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ABSTRACT

The random geometric graph RGG(n, S¢-!

,p) is formed by sam-
pling n ii.d. vectors {V; };’:1 uniformly on §9-1 and placing an edge
between pairs of vertices i and j for which (V;, V;) > £, where rg is
such that the expected density is p. We study the low-degree Fourier
coefficients of the distribution RGG(n, Sd_l, p) and its Gaussian
analogue.

Our main conceptual contribution is a novel two-step strategy
for bounding Fourier coefficients which we believe is more widely
applicable to studying latent space distributions. First, we localize
the dependence among edges to few fragile edges. Second, we parti-
tion the space of latent vector configurations (S¢~1)®" based on
the set of fragile edges and on each subset of configurations, we
define a noise operator acting independently on edges not incident
(in an appropriate sense) to fragile edges.

We apply the resulting bounds to: 1) Settle the low-degree poly-
nomial complexity of distinguishing spherical and Gaussian random
geometric graphs from Erdés-Rényi both in the case of observing
a complete set of edges and in the non-adaptively chosen mask
M model recently introduced by Mardia, Verchand, and Wein; 2)
Exhibit a statistical-computational gap for distinguishing RGG and
a planted coloring model in a regime when RGG is distinguish-
able from Erd4s-Rényi; 3) Reprove known bounds on the second
eigenvalue of random geometric graphs.
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1 INTRODUCTION

Random graphs with a latent high-dimensional geometric struc-
ture are increasingly relevant in an era of massive networks over
complex computer, social, or biological populations. Such graphs
provide a fruitful, even if idealized, model in which to study algorith-
mic and statistical questions. For these reasons, in the last 15 years
random geometric graphs have seen a surge of attention in the com-
binatorics, statistics, and computer science communities. Tasks ad-
dressed in the literature include: 1) Detecting the presence of a latent
geometric structure [4, 5, 11, 12, 14, 16, 18, 26, 28, 29], 2) Estimating
the dimension of the latent geometry [4, 14, 20], 3) Embedding the
graph in a geometric space and clustering [24, 30, 35], 4) Matching
unlabelled noisy copies of the same geometric graph [25, 39]. In a
different direction of study, high-dimensional random geometric
graphs exhibit an intricate and useful combinatorial structure. Most
notably, in [27], the authors show that in certain regimes spheri-
cal random geometric graphs are efficient 2-dimensional expanders,
objects for which no other simple randomized constructions are
known as of now.

Two of the most common models, studied since the early works
[14, 16], are spherical and Gaussian (hard thresholds) random geo-
metric graphs.

Definition 1 (Spherical and Gaussian Random Geometric Graphs).
The spherical random geometric graph RGG(n, sé-1, p) on n ver-
tices [n] = {1,2,...,n} of dimension d with expected density p
is defined as follows. First, n independent vectors Vi,...,V}, are
drawn iid from the uniform distribution on the sphere $¢=1. Then,
an edge between i and j is formed if and only if (V;, V) > rg Here,
rs is chosen so that p = P[(V;, V) 2 rg]

Similarly, in the Gaussian case RGG(n, N (0, %Id),p), one sam-
ples Z1,...,Z, ~ N(O, éId) and forms an edge (ji) whenever

(Zi,Zj) 2 pg with pg chosen such that the expected density is p.

The main goal of the current paper is to analyse the low-degree
Fourier coefficients of the probability mass functions of those two
distributions. The Fourier coefficients of an n-vertex random graph
distribution R are parametrized by edge-subgraphs H. The p-biased
Fourier coefficient corresponding to H is defined by

[T ©i-»)
(ji)eE(H)

= (p(1-p) TV x B [swﬁ(G)].

Pp(H) = (p(1-p)) P2 E
()

SW‘Z(G) is the signed weight of H defined by the above equation.
Fourier coefficients are (signed) expectations of subgraphs.
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Low-degree Fourier coefficients of distributions (and, more gener-
ally, Boolean functions) are at the core of many milestone results in
theoretical computer science and combinatorics such as construct-
ing succinct nearly k-wise independent distributions [2], learning
various classes of Boolean functions [13, 19], the Margulis-Russo for-
mula on sharp-thresholds [33, 38] and many more (see [36]). More
recently, low-degree Fourier coefficients have become central to
the design of efficient algorithms for problems in high-dimensional
statistics, as well as providing evidence for computational hardness,
via the low-degree polynomial framework [21, 22].

Unfortunately, estimating Fourier coefficients is a highly non-
trivial task for complex distributions with dependencies among
variables. We introduce a conceptually novel approach (described
shortly in Section 3.2) for bounding the Fourier coefficients of distri-
butions with random latent structure and use it for RGG(n, S~ 1, p)
and RGG(n, N (0, %Id), p). This unlocks the powerful methods men-
tioned above which leads to several applications, described next.

1. Testing. Testing against Erdés-Rényi is one of the most natural
and well-studied questions on high-dimensional random geometric
graphs, starting with [16]. Testing is a prerequisite for more so-
phisticated tasks: if one cannot even distinguish a graph from pure
noise, one can hardly hope to do any other meaningful inference
about its structure.

In the spherical case, one observes a graph G and the goal is to
test between the two hypotheses

Hy:G~G(n,p) and Hi:G~RGG(nS% 1 p).

The state-of-the-art results for p < 1/2 and p = ©(1/n) are as
follows. By counting signed triangles, one succeeds with high prob-
ability whenever d < (np)*(log l/p)c for some constant C [14, 26].
Counting signed triangles is conjectured to be information theo-
retically optimal, i.e., for d > (np)3(log 1/p)C it is believed to be
impossible to test between the two graph distributions [5, 12, 26].
The best bounds on when RGG(n, Sd_l,p) and G(n, p) are indistin-
guishable, due to [26], are: 1) d > n3p?(log l/p)c forall p < 1/2;
2)d > (np)®(log 1/p)€ = polylog(n) for p = ©(1/n). In particu-
lar, the threshold in dimension d at which testing becomes pos-
sible is only known (up to lower order terms) when p = O(1) or
p=0(1/n).

We make progress in the intermediate regime 1/n < p < 1/2 by
showing that the signed triangle statistic is computationally optimal
with respect to low-degree polynomial tests at all densities, even in
a stronger non-adaptive edge query model recently introduced by
[32]. Surprisingly, we show that this is not the case for Gaussian
random geometric graphs. For small p, low-degree tests other than
the signed-triangle statistics are much more powerful: when p =
©(1/n), one can distinguish RGG(n, N (0, %Id),p) and G(n, p) for
dimensions as large as vn(log n) . in sharp contrast to the d =
polylog(n) threshold in the spherical case [26].

We additionally prove low-degree indistinguishability between
RGG(n, s4-1, %) and a planted coloring model [23] in a regime
when both are distinguishable from G(n, 1/2) via simple low-degree
tests. The two models can be easily distinguished from one another
by determining the largest clique, a computationally inefficient
test, which shows a computation-information gap for this testing
problem. To the best of our knowledge, this is the first negative
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Figure 1: Detecting d-dimensional geometry via low-degree
polynomials. In the model of non-adaptively queried edges
M, n:=+/|[E(M)|. A wedge is a path on 3 vertices.

result on testing between RGG(n, Sd_l, %) and a non-geometric

distribution when d < n3.

2. Spectral properties. The second eigenvalue A2 of G ~ RGG
is captured by low-degree polynomials via the trace method. A,
naturally plays an important role in the expansion properties of
RGG(n, S, p) [27]. The top eigenvalues are also used in embed-
ding and clustering random geometric graphs via the top eigenvec-
tors [24]. These works have characterized the behavior of A2: when
d < np, Ay = ©(np/Vd) and when d > np, the behaviour is similar
to Erd6s-Rényi and A, = ©(4/np).! We reprove this bound in the
case p = 1/2 using our estimates on the Fourier coefficients. While
our approach yields the same quantitative bounds, its methodology
is rather different and much more combinatorial.

1.1 Organization of Paper

Our main contribution is a new methodology for deriving strong
bounds on Fourier coefficients which we use to argue about the
random geometric graph distributions. In Section 3.1 we describe
the challenges in bounding low-degree Fourier coefficients followed
by the main ideas used to overcome them in Section 3.2. Our main
theorem followed by applications to testing and the second eigen-
value are stated in Section 4. In Section 5 we give the full proof of
our main theorem. The different applications follow by variations
of what are by now well-known techniques and are given in the
arXiv version [6]. For testing, we use the y? low-degree advantage
formula (when testing against the planted coloring model, we need
a more subtle version of it from [23]). For the second eigenvalue,
we use the trace method.

1To be fully precise, [27] considers the normalized adjacency matrix and [24] considers
a Gaussian rather than spherical random geometric graph
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2 PRELIMINARIES

2.1 Graph Notation

Our graph notation is mostly standard. We denote by V(H), E(H)
the vertex and edge sets of a graph. For i € V(H), we define
Ny(i) == {j € V(H) (ji) € E(H)} and for S € V(H),
Nu(S) = UiesNu(i). 6(H) = maxscym) IS - {j € V(H)
i € S s.t. (ji) € E(H)}|. We denote by K}, the complete graph on
n vertices, and by Stary, the star graph which has one central vertex
v and n leaves iy, iy, . . ., ip adjacent to v.

We will frequently define graphs by the edges that induce them.
That is, for A C E(Ky), we also denote by A the graph on vertex
set {i € V(Ky) Jj € V(Kp) sit. (ji) € A} and edge set A.
Identifying graphs by edges that span them is convenient as edges
are the variables of polynomials that we consider.

2.2 Low-Degree Polynomials

Our results in Sections 4.2 to 4.4 are based on the low-degree poly-
nomial framework introduced in [21, 22]. One way to motivate
it is the following. When testing between graph distributions Hy
and Hp (say, Hy = G(n,p),H; = RGG(n, Sd_l,p)), one observes
a single graph G and needs to output 0 or 1. The graph G is sim-
ply a bit sequence in {0, 1}F (Kn) Hence, the output is a function
Ao, l}E(K") — {0, 1}. All Boolean functions are polynomials
[36]. Therefore, one simply needs to compute a polynomial in the
edges. Importantly, one can write polynomials over {0, 1}" in their
Fourier expansion. In the p-biased case over graphs, one represents

f:{0,1}EKn) 5 R as
f@ = > fExEpa-p) FOL T (Gji-p).
(ji)€E(H) @
2

H:HCE(Ky)
Here, ]? (H) is just a constant (the Fourier coefficient corresponding
is a

—|E(H)|
to H) and {\/P(l -p) [1¢i)eEr) (Gji —P)}HCE(K y 1

basis of polynomials. Conveniently, as can be seen from Eq. (1), this
basis is composed of signed-subgraphs SWIP)I. What makes it useful
is the following fact [36]:

. ~E(H)
The polynomials {\/p(l -p) )] l_[ (Gji —P)}
(ji)€E(H)

are orthonomral with respect to G ~ G(n, p).

HCE(Kp)

®)

When computationally restricted, a tester needs to apply a poly-
time computable polynomial f. What are classes of poly-time com-
putable polynomials? One such class is of sufficiently low-degree
polynomials (where degree refers to the largest number of edges in
a monomial corresponding to some H for which f(H ) is non-zero).
Since those are usually not {0, 1}-valued, one needs to threshold
after computing the polynomial, which leads to the following defi-
nition, motivated by Chebyshev’s inequality.

Definition 2 (Success of a Low-Degree Polynomial, e.g. [21]). We
say that a polynomial f : {0, 1}£(K») — {0, 1} distinguishes Hy
and H; with high probability if
E [f©- _E [£O)]|=0( [V
GE MO E (1G]] = \/

ar
G~H,

F(G)] + Yar [£(G)]).
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If f is poly-time computable, this leads to the poly-time algorithm
which compares f(G) to (Eg~g, [f(G)] + Eg~g, [f(G)])/2.

Very commonly, one takes f to be a signed subgraph count
[14]. That is, for some small graph A (e.g. triangle or wedge), one

computes

HCK, :H~A
where H ~ A denotes graph isomorphism. Le., one computes the
total number of signed weights.

Importantly, the framework of [21] allows one to refute the ex-
istence of low-degree polynomials which distinguish with high
probability Hy and H;. Namely, the condition in Definition 2 fails
for all low-degree polynomials. Of course, one needs to quantify
“low-degree”. Typically, this means degree O(log n). While not all
O(log n)-degree polynomials are necessarily poly-time computable,
the class of O(logn)-degree polynomials captures a broad class
of algorithms including subgraph counting algorithms [21], spec-
tral algorithms [3], SQ algorithms (subject to certain conditions)
[9], approximate message passing algorithms (with constant num-
ber of rounds) [34], and are in general conjectured to capture all
poly-time algorithms for statistical tasks in sufficiently noisy high-
dimensional regimes [21].

SCh(G) = SWE(G), ()

Definition 3 (Low-Degree Polynomial Hardness). We say that no
low-degree polynomial distinguishes Hy and H; with probability
Q(1) if there exists some D = w(logn) such that

GE, @)1= E [£©)]]=of (o L@+ ar (@)

holds for all polynomials of degree at most D. In particular, this

holds (e.g., [23]), if Eg~m, [f(G)]/Ec~m, [f(G)*] — 1 = 0n(1) for
all polynomials f of degree at most D.

Using the orthonormality in Eq. (3), this condition simplifies
significantly when Hy = G(N, p) ® M for some mask M.? Recall
the notation in Eq. (1).

Cram 2.1 ([21]). Suppose that Hy = G(N,p) © M,Hi =Ro M
and D = w(logn). If

2
(o) = on(1),
HCE(M) : 1<|E(H)|<D
no low-degree polynomial can distinguish Hy and Hy with probability
Q(1).

For our results on the planted coloring, we need a more sophisti-
cated version of Claim 2.1 due to [23] when Hy = PCol.

3 CHALLENGES AND MAIN IDEAS

3.1 Challenges in Bounding Low-Degree Fourier
Coefficients

The importance of Fourier coefficients of graph distributions has

motivated a series of previous works on (hyper)graphs with latent

random vectors. Existing methods for computing Fourier coeffi-

cients, however, seem not fully adequate towards our goal.

This fact holds and usually stated for general binary distributions when Hy is a
product distribution [21], but we only state the result in the case of interest.
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Approach 0: Direct Integration. The most naive approach to es-
timating Fourier coefficients is a direct integration (summation)
over the latent space. Recalling Eq. (1), one can compute the Fourier
coefficient of H by integrating [1(ji)er(m) (1[{Zi, Z;) = ps] -p)
against N (0, %Id)@’V(H). Such a calculation, however, seems out
of reach due to the complex dependencies between different terms
in the product. As latent vectors Z;, Z; vary smoothly, so does the
distance between Z; and Z; and consequently also the probabili-
ties of various events (such as Z being a common neighbour). As
concrete evidence of the difficulty of this approach, even in the
simplest case of triangles for RGG(n, Sd_l,p), the authors of [14]
spend 5 pages of calculations. For a similar random graph model
with L, geometry, the calculation for triangles is open [4].

Approach 1: Vertex Conditioning. Many Fourier computations are
for problems defined by planting small dense communities in an
ambient Erd6s-Rényi graph [17, 22, 23, 32, 37]. In such works, one
can use the following simple vertex conditioning strategy (exploit-
ing the ambient Erd6s-Rényi structure) to overcome the technical
difficulty of a direct summation (integration). As a prototypical
example, discussed in [7, 21], consider the planted k-clique distri-
bution where each vertex i € [n] independently receives a label x;,
where P[x; = 1] = k/n, P[x; = 0] =1 — k/n. Conditioned on the
labels, each edge Gj; appears with probability 1 if x; = x; = 1 and
independently with probability 1/2 otherwise. Now, consider the
Fourier coefficient E[[]j;)ep(fr) (2Gji — 1)] indexed by a graph H
without isolated vertices. Again, there are complex correlations be-
tween different edges. However, unless all vertices of H have label
1, there is a random (probability 1/2) edge and this zeros out the
Fourier coefficient E[[] ;) e£(rr) (2Gji —1)]. By conditioning on all
vertex labels being 1, one shows that the Fourier coefficient equals
(k/m)/VIEDI An approach based on vertex conditioning seems to
not be applicable to hard threshold random geometric graphs: In
RGG(n, Sd’l, p), conditioned on the latent vectors there is no ran-
domness left in G ~ RGG(n, Sd_l,p). Hence, one cannot exploit
cancellations due to left-over randomness in edges once labels are
known, which is crucial in models with ambient Erdés-Rényi.

Approach 2: Lifting From a Single Dimension. The work [4] bounds
the low-degree Fourier coefficients of (hard threshold) random geo-
metric graphs over the d-dimensional torus R% /Z¢ with the Lo met-
ric. The insight in [4] is that an Ly, random geometric graph is the
AND of d 1-dimensional random geometric graphs over S'. They
combine the contributions of different coordinates via an analytical
approach mimicking the cluster-expansion formula from statistical
physics. As explained in [4], in our case of RGG(n, N (0, éld), p) the
edges are closer to MAJORITY over the coordinates. Unfortunately,
extending the techniques for the simpler AND combination to the
present setting seems to be technically challenging (in particular,
because the Fourier expansion of AND is much simpler than that

of MAJORITY).

3.2 Main Ideas

We focus on RGG(n, N(0, éld), %) for concreteness as this case
captures most of the main ideas. The argument for other densi-
ties is similar, but requires some modification (most notably, it
additionally exploits a novel energy-entropy trade-off of the RGG
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distribution; see Remark 5). Modifying to the sphere can be done
via the observation that when Z ~ N(0, éld), V =Z/||Z|l2 ~

Unif(S971), the variables V, || Z||, are independent and ||Z||2 con-

1/2
1/2 ¢

bound EG~RGG(n,N(O,§Id),%) [SW; (G)]. We assume that

centrates strongly around 1. Recall that p /“ = 0. Our goal is to

|V(H)| = polylog(d) as this is most relevant to our applications.

Motivation: A Noise-Operator View. The following noise-operator
interpretation from [9] of the calculation for planted clique will
turn out to be useful. Consider first the standard noise operator T,
for functions over {£1}" [36]. It acts on functions f : {+1}" - R
by T, f(x) = ]Ey~Ny(x) [f(y)], where Ny (x) is the distribution in
which each coordinate y; independently equals x; with probability
y and otherwise with probability 1 — y it is re-randomized. This
noise operator contracts Fourier coefficients as fy?(S) = },\S |j?(S).

OBSERVATION 3.1 (NO1SE OPERATOR VIEW OF PLANTED CLIQUE).
The planted clique distribution can itself be viewed as arising from
application of a different noise operator. Given a function on graphs

f: {il}(lgl) — R, let T, f(x) = ]Ey~Ny(x) [f(y)], where now
Ny (x) is the distribution obtained by including each vertex in A with
probability y and then rerandomizing all edges in x except those with
both endpoints in A. This operator again contracts Fourier coefficients,
T,}(H) =ylVEHE) |j?(H). If we start with the point mass distribution
Ok, on the complete graph, then the planted clique probability mass
function is obtained by applying Ty,

Our goal will be to derive such a noise operator perspective
for RGG as well and use it to bound Fourier coefficients. We for-
mally give such a view in Observation 5.1, but due to its more
complicated nature we gradually build towards it. Remarkably, our
noise-operator also implies that (at least on a small enough scale),
RGG can also be represented as a small planted subgraph in an
ambient Erdés-Rényi!

1. Strategy: Localizing Edges That Create Dependencies. We solve
the challenges outlined in the previous subsection with the follow-
ing high-level idea. We will localize the dependence among edges to
a small set of edges ¥ = 7 (Z) (depending on the latent vectors).
The other edges, in #¢, will be close to uniformly random. Edges
in ¥ will in general depend also on edges in ¢, and we write
dF as the set of edges upon which those in # depend. Letting
U ~ Unif({0, 1})®EEH) |

G= (GT’ GTC) X (GT’ U«}‘c) = (GT’ Ua«}-ﬁ«fc, UTC\BT) .
Note that by definition, edges in 7 ¢\9F are independent of all other
edges. Hence, conditioning on ¥, we can re-randomize F°\oF (i.e.,
apply the noise operator T on ¥ \aF ). With this idea, we solve both
difficulties arising when one attempts the first two approaches out-
lined before: randomness ensures cancellations and independence
makes calculations easy!

2. Key Idea: An Edge-Independent Basis of Latent Vectors. Localiz-
ing dependence to a small set of edges ¥ means that most of the
edges are independent. This may seem impossible at first. When
we add even a small amount of noise to Z;, this will likely affect all
inner products {{Z;, Zj)} jev (mr) and, hence, all edges incident to
i, in a complicated, correlated, fashion.
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To overcome this issue, we define a convenient basis for the
latent vectors. Namely, for each edge (ji) € E(H), we construct a
random variable Zj; (depending on latent vectors) such that the
collection of random variables {Z;i} jic () is independent and Zj;
nearly determines the edge ji. We exploit the fact that independent
Gaussian vectors in high dimension are nearly orthonormal. This
suggests that the Gram-Schmidt operation on the latent vectors
will produce an orthonormal basis close to the original vectors and,
hence, projections on the Gram-Schmidt basis will approximate
the inner products. Applying Gram-Schmidt to the k = |V (H)|
Gaussian vectors Zj, ..., Zy corresponding to vertices of H, we
obtain the Bartlett decomposition [8]:

Z1 = (Z11,0,0,...,0)

Z3 = (Z21,Z22,0,...,0)
Z3 = (231,232, Z33, . . ., 0) 5)
Zy = (Zyq, . A,Zk,k_l,Zkk, 0,...,0).

Here Zj; ~ N (0, %) foreachi < janddZ]z.j ~ )(z(d—j+1),ij > 0.
The collection (Zj;);<j are jointly independent. These properties
can be easily derived from the isotropic nature of N (0, éld). With
respect to this decomposition,

(Zi,Zj) = ZjiZii + Z ZipZje = Zji + (Z ZiZje + Zji(Zii — 1))~
<i £<i
(6)

Now, each term of the form Z;;Zj,, as well as Zj;(Z;; — 1), is
typically on the order of O(1/d), so the entire right-hand side ex-
pression above is on the order of O(|V(H)|/d) = O(1/d). In con-
trast, Zj; ~ N(0,1/d), so it is typically on the order of O(1/Vd).
Therefore, the random variable Zj; nearly determines whether ji
is an edge (1[(Z;, Z;) = 0] = 1[Z}; > 0]). This is very promising
as the variables {Zj;} are also independent, so we can define the
noise operator by rerandomizing (a subset of) the variables Zj;
independently and, thus, affecting edges (ji) independently.

3. Construction: Fragile Edges Localize Dependencies. So far, we
constructed independent variables {Zji} (j;)ep() Which nearly
determine the edges. The key word here is nearly - it may well be
the case that Zj; = O(1/d), in which case (and with high probabil-
ity, only in this case) Zj¢Zj, or Zj;(Zj;—1) could be comparable to or
even larger than Zji. In that case,
Gji=1 [Zji+( Dr<i Zi(Zj[+Zji(Zii—1)) > 0] depends on edges of
the form (if), (j¢) via the variables Z;¢, Zj,. As edges (ji) for which
Zji O(1/d) are the only ones that can depend on other edges
they localize dependence. We call edges (ji) for which Zj; = O(1/d)
fragile pairs and they form the fragile set 7. The rest of the edges
are independent, as demonstrated by a noise operator rerandomiz-
ing all Z,,,, for non-fragile (uv) (in a way that Z,, continues to be
large enough so that (uv) is not fragile).

Recall that Zj; is distributed as AV(0, 1/d) and, hence, is smaller
than O(1/d) only with probability &(1/Vd). As variables Z ji are
independent, edges are fragile independently. Thus, the probability
of observing many fragile edges is very low.
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4. Analysis: Combinatorics of Edge Incidences. Our construction so
far is of a noise operator which acts independently on all non-fragile
edges 7¢. Hence, even if we condition on all fragile edges, there is
some randomness left (unless all edges are fragile, but this happens
with very low probability) and, so, we have solved the issue of
destroying all randomness by conditioning outlined in Section 3.1.
However, it is still difficult to integrate [T (i) ep(m) (2Gji — 1) even
conditioned on the set of fragile edges. The reason is that if (ji) is
fragile, but (j¢) is not for some ¢ < i, applying the noise operator on
(j£) via Zj[ may also affect 1 [Zj,'+( De<i Zi[Zj[+Zji(Zii—l)) > 0].

Our approach to this issue is simple — we define the noise opera-
tor only over edges not incident to fragile edges in their lexicograph-
ically larger vertex (which we formalize in Definition 6 as o). If
there is even a single such edge, the noise operator re-randomizes
the edge and zeroes out the Fourier coefficient (as in planted clique).

This leads us to analyzing the combinatorics of edge incidences of
subgraphs of H. A crucial step in this analysis is the realization that
we have the freedom to choose an optimal ordering (with respect
to the graph H) for the Gram-Schmidt process so that incidences
with lexicographically larger fragile edges (i.e. [9F|) are minimized.
Optimizing over orderings leads us to a combinatorial quantity
associated to the graph H which we call the ordered edge indepen-
dence number OEI(H). Altogether, our bound on Fourier coeffi-
cients becomes | E[[1(ji)epm) (2Gji — D]| < (log® d/Nd)OEIH)
Our last step is to understand the growth of OEI(H). We derive
several bounds, simplest and most easily interpretable of which is
OEI(H) > [(|[V(H)|-1)/2]. Perhaps more interesting is OEI(H) >
8(H) + 1, where 8(H) = maxgscy ) S| — [{j € V(H) di e
S s.t. (ji) € E(H)}.

4 RESULTS

We now formally describe our results, beginning with the exact
bounds on Fourier coefficients we obtain. Throughout, we will make
the following assumption:

There exist some absolute constants y, e > 0 such that

A
1/22pznt*d>nb. )
Admittedly, some non-trivial cases are not covered by this assump-
tion. Specifically, p = n~1*°(1) and d = polylog(n). Nevertheless,
we note that in the case p = ©(1/n),d = polylog(n) the testing
problem between RGG(n, S4-1, p) and G(n, p) is fully resolved by
[26] and, thus, Eq. (A) captures most of the open regimes at least
for the question of testing against Erds-Rényi.

Main Result: The Fourier Coeflicients of
Gaussian and Spherical RGG

Fourier coefficients of RGG factorize over connected components,
so we only state our bounds for H connected. We first define the
ordered edge independence mentioned in Section 3.2.

Given an ordering 7 of the vertices (think of 7 as the Gram-
Schmidt ordering), we denote an edge between u and v as (uv) if
u > v and (vu) otherwise. We formalize oF as follows.

4.1

Definition 4 (Covering Property). An edge (uv) € E(H)\F is
covered by F if there exists an edge in F with endpoint u. Denote
with 91 F the set of all edges covered by F.
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Going back to Eq. (6), we interpret as follows. If (uv) is covered
by fragile edges F, there exists some fragile edge (uw). Hence, G,y
might depend on Gy, via Zy5.

Definition 5 (Ordered Edge Independence Number). For a con-
nected graph H on k vertices and a bijective labelling 7 of the
vertices with the numbers {1,2,...,k}, we say that a subset of
edges F C E(H) strongly covers H if F U 9, F = E(H). We define
the ordered edge independence number of H with respect to & and
denote by OEl;(H) as the size of the smallest strongly covering F.
Let OEI(H) = max, OEl,(H).

One should think of E(H)\(F U df;F) as the set of edges which
the noise operator rerandomizes.

Ilustration of (Strong) Ordered Edge Independence Number.

1

3

Figure 2: Consider the cycle H = Cs with given labelling 7 and F
{(53), (42)}.

Definition 4: Edge (51) is covered by (53) while (21), (43) are covered by
(42). Hence, o7 F = {(51), (21), (43) }. Casework shows that |F| = OEl, (H) =
OEI(H) = 2.

Definition 6: With respect to the strong covering property, 517;F = (. For exam-
ple, (51) is not strongly covered because Fgl,at; = {(53) }, but 3 is not a neigh-
bour of 1in H. However, if we add the edge (43) to F,i.e. F/ = {(53), (43), (42) },
it is the case that both (51) and (21) are strongly covered. Indeed, (F’ )§1,35 =
(F’ ’;1’32 ={(53), (43), (42) } and 1 is a neighbour to both 2 and 5. Casework
shows that |F’| = SOEI, (H) = SOEI(H) = 3.

THEOREM 4.1. Suppose that Eq. (A) holds and H is connected. Then,
there exists some absolute constant C depending only on e,y in Eq. (A)
such that for G ~ RGG(n, N (0, %Id),p) and G ~ RGG(n, Sd_l,p),

[T @5 —P)”

(ji)€E(H)

€]

Cx |[V(H)| x |E(H)| x (log d)*/*
Vd
For applications, we only need |V (H)|, |[E(H)| < (logn)!!, in

which case the bound is plE(H)l (polylog(n)/\/a)OE[(H).
To apply Theorem 4.1, we need explicit bounds on OEI(H).

OEI(H)
< (8p)lEH)I ><( ) .

PROPOSITION 4.2 (BOUNDS ON ORDERED EDGE INDEPENDENCE
NuUMBER). For a connected graph H,

(1) OEI(H) = [(IV(H)| - 1)/2].

(2) OEI(H) = 6(H) + 1.
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The quantity §(H) is useful when discussing the non-adaptive
edge query model in which one observes any M edges of a random
geometric graph. The reason is that a graph on M edges can have at
most exp(O(|V(H)|'1)) x MV (H)[+6(H))/2 subgraphs isomorphic
to H, as shown in [1].

While the resulting bounds on Fourier coeflicients are strong
enough for all of our low-degree hardness results, one may still
wonder if they are optimal. It turns out that the likely answer is no:
In the special case of density 1/2, the symmetry of the Gaussian
distribution around 0 = p;/ 22 71/ allows us to slightly improve
the argument outlined in Section 3.2 and define a noise operator
that acts also on certain (but not all) edges adjacent to fragile edges.
We describe this next.

Definition 6 (Strong Covering). Consider an edge (uv) € E(H)\F
and denote by FZ  the subset of F formed by edges with both

()
F

endpoints at least as large as 0. FJ' ',

is the connected component

of F;’Z) containing u. We say that (uv) is strongly covered by F if v
()

>0,5U

has a neighbour other than u in V/(F ) with respect to H. We

denote by 5gF the set of edges strongly covered by F.
See Fig. 2 for an illustration. The analogue of Definition 5 is:

Definition 7 (Strong Ordered Independence Number). We define
SOEI; (H), the strong independence number of H with respect to x,
as the minimal cardinality of a set F such that F U a;;F = E(H).
SOEI(H) = max,; SOEl;(H).

The analogue of Theorem 4.1 is the following (we state it only
for RGG(n, S471, %) as the Gaussian and spherical models coincide
in the 1/2-density case).

PROPOSITION 4.3. Suppose that Eq. (A) holds and H is connected.
Then, there exists some absolute constant C depending only on €,y in
Eq. (A) such that for G ~ RGG(n, Sd_l, % s

[T @i-2)|

(ji)€E(H)

E

Cx |V(H)| x |[E(H)| x (logd)*/?)
Vd

If an edge (uv) is strongly covered, then the connected compo-
nent ng)au contains a neighbour of u. Hence, there exists a fragile
edge with endpoint u and u is also covered according to Definition 6.
Thus, SOEI(H) > OEI(H), so Proposition 4.3 is at least as strong
as Theorem 4.1. It turns out that the inequality is strict for many
sparse graphs. For example, one can check that when H = Cy is
a cycle, OEI(Cy) = [(k — 1)/2], but SOEI(H) = k — 2. The latter
follows from the following bound:

< (1/2)|EEDI ><( )SOEI(H).

PROPOSITION 4.4 (SOEI AND SPARSE GRAPHS). Suppose that H is
connected. Then, SOEI(H) > 2|V (H)| — |E(H)| — 2.

It turns out that the OEI(H) bound is too weak for our results on
the second eigenvalue of RGG(n, sd-1, %) and we need SOEI(H)
and Proposition 4.4. We leave open the problem of proving Propo-
sition 4.3 for all densities p.
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4.2 Application I: Testing Between Spherical
RGG and Erdés-Rényi

In the case of spherical random geometric graphs, we not only
confirm that the signed triangle statistic is optimal among low-
degree polynomial tests, but also show that this is the case even
in the non-adaptive edge-query model recently introduced by [32].
For a mask M € {0, 1}V*N and (adjacency) matrix A € RN*N,
denote by A © M the N x N array in which (A 0 M)j; = Aj;
whenever Mj; = 1and (A © M);; = ? whenever M;; = 0.

Testing between graph distributions with masks corresponds to
a non-adaptive edge query model. Instead of viewing a full graph,
one can choose to observe a smaller more structured set of edges
in order to obtain a more data-efficient algorithm. The number
of edges M of M is a natural proxy for “sample complexity” in
the case of low-degree polynomials as the input variables of low-
degree polynomials are edges rather than vertices. This idea was
introduced recently in [32], focusing on the planted clique problem.
We obtain the following result for RGG. In it, we use 71 == VM as
a lower-bound on the number of vertices of M. The variable 7 is
useful both in phrasing the assumptions (A) and in comparing with
the unmasked case.

THEOREM 4.5. Consider some M where i = VM, d, p satisfy the
assumptions in Eq. (A). Let M be any graph on M edges without
isolated vertices. Denote by N the number of vertices in M. Ifd >
(M'12p)3*¢ for any constant ¢ > 0, no degree (log M)'-! polynomial
can distinguish with probability Q(1) the distributions Go © M and
G1 © M for Gy ~ G(N, p) and G1 ~ RGG(N, -1, p).

In the case M = K, we match the conjectured information-
theoretic threshold. Theorem 4.5 is tight in light of the signed
triangle statistic [26].

COROLLARY 4.1. Consider some n,d, p satisfying assumptions in
Eq.(A). Ifd > (np)3* for any positive constant c, no degree (log n)-!
polynomial can distinguish with probability Q(1), the distributions
G(n,p) and RGG(n, Sd_l,p).

4.3 Application II: Testing Between Gaussian
RGG and Erdés-Rényi

We begin with a brief comparison of the Gaussian and spherical
models.

Remark 1 (Gaussian vs Spherical Random Geometric Graphs).
The Gaussian and spherical models coincide in the case p = 1/2.
More generally, they are intimately related due to the facts

If Z ~ N(0, 1), then V := Z/||Z||z ~ Unif(s¥~1), and (1)

If Z ~ N(0, 31,), then ||Z||z ~ 1 with high probability. (II)

This correspondence has been used to argue about either model -
in some arguments more helpful is independence of Gaussian coor-
dinates [14, 16] while in others orthonormality of the Gegenbauer
basis over the sphere [24]. We exploit this correspondence in both
directions.

We also show that the two models are qualitatively different in
the sparse regime (see Fig. 1). The cause of this difference is the
perhaps benign looking fact that Eq. (II) is only an approximate
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statement. This creates dependence between edges in the Gaussian
case for edges which are independent in the spherical case: For
example, under G ~ RGG(n, Sd_l,p), the edges Gg1 and G3; are in-
dependent. In contrast, under H ~ RGG(n, N (0, éld),p), H,1, H3;
are positively correlated as both are monotone in ||Z||2. The de-
pendence turns out to be quite strong for small values of p to the
point where (signed) wedges are better than signed triangles for
testing against Erd6s-Rényi.

THEOREM 4.6. Consider testing between RGG(n, N (0, %Id),p)
and G(n, p) under Eq. (A).

(1) Whend > max {(n3p3)1+0, (n3/2p)1+c} for any constant ¢ >
0, no degree (log n)'*! algorithm can distinguish the two graph
models with probability Q(1).

(2) Whend < n3/2p(log n)~> and p < 0.49, the signed wedge
count succeeds w.h.p.

(3) Whend < n®p3(logn)~>, the signed triangle count succeeds
w.h.p.

In the non-adaptive query complexity model, the difference turns
out to be even more dramatic. One can exploit the fact that wedges
are highly informative by querying a star-graph, as star graphs
maximize the number of wedges for a fixed number of edges.

THEOREM 4.7. Consider some M where fi = VM, d, p satisfy the
assumptions in Eq. (A). Let M be any graph on M edges with no
isolated vertices. Let N be the number of vertices in M. Consider
testing between Gy © M and G © M for Go ~ G(N,p),G1 ~
RGG(N, N (0, 313), p).

(1) When d max{(M3/2p3)1+c, (Mp)'*¢}
= max {(i®p?)1*¢, (#%p)1*¢} for any constant ¢ > 0, no de-
gree (log M)!'! algorithm can distinguish the two graph mod-
els with probability Q(1) for any mask M.

When d < Mp(log M)™> = ©(i%p) and p < 0.49, the signed

wedge count succeeds w.h.p. when M is a union of

A = [(log M)'7] disjoint stars with |[M/A] edges each.

(3) Whend < (M3/2p3)(logM)_5 = O(#3p3), the signed trian-
gle count succeeds w.h.p. when M is K.

>

@)

The main message of Section 4.3 is that even though the Gauss-
ian and spherical models are closely related and each useful for
reasoning about the other, they are also fundamentally different.

The proofs are similar to the ones in Section 4.2, except that
we need to take extra care of graphs with leaves (as their Fourier
coefficients are non-zero, unlike in the spherical case).

Remark 2. The work [10] studies the convergence of masked
Wishart matrices to GOE (that is A j; = (Z;, Z;) instead of Gj; =
1[{Zi,Zj) > pg]). Of course, for p = 0(1) the RGG testing problem
becomes very different from the Wishart versus GOE problem
[12, 26].

4.4 Application III: Testing Between Spherical
RGG and Planted Coloring

In the regime d < (np)3~¢, RGG is very different from Erdds-
Rényi. But is it, perhaps, closely approximated by some other simple
model? We show that, with respect to low-degree polynomial tests,
RGG(n,§9°1,1/2) is indistinguishable from a slight variation of
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the planted coloring distribution in [23]. We focus on the density
1/2 case, but our arguments can be easily extended (we only use
Theorem 4.1, not Proposition 4.3).

Definition 8. PCol(n, q) is the following distribution over n vertex
graphs. First, each node i € [n] independently receives a uniform
label x; € [q]. Then, if x; = xj, nodes i and j are adjacent with
probability 1. If x; # xj, nodes i and j are adjacent with probability
% - 2(q1—1)'

In comparison, [23] have i and j adjacent with probability 1/2
when x; # xj. Choosing a value of g so that the signed triangle
counts of RGG(n, Sd_l, %) and PCol(n, q) (nearly) match, we prove
the following fact.

THEOREM 4.8. Suppose that d > n8/3+c for any constant ¢ > 0.
Then, there exists some q € [d1/4/(log d),d1/4(log d)] such that
no (logn)!-!-degree polynomial test distinguishes PCol(n, q) and
RGG(n, S971,1/2) with probability Q(1).

Remark 3. The condition q = ©(d'/*) establishes a statistical-
computational gap when d < n*~* for any constant x > 0. An
instance of PCol(n, q) has a clique of size n/q = Q(nd~14) with
probability 1. However, RGG(n, S471, %) does not contain a clique
of size more than 3log, n with high probability under Eq. (A)
by [16]. Perhaps surprisingly, our result holds in the exact same
regime as the results of [23] for refuting g-colarability. Namely,
q = O(d/%),d > n®/3 is equivalent to g = Q(n?/?). Our contri-
bution here is not the analysis, but the realisation that RGG is
indistinguishable from PCol. We prove hardness for detecting g-
colarability against the natural PCol model and do not need to
construct a more sophisticated “quiet distribution” as in [23].

Remark 4. [15] studies a similar question for Wishart matrices in
the regime d = o(n®) when Wishart and GOE are distinguishable.
The authors obtain a sequence of phase transitions for the Wishart
density. The approximating densities are defined in terms of an in-
verse Fourier transform and are not easily interpretable, in contrast
to the simple PCol distribution.

4.5 Application IV: The Second Eigenvalue of
Spherical RGG

THEOREM 4.9. Suppose that G ~ RGG(n, S4=1,1/2) (equivalently
G ~RGG(n, N(0, 1), 1)).

e Ifd < n(logn)8, then |12(G)| < n(log n)10/Vd w.h.p.
e Ifd > n(logn)8, then |12(G)| < (log n)!%/n w.h.p.

Here, we need the strong bounds in Proposition 4.4 for sparse
graphs. As these bounds provably do not hold for OEI, more work
is needed to extend to p # 1/2.

5 PROVING THE BOUNDS ON FOURIER
COEFFICIENTS

Here, we prove our bounds on Fourier coefficients of random geo-
metric graphs by formalizing the argument in Section 5. Specifically,
in Section 5.1, we prove Theorem 4.1. In Section 5.3, we modify
the argument slightly to prove the stronger Proposition 4.3 in the
density 1/2 case. In Section 5.2 we prove the bounds on the edge
independence numbers stated in Propositions 4.2 and 4.4.
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5.1 The Main Argument in Theorem 4.1

Fix a connected graph H on k = |V(H)| vertices and m = |E(H)|
edges such that Ckm(log d)>/? < Vd. Let 7 be any bijective labeling
of its vertices by [k]. We will identify vertices by their labelling
in 7 and optimize over 7 at the end. We prove Theorem 4.1 in
the Gaussian setting and state the necessary modifications for the
spherical setting at the end.

Step 1: High-Probability Bound on Y,,.; Zi¢Zje + Zji(Zii — 1).
Recall Eq. (6). As discussed, dependence between edges is due to
the term
N(O,512)

Qj; {Zjet1<e<js {Zieh1<e<i) = ZZiijf +Zji(Zii = 1).

<i
7)

We bound the size of this term, along the way introducing notation
that will be used later. Let

mlogd mlogd
[RL’RU]:[_C\/ dg ’c\/ dg ]

be the “reasonable interval" for each summand in (7): By Gaussian
and )(2 -concentration, for any desired constant C’, there exists some
absolute constant C such that under Eq. (A) (which implieslog 1/p =
O(logd) and logn = O(logd)) we have P[Z;; € [RL,Ry]] =
1 — e~C'mlogd anq the same for (Z;; — 1). Denote by RSC the
“reasonable set of configurations”:

{Zuv € [RLRy] and (Zuu — 1) € [RL,Ry] foralll <u<o< k}.
By the union bound, its complement has probability
P[RSCC] < kPe~C'mloed < pmg=m,

N(O,é]d)

®)
As jS is a sum of at most k terms of order (C+/mlog d/d)?

under the high probability event RSC, we conclude that with prob-
ability at least 1 — p™d ™™, simultaneoulsy for all (ji) € E(H),
N3 1)

o

where we defined A = Czw. We condition on RSC. Since
[ TT(iyeem) (Gji —p)l < 1as,

<C =A (9

kmlogd
{Zjeh<e<js {Ziehr<e<i) ZTg

E| |] (Gji—P)”
(i) €E(H)

s‘]E I (Gﬁ—p)‘RSC”+]P[7€SCC] (10)
(i) €E(H)

<[e[ [] u-plrscl+pmam.
(ji)€E(H)

As p™md™™m = p'E(H”d*lE(H)l < plE(H)‘\/gioEl(H), it remains
only to bound the first term.

Step 2: Fragile Edges. Observe that under the high probability
event in Eq. (9), as long as Z; ¢ [p‘;l7 —A, pf; + A], it is the case that

N(0.1q) Py _ P
Jji a ZPd] —H[Zji Zpd]

and variables Zj; are independent (even conditioned on RSC).

1(Zi Zj) 2 phl = 1[Zji +Q

Thus, all edges besides the ones for which Zj; is close to p‘s are
independent. We localize dependence to the following fragile edges.
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Definition 9 (Fragile Interval and Fragile Edges). Denote F| =
pg —AandFy = ps +A. The fragile interval is [F|, Fy] and an edge
jiis called fragile if Zj; € [FL, Fy].

Note that each edge is fragile independently as {Zy,o}1<y<o<k
are independent. Let # be the set of fragile edges. Now, Zj; ~
N(0,1/d) and A = 227284 — o(1/vd) = o(p" /log d) imply

P|zji € [FL. FU]] < ApyC7dlogd (11)
for some absolute constant C”’, because [F|, Fy] has length A and
the Gaussian density around p‘s is ON(p\/E) as p = P[(Z1,2,) >
ps] P[Z11Z21 > p‘Z] ~ P[Zy > ps] and Z3; ~ N(0,1/d).
Conditioning on the fragile set yields

B[ []1 @ui-nlrsc]
(jiYeE(H)
- el T[] (Gji—p)‘RSC,‘FzF]X
FCE(H)  (ji)eE(H)
x P[F = FIRSC] (12)
<2 | [] @i-plrsc.s=F|x
FCE(H) (ji)€E(H)

x (Apy/C7dlogd) ",
We used the fact that P[RSC] > 1/2 so P[F = F|RSC] <

2P[F = F]. This last conditioning is useful, because our noise
operator depends on the set of fragile edges.

Step 3: The noise operator. Conditioned on the reasonable event
RSC and on the set of fragile edges ¥ = F, we define the fol-
lowing noise operator. It rerandomizes all variables Z;,, such that
the value of Z,,, does not appear in the expression Q}.Ai/(o’ld) for

any fragile (ji) € F. In particular, as in/(o’[d) is only a function

of {Zje}1<¢<j, {Zir}1<¢<i, we rerandomize all (uv) € E(H)\(F U
97 (F)). For (uv) € E(H)\(F U 97,(F)), conditioned on RSC and
F = F, the variable Z;,, uniquely determines Gy, (as (uv) is not frag-
ile). Furthermore, Z(,,) is independent of (Gji)(ji)eE(H)\{(u0)}
(as there is no fragile edge of the form (ji) for which (uv) €
{jt}1<e<j U {if}1<e<i ). For clarity and uniformity with Obser-
vation 3.1, we spell this out separately.

OBSERVATION 5.1 (No1sE OPERATOR VIEW ON RGG). The noise
operator Ty on the distribution RGG (n, N (0, %Id),p) is parametrized
by an ordering of the vertices = and marginal edge probability p. To
sample from RGG, one first samples a fragile set ¥ by including each
edge independently with probability P[Zj; € [Fi, Fy]] (recall that
edges are fragile independently). ¥ together with & determines 97, F .
Then, one samples Hyuor # from the marginal distribution on edges
FULTF from the distribution RGG(n, N (0, éld),p) conditioned on
F being the fragile set with respect to zr. Conditioned on F, Hyuor 7
T; acts independently on edges with the following noise rates:

Hyy for (uo) € F UL F (case of no noise),

TF (G)uw =
p (Ouo {Bern(ﬁ) otherwise (case of full noise).

Above, p = P[Zji = phlZji € [RLRy\[FLFull ~ p. That
is, there is no noise on the edges in ¥ U oF and the rest of the
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edges are fully rerandomized. Hence, Tj (Jk,) is a sample from
RGG(n, N (0, 314), p).-

Phrased differently, the above noise operator represents RGG re-
stricted to the edges of H as a small planted subgraph in an ambient
Erdés-Rényi G(n, p).

One key difference with Observation 3.1 is that the distribution of
the edge set Hy 5 & is much more complicated than the distribution
on the planted clique A. The latter is simply a clique, while HTUa;TIT is
a subgraph of a random geometric graph which is further conditioned
on its fragile set.

Nevertheless, just as in Observation 3.1, the independent rerandom-
ization over the rest of the edges (U 97, F)¢ yields an (exponentially
fast) decay of Fourier coefficients, which we discuss next.

We separate the conditional signed expectation into the portion
rerandomized by the noise operator, i.e. E(H)\(F U 97;(F)), and a
portion that is not rerandomized, i.e. F U o7, (F):

E (Gji - p)|RSC.7 = F|
(ji)€E(H)

E [(Gﬁ —p)‘RSC, F = F]x
(i) E(H)\(FUaE (F))

E G —p)‘RSC, F = F”

(ji) €FUIT, (F)

<

E (112 2 pf)] - p|

(ji) eE(H)\(FUa (F))

Zji € [RL, Ry\[FL, FU]]

x E Gji —pl [RSC.7 =F|.  (13)

(ji)eFuar (F)

Next, we bound the factors for E(H)\(F U 07;(F)) and then the
factors for F U o7 (F).

Step 4: Factors E(H)\(F U 97;) Rerandomized By The Noise Op-
erator. A simple calculation with 1-dimensional Gaussian vari-
ables using Egs. (8) and (11) and the fact that P[Zj; > pS]

p+O0(p(log d)/Vd) gives

‘]E [1[2,-1- > ph] —p|zj,- € [RL RUI\[FL, FU]” < ApyJC"dlogd.
(14)

Step 5: Factors F U a?IF. Convexity of | - |, the fact Gj; < 1as,,
and triangle inequality give

E 1_[ |Gﬁ —p| )RSC,TZ F]
(ji)eFUaF (F)

< Y pMEOEE| T 6| rSc.F =F|
BCFUT (F) (ji)eB

< pIFHREIBE [ T 6| RSC, T = F|
BCFUAT (F) (ji)eB\F

(15)



STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

For each (ji) € B\F, the edge Gj; is determined by Zj;, conditioned
on RSC, F = F. Thus,

E Gji | RSC.7 = F|
(ji)eB\F

=E[1(2;; > phlirSC.7 = F] P11,

By Eq. (14), the last expression is at most (2p) IBI-IFI Plugging this
into Eq. (15),

(ji)eFUT (F)
< IFIHIZ () =IBL o (20 IBI=IF| < glEGH)| (510 F)
BCFUa7: (F)

]E[ |Gﬁ—p’ )QSC,?‘:F]

(16)

Step 6: Putting It All Together. Plugging (14) and (16) into (13),
the conditional Fourier coefficients are bounded as

[T @ —p)‘RSC, F = F”
(i) eE(H)

< (AP C//fdlogd)|E(H)|*|F|*|9§F| ><4\E(H)| % (Zp)lali—TIFl

We combine this with Eq. (12) to obtain

E

[ 1] @umplesc]
(i) €E(H)

<2 Y (ApyCTdlogd)EUI-IFI-I
FCE(H)

x lEE)| 5 (2p) 197 F] ¢ (Apy/C7dlogd)'T!
< 2(8p) PN (AyJCdTog d) B =195 F ]
Ckm(log d)3/2
Vd
All that is left to show is |[E(H) |- |97 F| > OEl,(H). This follows
immediately because for any F C E(H), the set E(H)\97 F satisfies
the covering properties Definition 4 (note that

F C E(H)\oyF). Finally, we can choose 7 as the maximizer of
OEl;(H) and conclude Theorem 4.1 in the Gaussian case.

|E(H)|~|9%F|
< z(gp)lE(H)l( ) H

Remark 5 (Energy-Entropy Trade-off). |E(H)|-|9fF| = OEl,(H)
highlights the following energy-entropy trade-off phenomenon
in RGG. Rewrite it as |F| + |[E(H)\(F U 93 F)| > OEl;(H). The
term |E(H)\(F U 97 F)| corresponds to entropy in the distribution
as it is the size of the subset of edges which the noise operator
rerandomizes (and are independent with all edges in E(H)). The
term |F| measures energy as ¥ = F is the subset of edges with non-
trivial interactions (dependence) with other edges in |E(H)|. The
inequality shows that energy and entropy cannot both be small, and
either one being large results in small Fourier coefficient: entropy
due to randomness and energy due to low probabilities.

Step 5 In The Spherical Case. The analysis of the spherical case
is nearly the same. We generate V3, Vs, ..., Vi ~jiq Unif(S471)
as Vi = Zi/||Zill2, where Z1,Z3, ..., Zr ~;iqa N(O, éld). Then, we
apply the Gram-Schmidt process on Z1, Zy, . . ., Z.. With respect to
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the Bartlett decomposition,

(Zi,Zj> qd-1
Vi, Vj) = TZia < 1Zih = Zji+ Qi) Zjehsesj {Ziehi<esi)
i j
where
Sd71

Qi) UZjehsesj{Ziehi<esi) =

(Zki ZitZje + Zji(Zii — 1))
1Zill2 < | Z;]]2

+Zii % (— _1).
NNzl x 1125112

d-
The function Qfﬁ)l depends on the exact same set of variables as

QN(O,ﬁld) " pmklogd C"pmklogd
Ji Vd ’ Vd
RSC. The rest of the analysis is identical.

and takes value in [— ] under

5.2 Bounds on the Ordered Edge Independence
Numbers

PROOF OF FIRST PART OF PROPOSITION 4.2. We  first  bound
OEl;(H) by another quantity. Denote by SN ;;(H) the set of ver-
tices j of H for which there exists some i < j such that (ji) € E(H),
i.e. with a smaller neighbour. Then, OEl # (H) > [|SN (H)|/2]. To
prove this, suppose, for the sake of contradiction, that there exists a
setof r < |SN(H)|/2edges (j1,i1), (j2, i2), - - ., (Jr, ir) that satisfy
the covering properties from Definition 4. Since r < [SN (H)|/2,
’{jl, i1, J2, 02, o5 Jirs ir}‘ < |SN;(H)|. Thus, there exists some ver-
tex j* € SN (H) such that j* ¢ {j1, i1, jo, iz, - - -, jr» ir }. Let i* < j*
be a vertex such that (j*i*) is an edge. Such an i* exists by the defi-
nition of SN (H). But then, clearly, (j*i*) ¢ 955 F. This contradicts
the fact that the edges (ji1,i1), (j2,i2), . .., (Jr, ir) satisfy the cover-
ing properties.

Now, we need to show that max, |[SN ;(H)| > |V(H)| - 1 for
connected H. Let T be a rooted spanning tree of H. Define r to be
any labelling of H, such that for all , all vertices on level i + 1 have
a larger label than the vertices on level i. Clearly, the root is the
only vertex without a neighbour with a smaller label. O

PROOF OF SECOND PART OF PROPOSITION 4.2. Recall that
0(H) = maxgcy () {IS| = Ny (S)[}, where Ny (S) = {j € V(H) :
3i € S s.t. (ji) € E(H)} The inequality OEI(H) > 6(H) + 1 is clear
if §(H) = 0, so we assume throughout that §(H) > 1. We need the
following fact.

PropPOSITION 5.1 ([1]). There exists an
S’ € argmaxs{|S| - [Ny (S)[}.

independent set

Proor. Take any S”’ € argmaxs{|S| — [Ng(S)|}. Then, S’
S””\N(S”) is an independent set and satisfies |S’| — |[Ng(S’)|
IS = INu (S")].

oo

Let S’ € arg maxg |S| — |Ng(S)| be independent and Ny (S') =
{u1,uy,...,up}. Define the sets

(1) S; = Ng(u1) N'S" and

() S} = (Nu(ui)\(N(gu1) U Ng(uz) U--- U Ng(ui-1))) N S’

Take any ordering & such that the following vertices appear in
the following decreasing order:

S, u1, Sy us, ..., Shug, VIH)\(S U Ny (),
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ie. m(x) > m(w) forall x € S, n(u;) > n(y) forally € S,
and so on. Let F be any set satisfying the covering properties in
Definition 4 with respect to this ordering. Observe that for each
k € [¢],v € S, the vertex uy is the only neighbour of v among
S{ U Sé Y Sl’( U {uy,uy,...,ux}. The set F must include the edge
(vuy) as otherwise (vuy) ¢ 97 F. As this holds for each k € [£],v €
Sy, there are at least 22:1 ISp1=18"1=6(H) +IN(S")| = 6(H) +1
edgesin F. O

PROOF OF PROPOSITION 4.4. Suppose that there exists a set F sat-
isfying the strong covering property for which |F| < 2|V(H)| -
|E(H)| — 2. In particular, the graph defined by vertices V(H) and
edges Fhast > |V(H)|-(2|V(H)|-|E(H)|-2) = |[E(H)|+2-|V (H)|
connected components. Let C1, Cy, . . ., C; be these connected com-
ponents. Since H is connected, there exist at least t — 1 pairs of
different connected components C;, C; with an edge between them.
However, if (uv) is such an edge between different connected com-
ponents, where u € Cj,v € Cj and u > v, v must have another
neighbour in C; as F satisfies the strong covering property in Defi-
nition 6. Thus, whenever there is an edge between C; and Cj, there
are at least two such edges. Hence, the total number of edges in H
is at least

t
2= 1)+ Y (IV(C)| = 1) = [V(H)| +t -2 > [E(H)],
i=1

which is a contradiction. O

Remark 6. This proof holds for any ordering 7. We expect that
choosing an optimal 7 will yield an improved bound.

5.3 Improving The Bound in The Density 1/2
Case in Proposition 4.3

The density 1/2 case is special as there is a measure preserving
map between [R|, F| ] and [Fy, Ry] which also preserves norms
- namely, 2(Z), where £(Z) := —Z. In particular, the analogue of
Eq. (14) is

E|1[Zji > P;/Z] —1/2|Zj; € [R, RyJ\[FL, Ful| =0.

Thus, unless (F U 97, F) = 0, the expression in Eq. (13) is equal
to 0. This immediately yields an improved bound on the Fourier

coefficient of the form 2><p|E(H)| X (C" pkm(log d)3/2 [\/d)OEN(H)

A more powerful noise operator. The map Z(Z), however, allows
us to do more. One can apply a noise operator on certain edges
adjacent to fragile edges. The reason is that

N(O,é]d)

Qj; {Zje}1<e<js{Zie}1<e<i)

N(0,%1 . _
ji( 4 d)({:(ij)}lngj,#j,{:(Zif)}lski,Zii,Zji)

and similarly for the spherical analogue stidil.

Namely, condition on ¥ = F. Take any (ji) € E(H)\F such
that, furthermore, j is the unique neighbour of i according to
H in V(ng,aj) (equivalently, (ji) € E(H)\(F U 5;F) by Def-
inition 6). This means that the operation (Z“i)QEV(F;-,Sj) —
(E(Z“i))aEV(ng,aj) changes Gj; to 1 — Gj; but leaves all other

edges Gy, unchanged. Indeed, consider the cases for (uv):
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(1) (uv) = (ja) for some a € V(ng’aj
unique edge with this property.

(2) (uv) is not fragile and not of the form (ja) for some a €

V(Fgl.’aj)A Then, Z,,, remains unchanged and so does Gy,

as uv is not fragile.

(3) (uv) is fragile and at least one of u and v is not in V (F

). However, (ji) is the

T
Zi,sj)'

Then, either min(u,v) < i, in which case Gy, can only de-
pend on Z,; via its norm, ZZ ; (this follows from the defini-

tions of Q,/A\Z(,(O’éld) and Qﬁzil). However, Zﬁi B(Zai)?.
(4) (uv) is fragile and u,v € V(ng,aj)’ in which case Gy, de-
pends on terms of the form Z; via the product Z;,; Z,;, but
ZuiZyi = E(Zi)E(Zy;) (again, this follows from the defini-
. N(©O,512) qd-1
tions of Q,, and Q;, ).

With this property in mind, we define the following noise opera-
tor: for each edge (ji) € E(H)\(FUéﬁF), one independently applies
with probability 1/2 the operation
(Z“")aeV(Ff,—,aj) — (E(Z“i))aEV(Ffi,;,—)' As long as there is at

least one such edge, the corresponding expected signed weight
1/2
SW; " becomes zero.
By Definition 6, this is always the case if |F| < SOEl;(H). An
analogous argument to the one in Section 5.1 allows us to bound

‘]E[ I (G,~,-—1/z)]|

jicE(H)
< 2x plEH (¢ pkm(log d)*/? V) SOF= ()

Optimizing over the labelling 7 yields Proposition 4.3.

Remark 7 (Why not other densities?). In principle, we could
have carried out the same argument for other densities by fix-
ing some measurable bijection Z, : [Ry,FL] — [Fy,Ryl,Zp :
[RL,FL] — [FL,RL]. Then, we apply it independently to vari-
ables (Zai)aeV(Ffi,Sj) for edges (ji) € E(H)\(F UégF) with some
probability p so that marginal distributions remain Gaussian. The
difficulty with this approach is that for essentially any other density
besides 1/2, the equality Zy; Zy; = Ep(Zyi)Zp(Zyi) will not hold.
Thus, the values of QN (0.31a) (resp, QSd_l) will change and so it
is not clear how fragile edges are affected by the respective noise
operator.

6 DISCUSSION

We introduced a novel strategy for bounding the Fourier coefficients
of graph distributions with high-dimensional latent geometry. It is
based on localizing dependence to few edges and applying a noise
operator to (some of) the remaining edges. Not only is this method
useful for our concrete goal of bounding Fourier coefficients, but it
also explains how and where dependence among edges is created. In
the setting of RGG(n, N (0, éId),p), RGG(n, Sd_l,p), dependence
is localized to fragile edges. We anticipate future applications of
the fragile edges approach.

One future direction is tightening our bounds. Extending Propo-
sition 4.3 to all densities is appealing as it will also extend Theo-
rem 4.9. Can one improve further or is Proposition 4.3 tight (up to
lower-order terms)?
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A related question to the tightness of Proposition 4.3 is find-
ing lower bounds and precise estimates of the Fourier coefficients.
Those are useful for the design of low-degree algorithms. Our up-
per bounds on Fourier coefficients are mostly suited to showing
hardness.

Finally, the information-theoretic counterparts of many of the
questions addressed in this paper remain open. Is it possible to
prove such information theoretic convergence using y?-like ar-
guments based on squares of Fourier coefficients? A simple cal-
culation shows that bounds scaling as plE(H)|d_9|V(H)| for con-
stant 0 (of which form Theorem 4.1 is) are insufficient to show
¥2(RGG(n, Sd_l,p)HG(n,p)) = 0p(1). One could hope to surpass
this barrier by using a tensorization argument [26, 29] and/or con-
ditional y?-divergence [17, 31].
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