
Learning-based Multi-Drone Network Edge
Orchestration for Video Analytics

Chengyi Qu∗, Rounak Singh†, Alicia Esquivel-Morel† and Prasad Calyam‡
∗ Department of Computer Science, Florida Gulf Coast University, USA.

†‡ Department of Electrical Engineering and Computer Science, University of Missouri - Columbia, USA.
Email: ∗ cqu@fgcu.edu, †{rsft6, ace6qv}@mail.missouri.edu, ‡calyamp@missouri.edu

Abstract—Unmanned aerial vehicles (also known as drones)
equipped with high-resolution video cameras have become in-
creasingly popular for applications such as public safety and
smart farming. However, inefficient configurations in drone
video analytics due to misconfigured edge networks can lead to
degraded video quality and inefficient resource utilization. In this
paper, we propose a novel scheme for network edge orchestration
that utilizes both offline and online learning-based approaches
to achieve pertinent selections of network protocols and video
properties in multi-drone-based video analytics. Our approach
utilizes both supervised and unsupervised machine learning
algorithms to make decisions regarding network protocols and
video properties during the pre-takeoff stage of the drones (i.e.,
offline stage). Additionally, our approach incorporates a rein-
forcement learning-based multi-agent deep Q-network algorithm
for drone trajectory optimization during flights (i.e., online stage)
and a memory-to-memory multi-hop data forwarding strategy
for drone swarm video transmission. Our evaluation results
demonstrate that our offline orchestration approach can suitably
choose network protocols (i.e., among TCP/HTTP, UDP/RTP,
QUIC), while our unsupervised learning approach outperforms
existing methods and achieves efficient offloading while improv-
ing network performance (i.e., throughput and round-trip time)
by at least 25%, with satisfactory video quality. Furthermore,
we demonstrate through trace-based and real-field experiment
testbeds how our online orchestration in terms of decision-
making and data forwarding strategies achieves 91% of the oracle
baseline network throughput performance with comparable video
quality. Overall, our approach offers a promising solution for
optimizing drone video analytics and enhancing the overall
performance of drone-swarm-based applications.

Index Terms—Multi-access edge computing, Multi-drone net-
works, Reinforcement learning, Network protocols, Video ana-
lytics, Network characterization, Machine Learning

I. INTRODUCTION

There is a rapid evolution in systems of unmanned aerial
vehicles (a.k.a. drones) with edge-server architectures fueled
by innovations in multi-access edge computing that are vital
for applications in e.g., public safety and smart farming [1].
Most drone platforms can be equipped with high-resolution
video cameras that can help visualize and monitor target status
via object recognition, motion detection or tracking. Thus,
it is essential to provide capabilities for video processing
through edge network orchestration for application setups with
multiple drones and edge resources [2].

However, issues related to multi-drone video analytics using
edge computing and network control are understudied. Based
on literature surveys [3], [4], prior works only address primi-

tive mechanisms to orchestrate selection of network protocols
and video properties in multi-drone video analytics. Further,
there are significant challenges due to different features in
multi-drone control such as mobility models, limitations in
edge computation and communication resources [5]. Inef-
ficient parameter selection for video processing and edge
network misconfigurations can result in video impairments,
reduced resolution of transmitted videos, and loss of points-
of-interest in multi-drone video analytics applications.

Fig. 1: Overview of multi-drone video analytics setup based
on air-to-air and air-to-ground links with edge servers.

To better understand the requirements of multi-drone video
analytics with edge network orchestration, let us consider the
system setup shown in Figure 1. The setup features a drone-
edge network with air-to-air and air-to-ground wireless links
that utilize an edge server infrastructure on the ground to
enable applications to monitor a surveillance area. System op-
eration requires drones to cooperatively work with each other
when recording surveillance area scene videos at different
angles. This will require selection of a network protocol (i.e.,
amongst TCP/HTTP, UDP/RTP and QUIC [6]) in the drone-
to-drone, drone-to-edge server communications. Also, in such
cases, if the connection among one of the drones to an edge
server is interrupted, the video properties (i.e., video codecs
and resolutions) need to be adapted. Specifically, adaptation
will be required in both the drones’ pre-takeoff stage (offline)
or during drones’ flight (online) to cope with any limitations in
the multi-drone and edge server resources [7], while satisfying
application user experience expectations.

In this paper, we present a novel scheme for offline/online
learning-based multi-drone video analytics through edge net-
work orchestration to achieve pertinent selection of both
network protocols and video properties. Depending on the

drone flight context, the scheme provides either offline (i.e.,
supervised-learning-based or unsupervised-learning-based) or
online (i.e., reinforcement-learning-based) orchestration with:
(i) network protocol selection (i.e., amongst TCP/HTTP,
UDP/RTP, QUIC) for various network conditions and drone
mobility models, and (ii) video properties (i.e., codec, resolu-
tion) selection for video transmission on wireless drone/edge
network links. More specifically, using various machine learn-
ing models, our approach can predict network conditions either
in the pre-takeoff stage (offline) or during (online) application
use for pertinent network protocol and video properties selec-
tion in drone-to-drone and drone-to-edge setups.

Summary of the novel contributions of our work is as
follows: First, our learning-based multi-drone video analyt-
ics with edge network orchestration is based on network
conditions analysis (considering metrics of throughput and
RTT) and video quality analysis (considering metrics of
Peak Signal-To-Noise Ratio i.e., PSNR and video impairment
percentage) in various drone video analytics scenarios. The
orchestration utilizes function-centric computing in the video
analytics where we decouple the application video analytics
pipeline into isolated computer vision functions that can be
executed either on the drone(s) or on the edge server locations.
Our network protocol involves handling network impairments
affecting the switching between high resolution/low resolution
video capture, or the change of video codec selection for
delivering effective scene surveillance.

In addition, to ensure the robustness and practicality of our
learning-based approach, we adopt a diverse range of system
setup configurations, drawing from a trace-based simulator
dataset [8] in our multi-drone video analytics performance
studies. These datasets comprise of drone traces derived from
various mobility models and application scenarios, sourced
from both real-world drone experiments and simulations.
Leveraging these traces, we employ supervised learning strate-
gies offline to intelligently curate potential video capture and
network protocol setups based on anticipated network charac-
teristics and video quality requirements. Our trace-based per-
formance evaluation experiments with the supervised-learning
approach showcase how the delivery of video quality via
optimized network control aligns with real-world measure-
ments, demonstrating the accuracy of our machine learning
models. Throughout the training phase of the supervised-
learning offline approach, we utilize four distinct machine
learning models: Kernel-Ridge Regression (KRR), SVR-RBF
(Support Vector Regression with Radial Basis Function ker-
nel), Gaussian-Process Regression (GPR), and Random Forest
Regression (RFR). This strategic employment of machine
learning techniques enables us to streamline our approach,
effectively reducing the overhead associated with the use of
numerous redundant schemes.

Further, we account for cases where the drone traces gen-
erated in real-world experiments may not help in pertinent
selection of network protocol and video parameters due to e.g.,
drone operation limitations, out-of-date network infrastructure
or camera settings, and drone regulation policy restrictions. In

such cases, we propose the use of an unsupervised clustering
algorithm to replace the supervised learning during the offline
stage to generate more pertinent candidate solutions to enhance
video quality and network performance. We specifically test
three learning-based clustering algorithms i.e., Possiblistic
C-Means (PCM) [9], Fuzzy C-Means (FCM) [10] and K-
means [11] and analyze their performance for a number of
network protocol and video property clusters with matching
solutions.

Our learning-based multi-drone network edge orchestration
holds potential for various domains and end-applications.
Specifically, it can be leveraged for disaster response man-
agement, where efficient coordination of multiple drones is
essential e.g., for rapid surveillance. Additionally, in smart
agriculture applications, our approach can enhance produc-
tivity by integrating multi-sensor data from drones for pre-
cise monitoring and decision-making. Furthermore, in logistic
management for last-mile delivery systems, our methodology
can optimize route planning and package delivery through
intelligent drone orchestration. These diverse applications un-
derscore the versatility and practicality of our approach in
addressing real-world challenges across different domains.

Lastly, it is evident that the offline period decision-making
process is not sufficiently efficient for drone swarms to effec-
tively navigate dynamically changing environmental barriers,
meet QoS requirements, fit multi-drone communications, or
respond to emergency situations. To address these challenges,
we additionally propose an online orchestration solution that
utilizes both an online multi-agent reinforcement deep Q-
network algorithm to facilitate drone trajectory prediction
and an online memory-to-memory multi-hop data forwarding
scheme to ensure sustainable network communication and
accurate video data transmission among multi-drone setups.

The remainder of the paper is organized as follows: Sec-
tion II presents related work. In Section III, we present
details of the multi-drone video analytics with edge network
orchestration process and provide an overview of our so-
lution approach along with related performance metrics. In
Section IV, we present two offline learning-based methods
for either supervised or unsupervised decision making related
to the selection of video properties and network protocol
configurations. Section V enhances the learning-based method
by utilizing a reinforcement-learning based algorithm for
online orchestration. In Section VI, we describe our exper-
imental testbed, performance metrics and evaluation results.
Section VII concludes the paper.

II. RELATED WORK

Drone-edge networks represent a strategic solution to the
communication complexities inherent in multi-drone environ-
ments. At the heart of this architecture lies the edge server, a
pivotal component also known as an edge computing server,
meticulously engineered to revolutionize content and service
delivery for end-users. Situated at the periphery of the network,
proximal to user access points, the edge server functions
as a localized hub for processing and storage, effectively

Fig. 2: Multi-drone Multi-hop Video Streaming and Analytics with edge network orchestration process diagram showing how
application user requirements are considered in a trace dataset collection based on offline and online edge server orchestration.

mitigating latency and conserving bandwidth resources [12].
This departure from conventional centralized servers, typically
installed within remote data centers, underscores the strategic
deployment of edge servers at or near the network’s edge.
This proximity not only facilitates accelerated response times
but also elevates overall user experiences. Recent research,
as exemplified in [13], [14], has delved into the pivotal
challenge of automating the orchestration of intelligent edge
devices through sophisticated edge and cloud microservice
platforms. Such endeavors underscore the transformative po-
tential of edge computing in reshaping network dynamics and
enhancing operational efficiency. However, their work lacks
the implementation of networking aspects in terms of end-
to-end orchestration. Specifically, there is a need to address
particular problems concerning selection of pertinent network
protocols that can help to optimize specific smart edge device
parameters for high-resolution video delivery [3], [4].

We also leverage the multi-access edge computing paradigm
in our drone-edge setups, where we optimize the user ex-
perience in terms of video quality in the multi-drone video
analytics related application scenarios. Uniquely, our work
uses learning-based strategies network edge orchestration by
considering both network protocol and video properties. We
employ machine learning techniques primarily classified into
three categories: supervised, unsupervised, and reinforcement
learning. Supervised learning utilizes labeled data samples
to establish relationships between input and output spaces,
while unsupervised learning operates on unlabeled data for
pattern discovery. Our research focuses on employing su-
pervised learning-based methods to intelligently configure
network protocols and video capture setups in multi-drone
video analytics applications. Similarly, other studies, such
as [15], have utilized supervised learning to classify video
traffic types, distinguishing between real-time streaming and
on-demand videos. Moreover, [16] introduces a novel unsuper-
vised K-means clustering algorithm capable of automatically
determining the optimal number of clusters, without requiring
initialization or parameter selection. Additionally, [17], [18]
explored end-to-end machine learning frameworks, demon-
strating their effectiveness in enhancing network quality of
service. In alignment with these methodologies employed in
prior works to similar problems, our research applies unsuper-
vised learning clustering algorithms to aid users in multi-drone
video analytics in selecting appropriate video properties and

network protocols.
Machine learning can also be applied for the trajectory

design and power control of multi-drone assisted wireless
networks. Authors in [19] provide an approach to study
trajectory design and analyze network configurations using
Reinforcement Learning (RL) and a echo-state network. Their
work focused on the pre-deployment of drones by using
user location information from social media data in their
solution. Other works such as [20] [21] focus on formulation
of the trajectory as a Markov decision process (MDP). RL
approaches can also include several other applications that
focus on wireless power transfer between drones (in the air)
and energy receivers (on the ground) to design the sub-
optimal trajectories with lower complexities, compared with
conventional power transfer systems [22]. Authors in [23]
apply a deep Q-network (DQN) for optimization of drone
systems navigation. The drones learn based on the received
signal strength information for navigation with the aid of Q-
learning. Our approach builds on this prior work in [23] and
our novelty is in the use of network signal strength along with
video codec information for drones to make dynamic decisions
to stay in the optimal trajectory that helps in transmission of
high-resolution video to meet user expectations.

As more than one drone generate data at rates on the order
of tens of megabytes per second [24], real-time analysis of
streaming data has emerged as a solution to cope with this new
paradigm [25]–[28]. Furthermore, rapid analysis of generated
data may permit real-time feedback and experiment steering.
However, this often requires computational capabilities greater
than those available at a single experimental facility—or
may require the use of specialized computer systems [29].
To overcome the communication barriers on long distance
multi-hop drone video data transmission, there is a need to
adopt a memory-to-memory data forwarding strategy [30]. Our
solution on transport layer data forwarding strategy is based on
the ideas on the Science DMZ [31] which applied on scientific
equipment and HPC (e.g., supercomputer, cloud computing
resources) links.

III. EDGE ORCHESTRATION SOLUTION OVERVIEW

In this section, we provide a background on the process
involved in the multi-drone video analytics with edge net-
work orchestration in terms of offline and online algorithms.
Figure 2 illustrates the multi-drone video analytics with edge

network orchestration process steps. We fist collect the traces
from various drone scenarios, and provide user QoE require-
ments categories on the collections. After that, we provide two
categories of orchestration models on either pre-tekeoff stage
and during flights, i.e., offline and online model.

A. Trace Data Collection and Dataset Components

In this paper, we utilize two main resources for data
collection: the VisDrone 2019 dataset [8] and a trace-based
simulator, viz., DyCOCo [32]. The VisDrone dataset provides
video/image analytics application-related data, consisting of a
diverse set of videos captured by various types of drones. We
integrate this dataset into our trace-based simulator DyCOCo
to simulate drone flight traces based on the VisDrone dataset
output. Within our simulator, we can simulate various aspects
of drone operation, including platform control, camera/video
control, and navigation control. Platform control is particularly
crucial as it governs changes in the position, pose, and height
of the multi-drone configuration, as well as adjustments to
transport/application layer protocols for drone-to-drone trans-
mission and data encryption. The real-world traces involve a
multi-drone configuration of 8 drones embedded with high-
definition video cameras that cooperate together along with
an edge server network for video capture across a surveillance
scene. The control of search and intelligence drones involves
data points with various drone positions, speeds and camera
angles. In addition, data points related to drone video analytics
and drone-edge network performance are in the dataset.

In scenarios involving multiple drones and edge servers,
accurately estimating network conditions is crucial for making
informed orchestration decisions during drone flights. How-
ever, this can be a challenging task. Therefore, it is essential
to select appropriate network protocols and video properties
at the outset of each drone flight to ensure that application
requirements are met. Table I provides an overview of the ap-
plication requirement parameters used in a multi-drone setup,
which are organized into two broad categories: (i) Analytics
Layer, and (ii) System Layer. To train our machine learning
models, we have compiled a database of 400 real-world
traces collected from DyCOCo experiments and VisDrone.
The traces used for training include three types of data: (i)
preliminary application data, which consists of the transport
protocols, application protocols, and video properties used in
each flight; (ii) real-time/live application data, which includes
captured network packets, video streams, and flight traces; and
(iii) post-application data, which comprises measurements of
the overall network status and video quality during the flight.

In the post-application data, video quality scores are rated
subjectively by users and mapped to one of the three cate-
gories: high, medium, or low. To determine the standard for
assigning a high score, we use the parameter provided by the
user in the preliminary application data. If the average user
scores are higher than this value, we classify the traces as
a ‘high case’. If the average scores match the user-provided
value, we classify the traces as a ‘medium case’. Similarly,
if the average scores are lower than expected, we classify the

Fig. 3: Network protocol and video properties selection pro-
cess applied after the video preparation from the drone camera,
and before the transmission process from drone to ground.

traces as a ‘low case’. This approach enables us to evaluate
the performance of each trace objectively and accurately and
helps us to use this information to train our machine-learning
models effectively.

Figure 3 shows the available options of network protocols
and video properties that can be chosen in our approach. We
label the video properties and network protocols shown in
Figure 3 as our desired output values.

B. Edge Server Orchestration

As shown in Figure 2, our edge server orchestration for
drone control is responsible for processing videos from the
multi-drone deployments. Edge server(s) are tasked to observe
the impact of the initial video codec selection based on the
quality of the video captured. The observation is to verify
whether video quality meets application user requirements
i.e., if the high-quality video delivery is occurring regardless
of the mobility model of the multi-drone configuration and
any impairments resulting from network limitations. Thus,
edge servers analyze the video properties and if necessary,
adapt the future video properties’ settings as well as network
protocol configuration strategies. To make the multi-drone
video analytics flexible, scalable and reusable, edge server
orchestration utilizes function-centric computing, where the
decoupling of the video analytics pipeline is performed into
isolated computer vision functions that are packaged as Docker
containers [33]. Pre-trained learning weights for the edge
server orchestration are derived from the drone traces dataset
detailed above in Section III-A, and are stored in the Docker
containers. A ground operator can use the edge server to
either choose our pre-trained learning weights on the existing
trace dataset or utilize the learning-based algorithm itself
to train and generate more accurate network protocol and
video property configurations relevant to the application user
requirements.

Our proposed learning-based offline and online algorithms
are implemented in the edge server orchestration as part of a
learning engine that serves as a key orchestration component.
More specifically, as shown in Figure 2, the learning engine is
composed of: (i) offline supervised learning and unsupervised
learning clustering models that use our algorithms and updated
datasets, and (ii) online DQN trajectory optimization model.
Both algorithms leverage the trace-based simulator dataset in
the learning engine, and information related to drone mobility
models, application imagery and operational system perfor-

TABLE I: Descriptions of parameters used for client benchmark analysis.

Category Parameter Values Description

Analytics
Layer

P1 Real-Time Analytics
1
3
5

No Real-time Analytics Needed
Accept Slightly Response Delay
Fast Response, High Real-time Needed

P2 Video Quality
1
3
5

Survillance Used Low Quality Video
Entertainment Level Used Video
High Quality Scientific Used Video

System
Layer

P3 Parallel Level 1,3,5 Drone to Server Ratio: One to One, Many to One, One to Many

P4 Bandwidth Usage 1-5 [0 Mbps - 50 Mbps), [50 Mbps - 100 Mbps), [100 Mbps - 500 Mbps),
[500 Mbps - 2 Gbps), [2 Gbps+)

P5 On-Flight CPU Level 1-5 [0 MHz - 75 MHz), [75 MHz - 250 MHz), [250 MHz - 750 MHz),
[750 MHz - 1.5 GHz), [1.5 GHz+]

mance are utitlized in the context of multi-drone video analyt-
ics. Larger trace data fosters accurate decisions to improve
the edge server orchestration performance, and also guide
configurations of upcoming experiments. In order to facilitate
communication on A2G link, we also introduced memory-to-
memory data forwarding for enhancing the performance of
multi-hop streaming.

IV. Offline LEARNING-BASED VIDEO PROPERTIES AND
NETWORK PROTOCOLS SELECTION

In this section, we detail our offline supervised learning
and unsupervised learning algorithms for multi-drone network
edge orchestration.

A. Supervised Learning Algorithm

Both training phase and testing phase are designed and
described in the following. In general, we use 70% of the
dataset for training and the rest 30% of the dataset is used for
testing, with 10-fold validation method.

1) Training Phase: The training phase is a step that is used
to narrow down the searchable space of traces by filtering our
400 real-world traces database. Although the settings of each
of the traces can be quite varied, they have redundant data
that impacts the learning process. Consequently, it is possible
to find multiple network protocol configurations that satisfy
the needs of the application (e.g., traces with multiple video
resolution settings (720p and 480p) will use the same protocol
settings (e.g., TCP) under ideal network conditions). Hence,
drone operators and experimenters can obtain more number of
choice suggestions with the same application requirements.

With the collected data sets, we used machine learning to
predict the network protocol and video properties used in the
‘high case’ in the post-application measurements. We have
nearly 85% of data in the dataset categorized as a ‘high case’.
Those traces vary by application/transport protocol settings
and video resolution/codec selections. We use the supervised
learning approach to achieve prediction and classification. In
the training phase, four machine learning models from the Sci-
Kit Learn toolkit [34] were used: (i) Kernel-Ridge Regression
(KRR), (ii) SVR-RBF (Radial Basis Function kernel SVM),
(iii) Gaussian-Process Regression (GPR), and (iv) Random
Forest Regression (RFR). In essence, machine learning based
categorization allows us to reduce the overhead of relying on

the use of hundreds of redundant schemes. We are able to
select the most optimal choice in terms of network protocol
and video properties, and configure them as preliminary ap-
plication settings for the drone flight paths. In terms of the
training size of the dataset, we used 70% of the data for
training. Additionally, we applied ten-fold cross-validation to
ensure more robust and reliable training results. By doing
so, we ensure that the models are not only evaluated on a
single train-test split but are also validated across multiple
subsets of the data, providing a more comprehensive measure
of their performance. The results from the testing phase are
then compared to determine which algorithm delivers the
best predictive accuracy and generalization capability for our
specific dataset.

2) Testing Phase: To test the accuracy of the machine
learning model predictions, we use a 95% confidence interval
for correctly categorized data. Additionally, to evaluate overall
video quality, we employ PSNR as a performance metric, as
detailed in Section VI-B. The evaluation phase results are
presented in Section VI-C, where we discuss overall training
accuracy and other metrics, such as prediction time.

In terms of the hyperparameters of four supervised learn-
ing algorithms—Kernel-Ridge Regression (KRR), SVR-RBF
(Radial Basis Function kernel SVM), Gaussian-Process Re-
gression (GPR), and Random Forest Regression (RFR), we
utlize the defaulty values on Sci-Kit Learn toolkit to apply
and evaluate the preformance of the datasets. In KRR, key
hyperparameters include the regularization parameter (α) with
a default value of 1.0, and the kernel parameters, such as
the bandwidth (δ) for the RBF kernel, which is often set to
1.0 by default. For SVR-RBF, critical hyperparameters are the
regularization parameter (C) with a default of 1.0, the kernel
coefficient (γ) which defaults to ’scale’ (1/(n features ∗
X.var())) and the epsilon (ϵ) with a default value of 0.1. GPR
involves hyperparameters such as the length-scale (l) with a
default value of 1.0, the noise level often set to 1e-10, and the
choice of kernel function, with the RBF kernel as a common
default. Lastly, RFR relies on hyperparameters like the number
of trees in the forest (n estimators) with a default of 100, the
maximum depth of each tree (max depth) which is typically
set to None, allowing trees to expand until all leaves are
pure or contain less than the minimum samples required to

split, and the minimum number of samples required to split
a node (min samples split) with a default of 2. Tuning
these hyperparameters effectively is crucial for optimizing the
performance of each regression model.

3) Discussion: Although we have labeled data for learning
as categories, the category of the dataset may not be the
best choice overall for satisfactory application user experience.
Here are two examples which can be considered as a risk in
using our supervised learning algorithm in practice:
Example 1: Some drone management systems may only
support UDP, which may not be the most suitable solution.
Example 2: During the processing, the protocol could be
changed in the application to improve the application per-
formance. Thus, a multi-drone and edge server system many
not have a fixed configuration during an experiment. Our
supervised learning output only provides consistent network
protocol and video properties choices which may not suitable
for some advanced situations where dynamic decisions could
provide better performance.

To overcome both questions, we take the following actions:
(i) we unlabel the dataset in terms of protocol selection and
video properties choices, only focusing on the video quality
and the streaming data in order to do clustering on those
datasets, and (ii) we do not determine a precise network pro-
tocol/video property choice for each dataset i.e., each element
is assigned to all of the available clusters with a different
membership degree for each cluster; once the system setup
requires a dual protocol selection or a drone video resolution
switching strategy, we transition the decision making in the
application to an online procedure described in Section V.

B. Unsupervised Learning Algorithm

Given that we unlabeled the trace data on network protocols
and video properties, we utilize the unsupervised learning
algorithm to aid the decision making in the orchestration
process. The orchestration needs to analyze the unlabeled
data to find the optimal choice of the network protocol or
video properties for a given multi-drone-edge-server appli-
cation context. Clustering algorithm provides either fuzzy or
precise bounds to categorize the unlabeled data into different
categories that map to the potential network protocol and video
properties. As part of the solution approach, we introduce
three different unsupervised learning algorithms, FCM, PCM
and K-means, which belong to two categories on clustering:
either fuzzy or not. FCM is one of the most widely used fuzzy
clustering algorithms expressed as shown in Equation 1.

FCM(U,X, V) =

n∑
i=1

m∑
j=1

ukij · ∥xj − vi∥ , 1 < k <∞ (1)

where X = x1, ..., xm and V = v1, ..., vn are the feature
data and cluster centroids; U = ukij is a fuzzy partition matrix
composed of the membership degree of pattern xk for a given
cluster i; m is the total number of patterns in a given data set
and n is the number of clusters; k is a factor which defines the
fuzziness degree of the partition. In such a FCM algorithm, the
main constraint is that the sum of each column in membership

matrix U is equal to 1. Although FCM is not effective in
finding complex cluster shapes other than the spherical shape,
we still consider FCM as one of the comparison methods to
relatively detect the noise from clustering. Our orchestration
can benefit from FCM on an unbalanced dataset such as e.g.,
the one relating to network protocols. The data imbalance
arises from the fact that we generate more TCP and UDP
based data rather than data on QUIC in our collected dataset.

FCM algorithm produces the memberships of the data points
that are related to the distance of that data point from the
centers of the clusters. Thus, if a data point is equidistant
from the clusters, then it will have the same membership value
in each cluster. In order to prevent such outliers from being
accounted in, another clustering technique was introduced by
Krishnapuram and Keller, named PCM. In contrast to FCM
algorithm, membership value generated by PCM algorithm can
be interpreted as “degree of belongings or compatibility or
typicality”. Typicality degrees are defined to build prototypes
that characterize data subcategories Typicality values with
respect to one cluster do not depend on any of the prototypes
of other clusters. Equation 2 shows the relationships -

PCM(U,X, V) =

n∑
i=1

m∑
j=1

ukijd
2
ij +

n∑
i=1

µi

m∑
j=1

(1−uij)k (2)

where k is the factor that defines the degree of the partition,
and d2ij is the point distances. PCM is different from FCM
because of the µ variable addition, which is called the “scale”
parameter that is estimated from the data to prevent outliers.

Algorithm 1: Unsupervised Learning Algorithm
Input: P{1− 5}, videoCategory, protocolCategory,
videoSource,X = x1 − xm, V = v1 − vm, U,D
Result: cluster choice

1 if videoCategory || protocolCategory then
2 preCluster ← K-MEANS(P{1− 5});
3 end if
4 else
5 Fuzzy ←

min{FCM{X,V }, PCM{U,D}} ←avg[P{1− 5}];
6 preCluster ← FUZZY(P{1− 5});
7 end if
8 foreach preCluster do
9 while videoSource do

10 PSNR← videoSource;
11 end while
12 throughput[]← avg{videoSource} ;
13 end foreach
14 cluster choice←

min{max{throughput[]},max{videoQuality[]}}

Algorithm 1 provides the logic of our unsupervised learning
clustering algorithm selection. The logic of our unsupervised
clustering algorithm selection is as follows: Initially, all three
unsupervised learning algorithms are considered. If user pro-
vides the number of the clusters, the K-means algorithm will
be used for obtaining results. If the cluster number is not
restricted, we will use recursion utilizing either PCM or FCM
to select the optimal number of clusters based on the network

performance and video quality metrics. By evaluating the
network performance (average throughput) and video metrics
(minimum PSNR), we choose the lower limit of the number of
clusters among all outputs. In addition, the strategy to select
fuzzy or not is given by the category requirements detail. If
either of the category is given, a classic k-means will be used
for clustering. If the bound on the category is fuzzy, we will
choose either the FCM or PCM, depending on which ever has
the smaller amount of cluster numbers.

To conclude, we can observe that both the supervised and
unsupervised learning algorithms provide offline results which
only provide guidance in the pre-takeoff stage on multi-drone
video analytics with edge network orchestration. In the case
where we deal with intermittent network failures or other
environment limitations, we transition the decision making in
the application to an online procedure described in Section V.

V. Online LEARNING-BASED DRONE TRAJECTORY
OPTIMIZATION AND VIDEO DATA FORWARDING

In this section, we first describe the motivations for our
online orchestration. Following this, we describe the reinforce-
ment learning-based drone trajectory optimization algorithm,
and then we present our memory-to-memory data forwarding
strategy among drone-swarm setups on video transmission
purposes.

A. Orchestration Motivation for Online Learning

Unsupervised learning could receive cluster combination
options offline i.e., in the pre-takeoff stage of drones. In many
drone swarm applications [35], [36] it may be necessary to
adjust network protocols or video properties during mid-flight
operation to improve user experience. This requires analyzing
drone trajectories and video quality to determine the most
appropriate network protocols and video codecs. To address
this challenge, we propose a multi-agent Deep Q-Network
(DQN) algorithm for intelligent path planning of drones.
By analyzing trajectories and video quality, our algorithm
can select the most appropriate network protocols and video
codecs to ensure that the user experience expectations are met.
Overall, our proposed approach can help to optimize drone
swarm operations and improve user satisfaction.

Moreover, when it comes to drone swarm communication,
it requires a high-speed sustainable data forwarding link to
achieve user expectations. To enable the use of various trans-
port protocols in real-world drone swarm applications, a highly
efficient communication data forwarding strategy [37], [38] is
necessary to extend the A2G (air-to-ground) communications.
Unlike prior works that focus only on L2 approaches [39]–
[42], we propose a memory-to-memory data forwarding ap-
proach that focuses on L4 transport protocols that can be
used in multi-hop communications to facilitate information
exchange between nodes that are not directly connected. In this
approach, an intermediary node (relay) is used to forward data
between two long-distance nodes which cannot communicate
directly, or overcome various communication barriers such
as distance, interference, or node mobility. By routing data

through multiple intermediate nodes, the memory-to-memory
data forwarding approach can improve the reliability and
efficiency of communication in multi-hop networks, making
it a useful approach for drone swarm applications.

B. Reinforcement learning based drone trajectory optimiza-
tion

1) Multi-Agent Deep Q-Network: To achieve intelligent
trajectory learning, we propose a multi-agent Deep Q-
Network [43], [44] based method which aims to establish an
optimal policy for drones’ path selection as per changes in
network performance and video quality. The path selection
aids the drones to learn and make necessary sequence of
decisions under uncertainty in drone-edge network conditions.
The learning involved in path selection by the drones can be
represented as a Markov Decision Process [45] (MDP) which
forms the basis for the DQN algorithm.

A similar approach to formulate an MDP for intelligent
trajectory design for drones is shown in [46]. Figure 2 shows
(see bottom portion related to online DQN) the basic steps for
formulating an MDP, and the subsequent use of DQN (detailed
in following sub-section) to obtain the drone trajectory update
guidance.

The multi-agent DQN uses Boltzmann’s Q policy [47] by
considering a continuous state space that allows the drones
to explore and exploit [48] the learning environment to the
largest extent possible along with a sequential memory called
replay buffer to store the state-action pairs along with re-
wards for reinforcement learning based simulations denoted
by (so, au, r, so

′
). The output is the drone trajectory update

guidance that is used to keep the drones as much as possible
in their optimal trajectories. The intelligent trajectory learning
detailed in the following sub-section renders network perfor-
mance in terms of throughput and the video quality scores
(i.e., rewards) obtained in the learning process.

2) Intelligent Trajectory Learning: The agents are operat-
ing in the environment are denoted by D(n), where n repre-
sents the number of drones, and the time intervals in which
they carry out surveillance are considered to be irregular. We
refer to each of these time steps as episodes. During each
episode, the agents hover over specific regions in discrete
time steps denoted by ∆t and observe a global state given by
sot = (S0, S1, S2, S3) that represents ’Random Area’, ’Secure
Area’, ’Precarious Area’ and ’Terminal State’, respectively
and perform independent actions aut = A0, A1 and A2 that
represent ’Hover’, ’Move rapidly’, and ’Land to recharge’,
respectively and receive global reward rnet. Let C be the
cost associated with the network protocol and video properties
selection, with i being the task of switching the video codec
along with resolution i.e., H.265 HEVC and H.264 AVC
between 720p, 1080p and 2K. The immediate costs of actions
aut(i) are given by -

ψ(sot , a
u
t(i)) =

{
Cswitch(s

o
t , a

u
t(i)), ifa

u
t(i) ≥ 1

Cstable(s
o
t , a

u
t(i)), ifa

u
t(i) = 0

(3)

Where Cswitch represents the cost of switching resolution
of the video stream due to increased traffic in a particular
state, and Cstable is the cost related to the change in network
performance in the stable state. The total long term cost is the
expected sum of all the components’ immediate costs, given
by -

ψπ(s) =
∑
i∈ξ

ψ(sot , a
u
t(i)) (4)

Let d be the distance that the drones travel in the secure
area S1, λ is the network wavelength and β is the bandwidth
of the network and frequency lies in the range (2.4 GHz
to 5.8 GHz). It is assumed that the best network conditions
are available when drones hover in S1, and transmit high
resolution video. As the drones keep taking actions to reach the
secure state, there is a possibility of a large number of drones
accumulating in the same space creating traffic and β is over-
utilized. This results in frame stalling, distortion and blurring
of the video. To effectively use β, the agent has to remain in
the S1 and simultaneously continue to configure the network
protocol. The reward associated with the reliable connection
establishment after entering a new state at cost Cstable is given
by -

R(sot , a
u
t)network =

ψπ(so)

λ
log10(β) (5)

The reward associated with the agent hovering over the secure
state that allows for highest quality video resolution at cost
Cswitch is given by -

R(sot , a
u
t)video = α

[
1− [d

dmax
]0.4

]
.ψπ(s) (6)

where α is the security parameter associated with S1. The
global reward function of a state-action pair of an episode is
given as the sum of the two intermediate rewards.

rnet = R(sot , a
u
t)video +R(sot , a

u
t)network (7)

The trajectory learning of the drones occurs by maximizing
the gain Gt along their path which is a function of expected
cumulative discounted rewards.

Gt = E[

∞∑
n=0

γnrnet(s
o
t , a

u
t)] (8)

where γ is the discount factor (0 ≤ γ ≤ 1). Each action
change may only produce a small reward. Thus, we require the
value of the discount factor γ to be such that it maximizes the
cumulative reward. The multi-agent DQN uses an estimator
neural network (parameterized by θ) and a target neural
network (parameterized by θ

′
) along with the replay memory

to approximate the action-value function. The DQN is trained
using the loss function-

L(θ) = E[rnet + γmaxQ(so
′

t , a
u′

t ; θ
′
)−Q(sot , a

u
t); θ] (9)

The estimator and target neural networks have pre-defined
weights. The estimator takes state space values (sot) of a drone
as input, and generates action value function Q(sot , a

u
t). The

target network’s weights are updated at specific predefined
intervals so that they match with weights of the estimator net-
work to produce maximum value of the action-value function

and add stability to the performance. While back-propagating,
the weights of both networks are updated in an iterative
fashion and the output values come close to the optimal
value. All experiences (so, au, r, so

′
) are stored in the replay

buffer and are sampled uniformly as training examples. This
process makes sure that the there is no correlation between the
training examples which may lead the policy to reach a local
minima, and is followed until optimal Q function Q∗

π(s
o
t , a

u
t)

is obtained. Once the optimal value is reached, our DQN
algorithm converges. The optimal Q function is given as -

Q∗
π(s

o
t , a

u
t) = E[

∑
k

γk(rnet|so, au)] (10)

From our empirical observations, our proposed DQN best
converges at γ = 0.8. The optimal policy which maps the
state-space and actions, π∗

t : St → At is given as -

π∗
t = argminπ

∑
i∈ξ

ψπ(sot , a
u
t(i)) (11)

The optimal policy governs the convergence of the multi-
agent DQN algorithm and leads the agents (drones) in in-
dependent intelligent path, orchestrating network and video
analytics during their flight operations. We remark that the
online decision making delay can be ignored compared to
the whole multi-drone mission period in applications because
the actual delay value depends on the learning period and the
convergence efficiency.

The steps for the multi-agent DQN based trajectory learning
are given in Algorithm 2. We further extend DQN to Double
DQN and Dueling DQN using the same custom learning
environment. The Double DQN (DDQN) decouples the task
of selection and estimation of actions by using two estimator
neural networks. Thus, if there are any overestimations, they
are removed by decoupling the action value function into two
separate functions. Furthermore, the Dueling DQN has a single
Q-Network architecture but instead of having a single stream
of convolutional layers, the Dueling DQN has a structure
involving two sequences of fully connected layers [49]. Due to
the dueling architecture of the DQN, the state values and action
values are separated into two streams which share a common
neural network for feature extraction. Both these streams get
combined to produce a Q-function estimate.

C. Memory-to-memory Data Forwarding for Multi-hop
Streaming

In order to facilitate end-to-end communication on a multi-
hop A2G link, we propose three memory-to-memory data for-
warding approaches for each corresponding transport protocol.
In this experiment setup, note that the ‘end-to-end’ refers to
the complete process of communication from the sender to the
receiver, encompassing all intermediate steps and components
involved in transmitting and receiving the message. For ex-
ample, the receiver uses offline datasets to build a predictive
model based on past observations or historical trends. Once the
initial setup is complete, online communication begins. This
involves the continuous exchange of data between the sender

Algorithm 2: Multi-agent DQN Algorithm with Policy
to Achieve Optimal Trajectory

1 D(n) = Agents, where n ̸= 0
2 rt = rnet
3 Output: policy π∗

t

4 initialize replay memory, action-value function
Q(sot , a

u
t) and weights of estimator network and

target network.
5 Let ∆t = t, Qt(s

o, au) = 0 for all s and a;
6 while sot = S3 do
7 Q(sot , a

u
t) = (sot , a

u
t);

8 sot = S0(or)S1(or)S2;
9 Let D(1)t, D(2)t, D(3)t,D(n)t perform aut

independently ;
10 receive rnet;
11 store the experience < (sot , a

u
t , rnet, s

o
t
′) >

12 sample random transitions < st, at, rt, s
′
t >,

13 calculate loss for each transition L(θ) =
E[rnet + γmaxQ(so

′

t , a
u′

t ; θ
′
)−Q(sot , a

u
t); θ];

14 Update weights of estimator and target network;
15 if Positive rnet then
16 at = A0;
17 Update Policy πt : st → at;
18 update weights;
19 else
20 keep training;
21 end if
22 end while
23 at = A2;
24 update Q(s0t , a

u
t)toQ

∗
π(s

o
t , a

u
t);

25 update policy π∗
t ;

and receiver in real-time. More specifically, when it comes to
multi-hop communication, there is a risk of increased latency
and decreased reliability due to the involvement of multiple
intermediate nodes. To address this issue, we implement
a memory-to-memory communication approach inspired by
the SciStream project [50]. Unlike the SciStream approach
that only focuses on high-capacity scientific data streaming
between scientific instruments and high-performance comput-
ing (HPC), our approach establishes bridging and end-to-end
authentication between only on drone swarm-based A2A and
A2G links, which aims to enable efficient drone video data
streaming for drone swarm video analytics applications. By us-
ing memory-to-memory data streaming, we can avoid useless
input/output operations in a multi-hop relay mode and improve
the reliability as well as the efficiency of communication in
multi-hop networks. Due to the various implementations of
each transport protocol, we propose our novel memory-to-
memory data forwarding approach with three separate ap-
proaches for each transport protocol: TCP, UDP, and QUIC.

1) TCP Data Forwarding: We first introduce the TCP data
forwarding method between drones. In this port-forwarding
strategy, a Packet Forwarding Drone (PFD) listens on a local

Fig. 4: Data forwarding drone utilizing TCP-based socket with
either: option-1) buffer, option-2) sendfile function on Linux
core, and option-3) splice function on Linux core

TCP port and forwards all incoming data to a remote host.
This remote host can either be another PFD or a consumer
application. The core functionality of this operation relies on
traditional socket programming functions such as listen, bind,
and send. To effectively manage and process large volumes
of data, our approach employs user space buffers for data
queuing, as illustrated in Figure 4 option-1. However, despite
its potential to accommodate various scientific streaming appli-
cations, a notable drawback of this method is the introduction
of significant jitter. The increased jitter can be primarily
attributed to the fluctuation in context switch and data copy
latencies between the kernel and user space. Unfortunately,
this jitter can have adverse effects on applications that require
near real-time streaming capabilities.

Within the context of data center networking, encountering
jitter during the transmission of high-capacity data is deemed
acceptable. However, the dynamics change when dealing with
drone flights, as they often venture beyond signal ranges.
Here, achieving consistent and uninterrupted end-to-end data
transmission takes precedence. In our pursuit of mitigating
jitter, we embarked on a comprehensive exploration of kernel
operations and functions to minimize context switches. It is
important to note that our investigation is based on the as-
sumption that all embedded systems on the drones are Linux-
compatible. In Linux system, we identified two specialized
syscalls namely, sendfile and splice(2), each designed to
tackle this challenge. The sendfile syscall, originally designed
for rapid file transfers from disk to socket, has the potential
to be harnessed in creating a proxy equipped with a cache
file positioned between sockets (refer to Figure 4, option-
2). However, this approach retains the necessity for copy
operations between sockets, exerting additional strain on the
proxy as the load from streaming applications intensifies. This
often results in persistent buffering within the user space,
consequently leading to repetitive copying from core to user
space. Alternatively, the Linux splice function (depicted in
Figure 4, option-3) circumvents the need for data copying from
kernel to user space. Nonetheless, this approach incurs the
cost of multiple syscalls for each forwarded packet, which can
escalate operational overhead. Implementing this method as a
proxy, especially within a confined operating system environ-
ment, is intricately tied to the specific operating system version

and settings. In our pursuit of a solution, we embraced Docker
containers to encapsulate dependencies, kernel versions, and
the proxy service itself. It is clear that each approach has its
own set of limitations. For instance, option-1 is universally
applicable across drones regardless of their operating systems,
yet it introduces the formidable challenge of jitter, a critical
hurdle in drone communication. On the other hand, both
options 2 and 3 effectively address the jitter concern, but their
efficacy hinges greatly on system configurations and versions,
particularly in the case of option-3. In summation, the choice
among these approaches is contingent upon the system version
compatibility and the administrative privilege acquisition. If
these conditions are met, option-3 emerges as the optimal
preference for TCP packet forwarding.

2) UDP Data Forwarding: To enhance the jitter perfor-
mance of scientific streaming applications during UDP video
transmission, we present an alternative design for a UDP
proxy. This design aims to reduce context switching between
the kernel and user space for individual Packet Forwarding
Drones (PFDs), potentially leading to improved performance.
It is noteworthy to highlight that UDP has taken a prominent
role in contemporary drone video transmission methodologies,
as evidenced by recent studies [51]. Similar to the preceding
TCP data forwarding strategy, we operate under the assump-
tion that the core of the transmission system facilitates modifi-
cations to the Linux core code. Our proposed solution involves
leveraging the capabilities of Linux eBPF (Berkeley Packet
Filter) technology [52] to create a UDP proxy that exclusively
processes all packet operations within the kernel space. This
approach utilizes eBPF’s ability to run isolated programs in
the kernel space, eliminating the need for modifications to the
kernel’s source code.

Modifying the core code of eBPF is necessary to establish
the logic for forwarding UDP packets. In the conventional
socket programming model embedded within the Linux core
logic, a socket establishes a communication link between the
kernel IP stack and a task context in the user space. This setup
facilitates the transfer of data from the kernel space to tasks
associated with the bound socket. To streamline this process,
the introduction of sockmap [53] by eBPF proves instrumental.
This entails utilizing a technique known as the Stream Parser
to route packets to other eBPF tasks. These tasks execute
streaming redirection operations exclusively within the kernel
space, leading to a marked acceleration in data transmission
compared to the original socket programming.

In Figure 5, the fundamental logic underlying the applica-
tion of sockmap within a Packet Forwarding Drone (PFD) is
depicted. In contrast to the previous practice of directly loading
processes into the user space or interacting with a cache
file, the UDP socket descriptors within a Global Network
(GN) are now integrated into a SOCKMAP , specifically
the BPF MAP TY PE SOCKMAP , which is a type of
eBPF map structure. Following this insertion, the forwarding
procedure is managed by eBPF, ensuring that all processing
occurs exclusively within the kernel space, thus eliminating
the involvement of user space.

Fig. 5: Data forwarding process utilizing sockmap on eBPF
where UDP is used as a transport protocol.

3) Implementation of a QUIC Proxy for Secure Streaming:
QUIC [6] is a new transport protocol standardized by the IETF
and developed on top of UDP with the aim of being encrypted
by default. This protocol lays the foundation for HTTP/3 [54],
another IETF-developed application-layer protocol operating
atop QUIC. Enabling QUIC proxying can be achieved through
two distinct methods, namely L4 and L7 approaches [55].
L7 proxy solutions, exemplified by MASQUE [56], extend
the capabilities of HTTP CONNECT methods to facilitate the
utilization of HTTP/3 as a tunneling protocol between clients
and proxies. The MASQUE working group within the IETF
has developed HTTP CAPSULE methods [57], which enable
the adoption of HTTP/3 as a tunneling mechanism between
two nodes. The emergence of MASQUE has introduced a
novel communication pattern, wherein consumer applications
can solicit producer application services from proxy nodes.
This paradigm, reminiscent of a VPN, enables MASQUE to
obscure the consumer application’s address from the producer
application. In adherence to the HTTP CAPSULE framework,
the destination drone initially seeks the destination location in
the HTTP header, containing IP addresses and ports. Subse-
quently, each PFD consults the proxy table to map the intended
destination, or forwards the request to the subsequent PFD if
necessary. However, this methodology proves unsuitable for
multi-drone communication, as the connection establishment
does not necessitate mutual recognition between the destina-
tion drone and the proxy drone. Furthermore, incorporating
MASQUE into the role of packet forwarding drones for
QUIC proxying runs counter to the original design, given
the MASQUE’s L7 nature. Such an adaptation may squander
resources on the communication link, undermining efficiency.
To this end, in this subsection we present our QUIC proxy

solution that remains at the transport layer (L4) using the
QUIC stream mode. Our QUIC proxy implementation estab-
lishes two distinct QUIC connections: one for proxy binding
and listening, and the other for connecting to the designated
target. Within our QUIC proxy setup, data streaming over
the initial connection undergoes buffering at the system level
within the proxy node itself. This buffered data is subsequently
forwarded to the preassigned target through the secondary
connection. However, it’s essential to note that QUIC transfers
across high-bandwidth links may face limitations imposed by

Fig. 6: Data forwarding process utilizing QUIC proxy with
default encryption settings. The ‘TLS clients’ segment can be
defined as with encryption or without by each drone instead
of corresponding application nodes.

the default UDP receive buffer size. This buffer retains packets
received by the kernel but not yet accessed by the application.
For applications that demand substantial throughput, an inad-
equately sized buffer may result in considerable packet loss
or even connection disruptions. To mitigate this challenge, it
becomes imperative to adjust the UDP buffer size within the
operating system before deploying the QUIC proxy. Figure 6
shows the packet forwarding data flow of our QUIC proxy
implementation.

In conclusion, when it comes to using TCP, UDP, and QUIC
in a drone swarm scenario, we have the appropriate packet
forwarding solution on L4 for each protocol. This approach
is necessary when multi-hop end-to-end communication is
required due to either the need for extended communication
range or the when there is blockage of direct communication.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation
of various machine learning models in the orchestration of
network protocols and video parmeters selection in multi-
drone video analytics. We first describe our experiment setup
and data collection. Following this, we detail results for our
supervised, unsupervised and reinforcement learning based
models. Finally, we present a discussion of the salient findings.

A. Experiment Setup

For evaluation of our edge network orchestration algorithms,
we use data collection from a hierarchical drone configuration
(detailed in Section III) that is controlled within a drone-edge
network with varying considerations such as: different mobil-
ity models and number of drones in a fleet. We specifically
use the Gauss-Markov Mobility Model to simulate the drone
behavior in multi-drone configurations as detailed in [58].
The Gauss-Markov Mobility model can easily and inherently
eliminate abrupt stops and sharp turns by allowing past veloc-
ities/directions to influence future velocities/directions [59].

To streamline our experimentation, we have segregated the
data into two distinct sets: (i) drone video data and (ii) drone
trace data. In the realm of drone video data, a comprehensive

TABLE II: Environment Settings used in Experiments

Application Settings Network Settings
Number of drones: 10-30 App. Bit rate: 6 Mbps
Flight area: 10-15 miles Tx power: 32-48 dBm
Transmission range: 50-250 m Tx/Rx gain: 3 dB
Simulation time: 1000-3000 s WIFI protocol 802.11 n/ac
Avg. drone speed: 10 - 35 mph Modulation: OFDM
Prop. Model: TWO RAY Data rate: 65 Mbps

compilation of 60 video clips has been amassed. For real-
world experimentation, we procured 30 video clips derived
from three distinct drone models—DJI Phantom 3, Mavic
3, and the Parrot Drone. These clips were meticulously col-
lected in adherence to the Gauss-Markov Mobility Model. The
transmission of these video clips transpired via IEEE 802.11
networks to the edge server. Additionally, we factored in drone
video data hailing from our trace-based simulation dataset,
encompassing an additional 30 video clips. Within this dataset,
we deliberately selected video clips captured concurrently in
identical locations, albeit subjected to diverse mobility models,
including Gauss-Markov, Random, and Mission-based.

From the drone video and drone trace datasets, we gathered
the original video property settings in terms of video codec
type, and video resolution into our learning-based database.
Traces are formatted and stored in the form of CSV files.
Within these traces, we collect data on the network protocols,
i.e., TCP, UDP, and QUIC. Our dataset features three different
video resolutions (1344x756, 1902x1071, 2688x1322). For
each video resolution, we have 20 video clips each with 50
seconds duration and having a frame rate of 30 frames/second.
In terms of video codecs, we have videos with both H.265 and
H.264 codecs. We labeled the data with the video properties
and network protocols as the output, and the rest of the settings
as the input. The video captured by drone swarms contains
various scenes, i.e., metropolitan area, urban area, city park,
and crop area [8]. In the video analytics, we process each live
stream through an image processing pipeline that comprises of
a pre-trained model designed for pedestrian detection running
on Tensorflow, and an object detection function to detect
number of pedestrians in each frame.

For the network performance evaluation, we created a
computing environment with a desktop serving an edge server.
Nvidia Jetson Nano was used as an embedded drone device to
process the network performance and video properties. Other
related application and network settings on the trace-based
simulation can be found in Table II. Regarding the choice of
routing protocol, in our previous research [60], we explored
the application of various cutting-edge routing protocols within
the same drone-edge computation topology. To streamline our
experiments, we will continue to use the routing protocol
proposed in [60], which is a learning-based location-aided
routing protocol.

In the context of multi-drone communication scenarios,
regulatory constraints on real-world drone operations led us
to employ a wired experimental testbed for simulating multi-
drone interactions. Our approach leverages the Terabit network

supercore and a coast-to-coast 100 Gbps core provided in a
FABRIC testbed [61] we have used. The presented diagram
in Figure 7 offers a visualization of our experimental setup,
orchestrated using FABRIC’s GUI. Our methodology entails
sourcing FABRIC resources from two distinct sites—Salt Lake
City (SALT) and Utah (UTAH)—and interconnecting them
through a WAN link and a dedicated control network. At each
site, a minimum of two compute nodes are acquired, and they
are interlinked through LAN connections, while the two nodes
establish WAN connectivity. Furthermore, an out-of-band net-
work, referred to as control_net, facilitates the execution
of our control protocol. Importantly, the third compute node
at the Utah site is designated for executing proxy scripts,
functioning as a relay drone. The chosen operating system is
Linux Ubuntu 20.04, paired with Linux source code version
5.4.0-97 to enable eBPF support. Data emulation is managed
using Python 3.8, with ZeroMQ enabling the implementation
of a Python-based Pub/Sub streaming pipeline. To address
the network congestion issue, we adopt the HTCP [62] as
the congestion control mechanism, meticulously tuning TCP
settings to optimize performance for WAN scenarios. Our
QUIC proxy implementation rests on GoLang version 1.18.3,
complemented by quic-go version 0.28.0.
B. Network Performance and Video Quality Measurement

Unstable network quality or intermittent outages can fre-
quently occur in the drone-edge network, which could sig-
nificantly influence the drone video analytics tasks at the
application level (due to the impact on computation offload-
ing), and at the drone guidance level (due to impact on
operational commands from the edge server/ground control
station). To characterize the network performance in a drone-
edge network, we use a network recovery time that estimates
the network quality before we make offline decisions on
video transmission parameters or operational command control
settings. In addition, throughput and round-trip-time (RTT) are
also considered as evaluation metrics.

To measure the video quality, we consider both objective
and subjective metrics. First, for the objective metric, we
use the Peak Signal-To-Noise Ratio (PSNR, expressed in
decibels (dB)) to measure the quality of the video streamed
by the drones, as shown in Equation 13. We remark that
PSNR is a widely used metric to estimate the quality of
images that undergo degradation when being transmitted on a
communication link. PSNR is estimated by using mean square
error (MSE), and the image quality at the destination of a
communication link can be estimated as follows:

MSE =

∑
M,N [I1(m,n)− I2(m,n)]

2

M ∗N
(12)

where M , N define the size of the image, and m, n are pixels.

Threshold = PSNR = 20log10
VPeak

MSE
(13)

Here, we establish that effective rectification of video im-
pairments hinges on the Peak Signal-to-Noise Ratio (PSNR)

falling below or equal to a predefined threshold (≤30%).
Within this threshold, the strategy involves directing the drone
to stream higher-resolution video through the controller, ef-
fectively mitigating the impairments. Conversely, if the PSNR
exceeds the threshold (>30%), the controller engages nearby
drones within the drone-edge network to capture the requisite
high-quality footage. This iterative process continues until the
desired high-resolution video quality is achieved, forming an
integral part of the video farming procedure.

Note that the PNSR values in the range of 15 dB to 25
dB are considered to be at a minimally acceptable level and
indicate poor network connectivity between the sender and
receiver of the video streams. PSNR values above 25 dB up to
40 dB are deemed favorable for a satisfactory user experience,
with values surpassing 32 dB considered optimal for meeting
most users’ expectations regarding video quality. Therefore,
we posit that transmitted video quality can be effectively
rectified through camera control when the PSNR falls below
or equals a fixed threshold, such as ≤30 dB. Within this
range, the drone controller can mitigate video impairments
by instructing the drone to stream higher-resolution video.
Conversely, if the PSNR surpasses the threshold, the controller
orchestrates nearby drones to capture high-quality video within
the drone-edge network. This iterative process ensures the
attainment of the desired high-resolution video quality, integral
to the seamless operation of the drone-edge network for video
streaming.

The unsupervised learning algorithm we employ incorpo-
rates the Mean Opinion Score (MOS) as a key subjective
metric for assessing video quality, a widely accepted measure
in subjective evaluations involving human subjects. MOS
serves to rank the perceptual quality experienced by end-users
on a scale from 1 to 5. Within this scale, the range [1, 3)
denotes a “Poor” grade, indicating that end-users perceive
severe and frequent impairments that render the application
unusable. In contrast, the range [3, 4) signifies an “Acceptable”
grade, where end-users encounter intermittent impairments
but find the application mostly usable. Finally, the range [4,
5] corresponds to a “Good” grade, indicating that end-users
perceive minimal or no impairments, thus finding the appli-
cation consistently usable. By leveraging MOS within these
defined ranges, our algorithm effectively gauges the subjective
quality of video content, facilitating informed decision-making
in optimizing user experience.

TABLE III: The average prediction time taken by various
Supervised Learning models (± RMSE) based on trace based
dataset in terms of network protocol and video properties
prediction.

Model Type Protocol Prediction Video Properties Prediction
KRR 0.650±0.00181 0.0015±0.0035

SVR-RBF 0.043±0.0081 0.034±0.00161
GPR 1.080±0.0005 0.836±0.0003
RFR 0.125±0.0370 0.096±0.0200

Fig. 7: Example the logical topology of one of our experimental setups (our LAN scenario) as drawn by FABRIC’s GUI.

C. Offline Supervised Learning Model Evaluation

We selected four different machine learning models, i.e.,
KRR, SVR-RBF, GPR, and RFR for both the test phase
and training phase in our supervised learning method. In
these models, initially, we were primarily concerned about
the prediction accuracy on networking protocols and video
properties. However, all machine learning models achieved
similar high accuracy on prediction (0.95±0.036) in both the
network protocol and video properties selection cases. Hence,
we selected the models based on the shortest training time
with relatively smaller RMSE (Root Mean Square Error), as
indicated in Table III. For the network protocol prediction, we
found that the model that had the shortest training time was
the SVR-RBF model. For the video properties prediction, the
best performance was seen in the KRR model.

We compared our learning-based trace simulation results
with previous policy-based estimation and pure NS-3 simula-
tion traces [63]. The scheme in [63] uses a simple policy-based
decision-making algorithm to determine network protocol and
video properties. As shown in Table IV, without the supervised
machine learning prediction, the accuracy of network protocol
and video property selection is relatively low and uncertain.
Even for the PSNR testing after reproducing the traces, a
policy-based estimation can only achieve a PSNR at around
30 dB, which is is not ideal for user experience expectations
of the video quality.

We evaluated the performance of our supervised machine
learning approach, against the 300 diverse traces selected from
our database as part of the testing set. In each of the traces,
the number of objects and their locations are distinct from the
traces in the training set. To test the system’s ability to adapt
to various network bandwidth constraints, we evaluated each

trace with 5 network condition settings, ranging from 50 Mbps
to 2 Gbps. Table IV provides the supervised machine learning
model results on network protocol and video properties se-
lection. We compared results with real-world experiments for
each model and also calculated the 95% CI of accuracy for
each model. We conclude that: (a) RFR gives more accuracy
on networking protocol and video property selection. However,
the decision performance is in the unstable range of PSNR
within the transmitted video; and (b) KRR can generate more
reliable results with a stable range of PSNR, although the
performance is lower than other machine learning models. As
describe in the offline

TABLE IV: Comparison of prediction among policy-based
estimate (baseline) and the four supervised machine learning
models. PSNR results shown are the [min,max] values among
all the experiments with the video trace data.

Model Type Protocol
95% CI

Video Property
95% CI PSNR

Policy-based [63] (0.267, 0.6577) (0.1904,0.2715) [26.71, 33.59]
KRR (0.652, 0.928) (0.803,0.927) [32.86, 35.93]

SVR-RBF (0.779, 0.833) (0.9034,0.952) [30.59, 33.93]
GPR (0.813,0.882) (0.7523,0.8) [29.26, 32.86]
RFR (0.9124,0.96) (0.9032,0.97) [22.26, 29.37]

D. Offline Unsupervised Learning Model Evaluation

Since both, FCM and PCM are two C-means-based cluster-
ing algorithms and with similar clustering logic instead of K-
means algorithm, we first evaluated the performance between
these two algorithms. Three C-means related evaluation met-
rics are considered to evaluate the accuracy of PCM and FCM.
These metrics are: Dunn Index (D), Davies-Bouldin Index
(DB), and Partition Coefficient Index (PC) on Coefficient

TABLE V: Unsupervised C-Means clustering algorithm accu-
racy comparison

Algo. D DB PC

Video FCM 5.89102e-05 1.5634 0.7444
PCM 1.1012e-04 2.0972e-03 1.3677

Network FCM 0.005 0.7195 0.7982
PCM 7.725e-03 0.513 1.5053

Index (PC). DB index considers the dispersion and separation
of all clusters, the Dunn Index only considers the worst cases
in the clustering i.e., it considers the clusters that are closest
together and the single most dispersed cluster. In addition,
partition coefficient index only uses the membership matrix to
compute the index based on the table and clustering results.

According to the definition, the lower DB, higher PC,
and higher Dunn index indicate a better cluster. As we can
observe from the Table V, PCM outperforms FCM on both
network protocol and video properties categories. Thus, we
prefer to choose PCM as our C-means clustering algorithm to
compare with the K-means clustering algorithm. The reason
why the performance of FCM is lower than PCM could be
attributed to the fact that: (i) its noise points or the outliers are
also accounted in the membership values, and (ii) it detects
spherical clusters effectively, but is not effective in finding
other cluster shapes.

To summarize, in the comparison of C-Means and K-
Means cluster, we will only choose PCM as our C-Means
solution. For network performance evaluation, we use both
throughput and round-trip time (RTT) as the metrics, and for
the video properties evaluation, we use the PSNR objective
metric as well as the MOS subjective metric. For the subjective
assessment, we recruited 10 human subjects and asked the
participants to provide their MOS rankings on a 1 (Poor) - 5
(Excellent) scale to assess their experience quality with 95%
confidence intervals. We have the following observations on
both network performance and video quality sides:

1) PCM improves overall network performance on network
protocol selection: Figure 8 shows how PCM clustering
improves overall network performance in comparison with K-
Means approach. By selecting PCM as the clustering strategy,
categories which are assigned to use TCP, UDP, and QUIC
as the transport protocol on video data transmission could
achieve at least 25% of improvement, as well as at least
18% of reduction in delay in terms of RTT. In contrast
to PCM clustering, K-Means clustering prediction results in
poor overall bandwidth and delay (up to 50% reduction in
throughput and RTT).

The reason why the K-Means clustering algorithm failed
to choose the proper network protocol is that: (i) for large
dataset and multi-dimensional inputs, K-Means can easily be
trapped into a local minimum, even in a long term of training,
which will in turn categorize the traces into the wrong cluster;
and (ii) the dataset labels in terms of network protocols are
unbalanced e.g., we only obtained limited amount of drone
traces from QUIC protocol compared with TCP and UDP. The
unbalanced dataset will influence the K-means centroid and
result in an abandonment of the small cluster.

0 1 2 3 4 5 6 7 8 9 10

Throughput

0

0.2

0.4

0.6

0.8

1

cd
f

TCP-PCM

TCP-K-means

UDP-PCM

UDP-K-means

QUIC-PCM

QUIC-K-means

0 10 20 30 40 50 60 70

RTT (ms)

0

0.2

0.4

0.6

0.8

1

c
d
f

TCP-PCM

TCP-K-means

UDP-PCM

UDP-K-means

QUIC-PCM

QUIC-K-means

Fig. 8: Cumulative distribution function (cdf) of: network
throughput (Mbps), and RTT (ms) - for the PCM and K-means
clustering algorithms; each group is categorized according to
TCP, UDP and QUIC protocol.

2) PCM improves overall video quality performance after
transmission: Table VI shows both objective (i.e., PSNR) and
subjective (MOS) measurements related to the performance
of PCM and K-Means algorithms for clustering the video
properties. Q1 to Q5 in the table represent 5 survey questions
that were used to obtain related MOS rankings from partic-
ipants: video quality, video smoothness, no blur effects, no
frame freezes, and no tiling effects. The baseline represents the
original video captured from the camera on the drone. Since
there is no transmission process, the PSNR does not apply to
the baseline videos. We can observe that the PCM can achieve
acceptable video quality comparable to the MOS rankings on
the original video, which is in contrast to K-Means clustering
with low MOS rankings for all 5 survey questions. Also, the
PSNR results show a similar difference as well. Overall, PCM
clustering can improve both overall network performance and
video quality by making near-optimized decisions.

0 100 200 300 400 500

Experiment Time

0

5

10

T
h
ro

u
g
h
p
u
t

(m
b
/s

)

PCM DQN

Baseline

Fig. 9: Throughput performance comparison of PCM, DQN
(with LR = 0.001) and Baseline in a trace-based experiment.

E. Online RL-based Model Evaluation

Figure 9 illustrates the network performance difference be-
tween PCM and DQN as the learning procedure. In this exper-
iment, we use the trace-based simulation dataset. The benefit
of using simulation instead of the real-world experiment is that

TABLE VI: MOS measurement and PSNR results on K-Means, PCM and Baseline.

Approach Q1 Q2 Q3 Q4 Q5 Overall PSNR
K-Means 1.65±0.3 1.59±0.4 2.61±0.3 2.47±1.2 2.26±0.5 2.12±0.4 [27.35,33.90]

PCM 3.27±0.1 3.70±0.1 4.11±0.0 4.23±0.3 4.17±0.2 3.90±0.15 [32.32,39.00]
Baseline 4.64±0.3 4.89±0.1 4.73±0. 4.91±0.1 4.82±0.2 4.79±0.2 N/A

simulation could provide any potential combinations without
limitations. Baseline data represents the oracle situation when
the drone is aware of the network situation in advance, which
is an unrealistic assumption in real-world operations.

As we can observe from Figure 9, it is clear that - with
the DQN model, trace-based experiments can achieve better
throughput performance than PCM comparable with the oracle
baseline. Specifically, according to the results of our presented
experiments, by utilizing DQN as the online orchestration
algorithm, we can achieve at least 91% of throughput per-
formance of the oracle baseline approach. In the same case,
the PCM can only achieve around half of the throughput per-
formance. The reason for the sudden drops in DQN throughput
is that DQN model may provide a flawed prediction when the
drone flies across area boundaries. However, DQN can recover
from these negative reward conditions in a short time (∼20s)
and resume the high throughput. It is worth noting that online
DQN learning exhibits similar results to offline unsupervised
learning (i.e., PCM) in terms of video properties performance.
This observation shows that - dynamically changing video
properties according to the drone’s trajectory does not increase
the video quality after transmission. Another significant obser-
vation is that - we expected a better network performance that
can improve the video quality after the transmission process,
but we did not get the expected experimental results. This
may be because of other factors i.e., the environment, noise,
or delay caused by frequent video codec changes that influence
the improvement of the video quality.

F. Online Multi-hop Data Forwarding Evaluation

Figures 10 and 11 illustrate the network performance in
terms of goodput and delay for multi-hop data forwarding
scenarios. In these experiments, multiple slices on FABRIC are
used to simulate multiple drone nodes, which are essential for
multi-hop data forwarding. The original throughput between
nodes is limited to 100 Gbps. Figure 10 presents the goodput
performance results for TCP, UDP, and QUIC proxies across
four different video resolutions (720p, 1080p, 2K, and 4K).
To fully utilize the 100 Gbps capacity, a maximum of three
video streams are run simultaneously. Each video stream
application requires at least two drones (simulation nodes) as
relay nodes. It is evident that increasing the number of drones
used as relay nodes leads to decreased streaming goodput.
In the best-case scenario, utilizing a TCP proxy to stream a
single 720p video with four relay nodes results in a maximum
achievable throughput of approximately 82 Gbps. Among
all video resolutions, no significant difference is observed
between TCP and UDP proxies, attributed to the memory-to-
memory packet forwarding design, which separates the user
space and kernel space on the proxy node. However, since
the QUIC connection requires default encryption on packets,

it fails to achieve similar results to TCP and UDP proxies
as the video streaming capacity increases. Combining the
information from Figures 10 and 11, it is evident that TCP
outperforms other protocols in terms of both goodput and
communication delays due to its simpler kernel-only packet
forwarding design. However, even though the QUIC proxy
requires packet transmission in the user space, the results show
that it can still achieve at least 80% of the performance in
terms of goodput without compromising network delay.

G. Overall Results Discussion

In this section, we conclude how different learning ap-
proaches used in multi-drone video analytics with edge net-
work orchestration have advantages and disadvantages. Based
on the conclusions, we provide guidance to drone system
operators on the potential learning-based approach choices that
are suitable in terms of optimizing the selection of network
protocols and video properties.

First, multi-drone applications users demand different net-
work performance and video quality requirements. If the user
requests are related to video quality experience, it is suitable
to use supervised learning with trained weights for decision
making of network protocols and video properties. Secondly,
if no preferred category is needed or supervised learning out-
puts decision cannot achieve the goals, unsupervised learning
algorithms can take the charge of clustering the drone setup
environment into pre-trained categories. As shown from the
experiments on our drone video data and drone trace data,
our unsupervised learning approach could achieve at least
≈32 dB value (good video quality as perceived by users)
for PSNR after transmission. Nonetheless, some advanced
network protocols such as QUIC are not commonly used in
commercial drones, which might limit the choices.

Thus, unsupervised learning is not the primary choice for
simple use cases such as: small area surveillance, traffic
management or drone-aided parcel delivery. Computation re-
sources in terms of learning and inference can be embedded
on the drone using edge devices such as Nvidia Jetson [64]. In
such cases, reinforcement learning procedures can be applied
to dynamically optimize the drone trajectories and make
effective predictions to aid decisions for selection of network
protocols and video properties.

In addition, when considering multi-hop communication
that utilizes multiple drones as relay nodes, we can make the
following observations: 1) Regardless of the transport protocol
used (TCP, UDP, or QUIC), our memory-to-memory packet
forwarding proxy can achieve comparable results in terms of
overall goodput. 2) When taking communication delay into
account, kernel-based forwarding approaches (such as TCP
and UDP) tend to outperform user-space-based forwarding
approaches (such as QUIC). 3) It is important to note that

2 4 6 8 10

30

40

50

60

70

80
A

v
g
-S

tr
ea

m
in

g
 G

o
o
d

p
u
t

(G
b

p
s)

TCP Proxy

UDP Proxy

QUIC Proxy

(a)

2 4 6 8 10

30

40

50

60

70

80

A
v
g
-S

tr
ea

m
in

g
 G

o
o
d

p
u
t

(G
b

p
s)

TCP Proxy

UDP Proxy

QUIC Proxy

(b)

2 4 6 8 10

30

40

50

60

70

80

A
v
g
-S

tr
ea

m
in

g
 G

o
o
d

p
u
t

(G
b

p
s)

TCP Proxy

UDP Proxy

QUIC Proxy

(c)

2 4 6 8 10

30

40

50

60

70

80

A
v
g
-S

tr
ea

m
in

g
 G

o
o
d

p
u
t

(G
b

p
s)

TCP Proxy

UDP Proxy

QUIC Proxy

(d)

Fig. 10: Goodput performance of three proxy solutions (TCP, UDP, and QUIC) over various numbers of drones as relay nodes
in terms of various video resolutions of a) 720p, b) 1080p, c) 2K and d) 4K as transmission sources.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

D
el

ay
(s

) 720P

1080P

2K

4K

(a)

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

D
el

ay
(s

)

720P

1080P

2K

4K

(b)

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

D
el

ay
(s

)

720P

1080P

2K

4K

(c)

Fig. 11: Delay performance on various resolution video transmission under the various proxy types, i.e., a) TCP proxy, b)
UDP proxy, and c) QUIC proxy.

video resolution only impacts the transmission delay and not
the goodput itself. In the real-world experiments, we conclude
that multi-hop communication could benefit the performance
of video streaming and analytics, which in further enhance the
orchestration process.

VII. CONCLUSION

In this paper, we presented a novel scheme for learning-
based multi-drone video analytics with edge network or-
chestration that considers both network protocol and video
property selection. Three different categories (i.e., supervised,
unsupervised, and RL) of learning based algorithms were pro-
posed and validated to facilitate decision making for pertinent
selection of network protocol and video properties in both an
offline manner (i.e., pre-takeoff stage of drones) and in an
online manner (i.e., during drone(s) flight).

Through evaluation experiments, we showed that our pro-
posed Possibilistic C-means (PCM) learning approach in the
offline setting achieves efficient offloading, while also improv-
ing the network performance (i.e., throughput and round-trip
time) for by least 25% compared with supervised approaches
with acceptable video quality (i.e., PSNR > 32). Also, based
on experiments on a trace-based simulator dataset, we showed
that DQN that utilizes deep reinforcement learning to predict
trajectory in the online setting can allow for dynamic decision-
making, achieving ≈91% of the oracle baseline network
throughput performance with comparable video quality. This
is as in the case seen in the unsupervised clustering algorithm’s
performance. These results show that our scheme can be
used to handle significant challenges due to various features
involved in multi-drone control such as mobility models,
limitations in edge computation resources as well as multiple
choices in communication strategies with trade-offs. Thus, our

scheme is relevant for different multi-drone video analytics
applications in e.g., disaster management, smart city traffic
management, and precision agriculture.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Award Number: CNS-1647182.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc networks
(fanets): A survey,” Elsevier Ad Hoc Networks, vol. 11, no. 3, pp. 1254–
1270, 2013.

[2] C. Rametta and G. Schembra, “Designing a softwarized network de-
ployed on a fleet of drones for rural zone monitoring,” Future Internet,
vol. 9, p. 8, 2017.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[4] A. Hamm, A. Willner, and I. Schieferdecker, “Edge computing: A com-
prehensive survey of current initiatives and a roadmap for a sustainable
edge computing development,” 2019.

[5] M. Khan, I. Qureshi, and F. Khanzada, “A hybrid communication scheme
for efficient and low-cost deployment of future flying ad-hoc network
(fanet),” vol. 3, p. 22, 02 2019.

[6] M. Seufert, R. Schatz, N. Wehner, and P. Casas, “Quicker or not? -an
empirical analysis of quic vs tcp for video streaming qoe provision-
ing,” in 2019 22nd Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN), Feb 2019, pp. 7–12.

[7] A. Guillen-Perez and M.-D. Cano, “Flying ad hoc networks: A new
domain for network communications,” Sensors, vol. 18, no. 10, p. 3571,
2018.

[8] P. Zhu, L. Wen, X. Bian, L. Haibin, and Q. Hu, “Vision meets drones:
A challenge,” arXiv preprint arXiv:1804.07437, 2018.

[9] R. Krishnapuram and J. M. Keller, “The possibilistic c-means algorithm:
insights and recommendations,” IEEE transactions on Fuzzy Systems,
vol. 4, no. 3, pp. 385–393, 1996.

[10] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The
fuzzy c-means clustering algorithm,” Computers Geosciences,
vol. 10, no. 2, pp. 191–203, 1984. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0098300484900207

[11] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[12] P. McEnroe, S. Wang, and M. Liyanage, “A survey on the convergence
of edge computing and ai for uavs: Opportunities and challenges,” IEEE
Internet of Things Journal, vol. 9, no. 17, pp. 15 435–15 459, 2022.

[13] Fernandez, I. Vidal, and Valera, “Enabling the orchestration of iot slices
through edge and cloud microservice platforms,” Sensors, vol. 19, p.
2980, 07 2019.

[14] T. Cerquitelli, M. Meo, M. Curado, L. Skorin-Kapov, and E. E.
Tsiropoulou, “Machine learning empowered computer networks,” p.
109807, 2023.

[15] E. Grabs, E. Petersons, A. Ipatovs, and D. Chulkovs, “Supervised
machine learning based classification of video traffic types,” in 2020
24th International Conference Electronics, 2020, pp. 1–4.

[16] K. P. Sinaga and M. Yang, “Unsupervised k-means clustering algorithm,”
IEEE Access, vol. 8, pp. 80 716–80 727, 2020.

[17] T. Zhang and S. Mao, “Machine learning for end-to-end congestion
control,” IEEE Communications Magazine, vol. 58, pp. 52–57, 06 2020.

[18] G. Zhu, J. Zan, Y. Yang, and X. Qi, “A supervised learning based qos
assurance architecture for 5g networks,” IEEE Access, vol. 7, pp. 43 598–
43 606, 2019.

[19] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power
control for multi-uav assisted wireless networks: A machine learning
approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp. 7957–7969, 2019.

[20] S. Yin, S. Zhao, Y. Zhao, and F. R. Yu, “Intelligent trajectory design in
uav-aided communications with reinforcement learning,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 8, pp. 8227–8231, 2019.

[21] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, “Cooperative
internet of uavs: Distributed trajectory design by multi-agent deep re-
inforcement learning,” IEEE Transactions on Communications, vol. 68,
no. 11, pp. 6807–6821, 2020.

[22] S. Ku, S. Jung, and C. Lee, “Uav trajectory design based on reinforce-
ment learning for wireless power transfer,” in 2019 34th International
Technical Conference on Circuits/Systems, Computers and Communica-
tions (ITC-CSCC), 2019, pp. 1–3.

[23] H. Huang, Y. Yang, H. Wang, Z. Ding, H. Sari, and F. Adachi,
“Deep reinforcement learning for uav navigation through massive mimo
technique,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1,
pp. 1117–1121, 2020.

[24] DOE-SC, “The Report of the BES Advisory Subcommittee
on Future X-ray Light Sources,” https://science.osti.gov/-
/media/bes/besac/pdf/Reports/Future Light Sources report BESAC

approved 72513.pdf, 2013, accessed: 2021-09-06.
[25] NSF’s Big Ideas, “Harnessing data for 21st century science and engineer-

ing,” https://www.nsf.gov/news/special reports/big ideas/harnessing.jsp,
2017, Accessed: 2020-01-06.

[26] Advanced Scientific Computing Research and Basic Energy Sci-
ences, U.S. Department of Energy, “Exascale Requirements Review,”
https://www.osti.gov/servlets/purl/1341721, 2015, Accessed: 2020-01-
06.

[27] A. L. Kinney and D. M. Tilbury, “Dear Colleague Letter:
Data-Driven Discovery Science in Chemistry (D3SC),”
https://www.nsf.gov/pubs/2018/nsf18075/nsf18075.pdf, 2018, Accessed:
2021-03-01.

[28] NSF, “Transforming science through cyberinfrastructure:
NSF’s blueprint for a national cyberinfrastructure ecosys-
tem for science and engineering in the 21st century,”
https://www.nsf.gov/cise/oac/vision/blueprint-2019/nsf-aci-blueprint-
v10-508.pdf, 2018, Accessed: 2020-03-01.

[29] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cap-
pello, “Transferring a petabyte in a day,” 4th International Workshop on
Innovating the Network for Data Intensive Science (INDIS) 2017, pp.
1–11, Nov. 2017.

[30] J. Chung, W. Zacherek, A. Wisniewski, Z. Liu, T. Bicer, R. Kettimuthu,
and I. Foster, “Scistream: Architecture and toolkit for data streaming
between federated science instruments,” in Proceedings of the
31st International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 185–198. [Online].
Available: https://doi.org/10.1145/3502181.3531475

[31] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
Science DMZ: A network design pattern for data-intensive science,”
Scientific Programming, vol. 22, no. 2, pp. 173–185, 2014.

[32] C. Qu, S. Wang, and P. Calyam, “Dycoco: A dynamic computation
offloading and control framework for drone video analytics,” in 2019
IEEE 27th International Conference on Network Protocols (ICNP),
2019, pp. 1–2.

[33] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[34] “scikit-learn 0.21.2 documentation.” [Online]. Available: https://scikit-
learn.org/stable, Accessed April 2021.

[35] H. Hildmann and E. Kovacs, “Using unmanned aerial vehicles (uavs)
as mobile sensing platforms (msps) for disaster response, civil security
and public safety,” Drones, vol. 3, no. 3, p. 59, 2019.

[36] “Delivery drones: Understanding the challenges for drone delivery,” ac-
cessed on Dec 2021. [Online]. Available: https://dronerush.com/google-
ups-delivery-drones-19058/

[37] M. Biomo et al., “Routing in unmanned aerial ad hoc networks: A
recovery strategy for greedy geographic forwarding failure,” in 2014
Wireless Comm. and Networking Conf. IEEE, 2014, pp. 2236–2241.

[38] H. Yang and Z. Liu, “An optimization routing protocol for fanets,”
EURASIP Journal on Wireless Communications and Networking, vol.
2019, no. 1, p. 120, Accessed April 2021 2019. [Online]. Available:
https://doi.org/10.1186/s13638-019-1442-0

[39] V. Sharma, R. Kumar, and N. Kumar, “Dptr: Distributed
priority tree-based routing protocol for fanets,” Computer
Communications, vol. 122, pp. 129 – 151, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366416303267

[40] A. Nayyar, “Flying adhoc network (fanets): Simulation based perfor-
mance comparison of routing protocols: Aodv, dsdv, dsr, olsr, aomdv
and hwmp,” in 2018 International Conference on Advances in Big Data,
Computing and Data Communication Systems (icABCD). IEEE, 2018,
pp. 1–9.

[41] M. Y. Arafat and S. Moh, “Localization and clustering based on swarm
intelligence in uav networks for emergency communications,” IEEE
Internet of Things Journal, pp. 1–1, 2019.

[42] A. Khan, F. Aftab, and Z. Zhang, “Bicsf: Bio-inspired clustering scheme
for fanets,” IEEE Access, vol. 7, pp. 31 446–31 456, 2019.

[43] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems. Springer, 2017, pp.
66–83.

[44] M. Roderick, J. MacGlashan, and S. Tellex, “Implementing the deep
q-network,” arXiv preprint arXiv:1711.07478, 2017.

[45] R. Sutton and A. Barto, Reinforcement Learning: An
Introduction, ser. Adaptive Computation and Machine
Learning series. MIT Press, 2018. [Online]. Available:
https://books.google.com/books?id=sWV0DwAAQBAJ

[46] S. Yin, S. Zhao, Y. Zhao, and F. R. Yu, “Intelligent trajectory design in
uav-aided communications with reinforcement learning,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 8, pp. 8227–8231, 2019.

[47] M. Kaisers and K. Tuyls, “Frequency adjusted multi-agent q-learning,”
in Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, 2010, pp. 309–
316.

[48] M. Coggan, “Exploration and exploitation in reinforcement learning,”
Research supervised by Prof. Doina Precup, CRA-W DMP Project at
McGill University, 2004.

[49] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[50] J. Chung, W. Zacherek, A. Wisniewski, Z. Liu, T. Bicer, R. Kettimuthu,
and I. Foster, “Scistream: Architecture and toolkit for data streaming
between federated science instruments,” in Proceedings of the
31st International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’22. New York, NY, USA:

Association for Computing Machinery, 2022, p. 185–198. [Online].
Available: https://doi.org/10.1145/3502181.3531475

[51] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[52] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacı́fico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet processing
with EBPF and XDP: Concepts, code, challenges, and applications,”
ACM Comput. Surv., vol. 53, no. 1, feb 2020. [Online]. Available:
https://doi.org/10.1145/3371038

[53] J. Sitnicki, “Steering connections to sockets with bpf socket lookup
hook,” 2020, eBPF Summit. [Online]. Available: https://ebpf.io/summit-
2020-slides/eBPF-Summit-2020-Lightning-Jakub-Sitnicki-Steering-
connections-to-sockets-with-BPF-socke-lookup-hook.pdf

[54] G. Perna, M. Trevisan, D. Giordano, and I. Drago, “A first look at
HTTP/3 adoption and performance,” Computer Communications, vol.
187, pp. 115–124, 2022.

[55] C. W. Lucus Pardue, “Unlocking QUIC’s proxying potential
with MASQUE,” https://blog.cloudflare.com/unlocking-quic-proxying-
potential/, [Online accessed May-2023].

[56] M. Kühlewind, M. Carlander-Reuterfelt, M. Ihlar, and M. Westerlund,
“Evaluation of QUIC-based MASQUE proxying,” in Proceedings of
the 2021 Workshop on Evolution, Performance and Interoperability of
QUIC, 2021, pp. 29–34.

[57] ietf, “HTTP Datagrams and the Capsule Protocol, RFC 9297,”
https://datatracker.ietf.org/doc/rfc9297/, [Online accessed May-2023].

[58] K. Kumari, B. Sah, and S. Maakar, “A survey: different mobility model
for fanet,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 5, no. 6, 2015.

[59] D. A. Korneev, A. V. Leonov, and G. A. Litvinov, “Estimation of
mini-uavs network parameters for search and rescue operation scenario
with gauss-markov mobility model,” in 2018 IEEE Systems of Signal
Synchronization, Generating and Processing in Telecommunications
(SYNCHROINFO), July 2018, pp. 1–7.

[60] C. Qu, F. B. Sorbelli, R. Singh, P. Calyam, and S. K. Das,
“Environmentally-aware and energy-efficient multi-drone coordination
and networking for disaster response,” IEEE Transactions on Network
and Service Management, 2023.

[61] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “FABRIC: A national-scale programmable
experimental network infrastructure,” IEEE Internet Computing, vol. 23,
no. 6, pp. 38–47, 2019.

[62] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance
networks,” in Proceedings of PFLDnet, 2004.

[63] R. R. Ramisetty, C. Qu, R. Aktar, S. Wang, P. Calyam, and
K. Palaniappan, “Dynamic computation off-loading and control based
on occlusion detection in drone video analytics,” in Proceedings
of the 21st International Conference on Distributed Computing
and Networking, ser. ICDCN 2020. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3369740.3369793

[64] Nvidia, “Nvidia embedded systems for next-gen autonomous ma-
chines.” [Online]. Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/

Chengyi Qu received his Ph.D. degree
in the Department of Electrical Engineer-
ing and Computer Science at the Univer-
sity of Missouri-Columbia, USA in 2023.
He is currently an Assistant Professor in
Florida Gulf Coast University, USA. His
current research interests include: ad-hoc
networks, cloud/edge computing, cyberse-

curity, and drone video analytics. He is a IEEE member and
IEEE ComSoc member.

Rounak Singh received his B.S. de-
gree in Electronics and Communication
Engineering from G.I.T.A.M Deemed to
be University, Hyderabad, India in 2019.

He is currently a graduate student pur-
suing his M.S degree in Electrical and
Computer Engineering at University of
Missouri-Columbia, USA. His research
interests include: machine learning, deep

learning, reinforcement learning, computer vision and cloud
computing.

Alicia Esquivel-Morel received her
M.S. degree in 2020, and is currently
pursuing her Ph.D. in the Department
of Electrical Engineering and Computer
Science at the University of Missouri-
Columbia, USA. Her current research in-
terests include: cloud computing, UAV
systems, machine learning, and cyberse-

curity.
Prasad Calyam received his M.S. and

Ph.D. degrees from the Department of
Electrical and Computer Engineering at
The Ohio State University in 2002 and
2007, respectively. He is currently an
Professor in the Department of Electri-
cal Engineering and Computer Science at
University of Missouri-Columbia, USA.
He directs the Virtualization, Multimedia

and Networking (VIMAN) Lab, as well as the Center for
Cyber Education, Research and Infrastructure (Mizzou CERI).
His current research interests include: distributed and cloud
computing, computer networking, and cybersecurity. He is a
Senior Member of IEEE.

