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Abstract—For next-generation logistics management, robotic
vehicles such as autonomous ground robots and aerial drones
can alleviate the strain on last-mile distribution. They can
help avoid on-road congestion, navigate hard-to-reach locations,
and parallelize delivery operations. However, as the robotic
vehicles move in a given delivery area, environmental barriers
e.g., trees or buildings, affect air-to-air (A2A), air-to-ground
(A2G), ground-to-ground (G2G) network communications on
a hybrid truck-drone-robot system. In this paper, we present
an environmentally-aware cooperative network routing compu-
tation scheme to avoid obstacle blockage in A2A/A2G/G2G
network communications for addressing large-scale coordinated
operations of the hybrid truck-drone-robot system. Specifically,
we propose an offline policy-based routing algorithm and two
online extensions (i.e., heuristics and learning-based) to solve
the hybrid last-mile delivery vehicles communication problem
in order to trade-off between end-to-end communication (i.e.,
increase network throughput) and delivery efficiencies (i.e., lower
parcel delivery time consumption). We evaluate our scheme
using state-of-the-art network routing algorithms in a trace-based
simulator that integrates both the vehicles and networking sides.
Performance evaluation results from our simulations show that:
(i) our offline approach is Pareto-optimal among non-learning
supported algorithms in a pre-delivery scenario, and (ii) our RL-
based online algorithm achieves between 85-96% of the Oracle
strategy performance during delivery procedures.

Index Terms—Robotic vehicle networks, Last-mile parcel deliv-
ery, Reliable network communication, Learning-based scheduling

I. INTRODUCTION

The last-mile delivery market is projected to have a com-

pounded annual growth rate (CAGR) of 16% during the

next five years, primarily due to the proliferation of e-

commerce [1]. In addition, the last-mile delivery cost, which

already accounts for 41% of the total supply chain cost, is

also expected to increase [2]. Adopting emerging logistics

technologies, namely autonomous ground robots and aerial

drones, holds great promise for alleviating the strain on last-

mile distribution. Specifically, they can avoid on-road conges-

tion, navigate hard-to-reach locations, and parallelize delivery

operations. Moreover, major corporations such as Google,

Amazon, and others have developed technologies for bringing

the potential of a single type of autonomous robotic vehicles

to the field of last-mile parcel delivery [3]. However, there

is a dearth of methods that address large-scale coordinated

operations of a hybrid truck-drone-robot system.
Figure 1 shows an example of hybrid truck-drone-robot

system with distributed customers in a complex urban area

(i.e., the delivery application scenario). In this system, we

assume that there is a collaboration among three vehicle

types - traditional trucks, sidewalk autonomous delivery robots
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Fig. 1. Map of a hybrid truck-drone-robot last-mile parcel delivery scenario
with distributed customers in a random area, and multiple trucks carrying
different number of drones and SADRs to deliver parcels to customers.

(SADRs), and autonomous unmanned aerial vehicles (UAVs)

or drones. The map corresponds to a customer delivery center

in a random area, where the depot, trucks, robotic vehicles and

customer locations are identified. In this delivery application

scenario, one depot interacts with multiple trucks that are

communicating at the same time with different robotic vehicles

(i.e., SADRs and drones). These robotic vehicles are tasked

with delivery of parcels to various last-mile customers/homes

that are in geographically distributed areas.

The primary motivation for the use of the hybrid truck-

drone-robot system is that the limitations of one vehicle

type are complemented by the others. Drones leverage the

low-altitude airspace to avoid traffic congestion and travel

faster than the other two vehicle types, but have limited

payload capacity and flying range [4], [5]. The SADRs can

efficiently transport multiple heavier parcels, operate under

extreme weather conditions, and access areas that make drone

deliveries difficult or inefficient, but are restricted in terms of

speed, road network, and battery range [6]. On the other hand,

trucks can overcome the limitations of drones and SADRs

with respect to payload capacity, and range. Nevertheless,

they cannot bypass traffic congestion and spend a lot of

time searching for a parking space, especially in congested

urban areas. Besides, trucks are emission-heavy and are not

as environmentally friendly as drones or rover robots [7]. Thus,

a hybrid truck-drone-robot system that works in tandem has

the potential to exploit the individual strengths of drones and

SADRs and achieve better last-mile delivery efficiency.

In the above delivery application scenario, robotic vehicles

can be assumed to be connected together in robotic vehicle

networks instantiated by a ground control station (GCS). This

network can be used to track the delivery states for robotic

vehicles [8], dynamically reorganize the delivery tasks [9] and



prevent robotic vehicles from getting stolen or hacked [10].

However, obstacles in the flight path influence the air-to-

air (A2A), the air-to-ground (A2G) and the ground-to-ground

(G2G) network communications between drones, SADRs and

the GCS, respectively. The obstacles could involve physical

environmental barriers such as trees, buildings or other man-

made constructions. Moreover, obstacles could also be caused

by weather barriers such as wind strength, direction and

even air humidity. The robotic vehicle network needs to have

resilient network connectivity via a highly adaptive path com-

putation scheme. A resilient robotic vehicle network allows

a warehouse company to quickly act on decisions based on

situational awareness, and allows sharing of information that

is useful to perform on-the-fly reroutes of the drone paths. For

instance, a quick reroute decision from the GCS can be useful

during irregular weather conditions (e.g., on a windy day)

that significantly influence the drones’ flight direction as well

as flight time during scheduled deliveries in general. State-

of-the-art in environmental awareness for path computation

solving can be seen in the work on [11] and [12]. None of

the existing works solve the delivery application problem with

environmental awareness, while also optimizing the delivery

efficiency as well as handling environment obstacles that

can lead to reduced performance and/or failure of network

communications in a hybrid truck-drone-robot system.

In this paper, we address the above important knowledge

gap by introducing a novel ENvironmentally-aware COoper-

ative robotic vehicles’ Routing nEtwork computation scheme,

viz. ENCORE to solve the hybrid last-mile delivery vehicles

communication problem in order to trade-off between end-

to-end communication (i.e., increase network throughput) and

delivery efficiencies (i.e., lower parcel delivery time consump-

tion). First, our ENCORE-offline approach builds upon the

geographic routing scheme, and involves proactively ensuring

parcel delivery efficiency, while maximizing the throughput of

the end-to-end communication during the delivery procedure.

Our ENCORE-offline approach provides resilience to robotic

vehicle networks that are relevant to the delivery application

scenario by overcoming barriers due to obstacles that im-

pact A2A and A2G network communications. The resilience

feature in ENCORE-offline geographic routing is due to our

ability to ensure that the reconstruction of the A2A, A2G or

G2G network communications has limited overhead on the

Oracle delivery task, which is attributed to the state-of-the-

art parcel delivery scheduling algorithm. In order to accom-

modate highly adaptive path computation cases in real-time,

we propose two online approaches to enhance the ENCORE-

offline approach: (i) Heuristic-based (ENCORE-Heu), and (ii)

Learning-based (ENCORE-RL). These enhancements improve

the effectiveness (i.e., shorten the unit re-computation time) of

the ENCORE-offline approach and increase the performance

gain in throughput per unit delivery task. The heuristics-based

approach uses the updated Deep Deterministic Policy Gradient

(DDPG) [13] algorithm for prediction of the positioning of the

robotic vehicles to greedily generate a local optimized path.

The learning-based approach is suitable for near-optimally bal-

ancing time constraints and providing environmental obstacle

awareness using Reinforcement Learning principles [14].

The paper remainder is organized as follows: Section II

describes related work. Section III presents our last-mile

parcel delivery problem with time and obstacle constraints.

Section IV details algorithms to solve the drone path compu-

tation problem with our proposed ENCORE-offline, as well as

the heuristics-based and learning-based online enhancements.

We detail performance evaluation results with trace-based

simulations in Section V. Section VI concludes the paper.

II. RELATED WORK

The authors in [15] introduced the flying sidekick traveling

salesman problem (FSTSP) that addresses the challenge of

determining routes for a drone working in tandem with a

truck in a last-mile delivery scenario. For this issue, a mixed

integer linear program (MILP) formulation was proposed to

optimally solve the problem. The same work then investigated

the parallel drone scheduling TSP (PDSTSP) variant giving

both optimal and heuristic approaches. However, this work

does not consider time consumption and obstacle issues that

are critical in realistically modeling the interaction between

the drone and the environment.

There have been works [16] and [17] that consider the

limitation of the robot vehicles’ energy consumption but do

not account for obstacles, while managing the network for

completing a given delivery task. Similarly, the problem of

delivering parcels with drones considering optimization of

flight time consumption was investigated in [18]. Initially,

their approach involved assuming each segment traveled by

the robotic vehicles to be subject to an unknown cost in

terms of operation time. After a certain number of consecutive

missions, their scheme learned better paths from the previous

routes, so as to optimize the range in future missions. In

contrast to these prior works, our proposed approach for com-

munication path computation considers environmental aware-

ness in terms of time consumption as well as the presence of

obstacles (e.g., trees, buildings) in end-to-end computations

at the GCS for A2A, A2G and G2G links. The recent work

in [19], [20] is closely related to our work in terms of

routing multiple robotic vehicles autonomously operating from

a truck in order to serve one or more customers, and return

to the same truck for a battery swap and package retrieval.

Our approach is also motivated by the work in [9], where

the authors that first introduced FSTSP extended their work

in the form of the multiple FSTSP (mFSTSP), in which a

delivery truck and a heterogeneous fleet of drones coordinate

to deliver small parcels to many customers. In our hybrid

system approach, few SADR nodes are also introduced to

enhance the communication link generation as well as shorten

the time of the overall parcel delivery procedure.

Routing protocol schemes for robotic vehicle mobility man-

agement considering time consumption and obstacles aware-

ness have been widely investigated recently [21]–[23]. In

these works, energy consumption issues for robotic devices

(e.g., SADRs or drones) management in the context of the

multi-access edge computing paradigm are well addressed.

For instance, author in [21] considers mobility problems of

the robotic vehicles while handling user requirements of time

conservation over low-latency or vice versa. Our proposed



ENCORE-offline algorithm builds on these works that repre-

sent the most recent advances in the area of geographic routing

algorithms that perform better than other stateless geographic

routing solutions, as well as stateful mesh routing in terms of

packet delivery success ratio and path stretch.

III. THE LAST-MILE PARCEL DELIVERY PROBLEM

In this section, we introduce the urban area parcel delivery

problem terminology featuring a hybrid truck-drone-robot sys-

tem as shown in Figure 1. Following this, we formulate the

robotic vehicle path computation problem to handle vehicle

operation time and obstacle constraints of parcel delivery using

drones and SADRs.

A. Last-mile Parcel Delivery Terminology

Let G = (V,E) be the graph that models the delivery area

(city), where V = v0∪V C is the set of vertices represented by

the depot location v0 and the possible n customers locations

V C = {v1, . . . , vn}, and E = {{vi, vj}|(vi, vj) ∈ V 2, i 6=
j} is the set of undirected edges that represents the available

connections on the ground (roads) between locations. Notice

that, in general, the graph G is not a complete graph, i.e.,

the number of available edges |E| � n(n−1)
2 . The location

of the depot v0 is centered at the origin of a 3D Cartesian

coordinate system in (0, 0, 0), while each vertex v ∈ V C is

characterized by a triple of relative coordinates (xv, yv, zv)
with respect to the depot position. Such a triple, represents

the locally converted physical global position retrieved by the

GPS, i.e., latitude, longitude, and altitude.

Let duv = ‖u − v‖ be the Euclidean distance between

vertices u, v ∈ V . For each (u, v) ∈ E, let tTuv be the time

employed by a truck for driving from u to v along the edge

(u, v), and let tDuv be the required time by a robotic vehicle

for operating (i.e., autonomous flying or driving) from any u
to v. Let sT be the constant speed of the truck, and let sD

be the constant speed of the robotic vehicle. Each fleet can

accomplish only a single global mission. For simplicity, we

assume that the weight of the parcels for drone is fixed to wd,

and the weight of the parcels for SADR is fixed to ws. Hence,

in each sub-route, a drone or a SADR carries an additional

payload w from the truck to the customer, and returns empty

from the customer to the truck. The truck has an unbounded

travel limit and we always assume that it can deliver parcels

to all the customers without the help of drones. With this

assumption, we ensure that the truck is not time-constrained.

However, drones and SADRs are time-constrained and they

have a fixed amount of operation time T at the beginning of

each global mission.

To serve dynamic cooperative drone delivery, we apply

the JOCR-U algorithm [20] at the beginning of the delivery

task to schedule the initial delivery sequence on each robotic

vehicle and within the required time period. The JOCR-U

algorithm optimally solves the problem of minimizing the

time required to deliver all parcels and return to the depot.

It also considers the cost per vehicle used during the delivery

procedure. Minimizing total cost and delivery completion time

are two conflicting objectives for the problem under study. For

instance, if minimizing delivery completion time is the sole

objective, the JOCR-U models may utilize all available robotic

vehicles to exploit simultaneous order fulfillment. While this

may shorten the overall completion time, it increases the fixed

cost of using unmanned devices.

In our proposed model, we consider two metrics: (i) commu-

nication throughput metric, and (ii) delivery time metric. The

communication throughput metric can be positively correlated

with the cost metric introduced in JOCR-U for the following

reasons: once the distance is long, the environment will be-

come complicated (i.e., the number of obstacles will increase),

and the robotic vehicle is likely to move out of the original

ground equipment (i.e., warehouse and truck) communication

range. A mesh network is needed to maintain the connection

to confirm the delivery and inform the robotic vehicles about

where to return back, which will require the ENCORE-offline

algorithm to establish a communication route. Therefore, the

main goal of the proposed last mile package delivery is to

optimize the trade-off between A2A, A2G and G2G commu-

nication link performance and the overall delivery time.

B. Robotic Vehicle Routing Problem Formulation

Let us consider the following model with node n (e.g.,

drone u or SADR s) forwarding packet p towards desti-

nation d. The purpose of the network path computation is

to reconstruct the connection between A2A, A2G and G2G

communication links, and create a communication path be-

tween robotic vehicle and the destination truck eventually.

To this aim, in this model, node n needs to decide which

neighbor should receive updated packet p to progress towards

d while balancing between the maximum delivery completion

time for the whole procedure, and the total throughput of

p w.r.t obstacle conditions. Once robotic vehicle starts a

delivery task, it requires a communication link generation and

the total throughput is not promising due to obstacle issue

and limited communication range. On the other hand, if all

delivery tasks are completed by the truck itself, it promises

to communicate with maximum throughput. However, truck

transportation alone will waste a lot of time in comparison due

to: (i) complex environmental conditions in urban areas (for

example, traffic problems, labor), and (ii) rectilinear distance

movement trajectories. We formally summarize the above with

the following formula:

f(d.x, d.y, d.z, θ, n) = θ · ‖δ(n, d)‖+ (1− θ) · ‖τ‖ (1)

where, δ(n, d) is the convex potential updated time of node n
with respect to the destination node d that allows packet trans-

mission with approximation of the shortest path by reapplying

JOCR-U on route n to d. τ is the total calculated maximum

delivery completion time at node n. θ is a parameter to balance

between the delivery time τ and the updated shortest path

approximation as well as the updated time. The purpose of

the path computation problem is to find the most appropriate

θ value which could save the most delivery time overall while

also keeping the network connection continuous and stable.

In order to compute δ(n, d), the GCS on truck needs

geographic information about physical obstacles that can po-

tentially cause packet drops due to lack of wireless coverage

near their geographical locations. We assume that when an



obstacle blocks the communication link, it is described as a

long elliptical space between the robotic vehicle node and the

corresponding GCS node antenna. The center of the circle on

all sections of the ellipsoidal region falls on the line connecting

the transmitter and the receiver. The equation to calculate the

Fresnel zone radius of each section at the boundary is given

as follows [24]:

F =

√

λ× d1 × d2
d1 + d2

(2)

where, F is the Fresnel zone radius, d1 and d2 are the

distances from section boundary to both ends, and λ is the

wavelength of the radio signal. In order to ensure the quality

of the communication, the recommended blockage of the

obstacles is up to 20%. If the intrusion of obstacles exceeds the

20% of the Fresnel zone, we consider it as a communication

block between the robotic vehicles and the corresponding

ground nodes. In this case, we need to recalculate the path

to find out the alternative route from the path, which requires

the nodes to be aware about the obstacle location and nearby

neighbours (i.e., other air or ground robotic vehicles).

Once node n is aware of its new propagation radius Robs

and the center coordinates Cobs.x, Cobs.y and Cobs.z of the

obstacle, it computes τ(n, d) as follows:

δ(n, d) =

M∑

i=1

Oi(d.x, d.y, d.z)− 1/ α
√
dist

dist(n.x, n.y, n.z, Ci.x, Ci.y, Ci.z)α
(3)

where, dist(x1,2, y1,2, z1,2) is the geographical distance; α
is the attenuation order of obstacles’ potential field that has

been shown to provide potential soft optimal performance.

Specifically, Oi(d.x, d.y, d.z) is calculated given the obstacle

i, the intensity induced by the destination node d:

oi =
Rα

i

α · (dist(d.x, d.y, d.z, Ci.x, Ci.y, Ci.z) +Ri)2
(4)

In order to calculate τ , both delivery completion time τD
and algorithm running time τCPU are considered. Maximizing

the overall network performance and minimizing delivery

completion time are two conflicting objectives for the problem

under study. Thus, given the conflicting nature, it is essential

to obtain the set of best trade-off or Pareto optimal solutions,

in which an improvement in one objective is not possible with

out degrading the other. In addition, when we consider large

amount of delivery tasks or robotic vehicles, the running time

of the mathematical models increases exponentially. Hence,

for each truck, we only consider a maximum of 2 drones and

2 SADRs on executing the delivery task. We compare various

offline state-of-the-art parcel delivery shortest path calculation

algorithms such as [9], [20] and [25] to select most appropriate

algorithm for calculating the optimal delivery time. As shown

in Table I, by considering both τD and τCPU , we choose

the JOCR-U algorithm to determine the route of the robotic

vehicles as well as to provide the time constraints. Specifically,

given the total operation time of all robotic vehicles T , τ is

calculated given by:

τ = T −max(
∑

nd,ns

(τD(
∑

u,v∈E

tTuv)) + τ̂CPU (min τUJOCR))

(5)

where τ̂CPU is the normalized CPU time measured in

seconds for running the JOCR-U algorithm. Also, nd and ns

represents the number of tasks assigned to the drones and

SADRs.

TABLE I
MAXIMUM DELIVERY COMPLETATION TIME AND CPU TIME ON

COMPUTATION FOR JOCR-U, MFSTSP AND HGA MODELS.

N=1 N=5 N=10
τD τCPU τD τCPU τD τCPU

JOCR-U 5.5 70 6.7 324 8.3 8,117
mFSTSP 6.2 117 7.6 374 9.9 7,703

HGA 6.3 74 6.7 850 8.3 13,446

IV. VEHICLE NETWORK PATH COMPUTATION ALGORITHM

In this section, we detail three coupled algorithms that we

propose in order to calculate the robotic vehicle paths for

the delivery application problem: (i) the Offline Policy-based

Algorithm (ENCORE-offline), (ii) the Online Heuristics-based

Algorithm (ENCORE-Heu), and (iii) the Online Learning-

based Algorithm ((ENCORE-RL)). Different strategies are

used within each algorithm in order to improve the per-

formance of the last-mile parcel delivery. Specifically, in

ENCORE-offline, a 3D construction model is used to detect

the blockage (i.e., obstacle features) between each two nodes.

In contrast, the heuristics-based algorithm design uses a lo-

calized DDPG algorithm to improve the prediction accuracy

of robotic vehicle trace paths; whereas, the learning-based

algorithm design uses a Reinforcement Learning module to

make near-optimal decisions on vehicle traces as well we

the communication paths based on environmental awareness.

Figure 2 shows a general workflow of the usage situation of

these three algorithms inside one parcel delivery application.

Fig. 2. Workflow to apply the three ENCORE algorithms during the flight
preparation and delivery stages.

A. Offline Policy-based Algorithm (ENCORE-offline)

To address the time-efficiency versus continuous connection

trade-offs in hybrid truck-drone-robot architectures, there is at

first a need for a flexible policy-based node routing, i.e., a

geographic routing protocol variant for robotic vehicles and a

GCS. The location of the robotic vehicles should handle the

frequently changing obstacle scene in urban scenarios within

a fixed infrastructure by also adhering to time constraints.

A choice of stateful and stateless routing protocol design is

necessary to be determined based on the cost of maintaining

routing tables versus the infinite loops in routing due to

the local minima selection. In most of the high mobility

power-constrained devices routing protocol design, the cost

of maintaining node position in a database and updating the

rapid changing status (intermittent failure of network, obstacle

status) can cause robot-side time consumption drain. This

can in turn lead to the failure of deliveries and even cause



the robotic vehicles to crash. Consequently, in the policy-

based algorithm i.e., ENCORE-offline design, we choose a

stateless routing protocol in our base design, and on-demand

communication is performed when requested. Moreover, the

policy could influence the decision during the delivery task

within a threshold. This is helpful in a case where a robotic

vehicle finishes a single delivery task, and still has enough

residual time/energy to safely return to the warehouse. To

this end, there is a possibility that SADRs or drones may

experience failure on delivery, while on the contrary, there

is a higher chance for them to return back to the truck.

Policy is specified in the form of an time-oriented (small θ
value), or communication/connection-oriented (large θ value)

user preference. A warehouse manager may choose a time-

oriented policy to avoid full network reconstruction when

robotic vehicles face obstacles, in order to save time that

could be used to achieve higher throughput of delivery tasks.

Alternately, the warehouse manager can choose to monitor the

vehicle traces to make sure the delivery task is on the track.

However, based on the evaluation experiments in Section V,

ENCORE-offline is shown to be able to continuously generate

promising and stable communications while sacrificing only

10% of the on-board operation time of a robotic vehicle.

With the help of satellite images, it is relatively easy to

learn the geo-information on existing physical obstacles before

the delivery task is initiated. Thus, we leverage coordinates in

space obtained via a GPS model embedded in moving nodes

(i.e., drones, SADRs and trucks), to improve the precision of

geographic routing. According to Equation 1, the policy-based

algorithm provides a routing solution with flexible policy

specifications to handle dynamic network situations. This in

turn, determines various θ values, while addressing trade-offs

in user preferences on either network throughput and residual

operation time of robotic vehicles. The whole purpose of the

ENCORE-offline algorithm is to find the shortest path from the

sender s to the receiver r that could avoid the obstacle path on

the route. At the beginning, each node only has knowledge of

its surrounding nodes and the obstacle locations. In addition,

policies are also provided at the beginning of the application

to avoid further calculation when faced with limited time.

B. Online Heuristics-based Algorithm (ENCORE-Heu)

The performance of ENCORE-offline that involves average

calculation time is around 7 seconds per request (see Table I).

Consequently, by using this solution for rerouting information,

the rescheduling of drone tasks may be delayed. This situation

could influence the accuracy of autonomous drone control for

last-mile parcel delivery. Thus, in order to achieve soft real-

time cooperative drone management, dynamic models need to

be used in online algorithms that improve the ENCORE-offline

algorithm. In the online heuristics-based algorithm (ENCORE-

Heu) design, we use an off-policy actor-critic network that

follows DDPG [26] method to predict the relevant position

between each two nodes in terms of A2A, A2G and G2G

links, and heuristically determine the routing and overall time

consumption in the delivery process.

Robotic Vehicle Trajectory Estimation: To estimate the

trajectories of each robotic vehicle, we consider a simple hy-

brid drone-truck-robot environment with D(n1) drones, D(n2)

SADRs and Tk(n) trucks. (n1, n2 6= 0). We formulate the

trajectory prediction problem as a partially observable Markov

decision process (POMDP) [27] which is defined by the tuple

containing the following -

Mtraj = (S,A,P,R,O,Z) (6)

where S , A, P , R, O and Z , are the state space, the

action space, the probability of transition of states, the reward

function, the observations and the probability distribution

function for observed states, respectively. The POMDP aims

to maximize the cumulative rewards that are received by

the drones along their trajectories during the operation. The

drones and SADRs are assumed to be fully charged before

they leave truck for delivery. The learning environment com-

prises of one robotic vehicle with the truck following states

st = (PD(n1)
, PT(n)

, φt, Etn , Ft(n)
, Ld(n)

) representing robotic

vehicle’s position, truck’s location, vehicle’s heading, vehicle’s

total time capacity, truck’s fuel capacity and delivery location,

respectively and st ∈ S where S is the global state-space

in the environment consisting of robotic vehicles and trucks.

The truck is operated by a human driver, and in contrast, the

robotic vehicles are autonomous and have to perform their

delivery operations efficiently by following the set of actions

defined as at = (i)a(T ) - ’Take-Off/Leave from assigned

truck Tk’, (ii)a(D) - ’Drop-off Parcel’ and (iii)aL - ’Land-

on/Return-to nearest truck Tk’, at ∈ A, where A is the action

space. Moreover, the rewards rt are defined as follows: +100:

successful parcel drop; +10: flying or moving towards Ld(n)
;

−10: flying or moving away from Ld(n)
; −50: Losing parcel

mid-mission; −100: collision with obstacles/drones;

Ensuing the design of the robotic vehicle’s optimal tra-

jectory selection and delivery completion scenario using an

POMDP, the overall performance can be evaluated by tuning

the values of the discount factor γ for establishing an optimal

policy π∗t : S → A, which maps the states with best

suitable actions. Let et be the episode during which the

robotic vehicle performs at in the given S. The observa-

tions o ∈ O in any given episode et include the positions

of other robotic vehicles and locations of other trucks that

are observable to a given robotic vehicle and given truck,

ot =
∑U

i

∑V
j

∑W
j (PDn1(i)

, PDn2(i)
, PT(j)

), where U and

V are total number of robotic vehicle and W is the total

number of trucks, respectively and ot ∼ Z . The drone or

SADR receives rt corresponding to the independent actions

performed accordingly in given states as per time constraints of

the fuel capacity of trucks. If the robotic vehicles successfully

drop parcels, the actions reap higher rewards as they find the

nearest trucks and return back after the delivery task. The

POMDP aims to establish an optimal single-control policy π∗

to maximize the value function V π , given by:

V π(s) = E[

∞∑

i=0

(γi−tri|st, πt)]. (7)

The proposed solution aims to solve the POMDP problem

using an off-policy actor-critic network that uses the DDPG

method such that the best possible actions are chosen in the

state space of the hybrid drone-truck-robot environment. The

action value function is given by:



Qπ(st, at) = E[

∞∑

n=0

γnr(s, a)|s = st, a = at] (8)

The optimal policy, according to the Bellman’s equation is

given by -

π∗t = argmax rt(st, at) + γ

∫

st+1

V π(st+1)dst+1

Heuristic Algorithm design: Based on the robotic vehicle

trajectory estimation model, we can assume the local relative

distance between the drones, between drones and SADRs,

among SADRs, among drones and trucks in advance. Thus, to

increase the accuracy of the robotic vehicle path computation

procedure, our heuristics-based algorithm proactively performs

a greedy calculation of the local-optimal path solutions.

Algorithm 1 shows the heuristic algorithm design utilizing

the robotic vehicle trajectory estimation model detailed above.

The main purpose of the algorithm is to utilize the prediction

of the relative position of robotic vehicles and trucks. The

time period t in the algorithm is default set to 10 seconds

(line 20). For each time period, all θ values are calculated

for each alternate neighbour node (line 26-29). Following

this, we will calculate the performance gain on the drone

(i.e., throughput gain by processed unit time) of each θ
value (lines 2-17), and perform a greedy select of the highest

performance gain (lines 23-25). Following this, we will use

this θ value until the next time period t, when the heuristics-

based algorithm is reinvoked (lines 18-20). Consequently, our

heuristics-based algorithm will always select the local optimal

choice, which however may not be the overall best of the entire

system. Moreover, if the total required time is used up, the

heuristics-based algorithm will shift to the ENCORE-offline

with the corresponding time oriented θ value (lines 21-23).

Hence, the heuristics-based algorithm performance may not

provide impressive improvement from the offline ENCORE-

offline solution in low obstacle scenarios. To this end, an

online learning-based algorithm is needed to apply real-time

decisions on the trajectories and communication barriers.
C. Online Learning-based Algorithm (ENCORE-RL)

Since ENCORE-Heu provides local optimal choice by time

period, it may lack information on the global optimal per-

formance gain over the entire system. Herein, we abstract

the whole real-time robotic vehicle parcel delivery problem

as a Markov-decision process (MDP), which can provide a

mechanism to judge the θ choices by using rewards. Thus,

the optimization problem can be redefined as: find the optimal

moving trace which minimizes the global performance gain for

the robotic vehicle path computation process. This finite-time

MDP problem can be proposed as follows:

Menv = (Senv, Aenv, Penv, Renv,Mtraj) (9)

where, Senv is the state space, Aenv is the action space, Penv
is the probability function that indicates the probability of

action a in state s at time t will lead to state s′ at time

t+1. Renv is a reward function, and MTraj is the optimal

MDP result given by the robotic vehicle trajectory estimation

algorithm.

To ensure that the near optimal θ can be chosen at every

step, we consider the dynamic decision-making problem to

Algorithm 1: ENCORE-Heu

Input: [sensorSets]:= multi-sensor dataset from all given neighbor nodes;
T := time budget; Dt(n):= number of drones; Tk(n):= number of
trucks; Q(st|θ

µ):=Actor network; Q(st, at|θ
c):= Critic network;θµ

θc:=weights; (st, at, rt, st+1):= replay buffer B

Output: Nx:= the exact neighbour to send packets for the next tth time;
[policyGains]:= time and throughput gain from the connection;
Optimal Policy:= given accuracy on prediction based on Actor-Critic
network

1 Function Main():
2 for et = 1, 2, ...N do
3 while not done do
4 Perform at in given st and receive rt;
5 store transitions (st, at, rt, st+1);
6 update Q(st, at)
7 obtain policy πt in actor network;
8 obtain value function V π

9 Calculate the Loss for actor:

L(θµ) = 1
N

∑n
i=1[−Q(S(i), πst

(i); θµ)]2;
10 Calculate the Loss for critic:

yt(i) = rt + γ ·Q
′

(st+1, π
′

t(st+1; θ
′µ)|θ

′ c);

11 L(θc) = 1
N

∑n
i=1[yt(i)−Q(st(i), at(i); θ

c)]2

12 update policy π∗

t in actor network;
13 Update V π(s);
14 optimal policy π∗

t ;

15 sample random training examples from B;
16 Gradient updates for the actor critic target networks:

17 θ′µ ←− θµ, θ′c ←− θc

18 if T then
19 result← HEURISTIC([newNodeSet], newS)
20 T ← T − t

21 else
22 result←
23 ENCORE-OFFLINE([newNodeSet], [newObsSet], newS, θ)

24 send(P,Nresult)
25 Calculate[policyGains]

26 Function Greedy([newNodeSet], newS):
27 foreach θ do
28 Na ∈ argminf(n, PnewS.x,y,z, θ)

29 return maxNa

be used for downstream tasks at time t. The situation will

turn to an time-oriented case, when action goes to −1. At

the same time, the situation will turn to a throughput-oriented

case, when action goes to 1 in terms of the step size δ value

chosen. Given that when δ value is small, the system will take

more resources (i.e., energy and time) to calculate the optimal

value, and each action change may only produce small reward

gains. Thus, we require the δ value selected to be less than

or equal to 0.5, and greater than 0.15 to avoid the void and

eliminate redundant calculation. Formally, the actions of the

MDP problem can be discretely given by the equation:

atenv =







−1time orient, f̂ = f(θ − δ), θ ≥ δ

0keep the same state, f̂ = f(θ)

1throughput orientf̂ = f(θ + δ), θ ≤ 1− δ

(10)

Specifically, we define the state of the MDP problem to be

chosen between actions with a given time period. The state

contains the stored previous predictions f results, and the

remaining query budget on both parcel-delivery-time-oriented

as well as throughput-oriented. The state in the MDP can be

formalized as shown in the following equation:

stenv = [θt, fprevious, f(θ−δ,θ+δ),Mtraj ] (11)

The reward function is given to minimize the cost of a single

robotic vehicle operation time τ and obstacle-awareness recov-

ery time δ given in Equation 1. Consequently, we considered



the reward function to be the same as in Equation 1, with

respect to operation time consumption on a single robotic ve-

hicle and theoretical guarantees on packet delivery in obstacle

situations. Thus, we can ultimately define the reward function

as follows:

Rt
env(s

t, at) = −α · τ(f t, f̂ t)
︸ ︷︷ ︸

residual time

− β · δ(cost(at))
︸ ︷︷ ︸

communication

(12)

Having defined the environmentally aware parcel delivery

scenario as an MDP, we can evaluate the overall performance

by minimizing the expected total reward the system achieves.

In other words, we can state: Given the choice of 5 discrete

levels of routing model f , a optimal trajectory prediction

overhead Mtraj , and a MDP problem Menv , find optimal

routing policy πenv : Senv → Aenv that maximizes expected

cumulative reward Renv:

πenv ∈ argmaxE(
∑

T

Renv(senv, aenv)) (13)

Although we framed this problem as an MDP, it is not easy

to apply conventional techniques such as dynamic program-

ming for solving the problem. This is because, many of the

aspects of this problem are hard to analytically characterize,

especially the dynamics of the sensory input stream (e.g.,

GPS, obstacle, dynamic flight time, dynamic SADR operation

time). This motivates our integration of a soft optimal solution

that uses a model-free Reinforcement Learning technique. The

reason to use such a technique is as follows: it is capable

of learning optimal discrete policies based solely on the

features included in the state, and avoids the need to predict

the future states (as done in our heuristics-based algorithm).

Specifically, we use the state-of-the-art multi-agent Q-learning

algorithm [28], which is easy to deploy, efficient to evaluate

in terms of dynamics, and is amenable to effectively perform

optimization-based action selection.

V. PERFORMANCE EVALUATION

In this section, we first introduce the evaluation setup and

data sets collected from a hybrid drone-truck-robot last-mile

parcel delivery use case scenario [29]. Next, we discuss the

policy-based, heuristics-based and learning-based results on

cooperative vehicle mobility management. The results are

compared with Non-AI aided, AI-aided and Oracle solution,

and a comprehensive solution by considering together the

accuracy and time metrics. Lastly, we present our findings

and use cases which could leverage various solutions and the

obtained simulation results for those approaches.

A. Experiment setup

For evaluation of our parcel delivery framework, we initial-

ized a simulated urban environment using 3D building models

in ns-3 simulator based on an urban road map. The simulation

script randomly generates locations of warehouse, customer,

and corresponding delivery capacity on parcels in the range of

an urban map. The simulator scripts can change the density

of the buildings to simulate various urban maps from a small

city center to a metropolitan downtown. Specifically, users can

assign: (i) number of trucks used for intermediate communi-

cation and transportation, and (ii) number of robotic vehicles

(with a selection on the amount of drones and SADRs), one

truck could carry-on (based on our setting, one truck can only

carry at most 2 drones and at most 3 SADRs). Following

this, the simulator scripts calculate the initial route for each

drone based on the JOCR-U algorithm. Table II shows the

basic setting of the simulations and the altitude of drone in

consideration varies from 0 to 50 m. In the setting of large

buildings, the size is closer to the connection range between

the drones. Width of an obstacle (e.g., building) is set to be

between 50 to 100 m. Parcel weight is restrict to 5kg for

drones, and 10kg for SADRs. To run the experiments in a

reproducible and reliable testbed, we use a trace-based drone-

robot-edge simulation platform that we developed on top of

ns-3. This platform integrates simulation on among drone,

SADR, truck and networking sides, and provides flexibility in

adding plugins for drones, SADRs and GCS to e.g., change the

mobility model on the robotic vehicles, adding multi-sensor

simulations and applying realistic map interfaces. For each

setting, we run the experiments in 5 different low density

architecture scenarios (i.e., 10% of the obstacle exists which

in turn causes 20% of blockage of A2G and G2G links in

the whole map) and 5 high density architecture scenarios

(i.e., 10% to 60% obstacle density). In addition, this platform

provides traces generated in every experiment, which was used

in our Reinforcement Learning training procedures.

TABLE II
ENVIRONMENT SETTINGS FOR SIMULATION

Application Settings Network Settings

No. of vehicle: 1-3 Transport protocol: RUDP
Delivery area: 10-15 miles Application Bit rate: 6 Mbps
Obstacle size: 60*30*20 m Tx power: 32-48 dBm
Radio range: 250 m Tx/Rx gain: 3 dB
Drone dist.: Euclidean Prop. model: TWO RAY
Truck/SADR dist.: Rectilinear Max. msg. size: 4000 bit
Simulation time: 7000-8000 s WIFI protocol 802.11s
Avg. vehicle speed: 10 - 35 mph Modulation: OFDM
Parcel weight: 5kg, 10kg Data rate: 65 Mbps

Composition Metrics. For the communication measurement,

we measure the average throughput level in Mbps of the

packet transmission channel on all the A2G, A2A, and G2G

links. Higher the throughput given, higher is the network

performance the algorithm can achieve. In addition, to test

the GCS’s ability to use ENCORE-offline and adapt to policy

changes, we evaluate our Reinforcement Learning module on

each trace for different δ values and for every query budget

fraction in δ ∈ [0.15, 0.25, 0.5], simulated on different reward

function weights.
For the time measurement, we use a simple time con-

sumption model, in which every drone starts with the same

flight time budget (i.e., 1000 seconds), and every SADR starts

with the same operation time budget (i.e., 2500 seconds). The

consumption is calculated during the whole parcel delivery

procedure. Next, we calculate the residual time by averaging

the individual residual vehicle operation time of all the robotic

vehicles in one experiment. We remark that the time used

for transmission is comprised of the times used for the

algorithm recalculation and network establishment. However,

the realistic operation time could exceed the given time which

may influence the success ratio of a given task. For example,

if a drone takes a long time for receiving the updated trace



TABLE III
ENCORE-offline PERFORMANCE COMPARISON ON THROUGHPUT (MBPS)

Drone M-GEAR (with θ = 0,1) ENCORE-offline (with θ = 0,0,25,0,5,0,75,1) O-HWMP

lo
w 1 0.89±0.39 2.48± 1.71 2.07± 0.77 1.93± 0.62 2.18± 0.60 2.84± 0.81 3.17±1.18 0.83± 0.22

3 1.70±0.72 2.19± 0.98 1.95± 0.57 2.15± 0.57 2.25± 0.57 2.64± 0.51 2.59±0.52 0.76± 0.22
h
ig

h 1 0.85±0.45 2.36± 1.84 1.56± 0.95 1.62± 0.88 2.05± 1.07 2.87± 1.36 3.01±1.57 0.77± 0.31
3 1.65±0.71 1.95± 0.82 1.94± 0.55 2.04± 0.56 2.31± 0.56 2.40±0.73 2.31± 0.37 0.71± 0.23

TABLE IV
ENCORE-offline PERFORMANCE COMPARISON ON DELIVERY COMPLETION TIME (S)

Drone M-GEAR (with θ = 0,1) ENCORE-offline (with θ = 0,0,25,0,5,0,75,1) O-HWMP

lo
w 1 10.25±0.7 10.22±0.46 10.19±0.34 10.20±0.37 10.19±0.42 10.22±0.37 10.20±0.31 9.83±0.61

3 8.14±0.14 8.15±0.13 8.14±0.12 8.07±0.18 8.06±0.18 8.06±0.50 8.01±0.40 7.32±0.89

h
ig

h 1 12.02±0.52 11.97±0.47 12.03±0.49 11.98±0.36 11.9±0.40 10.00±0.39 10.10±0.40 10.00±0.50
3 10.10±0.13 9.99±0.16 10.04±0.48 10.04±0.46 9.95±0.40 9.93±0.39 9.93±0.39 10.01±0.86

information packets from the ground nodes, it will waste time

hovering or will take a deflected flight course, which may

ultimately result in a delivery task failure.

B. Oracle and Baseline Solution Approaches

To design a better routing approach for the hybrid drone-

truck-robot system, we compare the delivery efficiency and

the throughput performance with existing state-of-the-art al-

gorithms and also the Oracle result. All experiments are using

the same dataset which is detailed earlier in Section V-A.

Non-AI-aided Stateless Protocol Baselines πM−GEAR

path
and

πO−HWMP

path
. Both baselines provide stateless protocol ap-

proaches which implement ad-hoc network path computation

in either air and/or ground links between mobile devices and

ground nodes. We compare our ENCORE-offline approach

with both non-AI protocols, viz., Gateway Based Energy-

efficient Routing Protocol (M-GEAR) [30] and the Optimized-

Hybrid Wireless Mesh Protocol (O-HWMP) protocol 802.11s

standard [31]. Since each protocol follows different aspects

of path computation strategies (e.g., O-HWMP, as a updated

version of RM-AODV [32] do not consider time constraints),

it is hard to compare side-by-side performance with each of

both approaches. However, M-GEAR as a variant of Geo-

graphical and Energy Aware Routing (GEAR) [33], is the

most appropriate baseline for comparison for two reasons: (i)

it considers resources energy constraints with given geo-spatial

information, which the energy consumed can be converted into

the time spent on drone in proportion, and (ii) it provides

simple geo-location based routing procedures.

AI-aided Stateless Protocol Baselines πPARRoT

path
. This base-

line utilizes AI techniques to enhance the performance of

the routing protocol design. Compared to the ENCORE-Heu

and ENCORE-RL approach we proposed, this predictive ad-

hoc routing fueled by reinforcement learning and trajectory

knowledge (PARRoT) [34] also considers obstacle blockage

on communication, and uses the Q-learning algorithm to

predict the trajectory of the drones. Both urban and rural

scenes are considered in PARRoT. However, based on the

settings relevant to our proposed application, we only compare

with the urban scene that the PARRoT estimated.

Oracle approach πOracle

path
. The Oracle baseline is given by

the optimized robotic vehicle operation path in advance by

considering: (i) the physical obstacle information among A2A,

A2G and G2G communication links relative to a drone or

a SADR, and (ii) the exact vehicle position on a time-by-

time basis with relevance to all GCS nodes (e.g., trucks).

This approach cannot be achieved when the environment is

unknown or if a new delivery position is added.

C. Evaluation results

Considering only offline approaches, ENCORE-offline and

O-HWMP are Pareto-optimal path computation strategies.

For every θ value given in Equation 1, Table III shows

that ENCORE-offline outperforms related GEAR and AODV

protocols in terms of the throughput level metric. Further,

Table IV shows that ENCORE-offline achieves comparable or

even better results in terms of time consumption. However, O-

HWMP shows better delivery time efficiency than ENCORE-

offline due to its ability to use spanning trees for minimizing

the number of control messages on the one robotic vehicle

scenario. Note that spanning tree approaches perform worst

compared with other protocols under high failure scenarios,

which are common in multiple robotic vehicle scenes. Thus,

we can conclude that both ENCORE-offline and O-HWMP are

Pareto-optimal robotic vehicle path computation strategies in

hybrid drone-truck-robot parcel delivery, if no online infor-

mation query and learning procedures exist. In other words,

both solutions have no alternative solutions that make any

one preference criterion better-off without making at least one

preference criterion worse-off.

ENCORE-offline performs suitably in offline only ap-

proaches. Due to local geo-spatial knowledge of the delivery

route, ENCORE-offline shows the most promising performance

compared with other geographic routing approaches (e.g.,

M-GEAR) as shown in the throughput standard deviation

values in Table III. Even through O-HWMP has advantages

over proactive stateful routing solutions, they do not show

advantages in highly dense mobility delivery scenarios (i.e.,

with high operation speed and limited delivery time) in terms

of acceptable throughput levels.

ENCORE-offline results from Tables III and IV can be

summarized as follows. We can see two major observations in

the single robotic vehicle (one drone and one SADR), single

truck scenario, when comparing low network failure (10% of

blockage obstacles in a map) and high network failure (60%

of blockage obstacles in a map) cases. In the first observation,

throughput as well as delivery completion times are higher

in low network failure scenes. This is because - it takes time

to calculate the routing path on each robotic vehicle, and the

vehicles will wait for transmission rebuild events. Moreover,

in the high network failure scenario, this operation happens

more frequently than in the lower network failure scenario.

In the second observation, on both high and low network
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Fig. 3. Horizontal comparison of three approaches with PARRoT and oracle solution in terms of throughput distribution and residual time on each drone.

failure scenes, single vehicle throughput performance varies

significantly considering different θ values. This is because -

in a single robotic vehicle scenario, the recovery time will

be longer than in the case of the multiple robotic vehicle

scenario in terms of the value of τ(n, d) going high, and the

performance on average throughput being relatively low when

τ(n, d) is considered.

ENCORE-Heu solution could be an alternative choice in

high density urban area scenarios w.r.t. connection and

resources. From the results in Figures 3a and 3b, we can see

that the ENCORE-Heu solution performance is different on

low network failure cases (with 10% of obstacles in a map)

and on high network failure cases (with 60% of obstacles

in a map). This is due to the fact that high network failure

cases normally consist of sequential architectures, where the

ENCORE-Heu solution could provide guidance for the future

location of robotic vehicles. On the other hand, a whole-

some infrastructure setup in metropolitan areas could provide

considerable sensor resources that could highly increase the

accuracy of our robotic vehicle position model used in the

ENCORE-Heu approach. Although PARRoT provides higher

network performance under similar learning-based trajectory

prediction algorithm, ENCORE-Heu could achieve significant

time saving than the PARRoT, which can be seen in both

Figures 3c and 4b. Moreover, compared with the ENCORE-

RL approach, the ENCORE-Heu solution does not require

significant computation resources. For example, we used AWS

SageMaker [35] to train the learning model and generate

policies. Once the tasks or the percentage of obstacles occu-

pation increases, the cost of time and budget is exponentially

increased. Thus, if there are budget limitations or if we

are addressing repetitive delivery tasks, the ENCORE-Heu

solution is a better choice.

Our approach - ENCORE outperforms in terms of effec-

tiveness and efficiency while solving the robotic vehicle

parcel delivery problem. By observing Figures 3 and 4

together, we can make the following interesting conclusions.

First, if we are not concerned about the lack of robotic vehicles
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Fig. 4. Success ratio and Performance gain (throughput gain by processed
time) of various approaches. Parameter with RL represents different δ value
choice in reward function.

in an urban area, or the lack of computation resources in a

warehouse, ENCORE-offline and O-HWMP are two off-line

Pareto-optimal choices for warehouse managers. On the con-

trary, when we are concerned with more effective approaches

(that increase the number of deliveries) in a metropolitan

area, online approaches such as the ENCORE-Heu algorithm

can provide a time-saving choice in terms of learning model

training. Finally, when a cost requirement is not important,

the ENCORE-RL approach with low δ values is most suited

as seen in Figure 4. Moreover, ENCORE-RL achieves between

85-96% of the Oracle strategy performance. We remark that

a lower δ value achieves more effectiveness (as seen in

the higher delivery success ratios in Figure 4a) and higher

efficiency (as seen in the high performance gains in Figure 4b).

VI. CONCLUSION

In this paper, we proposed and evaluated novel, coupled

robotic vehicle communication path computation algorithms

that use environmental awareness for the last-mile parcel de-

livery problem. Using trace-based simulations on multi-drone,

multi-truck optimal pre-application schedulers, we have shown

that our ENCORE-offline approach Pareto-optimally computes

efficient paths w.r.t. time and communication trade-offs, with

out being aware of the environment in advance. Moreover,

comparisons of proactive and reactive protocols showed that



our online ENCORE-RL algorithm achieves between 85-96%

of performance compared to the Oracle solution on average.

In addition, our approach is flexible to be implemented across

a range of small suburbs to large metropolitan areas with

different number of obstacles, and has a performance gain of

98% in terms of throughput versus time, in comparison with

the Oracle strategy.
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