
3
�3 ), ?) and G(=, ?) for

dimensions as large as
:
=(log=)�2

, in sharp contrast to the 3 =

polylog(=) threshold in the spherical case [26].

We additionally prove low-degree indistinguishability between

RGG(=, S321, 12 ) and a planted coloring model [23] in a regime

when both are distinguishable fromG(=, 1/2) via simple low-degree

tests. The two models can be easily distinguished from one another

by determining the largest clique, a computationally ine�cient

test, which shows a computation-information gap for this testing

problem. To the best of our knowledge, this is the �rst negative

Figure 1: Detecting 3-dimensional geometry via low-degree

polynomials. In the model of non-adaptively queried edges

M, = :=
√
|� (M)|. A wedge is a path on 3 vertices.

result on testing between RGG(=, S321, 12 ) and a non-geometric

distribution when 3 j =3 .

2. Spectral properties. The second eigenvalue _2 of G > RGG

is captured by low-degree polynomials via the trace method. _2
naturally plays an important role in the expansion properties of

RGG(=, S321, ?) [27]. The top eigenvalues are also used in embed-

ding and clustering random geometric graphs via the top eigenvec-

tors [24]. These works have characterized the behavior of _2: when

3 j =? , _2 = �̃(=?/
:
3) and when3 k =?, the behaviour is similar

to Erdős-Rényi and _2 = �̃(:=?).1 We reprove this bound in the

case ? = 1/2 using our estimates on the Fourier coe�cients. While

our approach yields the same quantitative bounds, its methodology

is rather di�erent and much more combinatorial.

1.1 Organization of Paper

Our main contribution is a new methodology for deriving strong

bounds on Fourier coe�cients which we use to argue about the

random geometric graph distributions. In Section 3.1 we describe

the challenges in bounding low-degree Fourier coe�cients followed

by the main ideas used to overcome them in Section 3.2. Our main

theorem followed by applications to testing and the second eigen-

value are stated in Section 4. In Section 5 we give the full proof of

our main theorem. The di�erent applications follow by variations

of what are by now well-known techniques and are given in the

arXiv version [6]. For testing, we use the j2 low-degree advantage

formula (when testing against the planted coloring model, we need

a more subtle version of it from [23]). For the second eigenvalue,

we use the trace method.

1To be fully precise, [27] considers the normalized adjacency matrix and [24] considers
a Gaussian rather than spherical random geometric graph
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2 PRELIMINARIES

2.1 Graph Notation

Our graph notation is mostly standard. We denote by + (� ), � (� )
the vertex and edge sets of a graph. For 8 * + (� ), we de�ne

#� (8) := { 9 * + (� ) : ( 98) * � (� )} and for ( ¦ + (� ),
#� (() := *8*(#� (8) . X (� ) := max(¦+ (� ) |( | 2 |{ 9 * + (� ) :

#8 * ( s.t. ( 98) * � (� )}|.We denote by  = the complete graph on

= vertices, and by Star= the star graph which has one central vertex

E and = leaves 81, 82, . . . , 8= adjacent to E .

We will frequently de�ne graphs by the edges that induce them.

That is, for � ¦ � ( =), we also denote by � the graph on vertex

set {8 * + ( =) : # 9 * + ( =) s.t. ( 98) * �} and edge set �.

Identifying graphs by edges that span them is convenient as edges

are the variables of polynomials that we consider.

2.2 Low-Degree Polynomials

Our results in Sections 4.2 to 4.4 are based on the low-degree poly-

nomial framework introduced in [21, 22]. One way to motivate

it is the following. When testing between graph distributions �0

and �1 (say, �0 = G(=, ?), �1 = RGG(=, S321, ?)), one observes

a single graph G and needs to output 0 or 1. The graph G is sim-

ply a bit sequence in {0, 1}� ( = ) . Hence, the output is a function
5 : {0, 1}� ( = ) 2³ {0, 1}. All Boolean functions are polynomials

[36]. Therefore, one simply needs to compute a polynomial in the

edges. Importantly, one can write polynomials over {0, 1}< in their

Fourier expansion. In the ?-biased case over graphs, one represents

5 : {0, 1}� ( = ) 2³ R as

5 (�) =
∑

� : �¦� ( = )
5̂ (� )×(

√
? (1 2 ?))2|� (� ) |

∏

( 98 ) *� (� )
(� 982?) .

(2)

Here, 5̂ (� ) is just a constant (the Fourier coe�cient corresponding

to � ) and
{√
? (1 2 ?)2|� (� ) | ∏

( 98 ) *� (� ) (� 98 2 ?)
}
�¦� ( = )

is a

basis of polynomials. Conveniently, as can be seen from Eq. (1), this

basis is composed of signed-subgraphs SW
?
�
.What makes it useful

is the following fact [36]:

The polynomials
{√
? (1 2 ?)2|� (� ) | ∏

( 98 ) *� (� )
(� 98 2 ?)

}
�¦� ( = )

are orthonomral with respect to G > G(=, ?).
(3)

When computationally restricted, a tester needs to apply a poly-

time computable polynomial 5 .What are classes of poly-time com-

putable polynomials? One such class is of su�ciently low-degree

polynomials (where degree refers to the largest number of edges in

a monomial corresponding to some � for which 5̂ (� ) is non-zero).
Since those are usually not {0, 1}-valued, one needs to threshold

after computing the polynomial, which leads to the following de�-

nition, motivated by Chebyshev’s inequality.

De�nition 2 (Success of a Low-Degree Polynomial, e.g. [21]). We

say that a polynomial 5 : {0, 1}� ( = ) 2³ {0, 1} distinguishes �0

and �1 with high probability if
��� IE
G>�0

[5 (G)] 2 IE
G>�1

[5 (G)]
��� = l

(√
Var
G>�0

[5 (G)] + Var
G>�1

[5 (G)]
)
.

If 5 is poly-time computable, this leads to the poly-time algorithm

which compares 5 (G) to
(
IEG>�0

[5 (G)] + IEG>�1
[5 (G)]

)
/2.

Very commonly, one takes 5 to be a signed subgraph count

[14]. That is, for some small graph � (e.g. triangle or wedge), one

computes

SC
?
�
(G) :=

∑

�¦ = :�>�
SW

?
�
(G), (4)

where � > � denotes graph isomorphism. I.e., one computes the

total number of signed weights.

Importantly, the framework of [21] allows one to refute the ex-

istence of low-degree polynomials which distinguish with high

probability �0 and �1 . Namely, the condition in De�nition 2 fails

for all low-degree polynomials. Of course, one needs to quantify

“low-degree”. Typically, this means degree $ (log=).While not all

$ (log=)-degree polynomials are necessarily poly-time computable,

the class of $ (log=)-degree polynomials captures a broad class

of algorithms including subgraph counting algorithms [21], spec-

tral algorithms [3], SQ algorithms (subject to certain conditions)

[9], approximate message passing algorithms (with constant num-

ber of rounds) [34], and are in general conjectured to capture all

poly-time algorithms for statistical tasks in su�ciently noisy high-

dimensional regimes [21].

De�nition 3 (Low-Degree Polynomial Hardness). We say that no

low-degree polynomial distinguishes �0 and �1 with probability

«(1) if there exists some � = l (log=) such that
��� IE
G>�0

[5 (G)] 2 IE
G>�1

[5 (G)]
��� = >

(√
Var
G>�0

[5 (G)] + Var
G>�1

[5 (G)]
)

holds for all polynomials of degree at most �. In particular, this

holds (e.g., [23]), if IEG>�1
[5 (G)]/IEG>�0

[5 (G)2] 2 1 = >= (1) for
all polynomials 5 of degree at most �.

Using the orthonormality in Eq. (3), this condition simpli�es

signi�cantly when �0 = G(#, ?) » M for some maskM .2 Recall

the notation in Eq. (1).

Claim 2.1 ([21]). Suppose that �0 = G(#, ?) » M, �1 = R » M
and � = l (log=). If

∑

�¦� (M) : 1f |� (� ) |f�

(
§
?
R
(� )

)2
= >= (1),

no low-degree polynomial can distinguish�0 and�1 with probability

«(1).

For our results on the planted coloring, we need a more sophisti-

cated version of Claim 2.1 due to [23] when �0 = PCol.

3 CHALLENGES AND MAIN IDEAS

3.1 Challenges in Bounding Low-Degree Fourier

Coe�cients

The importance of Fourier coe�cients of graph distributions has

motivated a series of previous works on (hyper)graphs with latent

random vectors. Existing methods for computing Fourier coe�-

cients, however, seem not fully adequate towards our goal.

2This fact holds and usually stated for general binary distributions when �0 is a
product distribution [21], but we only state the result in the case of interest.
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Approach 0: Direct Integration. The most naive approach to es-

timating Fourier coe�cients is a direct integration (summation)

over the latent space. Recalling Eq. (1), one can compute the Fourier

coe�cient of � by integrating
∏

( 98 ) *� (� ) (1[ï/8 , / 9 ï g d
?

3
] 2 ?)

against N(0, 1
3
�3 )·+ (� ) . Such a calculation, however, seems out

of reach due to the complex dependencies between di�erent terms

in the product. As latent vectors /8 , / 9 vary smoothly, so does the

distance between /8 and / 9 and consequently also the probabili-

ties of various events (such as /: being a common neighbour). As

concrete evidence of the di�culty of this approach, even in the

simplest case of triangles for RGG(=, S321, ?), the authors of [14]
spend 5 pages of calculations. For a similar random graph model

with !? geometry, the calculation for triangles is open [4].

Approach 1: Vertex Conditioning. Many Fourier computations are

for problems de�ned by planting small dense communities in an

ambient Erdős-Rényi graph [17, 22, 23, 32, 37]. In such works, one

can use the following simple vertex conditioning strategy (exploit-

ing the ambient Erdős-Rényi structure) to overcome the technical

di�culty of a direct summation (integration). As a prototypical

example, discussed in [7, 21], consider the planted :-clique distri-

bution where each vertex 8 * [=] independently receives a label G8 ,

where IP[G8 = 1] = :/=, IP[G8 = 0] = 1 2 :/=. Conditioned on the

labels, each edge � 98 appears with probability 1 if G8 = G 9 = 1 and

independently with probability 1/2 otherwise. Now, consider the
Fourier coe�cient IE[∏( 98 ) *� (� ) (2� 98 2 1)] indexed by a graph �

without isolated vertices. Again, there are complex correlations be-

tween di�erent edges. However, unless all vertices of � have label

1, there is a random (probability 1/2) edge and this zeros out the

Fourier coe�cient IE[∏( 98 ) *� (� ) (2� 9821)]. By conditioning on all
vertex labels being 1, one shows that the Fourier coe�cient equals

(:/=) |+ (� ) | . An approach based on vertex conditioning seems to

not be applicable to hard threshold random geometric graphs: In

RGG(=, S321, ?), conditioned on the latent vectors there is no ran-

domness left in G > RGG(=, S321, ?). Hence, one cannot exploit
cancellations due to left-over randomness in edges once labels are

known, which is crucial in models with ambient Erdős-Rényi.

Approach 2: Lifting From a Single Dimension. Thework [4] bounds

the low-degree Fourier coe�cients of (hard threshold) random geo-

metric graphs over the3-dimensional torusR3/Z3 with the !> met-

ric. The insight in [4] is that an !> random geometric graph is the

AND of 3 1-dimensional random geometric graphs over S1 . They

combine the contributions of di�erent coordinates via an analytical

approach mimicking the cluster-expansion formula from statistical

physics. As explained in [4], in our case of RGG(=,N(0, 1
3
�3 ), ?) the

edges are closer toMAJORITY over the coordinates. Unfortunately,

extending the techniques for the simpler AND combination to the

present setting seems to be technically challenging (in particular,

because the Fourier expansion of AND is much simpler than that

ofMAJORITY).

3.2 Main Ideas

We focus on RGG(=,N(0, 1
3
�3 ), 12 ) for concreteness as this case

captures most of the main ideas. The argument for other densi-

ties is similar, but requires some modi�cation (most notably, it

additionally exploits a novel energy-entropy trade-o� of the RGG

distribution; see Remark 5). Modifying to the sphere can be done

via the observation that when / > N(0, 1
3
�3 ), + = //'/ '2 >

Unif (S321), the variables + , '/ '2 are independent and '/ '2 con-
centrates strongly around 1. Recall that d

1/2
3

= 0. Our goal is to

bound IE
G>RGG(=,N(0, 13 �3 ),

1
2 )
[SW1/2

�
(G)] . We assume that

|+ (� ) | = polylog(3) as this is most relevant to our applications.

Motivation: A Noise-Operator View. The following noise-operator

interpretation from [9] of the calculation for planted clique will

turn out to be useful. Consider �rst the standard noise operator )W
for functions over {±1}= [36]. It acts on functions 5 : {±1}= ³ R
by )W 5 (G) = IE~>#W (G ) [5 (~)], where #W (G) is the distribution in

which each coordinate ~8 independently equals G8 with probability

W and otherwise with probability 1 2 W it is re-randomized. This

noise operator contracts Fourier coe�cients as )̂W 5 (() = W |( | 5̂ (().

Observation 3.1 (Noise Operator View of Planted Cliqe).

The planted clique distribution can itself be viewed as arising from

application of a di�erent noise operator. Given a function on graphs

5 : {±1}(
[=]
2 ) ³ R, let )W 5 (G) = IE~>#W (G ) [5 (~)], where now

#W (G) is the distribution obtained by including each vertex in � with

probability W and then rerandomizing all edges in G except those with

both endpoints in�. This operator again contracts Fourier coe�cients,

)̂W 5 (� ) = W |+ (� ) | 5̂ (� ). If we start with the point mass distribution

X =
on the complete graph, then the planted clique probability mass

function is obtained by applying ):/= .

Our goal will be to derive such a noise operator perspective

for RGG as well and use it to bound Fourier coe�cients. We for-

mally give such a view in Observation 5.1, but due to its more

complicated nature we gradually build towards it. Remarkably, our

noise-operator also implies that (at least on a small enough scale),

RGG can also be represented as a small planted subgraph in an

ambient Erdős-Rényi!

1. Strategy: Localizing Edges That Create Dependencies. We solve

the challenges outlined in the previous subsection with the follow-

ing high-level idea. We will localize the dependence among edges to

a small set of edges F = F (/ ) (depending on the latent vectors).

The other edges, in F 2 , will be close to uniformly random. Edges

in F will in general depend also on edges in F 2 , and we write

mF as the set of edges upon which those in F depend. Letting

U > Unif ({0, 1})·� (� ) ,

G = (GF,GF2 ) j (GF,UF2 ) = (GF,UmF+F2 ,UF2\mF) .
Note that by de�nition, edges inF 2\mF are independent of all other

edges. Hence, conditioning on F ,we can re-randomize F 2\mF (i.e.,

apply the noise operator)0 on F\mF ). With this idea, we solve both

di�culties arising when one attempts the �rst two approaches out-

lined before: randomness ensures cancellations and independence

makes calculations easy!

2. Key Idea: An Edge-Independent Basis of Latent Vectors. Localiz-

ing dependence to a small set of edges F means that most of the

edges are independent. This may seem impossible at �rst. When

we add even a small amount of noise to /8 , this will likely a�ect all

inner products {ï/8 , / 9 ï} 9*+ (� ) and, hence, all edges incident to
8, in a complicated, correlated, fashion.
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To overcome this issue, we de�ne a convenient basis for the

latent vectors. Namely, for each edge ( 98) * � (� ), we construct a
random variable / 98 (depending on latent vectors) such that the

collection of random variables {/ 98 } 98*� (� ) is independent and / 98
nearly determines the edge 98 .We exploit the fact that independent

Gaussian vectors in high dimension are nearly orthonormal. This

suggests that the Gram-Schmidt operation on the latent vectors

will produce an orthonormal basis close to the original vectors and,

hence, projections on the Gram-Schmidt basis will approximate

the inner products. Applying Gram-Schmidt to the : = |+ (� ) |
Gaussian vectors /1, . . . , /: corresponding to vertices of �, we

obtain the Bartlett decomposition [8]:

/1 = (/11, 0, 0, . . . , 0)
/2 = (/21, /22, 0, . . . , 0)
/3 = (/31, /32, /33, . . . , 0)

...

/: = (/:1, . . . , /:,:21, /:: , 0, . . . , 0) .

(5)

Here/ 98 > N(0, 1
3
) for each 8 < 9 and3/ 2

9 9 > j2 (32 9+1), / 9 9 g 0.

The collection (/ 98 )8f 9 are jointly independent. These properties

can be easily derived from the isotropic nature of N(0, 1
3
�3 ) .With

respect to this decomposition,

ï/8 , / 9 ï = / 98/88 +
∑

ℓ<8

/8ℓ/ 9 ℓ = / 98 +
(∑

ℓ<8

/8ℓ/ 9ℓ + / 98 (/88 2 1)
)
.

(6)

Now, each term of the form /8ℓ/ 9ℓ , as well as / 98 (/88 2 1), is
typically on the order of $̃ (1/3), so the entire right-hand side ex-

pression above is on the order of $̃ ( |+ (� ) |/3) = $̃ (1/3) . In con-

trast, / 98 > N(0, 1/3), so it is typically on the order of $̃ (1/
:
3).

Therefore, the random variable / 98 nearly determines whether 98

is an edge (1[ï/8 , / 9 ï g 0] j 1[/ 98 g 0]). This is very promising

as the variables {/ 98 } are also independent, so we can de�ne the

noise operator by rerandomizing (a subset of) the variables / 98
independently and, thus, a�ecting edges ( 98) independently.

3. Construction: Fragile Edges Localize Dependencies. So far, we

constructed independent variables {/ 98 } ( 98 ) *� (� ) which nearly

determine the edges. The key word here is nearly – it may well be

the case that / 98 = $̃ (1/3), in which case (and with high probabil-

ity, only in this case)/8ℓ/ 9ℓ or/ 98 (/8821) could be comparable to or

even larger than / 98 . In that case,

� 98 = 1[/ 98 +
( ∑

ℓ<8 /8ℓ/ 9 ℓ +/ 98 (/8821)
)
g 0] depends on edges of

the form (8ℓ), ( 9ℓ) via the variables /8ℓ , / 9ℓ . As edges ( 98) for which
/ 98 = $̃ (1/3) are the only ones that can depend on other edges

they localize dependence. We call edges ( 98) for which / 98 = $̃ (1/3)
fragile pairs and they form the fragile set F . The rest of the edges
are independent, as demonstrated by a noise operator rerandomiz-

ing all /DE for non-fragile (DE) (in a way that /DE continues to be

large enough so that (DE) is not fragile).
Recall that / 98 is distributed as N(0, 1/3) and, hence, is smaller

than $̃ (1/3) only with probability �̃(1/
:
3) . As variables / 98 are

independent, edges are fragile independently. Thus, the probability

of observing many fragile edges is very low.

4. Analysis: Combinatorics of Edge Incidences. Our construction so

far is of a noise operator which acts independently on all non-fragile

edges F 2 . Hence, even if we condition on all fragile edges, there is

some randomness left (unless all edges are fragile, but this happens

with very low probability) and, so, we have solved the issue of

destroying all randomness by conditioning outlined in Section 3.1.

However, it is still di�cult to integrate
∏

( 98 ) *� (� ) (2� 98 2 1) even
conditioned on the set of fragile edges. The reason is that if ( 98) is
fragile, but ( 9ℓ) is not for some ℓ < 8 , applying the noise operator on

( 9ℓ) via/ 9 ℓ may also a�ect1[/ 98+
( ∑

ℓ<8 /8ℓ/ 9ℓ+/ 98 (/8821)
)
g 0] .

Our approach to this issue is simple – we de�ne the noise opera-

tor only over edges not incident to fragile edges in their lexicograph-

ically larger vertex (which we formalize in De�nition 6 as mF ). If

there is even a single such edge, the noise operator re-randomizes

the edge and zeroes out the Fourier coe�cient (as in planted clique).

This leads us to analyzing the combinatorics of edge incidences of

subgraphs of �. A crucial step in this analysis is the realization that

we have the freedom to choose an optimal ordering (with respect

to the graph � ) for the Gram-Schmidt process so that incidences

with lexicographically larger fragile edges (i.e. |mF |) are minimized.

Optimizing over orderings leads us to a combinatorial quantity

associated to the graph � which we call the ordered edge indepen-

dence number OEI(� ). Altogether, our bound on Fourier coe�-

cients becomes | IE[∏( 98 ) *� (� ) (2� 98 2 1)] | f (log2 3/
:
3)OEI(� ) .

Our last step is to understand the growth of OEI(� ) . We derive

several bounds, simplest and most easily interpretable of which is

OEI(� ) g +(|+ (� ) | 21)/2+ . Perhaps more interesting isOEI(� ) g
X (� ) + 1, where X (� ) := max(¦+ (� ) |( | 2 |{ 9 * + (� ) : #8 *
( s.t. ( 98) * � (� )}|.

4 RESULTS

We now formally describe our results, beginning with the exact

bounds on Fourier coe�cients we obtain. Throughout, wewill make

the following assumption:

There exist some absolute constants W, n > 0 such that

1/2 g ? g =21+n , 3 g =W .
(A)

Admittedly, some non-trivial cases are not covered by this assump-

tion. Speci�cally, ? = =21+> (1) and 3 = polylog(=). Nevertheless,
we note that in the case ? = �(1/=), 3 = polylog(=) the testing

problem between RGG(=, S321, ?) and G(=, ?) is fully resolved by

[26] and, thus, Eq. (A) captures most of the open regimes at least

for the question of testing against Erdős-Rényi.

4.1 Main Result: The Fourier Coe�cients of

Gaussian and Spherical RGG

Fourier coe�cients of RGG factorize over connected components,

so we only state our bounds for � connected. We �rst de�ne the

ordered edge independence mentioned in Section 3.2.

Given an ordering c of the vertices (think of c as the Gram-

Schmidt ordering), we denote an edge between D and E as (DE) if
D > E and (ED) otherwise. We formalize m� as follows.

De�nition 4 (Covering Property). An edge (DE) * � (� )\� is

covered by � if there exists an edge in � with endpoint D. Denote

with mc
�
� the set of all edges covered by � .
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Going back to Eq. (6), we interpret as follows. If (DE) is covered
by fragile edges �, there exists some fragile edge (DF). Hence,�DF
might depend on �DE via /DE .

De�nition 5 (Ordered Edge Independence Number). For a con-

nected graph � on : vertices and a bijective labelling c of the

vertices with the numbers {1, 2, . . . , :}, we say that a subset of

edges � ¦ � (� ) strongly covers � if � * mc
�
� = � (� ). We de�ne

the ordered edge independence number of � with respect to c and

denote by OEIc (� ) as the size of the smallest strongly covering � .

Let OEI(� ) = maxc OEIc (� ) .

One should think of � (� )\(� * mc
�
� ) as the set of edges which

the noise operator rerandomizes.

Illustration of (Strong) Ordered Edge Independence Number.

Figure 2: Consider the cycle � = �5 with given labelling c and � =

{ (53), (42) } .
De�nition 4: Edge (51) is covered by (53) while (21), (43) are covered by
(42) . Hence, mc

�
� = { (51), (21), (43) } . Casework shows that |� | = OEIc (� ) =

OEI(� ) = 2.

De�nition 6: With respect to the strong covering property, m
c
� � = '. For exam-

ple, (51) is not strongly covered because �cg1,+5 = { (53) }, but 3 is not a neigh-

bour of 1 in�.However, if we add the edge (43) to �, i.e. � 2 = { (53), (43), (42) },
it is the case that both (51) and (21) are strongly covered. Indeed, (� 2 )cg1,+5 =
(� 2 )cg1,+2 = { (53), (43), (42) } and 1 is a neighbour to both 2 and 5. Casework

shows that |� 2 | = SOEIc (� ) = SOEI(� ) = 3.

Theorem 4.1. Suppose that Eq. (A) holds and� is connected. Then,

there exists some absolute constant� depending only on n,W in Eq. (A)

such that for G > RGG(=,N(0, 1
3
�3 ), ?) and G > RGG(=, S321, ?),

��� IE
[ ∏

( 98 ) *� (� )
(� 98 2 ?)

] ���

f (8?) |� (� ) | ×
(� × |+ (� ) | × |� (� ) | × (log3)3/2

:
3

)OEI(� )
.

For applications, we only need |+ (� ) |, |� (� ) | f (log=)1.1, in
which case the bound is ? |� (� ) | (polylog(=)/

:
3)OEI(� ) .

To apply Theorem 4.1, we need explicit bounds on OEI(� ).

Proposition 4.2 (Bounds on Ordered Edge Independence

Number). For a connected graph �,

(1) OEI(� ) g +(|+ (� ) | 2 1)/2+ .
(2) OEI(� ) g X (� ) + 1.

The quantity X (� ) is useful when discussing the non-adaptive

edge query model in which one observes any" edges of a random

geometric graph. The reason is that a graph on" edges can have at

most exp($ ( |+ (� ) |1.1))×" ( |+ (� ) |+X (� ) )/2 subgraphs isomorphic

to � , as shown in [1].

While the resulting bounds on Fourier coe�cients are strong

enough for all of our low-degree hardness results, one may still

wonder if they are optimal. It turns out that the likely answer is no:

In the special case of density 1/2, the symmetry of the Gaussian

distribution around 0 = d
1/2
3

= g
1/2
3

allows us to slightly improve

the argument outlined in Section 3.2 and de�ne a noise operator

that acts also on certain (but not all) edges adjacent to fragile edges.

We describe this next.

De�nition 6 (Strong Covering). Consider an edge (DE) * � (� )\�
and denote by �cgE the subset of � formed by edges with both

endpoints at least as large as E . �
(c )
gE,+D is the connected component

of �
(c )
gE containing D.We say that (DE) is strongly covered by � if E

has a neighbour other than D in + (� (c )gE,+D ) with respect to �.We

denote by m
c
� � the set of edges strongly covered by � .

See Fig. 2 for an illustration. The analogue of De�nition 5 is:

De�nition 7 (Strong Ordered Independence Number). We de�ne

SOEIc (� ), the strong independence number of � with respect to c,

as the minimal cardinality of a set � such that � * m
c
� � = � (� ) .

SOEI(� ) = maxc SOEIc (� ).

The analogue of Theorem 4.1 is the following (we state it only

for RGG(=, S321, 12 ) as the Gaussian and spherical models coincide

in the 1/2-density case).

Proposition 4.3. Suppose that Eq. (A) holds and � is connected.

Then, there exists some absolute constant � depending only on n,W in

Eq. (A) such that for G > RGG(=, S321, 12 ),
��� IE

[ ∏

( 98 ) *� (� )
(� 98 2 1/2)

] ���

f (1/2) |� (� ) | ×
(� × |+ (� ) | × |� (� ) | × (log3)3/2)

:
3

)SOEI(� )
.

If an edge (DE) is strongly covered, then the connected compo-

nent �
(c )
gE,+D contains a neighbour of D. Hence, there exists a fragile

edge with endpointD andD is also covered according to De�nition 6.

Thus, SOEI(� ) g OEI(� ), so Proposition 4.3 is at least as strong

as Theorem 4.1. It turns out that the inequality is strict for many

sparse graphs. For example, one can check that when � = �: is

a cycle, OEI(�: ) = +(: 2 1)/2+, but SOEI(� ) = : 2 2. The latter

follows from the following bound:

Proposition 4.4 (SOEI and Sparse Graphs). Suppose that � is

connected. Then, SOEI(� ) g 2|+ (� ) | 2 |� (� ) | 2 2.

It turns out that theOEI(� ) bound is too weak for our results on
the second eigenvalue of RGG(=, S321, 12 ) and we need SOEI(� )
and Proposition 4.4. We leave open the problem of proving Propo-

sition 4.3 for all densities ? .
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4.2 Application I: Testing Between Spherical

RGG and Erdős-Rényi

In the case of spherical random geometric graphs, we not only

con�rm that the signed triangle statistic is optimal among low-

degree polynomial tests, but also show that this is the case even

in the non-adaptive edge-query model recently introduced by [32].

For a mask M * {0, 1}#×# and (adjacency) matrix � * R#×# ,
denote by � » M the # × # array in which (� » M) 98 = � 98
whenever M 98 = 1 and (� » M) 98 = ? whenever M 98 = 0.

Testing between graph distributions with masks corresponds to

a non-adaptive edge query model. Instead of viewing a full graph,

one can choose to observe a smaller more structured set of edges

in order to obtain a more data-e�cient algorithm. The number

of edges " of M is a natural proxy for “sample complexity” in

the case of low-degree polynomials as the input variables of low-

degree polynomials are edges rather than vertices. This idea was

introduced recently in [32], focusing on the planted clique problem.

We obtain the following result for RGG. In it, we use =̃ v
:
" as

a lower-bound on the number of vertices ofM . The variable =̃ is

useful both in phrasing the assumptions (A) and in comparing with

the unmasked case.

Theorem 4.5. Consider some " where =̃ =
:
",3, ? satisfy the

assumptions in Eq. (A). Let M be any graph on " edges without

isolated vertices. Denote by # the number of vertices in M. If 3 g
("1/2?)3+2 for any constant 2 > 0, no degree (log")1.1 polynomial

can distinguish with probability «(1) the distributions G0 » M and

G1 » M for G0 > G(#, ?) and G1 > RGG(#, S321, ?).

In the case M =  =, we match the conjectured information-

theoretic threshold. Theorem 4.5 is tight in light of the signed

triangle statistic [26].

Corollary 4.1. Consider some =,3, ? satisfying assumptions in

Eq. (A). If3 g (=?)3+2 for any positive constant 2, no degree (log=)1.1
polynomial can distinguish with probability «(1), the distributions
G(=, ?) and RGG(=, S321, ?) .

4.3 Application II: Testing Between Gaussian

RGG and Erdős-Rényi

We begin with a brief comparison of the Gaussian and spherical

models.

Remark 1 (Gaussian vs Spherical Random Geometric Graphs).

The Gaussian and spherical models coincide in the case ? = 1/2.
More generally, they are intimately related due to the facts

If / > N(0, 1
3
�3 ), then + := //'/ '2 > Unif (S321), and (I)

If / > N(0, 1
3
�3 ), then '/ '2 j 1 with high probability. (II)

This correspondence has been used to argue about either model –

in some arguments more helpful is independence of Gaussian coor-

dinates [14, 16] while in others orthonormality of the Gegenbauer

basis over the sphere [24]. We exploit this correspondence in both

directions.

We also show that the two models are qualitatively di�erent in

the sparse regime (see Fig. 1). The cause of this di�erence is the

perhaps benign looking fact that Eq. (II) is only an approximate

statement. This creates dependence between edges in the Gaussian

case for edges which are independent in the spherical case: For

example, underG > RGG(=, S321, ?), the edgesG21 andG31 are in-

dependent. In contrast, under H > RGG(=,N(0, 1
3
�3 ), ?), H21,H31

are positively correlated as both are monotone in '/1'2 . The de-
pendence turns out to be quite strong for small values of ? to the

point where (signed) wedges are better than signed triangles for

testing against Erdős-Rényi.

Theorem 4.6. Consider testing between RGG(=,N(0, 1
3
�3 ), ?)

and G(=, ?) under Eq. (A).
(1) When 3 g max

{
(=3?3)1+2 , (=3/2?)1+2

}
for any constant 2 >

0, no degree (log=)1.1 algorithm can distinguish the two graph

models with probability «(1) .
(2) When 3 f =3/2? (log=)25 and ? f 0.49, the signed wedge

count succeeds w.h.p.

(3) When 3 f =3?3 (log=)25, the signed triangle count succeeds
w.h.p.

In the non-adaptive query complexity model, the di�erence turns

out to be even more dramatic. One can exploit the fact that wedges

are highly informative by querying a star-graph, as star graphs

maximize the number of wedges for a �xed number of edges.

Theorem 4.7. Consider some " where =̃ =
:
",3, ? satisfy the

assumptions in Eq. (A). Let M be any graph on " edges with no

isolated vertices. Let # be the number of vertices in M. Consider

testing between G0 » M and G1 » M for G0 > G(#, ?),G1 >
RGG(#,N(0, 1

3
�3 ), ?).

(1) When 3 g max
{
("3/2?3)1+2 , ("?)1+2

}

= max
{
(=̃3?3)1+2 , (=̃2?)1+2

}
for any constant 2 > 0, no de-

gree (log")1.1 algorithm can distinguish the two graph mod-

els with probability «(1) for any maskM .

(2) When 3 f "? (log")25 = �̃(=̃2?) and ? f 0.49, the signed

wedge count succeeds w.h.p. when M is a union of

� = +(log")17+ disjoint stars with +"/�+ edges each.
(3) When 3 f ("3/2?3) (log")25 = �̃(=̃3?3), the signed trian-

gle count succeeds w.h.p. whenM is  =̃ .

The main message of Section 4.3 is that even though the Gauss-

ian and spherical models are closely related and each useful for

reasoning about the other, they are also fundamentally di�erent.

The proofs are similar to the ones in Section 4.2, except that

we need to take extra care of graphs with leaves (as their Fourier

coe�cients are non-zero, unlike in the spherical case).

Remark 2. The work [10] studies the convergence of masked

Wishart matrices to GOE (that is A98 = ï/8 , / 9 ï instead of G98 =

1[ï/8 , / 9 ï g d
?

3
]). Of course, for ? = > (1) the RGG testing problem

becomes very di�erent from the Wishart versus GOE problem

[12, 26].

4.4 Application III: Testing Between Spherical

RGG and Planted Coloring

In the regime 3 f (=?)322 , RGG is very di�erent from Erdős-

Rényi. But is it, perhaps, closely approximated by some other simple

model? We show that, with respect to low-degree polynomial tests,

RGG(=, S321, 1/2) is indistinguishable from a slight variation of
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the planted coloring distribution in [23]. We focus on the density

1/2 case, but our arguments can be easily extended (we only use

Theorem 4.1, not Proposition 4.3).

De�nition 8. PCol(=, @) is the following distribution over = vertex

graphs. First, each node 8 * [=] independently receives a uniform

label G8 * [@] . Then, if G8 = G 9 , nodes 8 and 9 are adjacent with

probability 1. If G8 b G 9 , nodes 8 and 9 are adjacent with probability
1
2 2 1

2(@21) .

In comparison, [23] have 8 and 9 adjacent with probability 1/2
when G8 b G 9 . Choosing a value of @ so that the signed triangle

counts of RGG(=, S321, 12 ) and PCol(=, @) (nearly) match, we prove

the following fact.

Theorem 4.8. Suppose that 3 g =8/3+2 for any constant 2 > 0.

Then, there exists some @ *
[
31/4/(log3), 31/4 (log3)

]
such that

no (log=)1.1-degree polynomial test distinguishes PCol(=, @) and
RGG(=, S321, 1/2) with probability «(1).
Remark 3. The condition @ = �̃(31/4) establishes a statistical-

computational gap when 3 f =42^ for any constant ^ > 0. An

instance of PCol(=, @) has a clique of size =/@ = «̃(=321/4) with
probability 1. However, RGG(=, S321, 12 ) does not contain a clique

of size more than 3 log2 = with high probability under Eq. (A)

by [16]. Perhaps surprisingly, our result holds in the exact same

regime as the results of [23] for refuting @-colarability. Namely,

@ = �̃(31/4), 3 g =8/3 is equivalent to @ = «̃(=2/3) . Our contri-
bution here is not the analysis, but the realisation that RGG is

indistinguishable from PCol. We prove hardness for detecting @-

colarability against the natural PCol model and do not need to

construct a more sophisticated “quiet distribution” as in [23].

Remark 4. [15] studies a similar question for Wishart matrices in

the regime 3 = > (=3) when Wishart and GOE are distinguishable.

The authors obtain a sequence of phase transitions for the Wishart

density. The approximating densities are de�ned in terms of an in-

verse Fourier transform and are not easily interpretable, in contrast

to the simple PCol distribution.

4.5 Application IV: The Second Eigenvalue of

Spherical RGG

Theorem 4.9. Suppose thatG > RGG(=, S321, 1/2) (equivalently
G > RGG(=,N(0, 1

3
�3 ), 12 )).

" If 3 f =(log=)8, then |_2 (G) | f =(log=)10/
:
3 w.h.p.

" If 3 g =(log=)8, then |_2 (G) | f (log=)10
:
= w.h.p.

Here, we need the strong bounds in Proposition 4.4 for sparse

graphs. As these bounds provably do not hold for OEI, more work

is needed to extend to ? b 1/2.

5 PROVING THE BOUNDS ON FOURIER

COEFFICIENTS

Here, we prove our bounds on Fourier coe�cients of random geo-

metric graphs by formalizing the argument in Section 5. Speci�cally,

in Section 5.1, we prove Theorem 4.1. In Section 5.3, we modify

the argument slightly to prove the stronger Proposition 4.3 in the

density 1/2 case. In Section 5.2 we prove the bounds on the edge

independence numbers stated in Propositions 4.2 and 4.4.

5.1 The Main Argument in Theorem 4.1

Fix a connected graph � on : = |+ (� ) | vertices and< = |� (� ) |
edges such that�:<(log3)3/2 f

:
3. Let c be any bijective labeling

of its vertices by [:] . We will identify vertices by their labelling

in c and optimize over c at the end. We prove Theorem 4.1 in

the Gaussian setting and state the necessary modi�cations for the

spherical setting at the end.

Step 1: High-Probability Bound on
∑
ℓ<8 /8ℓ/ 9 ℓ + / 98 (/88 2 1).

Recall Eq. (6). As discussed, dependence between edges is due to

the term

&
N(0, 13 �3 )
98 ({/ 9 ℓ }1fℓf 9 , {/8ℓ }1fℓf8 ) v

∑

ℓ<8

/8ℓ/ 9 ℓ + / 98 (/88 2 1).

(7)

We bound the size of this term, along the way introducing notation

that will be used later. Let

[RL,RU] =
[
2�

√
< log3

3
,�

√
< log3

3

]

be the “reasonable interval" for each summand in (7): By Gaussian

and j2-concentration, for any desired constant�2, there exists some

absolute constant� such that under Eq. (A) (which implies log 1/? =

$ (log3) and log= = $ (log3)) we have IP[/8ℓ * [RL,RU]] g
1 2 42�2< log3 and the same for (/88 2 1). Denote by RSC the

“reasonable set of con�gurations”:
{
/DE * [RL,RU] and (/DD 2 1) * [RL,RU] for all 1 f D f E f :

}
.

By the union bound, its complement has probability

IP[RSC2 ] f :242�2< log3 f ?<32< . (8)

As&
N(0, 13 �3 )
98 is a sum of atmost: terms of order (�

√
< log3/3)2

under the high probability event RSC, we conclude that with prob-

ability at least 1 2 ?<32<, simultaneoulsy for all ( 98) * � (� ),
���&N(0, 13 �3 )
98 ({/ 9 ℓ }1fℓf 9 , {/8ℓ }1fℓf8 )

��� f �2 :< log3

3
= � (9)

where we de�ned � v �2 :< log3
3

. We condition on RSC. Since
|∏( 98 ) *� (� ) (� 98 2 ?) | < 1 a.s.,

��� IE
[ ∏

( 98 ) *� (� )
(� 98 2 ?)

] ���

f
��� IE

[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC
] ��� + IP[RSC2 ]

f
��� IE

[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC
] ��� + ?<32< .

(10)

As ?<32< = ? |� (� ) |32|� (� ) | f ? |� (� ) |:32OEI(� )
, it remains

only to bound the �rst term.

Step 2: Fragile Edges. Observe that under the high probability

event in Eq. (9), as long as / 98 +
[
d
?

3
2 �, d

?

3
+ �

]
, it is the case that

1[ï/8 , / 9 ï g d
?

3
] = 1[/ 98 +&N(0,�3 )

98 g d
?

3
] = 1[/ 98 g d

?

3
]

and variables / 98 are independent (even conditioned on RSC).
Thus, all edges besides the ones for which / 98 is close to d

?

3
are

independent. We localize dependence to the following fragile edges.
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De�nition 9 (Fragile Interval and Fragile Edges). Denote FL =

d
?

3
2� and FU = d

?

3
+�. The fragile interval is [FL, FU] and an edge

98 is called fragile if / 98 * [FL, FU] .

Note that each edge is fragile independently as {/DE}1fDfEf:
are independent. Let F be the set of fragile edges. Now, / 98 >
N(0, 1/3) and � = �2 :< log3

3
= > (1/

:
3) = > (d?

3
/log3) imply

IP
[
/ 98 * [FL, FU]

]
f �?

√
�223 log3 (11)

for some absolute constant �22, because [FL, FU] has length � and

the Gaussian density around d
?

3
is $̃ (?

:
3) as ? = IP[ï/1, /2ï g

d
?

3
] = IP[/11/21 g d

?

3
] j IP[/21 g d

?

3
] and /21 > N(0, 1/3) .

Conditioning on the fragile set yields

IE
[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC
]

=

∑

�¦� (� )
IE
[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC, F = �
]
×

× IP[F = � |RSC]

f 2
∑

�¦� (� )

��� IE
[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC, F = �
] ���×

×
(
�?

√
�223 log3

) |� |
.

(12)

We used the fact that IP[RSC] g 1/2 so IP[F = � |RSC] f
2 IP[F = � ] . This last conditioning is useful, because our noise

operator depends on the set of fragile edges.

Step 3: The noise operator. Conditioned on the reasonable event

RSC and on the set of fragile edges F = �, we de�ne the fol-

lowing noise operator. It rerandomizes all variables /DE such that

the value of /DE does not appear in the expression &
N(0,�3 )
98 for

any fragile ( 98) * � . In particular, as &
N(0,�3 )
98 is only a function

of {/ 9ℓ }1fℓf 9 , {/8ℓ }1fℓf8 , we rerandomize all (DE) * � (� )\(� *
mc
�
(� )) . For (DE) * � (� )\(� * mc

�
(� )), conditioned on RSC and

F = �, the variable/DE uniquely determines�DE (as (DE) is not frag-
ile). Furthermore, / (DE) is independent of (� 98 ) ( 98 ) *� (� )\{ (DE) }
(as there is no fragile edge of the form ( 98) for which (DE) *
{ 9ℓ}1fℓf 9 * {8ℓ}1fℓf8 ). For clarity and uniformity with Obser-

vation 3.1, we spell this out separately.

Observation 5.1 (Noise Operator View on RGG). The noise

operator)c? on the distributionRGG(=,N(0, 1
3
�3 ), ?) is parametrized

by an ordering of the vertices c and marginal edge probability ?. To

sample from RGG, one �rst samples a fragile set F by including each

edge independently with probability IP[/ 98 * [FL, FU]] (recall that
edges are fragile independently). F together with c determines mc

�
F .

Then, one samples �F*mc
�
F from the marginal distribution on edges

F * mc
�
F from the distribution RGG(=,N(0, 1

3
�3 ), ?) conditioned on

F being the fragile set with respect to c. Conditioned on F , �F*mc
�
F,

)c? acts independently on edges with the following noise rates:

)c? (�)DE =
{
�DE for (DE) * F * mc

�
F (case of no noise),

Bern(?̃) otherwise (case of full noise).

Above, ?̃ v IP[/ 98 g d
?

3
|/ 98 * [RL,RU]\[FL, FU]] j ?. That

is, there is no noise on the edges in F * mF and the rest of the

edges are fully rerandomized. Hence, )c? (X =
) is a sample from

RGG(=,N(0, 1
3
�3 ), ?).

Phrased di�erently, the above noise operator represents RGG re-

stricted to the edges of � as a small planted subgraph in an ambient

Erdős-Rényi G(=, ?̃) .
One key di�erence with Observation 3.1 is that the distribution of

the edge set �F*mc F is much more complicated than the distribution

on the planted clique�. The latter is simply a clique, while�F*mc
�
F is

a subgraph of a random geometric graph which is further conditioned

on its fragile set.

Nevertheless, just as in Observation 3.1, the independent rerandom-

ization over the rest of the edges (F * mc
�
F )2 yields an (exponentially

fast) decay of Fourier coe�cients, which we discuss next.

We separate the conditional signed expectation into the portion

rerandomized by the noise operator, i.e. � (� )\(� * mc
�
(� )), and a

portion that is not rerandomized, i.e. � * mc
�
(� ):

��� IE
[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC, F = �
] ���

=

���
∏

( 98 ) *� (� )\(�*mc
�
(� ) )

IE
[
(� 98 2 ?)

���RSC, F = �
]
×

IE
[ ∏

( 98 ) *�*mc
�
(� )

(� 98 2 ?)
���RSC, F = �

] ���

f
∏

( 98 ) *� (� )\(�*mc
�
(� ) )

����� IE
[
1[/ 98 g d

?

3
] 2 ?

���

/ 98 * [RL,RU]\[FL, FU]
] �����

× IE
[ ∏

( 98 ) *�*mc
�
(� )

|� 98 2 ? |
���RSC, F = �

]
. (13)

Next, we bound the factors for � (� )\(� * mc
�
(� )) and then the

factors for � * mc
�
(� ).

Step 4: Factors � (� )\(� * mc
�
) Rerandomized By The Noise Op-

erator. A simple calculation with 1-dimensional Gaussian vari-

ables using Eqs. (8) and (11) and the fact that IP[/ 98 g d
?

3
] =

? +$ (? (log3)/
:
3) gives

��� IE
[
1[/ 98 g d

?

3
] 2 ?

���/ 98 * [RL,RU]\[FL, FU]
] ��� f �?

√
�2223 log3.

(14)

Step 5: Factors � * mc
�
� . Convexity of | · |, the fact � 98 f 1 a.s.,

and triangle inequality give

IE
[ ∏

( 98 ) *�*mc
�
(� )

��� 98 2 ?
��
���RSC, F = �

]

f
∑

�¦�*mc
�
(� )

? |�*m
c
�
(� ) |2 |� | IE

[ ∏

( 98 ) *�
� 98

��� RSC, F = �
]

f
∑

�¦�*mc
�
(� )

? |� |+|m
c
�
(� ) |2 |� | IE

[ ∏

( 98 ) *�\�
� 98

��� RSC, F = �
]
.

(15)
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For each ( 98) * �\�, the edge� 98 is determined by / 98 , conditioned

on RSC, F = � . Thus,

IE
[ ∏

( 98 ) *�\�
� 98

��� RSC, F = �
]

= IE
[
1[/ 98 g d

?

3
] |RSC, F = �

] |� |2 |� |
.

By Eq. (14), the last expression is at most (2?) |� |2 |� | . Plugging this
into Eq. (15),

IE
[ ∏

( 98 ) *�*mc
�
(� )

��� 98 2 ?
��
���RSC, F = �

]

f
∑

�¦�*mc
�
(� )

? |� |+|m
c
�
(� ) |2 |� | × (2?) |� |2 |� | f 4 |� (� ) | (2?) |mc� � | .

(16)

Step 6: Putting It All Together. Plugging (14) and (16) into (13),

the conditional Fourier coe�cients are bounded as
��� IE

[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC, F = �
] ���

f
(
�?

√
�2223 log3

) |� (� ) |2 |� |2 |mc
�
� | × 4 |� (� ) | × (2?) |mc� � | .

We combine this with Eq. (12) to obtain
��� IE

[ ∏

( 98 ) *� (� )
(� 98 2 ?)

���RSC
] ���

f 2
∑

�¦� (� )

(
�?

√
�223 log3

) |� (� ) |2 |� |2 |mc
�
� |

× 4 |� (� ) | × (2?) |mc� � | ×
(
�?

√
�2223 log3

) |� |

f 2(8?) |� (� ) | (
�

√
�3 log3

) |� (� ) |2 |mc
�
� |

f 2(8?) |� (� ) |
(�:<(log3)3/2

:
3

) |� (� ) |2 |mc
�
� |

All that is left to show is |� (� ) |2|mc
�
� | g OEIc (� ). This follows

immediately because for any � ¦ � (� ), the set � (� )\mc
�
� satis�es

the covering properties De�nition 4 (note that

� ¦ � (� )\mc
�
� ). Finally, we can choose c as the maximizer of

OEIc (� ) and conclude Theorem 4.1 in the Gaussian case.

Remark 5 (Energy-Entropy Trade-o�). |� (� ) |2|mc
�
� | g OEIc (� )

highlights the following energy-entropy trade-o� phenomenon

in RGG. Rewrite it as |� | + |� (� )\(� * mc
�
� ) | g OEIc (� ) . The

term |� (� )\(� * mc
�
� ) | corresponds to entropy in the distribution

as it is the size of the subset of edges which the noise operator

rerandomizes (and are independent with all edges in � (� )). The
term |� | measures energy as F = � is the subset of edges with non-

trivial interactions (dependence) with other edges in |� (� ) |. The
inequality shows that energy and entropy cannot both be small, and

either one being large results in small Fourier coe�cient: entropy

due to randomness and energy due to low probabilities.

Step 5 In The Spherical Case. The analysis of the spherical case

is nearly the same. We generate +1,+2, . . . ,+: >883 Unif (S321)
as +8 = /8/'/8 '2, where /1, /2, . . . , /: >883 N(0, 1

3
�3 ). Then, we

apply the Gram-Schmidt process on /1, /2, . . . , /: .With respect to

the Bartlett decomposition,

ï+8 ,+9 ï =
ï/8 , / 9 ï

'/8 '2 × '/ 9 '2
= / 98 +&S

321

( 98 ) ({/ 9 ℓ }1fℓf 9 , {/8ℓ }1fℓf8 ) ,

where

&S
321

( 98 ) ({/ 9ℓ }1fℓf 9 , {/8ℓ }1fℓf8 ) v( ∑
ℓ<8 /8ℓ/ 9 ℓ + / 98 (/88 2 1)

)

'/8 '2 × '/ 9 '2
+ / 98 ×

( 1

'/8 '2 × '/ 9 '2
2 1

)
.

The function &S
321

( 98 ) depends on the exact same set of variables as

&
N(0, 13 �3 )
98 and takes value in [2�

222?<: log3:
3

,
�222?<: log3:

3
] under

RSC. The rest of the analysis is identical.

5.2 Bounds on the Ordered Edge Independence

Numbers

Proof of first part of Proposition 4.2. We �rst bound

OEIc (� ) by another quantity. Denote by SNc (� ) the set of ver-
tices 9 of� for which there exists some 8 < 9 such that ( 98) * � (� ),
i.e. with a smaller neighbour. Then,OEIA (� ) g +|SNc (� ) |/2+ . To
prove this, suppose, for the sake of contradiction, that there exists a

set of A < |SNc (� ) |/2 edges ( 91, 81), ( 92, 82), . . . , ( 9A , 8A ) that satisfy
the covering properties from De�nition 4. Since A < |SNc (� ) |/2,���{ 91, 81, 92, 82, . . . , 9A , 8A }

��� < |SNc (� ) |. Thus, there exists some ver-

tex 97 * SNc (� ) such that 97 + { 91, 81, 92, 82, . . . , 9A , 8A }. Let 87 < 97

be a vertex such that ( 9787) is an edge. Such an 87 exists by the de�-

nition ofSNc (� ) . But then, clearly, ( 9787) + mc� � . This contradicts
the fact that the edges ( 91, 81), ( 92, 82), . . . , ( 9A , 8A ) satisfy the cover-

ing properties.

Now, we need to show that maxc |SNc (� ) | g |+ (� ) | 2 1 for

connected �. Let ) be a rooted spanning tree of �. De�ne c to be

any labelling of �, such that for all 8, all vertices on level 8 + 1 have

a larger label than the vertices on level 8 . Clearly, the root is the

only vertex without a neighbour with a smaller label. ¥

Proof of second part of Proposition 4.2. Recall that

X (� ) := max(¦+ (� ) {|( | 2 |#� (() |}, where #� (() := { 9 * + (� ) :

#8 * ( s.t. ( 98) * � (� )} The inequality OEI(� ) g X (� ) + 1 is clear

if X (� ) = 0, so we assume throughout that X (� ) g 1.We need the

following fact.

Proposition 5.1 ([1]). There exists an independent set

( 2 * argmax( {|( | 2 |#� (() |}.

Proof. Take any ( 22 * argmax( {|( | 2 |#� (() |}. Then, ( 2 =

( 22\# (( 22) is an independent set and satis�es |( 2 | 2 |#� (( 2) | g
|( 22 | 2 |#� (( 22) |. ¥

Let ( 2 * argmax( |( | 2 |#� (() | be independent and #� (( 2) =
{D1, D2, . . . , Dℓ }. De�ne the sets

(1) ( 21 = #� (D1) + ( 2 and
(2) ( 28 =

(
#� (D8 )\(# (�D1) * #� (D2) * · · · * #� (D821))

)
+ ( 2 .

Take any ordering c such that the following vertices appear in

the following decreasing order:

( 21, D1, (
2
2, D2, . . . , (

2
ℓ , Dℓ ,+ (� )\(( 2 * #� (( 2)),
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i.e. c (G) > c (D1) for all G * ( 21, c (D1) > c (~) for all ~ * ( 22,
and so on. Let � be any set satisfying the covering properties in

De�nition 4 with respect to this ordering. Observe that for each

: * [ℓ], E * ( 2
:
, the vertex D: is the only neighbour of E among

( 21 * (
2
2 · · · * (

2
:
* {D1, D2, . . . , D: }. The set � must include the edge

(ED: ) as otherwise (ED: ) + mc� � . As this holds for each : * [ℓ], E *
( 2
:
, there are at least

∑ℓ
:=1

|( 2
:
| = |( 2 | = X (� ) + |# (( 2) | g X (� ) + 1

edges in � . ¥

Proof of Proposition 4.4. Suppose that there exists a set � sat-

isfying the strong covering property for which |� | < 2|+ (� ) | 2
|� (� ) | 2 2. In particular, the graph de�ned by vertices + (� ) and
edges � has C g |+ (� ) |2(2|+ (� ) |2|� (� ) |22) = |� (� ) |+22|+ (� ) |
connected components. Let �1,�2, . . . ,�C be these connected com-

ponents. Since � is connected, there exist at least C 2 1 pairs of

di�erent connected components�8 ,� 9 with an edge between them.

However, if (DE) is such an edge between di�erent connected com-

ponents, where D * �8 , E * � 9 and D > E, E must have another

neighbour in �8 as � satis�es the strong covering property in De�-

nition 6. Thus, whenever there is an edge between�8 and� 9 , there

are at least two such edges. Hence, the total number of edges in �

is at least

2(C 2 1) +
C∑

8=1

( |+ (�8 ) | 2 1) = |+ (� ) | + C 2 2 > |� (� ) |,

which is a contradiction. ¥

Remark 6. This proof holds for any ordering c.We expect that

choosing an optimal c will yield an improved bound.

5.3 Improving The Bound in The Density 1/2
Case in Proposition 4.3

The density 1/2 case is special as there is a measure preserving

map between [RL, FL] and [FU,RU] which also preserves norms

– namely, �(/ ), where �(/ ) := 2/ . In particular, the analogue of

Eq. (14) is

IE
[
1[/ 98 g d

1/2
3

] 2 1/2
���/ 98 * [RL,RU]\[FL, FU]

]
= 0.

Thus, unless (� * mc
�
� ) = ', the expression in Eq. (13) is equal

to 0. This immediately yields an improved bound on the Fourier

coe�cient of the form 2×? |� (� ) |×(�222?:<(log3)3/2/
:
3)OEI(� ) .

A more powerful noise operator. The map �(/ ), however, allows
us to do more. One can apply a noise operator on certain edges

adjacent to fragile edges. The reason is that

&
N(0, 13 �3 )
98 ({/ 9 ℓ }1fℓf 9 , {/8ℓ }1fℓf8 )

= &
N(0, 13 �3 )
98 ({�(/ 9 ℓ )}1fℓf 9,8b9 , {�(/8ℓ )}1fℓ<8 , /88 , / 98 )

and similarly for the spherical analogue &S
321
98 .

Namely, condition on F = � . Take any ( 98) * � (� )\� such

that, furthermore, 9 is the unique neighbour of 8 according to

� in + (�cg8,+ 9 ) (equivalently, ( 98) * � (� )\(� * m
c
� � ) by Def-

inition 6). This means that the operation (/08 )0*+ (�cg8,+ 9 ) 2³
(�(/08 ))0*+ (�cg8,+ 9 ) changes � 98 to 1 2 � 98 but leaves all other

edges �DE unchanged. Indeed, consider the cases for (DE):

(1) (DE) = ( 90) for some 0 * + (�cg8,+ 9 ). However, ( 98) is the
unique edge with this property.

(2) (DE) is not fragile and not of the form ( 90) for some 0 *
+ (�cg8,+ 9 ) . Then, /DE remains unchanged and so does �DE
as DE is not fragile.

(3) (DE) is fragile and at least one of D and E is not in+ (�cg8,+ 9 ) .
Then, either min(D, E) f 8, in which case �DE can only de-

pend on /08 via its norm, / 2
08 (this follows from the de�ni-

tions of &
N(0, 13 �3 )
DE and &S

321
DE ). However, / 2

08 = �(/08 )2 .
(4) (DE) is fragile and D, E * + (�cg8,+ 9 ), in which case �DE de-

pends on terms of the form /08 via the product /D8/E8 , but

/D8/E8 = �(/D8 )�(/E8 ) (again, this follows from the de�ni-

tions of &
N(0, 13 �3 )
DE and &S

321
DE ).

With this property in mind, we de�ne the following noise opera-

tor: for each edge ( 98) * � (� )\(�*m c� � ), one independently applies
with probability 1/2 the operation

(/08 )0*+ (�cg8,+ 9 ) 2³ (�(/08 ))0*+ (�cg8,+ 9 ) . As long as there is at

least one such edge, the corresponding expected signed weight

SW
1/2
�

becomes zero.

By De�nition 6, this is always the case if |� | < SOEIc (� ). An
analogous argument to the one in Section 5.1 allows us to bound

��� IE
[ ∏

98*� (� )
(� 98 2 1/2)

] ���

f 2 × ? |� (� ) | × (�222?:<(log3)3/2/
:
3)SOEIc (� ) .

Optimizing over the labelling c yields Proposition 4.3.

Remark 7 (Why not other densities?). In principle, we could

have carried out the same argument for other densities by �x-

ing some measurable bijection �? : [RL, FL] 2³ [FU,RU],�? :

[RL, FL] 2³ [FL,RL] . Then, we apply it independently to vari-

ables (/08 )0*+ (�cg8,+ 9 ) for edges ( 98) * � (� )\(� * m
c
� � ) with some

probability ?̃ so that marginal distributions remain Gaussian. The

di�culty with this approach is that for essentially any other density

besides 1/2, the equality /D8/E8 = �? (/D8 )�? (/E8 ) will not hold.
Thus, the values of &N(0, 13 �3 ) (resp, &S

321
) will change and so it

is not clear how fragile edges are a�ected by the respective noise

operator.

6 DISCUSSION

We introduced a novel strategy for bounding the Fourier coe�cients

of graph distributions with high-dimensional latent geometry. It is

based on localizing dependence to few edges and applying a noise

operator to (some of) the remaining edges. Not only is this method

useful for our concrete goal of bounding Fourier coe�cients, but it

also explains how andwhere dependence among edges is created. In

the setting of RGG(=,N(0, 1
3
�3 ), ?),RGG(=, S321, ?), dependence

is localized to fragile edges. We anticipate future applications of

the fragile edges approach.

One future direction is tightening our bounds. Extending Propo-

sition 4.3 to all densities is appealing as it will also extend Theo-

rem 4.9. Can one improve further or is Proposition 4.3 tight (up to

lower-order terms)?
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A related question to the tightness of Proposition 4.3 is �nd-

ing lower bounds and precise estimates of the Fourier coe�cients.

Those are useful for the design of low-degree algorithms. Our up-

per bounds on Fourier coe�cients are mostly suited to showing

hardness.

Finally, the information-theoretic counterparts of many of the

questions addressed in this paper remain open. Is it possible to

prove such information theoretic convergence using j2-like ar-

guments based on squares of Fourier coe�cients? A simple cal-

culation shows that bounds scaling as ? |� (� ) |32\ |+ (� ) | for con-
stant \ (of which form Theorem 4.1 is) are insu�cient to show

j2 (RGG(=, S321, ?)'G(=, ?)) = >= (1). One could hope to surpass

this barrier by using a tensorization argument [26, 29] and/or con-

ditional j2-divergence [17, 31].
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