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Abstract—We study games with nonlinear best response functions on structured networks. These network structures can emerge
from agents’ communities or multi-relational interactions, where each relation may follow a different interaction graph. For these
structured network games, we establish conditions for uniqueness and stability of pure strategy Nash equilibrium that are stronger yet
more computationally efficient to verify than their counterparts in prior research on unstructured (mostly single-relational) network
games. Specifically, the network structures enable us to determine Nash equilibrium uniqueness and stability conditions using
low-dimensional matrices, often on the order of the number of partitions. This is in contrast to conventional analyses that rely on
matrices with dimensions determined by the number of agents multiplied by the action space size. Additionally, we introduce a new
degree centrality measure to assess partition influence and use it to establish new Nash equilibrium uniqueness and stability
conditions. We compare our findings with prior unstructured network research both analytically and through numerical simulations.
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1 INTRODUCTION

NETWORK games are commonly used to model the strategic
interactions among interdependent agents, where the inter-

dependencies are typically described by a weighted and directed
(interaction) network, which also maps into an adjacency matrix.
The utility of an agent in these games depends on its own actions
as well as the actions of other agents in its local neighborhood
as defined by the interaction network. This framework can be
used to capture different forms of interdependencies between
agents’ decisions, such as allowing the action of an agent to be a
strategic substitute or complement to that of its neighbors. While
these problems have been extensively studied in prior works,
see e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], the
focus has been largely on network games with a single, generic
underlying network governing the relationship among agents.
These will be referred to as unstructured network games in this
paper; accordingly, their corresponding adjacency matrices will
be referred to as regular adjacency matrices. A main focus of this
line of work is in identifying sufficient conditions under which
the Nash equilibrium (NE) of such a network game is unique and
stable, see e.g., [10], [11]. Such conditions are important from
a number of perspectives. First, many equilibrium computation
algorithms require assumptions that guarantee the uniqueness of
the NE. To ensure the convergence or effectiveness of such algo-
rithms, verification of such assumptions is important. Moreover,
knowledge about properties like the uniqueness and stability of
an NE can help a (mechanism) designer in devising more suitable
mechanisms and interventions for the system.

In contrast to prior works, this paper focuses on network games
with structures that arise naturally. Specifically, we consider
two (non-mutually exclusive) families of structures in this study.
(1) In the first, the underlying network enjoys certain special
graphical properties, a prime example being agents forming local
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communities, thereby creating sub-graphs more strongly depen-
dent/connected within themselves. (2) In the second case, agents
enjoy multi-relational interactions, whereby they are connected
over multiple (parallel) networks, each of which governs the
dependency relationship of a different action dimension in a high-
dimensional action space. Our goal is to understand how the exis-
tence of these types of structures affects the resulting NE analysis,
and how to exploit such structures, when they exist, to provide
characterizations of conditions for the existence, uniqueness, and
stability of NEs in such network games. Similar to [1], [7],
[8], [10], [11], we consider utility functions with nonlinear best-
response functions and use the equivalent variational inequality
(VI) representation to study the properties of the NE.

It turns out that such network structures can be used to
our advantage in analyzing the NEs of these games, as well
as in substantially reducing the computational requirement for
verifying the aforementioned conditions. This is done by adopting
an extended or generalized form of adjacency matrix defined over
the space of both agents and actions, and identifying partitions in
this matrix as a result of the types of structures in the network
and/or in the agents’ dependent relationships described earlier.

Specifically, the computational effort in verifying the unique-
ness and stability conditions derived using existing methods, also
referred to as unstructured conditions in this paper, entails the
study of the properties of a game Jacobian (this is the Jacobian
matrix of the operator in the VI problem yielding the NE). This
matrix is in general asymmetric, making the condition verification
a co-NP-complete problem; this means the computational com-
plexity grows faster than polynomial time in the size of the game
(total number of agents for an unstructured network game, or total
number of agent-action pairs for a structured network game). In
the special case of a symmetric game Jacobian, the verification
complexity of such conditions still grows in polynomial time in
the size of the game.

In contrast, taking advantage of the partition structures in
a structured network game, we derive a new set of conditions,
also referred to as structured conditions, that depend only on the
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partitions in the game Jacobian and the size of the partitions.
Both structured and unstructured conditions are based on matrices
derived based on the game’s utility functions and adjacency
matrices. When the unstructured derived matrix is asymmetric
(resp. symmetric), the structured condition reduces the verification
complexity multiple degrees in exponential time (resp. polynomial
time). Empirically, as shown in Section 7, the verification of the
new condition takes only 2% of the CPU time needed to verify
the unstructured conditions from existing literature and avoids
memory overflow on large games.

Reducing the verification complexity is of great conceptual
and practical interest: it allows us to obtain a high-level under-
standing of a game much faster in a more sustainable manner
especially for large games, and enables early decisions. However,
such computational efficiency gain does come at a cost, in that
the structured conditions are stronger, i.e., they are sufficient
conditions to the unstructured conditions. In other words, some
games may satisfy the unstructured conditions (which guarantee
the uniqueness and stability of the NE) but fail to satisfy the
structured conditions. Our extensive numerical experiments show
that this sufficiency gap is small in general, and the sample games
that lead to such sufficiency gaps have concentrated features. We
characterize such features and provide real-world interpretations.

In addition to the uniqueness and stability of the NE, we
introduce a new notion of centrality for structured network games,
which can be viewed as a generalization of degree centrality. This
new centrality measures the influence or importance of a partition
in the network game. We show that this notion can help identify
additional conditions for the uniqueness and stability of the NE.

Our main contributions are summarized as follows.
• We provide sufficient conditions for the existence, uniqueness,

and stability of the NE in network games, by taking advantage
of the partition structures which may arise due to, e.g., the
existence of communities or multi-relational interactions.

• We show that these conditions are sufficient conditions to those
obtained in previous works, but that they are computationally
much easier to verify than their counterparts obtained using
conventional methods without utilizing the partition structures.

• The partition structure further allows us to define a new cen-
trality measure, which can be used to verify the uniqueness and
stability of the NE in these games.

• We conduct numerical experiments that compare our new con-
ditions with that in previous works in terms of their verification
complexity and strengths, which shed light on when using these
new conditions is advantageous.

Related works. Conventional (unstructured) network games
and their equilibrium outcomes have been studied in a variety of
application areas, including the private provision of public goods
[1], [2], [3], [12], security decision making in interconnected
cyber-physical systems [13], [14], shock propagation in financial
markets [15], and (anti)coordination of resources or opinions over
networks [16], [17], [18].

A common line of research in this literature studies the effect
of the network structure on the existence, uniqueness, and stability
of the game equilibria (see [19] for a survey). In particular, equi-
librium properties of unstructured network games with nonlinear
best-response functions have been studied in [1], [7], [8], [9],
[10], [11]. Allouch [1] introduces a sufficient condition for the
uniqueness of NE called network normality which imposes lower
and upper bounds on the derivative of Engel curves. Acemoglu
et al. [7] consider a network game with idiosyncratic shocks and

show that if the best response mapping is either a contraction with
a Lipschitz constant smaller than one or a bounded non-expansive
mapping, then the game has a unique NE. Zhou et al. [8] establish
a connection between nonlinear complementary problems (NCP)
and network games, and use results from the NCP literature to find
sufficient conditions for the uniqueness of NE.

Our work is closest to [9], [10], [11], which also use the
framework of variational inequalities to study network games with
nonlinear best-responses (for unstructured networks). Naghizadeh
and Liu [11] show that a sufficient condition for the unique-
ness and stability of the NE can be determined by the lowest
eigenvalue of matrices constructed based on the slope of the
agents’ interaction functions and the intensity of their interactions.
Parise and Ozdaglar [10] identify an operator in the variational
inequality problem which involves the derivative of the agent’s
cost with respect to its action, and show that various properties
of this operator and its Jacobian will determine conditions for the
existence, uniqueness, and stability of a NE.

Our prior related work [20] shows that community structures
can be utilized to derive sufficient conditions on NE uniqueness
and stability. This paper extends [20] by introducing more general
structured network games that further allow for multi-relational
dependencies between agents, and obtains sufficient conditions
for existence, uniqueness, and stability of NE in these network
games. The conditions in [20] can be recovered as special cases
of the structured conditions in Sections 4, 5, and 6, when we limit
our attention to a single-relational, multi-partite network and use
each partite as a partition.

The computational complexity of checking the uniqueness
of NE has also been explored in a number of prior works;
notably, [21], [22] show that verifying the uniqueness of NE is
in general an NP-hard problem. More recently, the complexity
of checking the existence of a NE in (unstructured) games on net-
works has been explored in [23], [24]. Our work contributes to this
literature by providing such results for structured network games.
A computationally efficient method for verifying the existence and
uniqueness of NE can further serve as a precursor to algorithms
for (efficient) computation of NE, or before implementing iterative
or distributed algorithms which require uniqueness of the NE for
convergence to it (e.g., [25], [26]).

2 MOTIVATING EXAMPLES

We elaborate on the idea of structured networks through a running
example consisting of a number of vendors/store owners (strategic
agents) selling similar merchandise. Please refer to Appendix B
for values used in Figure 1-4.

Communities due to stronger connectivity. Community
formation stems from situations where the strengths of agents’
strategic interactions are (statistically) different within certain
groups compared to those between these groups. One type of
community structure, commonly studied and discovered using
spectral analysis [27], [28], is characterized by groups with much
stronger connectivity (higher density of connections or existence
of edges, as well as higher edge weights on those edges) within
themselves, and much weaker connectivity (lower density of edges
and smaller edge weights) between them.

Consider the case of three store owners, with agents a1 and a2
in close proximity of each other and a3 located far away. Further,
consider the store owners’ single action of selecting business
hours. Since a1 and a2 offer similar goods, their individual
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decisions on business hours (from complete overlap to mutually
exclusive) will have direct consequences on the other’s business
volume and goods sold, resulting in a stronger dependence rela-
tionship between the two. Their dependence on (or influence of)
a3 may be far weaker. This is illustrated in the left of Figure 1,
where the stronger relationship between a1 and a2 is indicated by
a thicker edge; here a1 and a2 form a group or community.

Fig. 1. Network with communi-
ties/groups: 3 agents and 1 action
dimension; a1 and a2 form the
first group, a3 is a singleton group.

Fig. 2. Bipartite graph, where a1
and a2 are on one side, and ex-
hibit the same type of depen-
dence on a3 on the other side.

The recognition of groups gives rise to a “block” view in
the structured adjacency matrix shown in the right-hand side of
Figure 1. Given there is only a single action, here every row and
column is associated with an agent, resulting in a 3→3 interaction
matrix. The colors of the diagonal entries match the identity of
the agents depicted in the network as well as their indices. The
diagonal elements in the regular interaction matrix represent an
agent’s self influence, whereas the off-diagonal elements represent
the agents’ mutual influence. Similarly, the diagonal blocks in the
structured matrix represent a partition’s self influence, whereas
the off-diagonal blocks represent the partitions’ mutual influence.
These quantities will be precisely defined in the next section.

Communities due to similarity in function. Communities
can also result from a logical relationship. As an example, consider
again the three store owners, where a1 and a2 carry completely
orthogonal merchandise (e.g., a bakery vs. a hardware store) but
both rely on a3 to provide store security and vehicle rental as
needed, and consider the single action of staffing levels. In this
case, the dependency only exists between a1, a3, and between
a2, a3, but not between a1, a2, resulting in a bipartite network
shown in Figure 2. Yet in this case it is still appropriate to view a1
and a2 as belonging to the same group, because they each exhibit
very similar dependence on another group.

Partition on action dimensions. Our next example is more
complex and introduces a high-dimensional action space. The
general idea is that when actions are high-dimensional, the in-
teraction/dependency relationships among agents can be different
for different action dimensions, effectively resulting in multiple
parallel networks superimposed on each other; this will also be
referred to as a multi-relational network game.

Consider again the three store owners, each of which now
has both physical and online sales. It is reasonable to expect that
the decisions a seller makes about what goods to display in the
window or offer for sampling may have more impact on other
similar stores in its physical proximity (one set of agents), whereas
its decisions on webpage design, layout, picture quality, and pay-
ment options may only impact its online competitors (another set
of agents). In such multi-relational games, the action dimensions
naturally create action-based structures on the network.

Suppose we capture the above with two action dimensions (in-
store and online decisions), and further suppose in our case a1
and a2 are much more in direct competition in terms of physical-

store sales due to their proximity, but that a2 and a3 are much
more in direct competition in terms of their online sales due to
high similarity in the goods they carry. This means that agents
form different groups in different actions, as illustrated in Figure
3, where agents are represented by different colors and action
dimensions are represented by different shades. In the first (solid
color) action, a1 and a2 form a group whereas in the second (faded
color) action, a2 and a3 form a group.

To capture the multiple action dimensions, we will define
an extended adjacency/interaction matrix where each row and
each column represent an agent-action dimension pair; the regular
adjacency matrix is then a special case of this extended definition
when the action dimension is 1. Under this definition, we have a
6→6 interaction matrix for this example, shown in Figure 4. Given
such a matrix, partitions can emerge either by agents (similar sets
of agents form the same group regardless of the action dimension)
or by actions (interactions along different dimensions tend to be
orthogonal), as is the case in this example and shown in Figure 4.

Fig. 3. Action dimension partitioned graph,
with 3 agents and 2 actions. a1 and a2 are
closely connected on dimension 1. a2 and
a3 are closely connected on dimension 2.

Fig. 4. Action dimen-
sion partitioned matrix
for the network in Fig-
ure 3.

Arbitrary partitions in the extended adjacency matrix. We
note that the idea of a partitioned extended adjacency matrix is not
restricted to the above example scenarios. In principle, this can be
done across both agents and action dimensions in arbitrary ways.
As such, our approach, which is based on a partitioned matrix,
is applicable whether the structure arises due to special graphical
properties or multi-relational interactions, or both.

We also note that in our analysis, we will be working with the
Jacobian (↑F ) of a best-response operator (F ), defined precisely
in subsequent sections, rather than the extended adjacency matrix
(G) itself. This is because the former captures both first-order
and second-order information about the utility functions, which
is not captured in the latter. In particular, the extended adjacency
matrix does not reveal cross-action dependencies induced by the
utility functions. We will, however, also show that there is a direct
correspondence between a partition on the extended adjacency
matrix and that on the Jacobian. For this reason, the use of the
adjacency matrix in this section is for illustration purposes only,
as it is much more intuitive and straightforward to visualize the
described partition structures in an adjacency matrix.

3 MODEL AND PRELIMINARIES
3.1 The Structured Network Game Model
We consider a structured network game among N agents N =
{a1, . . . , aN}, each with K action dimensions.1 The multi-

1. We set the same K for all agents for simplicity of presentation. Having
heterogeneous action dimensions across agents will increase the number of
agent-action components; we can apply the same analysis to this larger
extended adjacency matrix, with the only difference being that this can increase
the verification complexity of the uniqueness and stability conditions.
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relational network is represented by a multi-relational graph with
extended adjacency matrix G. The adjacency matrix on the k-th
action dimension is denoted as G(k), and is a submatrix of G. The
edge weight G(k)

ij ↓ R is a real number representing the strength
of influence agent aj has on agent ai (or ai’s dependence on aj)
in the k-th action dimension.

We use x(k)
i ↓ R to denote the k-th action of agent ai,

xi = (x(k)
i )Kk=1 ↓ RK to denote the action vector of ai, and

x(→k)
i = [x(1)

i , · · · , x(k→1)
i , x(k+1)

i , · · · , x(K)
i ]T to denote the

action profile of ai, excluding the k-th dimension. In addition, let
x(k) = (x(k)

i )Ni=1 ↓ RN be the action vector of all agents on the
k-th action dimension, and x→i denotes the action profile of all
agents other than ai.

Each agent ai has an action constraint xi ↓ Qi =∏K
k=1 Q

(k)
i , where Q(k)

i := [0, B(k)
i ] such that B(k)

i captures
the physical or financial constraints (budgets) on the k-th action.

We consider games with utility functions consisting of an
individual component and a network component:

ui(xi,x→i, G) = di(xi) + fi(xi, G
(1)x(1), . . . , G(K)x(K)).

(1)
Here, di(·) is the individual component, which only depends on
ai’s own actions; conventionally, it contains a standalone benefit
and cost of taking action xi. The network component fi(·)
depends on not only the agent’s own but also others’ actions. Here,
the network influence on the k-th action dimension is captured
by G(k)x(k). Throughout the paper, we make the following
assumptions.

Assumption 1. The utility functions ui(xi,x→i, G) are concave
and twice continuously differentiable, for all i.

An example of this type of utility function is given below.

Example 1. The multi-relational extension of linear-quadratic
utility functions, studied in e.g., [29], has the following form,

ui(xi,x→i, G) = xT
i bi +

K∑

k=1

∑

j ↑=i

x(k)
i g(k)ij x(k)

j ↔ 1

2
xT
i Cixi,

where xT
i bi ↔ 1

2x
T
i Cixi is the individual component con-

taining the standalone benefit term and the cost term, and∑K
k=1

∑
j ↑=i x

(k)
i g(k)ij x(k)

j is the (multi-relational) network in-
fluence component. (We can further expand this utility function
with cross-relational influence terms

∑K
k=1

∑
j ↑=i x

(k)
i g(k,l)ij x(l)

j ,
where G(k,l) is a submatrix in G modeling the network influence
from the l-th action to the k-th action.)

A Nash equilibrium of the described structured network game
can be found as a fixed point of the agents’ best response
mappings. The best response of an agent in the network game
is defined as the action an agent takes to maximize its own utility,
given other agents’ actions and the network topology. For our
model, we denote the best response of agent ai as

BRi(x→i, G) := arg max
xi↓Qi

ui(xi,x→i, G).

We also define an operator Fi as follows,

Fi(xi,x→i) = ↔↑xiui(xi,x→i, G) ↓ RK . (2)

Next, we introduce the Variational Inequality (VI) framework
and its relation to Nash equilibria in network games.

3.2 The Variational Inequality (VI) Problem

Variational Inequalities (VIs) are a class of optimization problems
with applications in game theory. In particular, the Nash equilibria
of many games can be found as solutions to a corresponding VI
problem [10], [30]. We state the VI problem formally below, using
the set of notations introduced earlier so that the correspondence
between the game model and the VI problem is clear.

Definition 1. A variational inequality V I(Q,F ) consists of a set
Q ↗ RN and a mapping F : Q ↘ RN , and is the problem of
finding a vector x↔ ↓ Q such that,

(x↔ x↔)TF (x↔) ≃ 0, ⇐x ↓ Q. (3)

Finding the Nash equilibrium of a structured network
game is equivalent to solving a variational inequality problem
V I(Q,F (x)) with the appropriate choice of Q and F . An exam-
ple choice of Q and F is: Q = Q1→Q2→. . .→QN ↗ RNK , with
Qi being the action space of ai, and F (x) = (Fi(xi,x→i))Ni=1 ↓
RNK , with Fi(·) given in (2). Then, since finding an NE is the
problem of finding a fixed point of the best response mappings
in (3.1), it is equivalent to solving the VI problem given in
(3) with the choice of F and Q stated above (see, e.g., [31,
Proposition 1.4.2]). Intuitively, if the equilibrium x↔

i is an interior
point of Qi, then Fi(x↔

i ,x
↔
→i) = 0 if and only if x↔

i is a best
response to x↔

→i; if x↔
i is on the boundary, we can still show

(xi↔xi
↔)TFi(x↔) ≃ 0 holds. Note also that the above definition

holds for Q and F that are permutations of the preceding example
choice, as long as the permutations are consistent.

3.3 Partitions

We next formally define partitions in a structured network game.
As shown in Section 2, a partition is essentially a set of indices,
where each index corresponds to an agent-action pair (which
also corresponds to a column or row in the extended adja-
cency/interaction matrix G). Figures 1, 2, and 4 show how, by
grouping certain indices together (rearranging rows and columns),
block structures may emerge in G.

It turns out a block structure in G translates to a similar block
structure in the Jacobian of the operator F , when F is a suitable
permutation of the operator (Fi(xi,x→i))Ni=1 consistent with the
partitions. In Eqn (2), we can think of Fi as the best response
direction vector of ai, where each element in Fi corresponds
to an agent-action component. Therefore, operator F (x) is the
global best response direction vector containing all agent-action
components; these components can be arranged in an arbitrary
order, and (Fi(xi,x→i))Ni=1 corresponds to a common order.

While F captures important first-order derivative information
of the utility functions with respect to the agent-action compo-
nents, the Jacobian of F , denoted as ↑F captures important
second-order information of the utility functions and first-order
information of the operator F . It is common, see e.g., [10], [11],
[30], to use the properties of ↑F to derive unstructured conditions
for equilibrium analysis.

When K = 1, ↑F ↓ RN↗N , where the off-diagonal
elements in ↑F measure how an agent’s action influences another
agent’s best response. For K > 1, ↑F ↓ RNK↗NK , and now
the off-diagonal elements in ↑F measure how an agent-action
component influences the best response direction of another agent-
action component.
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There is a one-to-one mapping between the dimensions
in ↑F and G, since each dimension in ↑F and G corre-
sponds to an agent-action component, and thus any partition
on G can equally apply to ↑F , as partitions are nothing
more than separating the agent-action components into disjoint
sets. Using the same 3-agent, 2-action example in Figures 3
and 4, while (Fi(xi,x→i))Ni=1 orders the agent-action com-
ponents as x(1)

1 , x(2)
1 , x(1)

2 , x(2)
2 , x(1)

3 , x(2)
3 , F orders them as

x(1)
1 , x(1)

2 , x(1)
3 , x(2)

1 , x(2)
2 , x(2)

3 . Then, if we partition the network
as shown in Figure 3, we can partition ↑F the same way, as
illustrated in Figure 4.

We note that the partition based on (agent) group structure and
the partition based on action dimensions are special cases. For
the remainder of the paper, we will discuss network games with
general, arbitrary partition structures. Specifically, for an arbitrary
structure, we can partition all the NK agent-action components
(and their corresponding indices) into an arbitrary number (M ) of
disjoint sets, denoted by P1, . . . ,PM . Accordingly, we will also
denote by Ni = |Pi| the size of the partitions.

4 EXISTENCE AND UNIQUENESS

4.1 Existence of NE
We first state the conditions under which a NE exists. The
following theorem from [30] guarantees the existence of NE:

Theorem 4.1. ( [30, Theorem 3]) If F is continuous on Q, and Q
is nonempty, compact and convex, then V I(Q,F ) has a nonempty
and compact solution set.

This is because in our problem, Q = Q1 →Q2 → . . . →QN ,
with Qi = [0, B(1)

i ] → . . . → [0, B(K)
i ], so that together with

Assumption 1, the conditions of Theorem 4.1 are satisfied for the
network game defined in Section 3.1.

4.2 Uniqueness of NE
We next introduce sufficient conditions under which the network
game defined in Section 3.1 has a unique NE. We begin by
introducing the following definitions.

Definition 2. P-Matrix: A matrix A ↓ RN↗N is a P-matrix if
every principal minor of A has a positive determinant.

Definition 3. A mapping F : Q ⇒↘ RNK , where Q ↗ RNK is
nonempty, compact and convex, and F is continuously differen-
tiable on Q, is strongly monotone if there exists a c > 0 s.t.

(x↔ y)T (F (x)↔ F (y)) ≃ c⇑x↔ y⇑22, ⇐x,y ↓ Q .

Further, F = (F1, F2, . . . , FN ) is a uniform block P-function
w.r.t. the (agent-level) partition Q = Q1 → Q2 → · · · → QN if
there exists a constant b > 0 such that

max
i↓N[1,M ]

(xi ↔yi)
T [Fi(x)↔Fi(y)] ≃ b⇑x↔y⇑22, ⇐x,y ↓ Q .

By setting b = c/N , it is easy to see that strong monotonicity
is a sufficient condition for the uniform block P-condition. Parise
and Ozdaglar [10] show that if F (x) is a uniform block P-
function, then V I(Q,F ) has a unique solution, and the NE of
the network game corresponding to V I(Q,F ) is unique. Unfor-
tunately, it is computationally costly to verify these conditions for
the function F (x), since checking whether a square matrix is a
P-matrix is co-NP-complete [32], and typically, the complexity

grows (faster than polynomial time) in the size of the matrix.
Below, we show that it is possible to take advantage of the
block structure when it is present, and identify conditions for
the uniqueness of NE that are of lower computational complexity
to verify. To do so, we define a structured matrix !S and its
components, the internal and external impact levels of partitions.

Definition 4. We say a partition Pi receives internal impact, ωS
i ,

and external impact, εS
ij , defined as follows:

ωS
i = inf

x↓Q
⇑↭iFi(x)⇑2, ⇐i ↓ N[1,M ]

εS
ij = sup

x↓Q
⇑↭jFi(x)⇑2, ⇐i, j ↓ N[1,M ], i ⇓= j ,

where ↭jFi(x) ↓ RNi↗Nj is a matrix with k, l-th entry ωF (k)
i (x)

ωx(l)
j

.

The structured matrix !S is defined accordingly as:

!S =





ωS
1 ↔εS

12 . . . ↔εS
1M

↔εS
21 ωS

2 . . . ↔εS
2M

...
...

. . .
...

↔εS
M1 ↔εS

M2 . . . ωS
M



 . (4)

We note that these impact measures are only defined between
partitions and not agents. Accordingly, in this definition the
subscripts are indices of partitions instead of agents.

To motivate the above definition, it helps to understand the
matrix !S in the context of what is typically used in prior works
for checking the uniqueness of the NE. If we ignore the structure in
the network and simply view each agent-action pair as a singleton
partition, then using an existing methodology (such as in [10],
[11], [30]) will give us the Jacobian !U , which is a NK →NK
matrix. Specifically, !U is given by

!U =





ωU
1 ↔εU

12 . . . ↔εU
1,NK

↔εU
21 ωU

2 . . . ↔εU
2,NK

...
...

. . .
...

↔εU
NK,1 ↔εU

NK,2 . . . ωU
NK,NK



 , (5)

and contains the following elements:

ωU
k = inf

x↓Q
|↭kFk(x)|, ⇐k ↓ N[1, NK]

εU
kl = sup

x↓Q
|↭lFk(x)|, ⇐k, l ↓ N[1, NK], k ⇓= l.

To clarify, these will be referred to as the component-level internal
and external impact, respectively. Suppose we rearrange the rows
and columns of !U in the following way: group together rows
whose action dimensions are in Pi, i = 1, · · · ,M ; group together
columns whose agents are in Pj , j = 1, · · · ,M .

We can now view this rearranged !U in blocks/submatrices
denoted by !U

Pi,Pj
, and there are M → M blocks. The matrix

!S is essentially a condensed version of this rearranged matrix,
summarizing or abstracting each block into a single quantity as
defined in Definition 4: ωS

i for the diagonal block !U
Pi,Pi

and εS
ij

for the off-diagonal block !U
Pi,Pj

.
This abstraction aims at capturing the dependence relationship

between partitions rather than between individual agent-action
pairs. In particular, εS

ij represents the largest influence level of
partition Pj on partition Pi, and ωS

i represents the minimum
influence level of Pi on itself. Formally:

Lemma 4.2. We have ⇑!U
Pi,Pj

⇑2 ≃ εS
ij and ⇑!U

Pi,Pi
⇑2 ⇔ ωS

i .
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In what follows, we show that the matrix !S can be used
to provide sufficient conditions on the uniqueness of NE in
network games with partition structures. Such an abstraction takes
advantage of the partition structure and reduces the dimension
of the matrix used to check conditions for the uniqueness from
NK → NK to a single M →M matrix and M matrices of size
|Pk| → |Pk|, k ↓ [1,M ]. This greatly reduces the complexity
of condition verification, since as mentioned earlier, P-matrix
verification is co-NP-complete [32], and the complexity typically
grows (faster than polynomial) in the size of the matrix. For
example, in a special case where the matrix is symmetric, P-matrix
verification is equivalent to examining its positive definiteness and
the complexity becomes O(N3) for an N→N matrix. If there are
N = 20 agents on the network with K = 5 action dimensions,
then the verification complexity of unstructured conditions is
O(106); if we partition the game by action dimensions, the
complexity of the structured conditions is 5 · 8 ·O(103)+O(53),
much lower than O(106). This complexity gap will only increase
if the matrix is asymmetric.

However, we also note that the strengths of the conditions
obtained from the structured network and the unstructured net-
work are not equivalent. Specifically, we will later show that
the conditions obtained from the structured network are stronger
(sufficient conditions to) their counterparts in the unstructured
network. Numerical results presented in Section 7 also highlight
the gap between these two sets of conditions.

The following result identifies a condition for the uniqueness
of the NE in games with the structured network.

Theorem 4.3. If the following two conditions are satisfied,

1) !S is a P-matrix, and
2) !U

Pi,Pi
, ⇐i (the diagonal blocks of !U ) are P-matrices,

then the network game has a unique NE.
Moreover, when both conditions are satisfied, then !U is also

a P-matrix; i.e., the uniqueness conditions (1 & 2) on the struc-
tured network are also a sufficient condition for the uniqueness
of the NE in the underlying unstructured network (i.e., one that
ignores the partitioned structures).

An interpretation of the above result is as follows. As noted
earlier, εS

ij represents the external impact of partition Pj on
partition Pi, while ωS

i is the internal impact of Pi. Typically,
when εS

ij has a relatively small value compared to ωS
i , then !S

is a P-matrix. Moreover, when !S is (row or column) diagonally
dominant, then !S is a P-matrix [33]. In these types of networks,
partitions’ action profiles have a bounded influence on each other.
Conversely, if at least one partition’s action profile has an out-sized
effect on other partitions, then its decision can shift the state of the
network substantially and result in possibly multiple equilibria.

Remark 1. It is worth mentioning that the structured (resp.
unstructured) network condition verification is of a much lower
complexity if !S (resp. !U ) is symmetric. By [34], a symmetric
matrix is a P-matrix if and only if it is positive definite, which
means that instead of checking the determinant for every principal
minor, we only need to do an eigendecomposition. This reduces
the complexity from solving a co-NP-complete problem down to
polynomial time.

We next present two corollaries of Theorem 4.3 which provide
alternative ways for verifying the uniqueness of NE in structured

network games. We define

”S =





0 ↔εS
12/ω

S
1 . . . ↔εS

1M/ωS
1

↔εS
21/ω

S
2 0 . . . ↔εS

2M/ωS
2

...
...

. . .
...

↔εS
M1/ω

S
M ↔εS

M2/ω
S
M . . . 0



 , (6)

where εS
ij and ωS

i are as in Definition 4. Similar to before, by
treating each agent as a singleton partition, we can obtain ”S’s
unstructured counterpart, ”U ↓ RNK↗NK . We also denote the
spectral radius of ”S as ϑ(”S). By [35], if ϑ(”S) < 1, then
!S is a P-matrix. Therefore, we have the following Corollary of
Theorem 4.3.

Corollary 4.3.1. Assume both of the following conditions hold
1) ϑ(”S) < 1 ,
2) !U

Pi,Pi
, ⇐i are P-matrices.

Then, the network game has a unique NE and !U is a P-matrix.

Intuitively, the conditions of Corollary 4.3.1 guarantees !S is
a P-matrix, and we can use Theorem 4.3 to show !U is a P-matrix.

By [34], we know that a symmetric matrix is a P-matrix if and
only if it is positive definite. Therefore, we have the following:

Corollary 4.3.2. Assume ”S is a symmetric matrix. Denote the
eigenvalues of ”S by ϖ1(”S) ⇔ ϖ2(”S) ⇔ · · · ⇔ ϖM (”S).
Then, the network game has a unique NE if the following two
conditions hold simultaneously,

1) ϖ1(”S) > ↔1,
2) !U

Pi,Pi
, ⇐i are P-matrices.

Moreover, under these conditions, !U is a P-matrix.

These corollaries provide two alternative ways to check for
the uniqueness of the NE. In terms of complexity, both finding
the spectral radius and the eigendecomposition are of complexity
O(N3) for an N → N matrix; these corollaries’ conditions
are therefore computationally easier to verify than the co-NP-
complete problem. However, the trade-off is that the conditions
in Corollary 4.3.1 are stronger than those of Theorem 4.3, while
Corollary 4.3.2 can only be used given a symmetric ”S (resp.
”U ) on structured (resp. unstructured) networks. It is also worth
mentioning that even when !S (resp. !U ) are asymmetric, we can
still have symmetric ”S (resp. ”U ) matrices, and thus, Corollary
4.3.2 could still provide a computationally lighter alternative
verification in these cases.

Lastly, we again note that ”U ↓ RNK↗NK could be formed
by treating each agent as a singleton partition. When we take this
viewpoint, Corollary 4.3.2 reduces to Proposition 3 of [11]. On
the other hand, by using the partition structure, ”S is an M →M
matrix, and the conditions in Corollary 4.3.2 are computationally
easier to verify as compared to those in [11]. Specifically, checking
the eigenvalues of a matrix requires performing eigendecomposi-
tion over it. To elaborate on the comparison, suppose Ni = N
for all Pi (all partitions have the same size). Then, using the
unstructured network, the complexity of the eigendecomposition
on !U or ”U is O(K3N3) while using the partition structure,
the complexity on !S or ”S is reduced to O(M3). Of course,
using the partition structure, we have to compute the ωS

i and εS
ij

values as well, which is of complexity O(M2N
3
). Altogether,

the complexity of checking whether !S is a P-matrix under the
conditions in the above corollary is O(M3 +M2N

3
), which can

be much lower than O(K3N3) in the unstructured case.
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4.3 Sufficiency Gaps on the Uniqueness Conditions

To close this section, we elaborate on the difference between using
and not using information about partition structures in checking
for the uniqueness of Nash equilibria.

The first thing to note is that, as mentioned earlier, the set of
sufficient conditions derived when accounting for partition struc-
tures are generally stronger than their counterparts derived without
using information about the structure: as Theorem 4.3, Corollary
4.3.1, and Corollary 4.3.2 indicate, if a structured network satisfies
these uniqueness conditions, then it also satisfies the correspond-
ing unstructured uniqueness conditions, but the opposite is in
general not true. This means that there is a sufficiency gap between
the conditions obtained from the structured and unstructured
networks. The most important reason behind this sufficiency gap
has to do with the way partition structures are abstracted. There
are two forms of abstractions made during the creation of the !S

matrix; both are for partitions and each summarizes the component
(agent-action) level internal and external impact, respectively:

1) The internal impact ωS
i of partition Pi, is an abstraction of

the component-level internal impact ωU
k for components (and

corresponding indices) in Pi, and component level external
impact εU

kl between different indices in Pi;
2) The external impact εS

ij of Pj on Pi, is an abstraction of
component-level external impact of indices in Pj to indices
in Pi.

These types of abstractions inevitably introduce gaps in the
sufficiency conditions. As mentioned in Lemma 4.2, the value of
ωS
i is lower-bounded by ⇑!U

Pi,Pi
⇑ and highly depends on the

agents with component-level internal impact in Pi. Meanwhile,
the εS

ij value is upper bounded by ⇑!U
Pi,Pj

⇑, and highly depends
on the strongest component-level external impact from one index
in Pj to another in Pi. The significance of ωS

i in verifying
conditions for the uniqueness of the Nash equilibria is akin to
the observation “a chain is as strong as its weakest link”; we refer
to this as the “weakest link effect”. Similarly, the significance of
the εS

ij values is referred to as the “strongest link effect”.
Recall an earlier observation in Theorem 4.3 that when

each agent has stronger component-level internal impact than
component-level external impact, the NE is unique. Similarly,
in terms of structure, when each partition has stronger internal
impact than external impact, the NE is unique and the conditions in
Theorem 4.3 and Corollaries 4.3.1, 4.3.2 are sufficient to guarantee
such impact differentials.

In some games, the indices k with weak component-level
internal impact ωU

k also have weak component-level external
impact εU

kl while the indices l with strong component-level in-
ternal impact ωU

l have similarly strong component-level external
impact εU

lk. While we may be able to guarantee the uniqueness
of an NE using the unstructured network, we may not be able
to do so using structures when a partition contains both types of
(strong and weak) indices. This is because the abstraction becomes
inaccurate as the partition’s internal impact ωS

i is weak and the
external impact εS

ij strong; thus the conditions obtained from the
structured network may fail to guarantee the uniqueness of NE.
The following example highlights these observations.

Example 2. Consider a 4-agent, single-action dimension, 2-
partition game where agents a1, a2 form P1 and agents a3, a4
form P2, with utility functions: u1(x) = x1(x2 + 5x3) ↔

5x2
1, u2(x) = x2(x1 + x4) ↔ 2x2

2, u3(x) = x3(x4 + 5x1) ↔
5x2

3, u4(x) = x4(x3 + x2)↔ 2x2
4. Then, we have

!U =





10 ↔1 ↔5 0
↔1 4 0 ↔1
↔5 0 10 ↔1
0 ↔1 ↔1 4



 ↖ 0, !S =

[
3.84 ↔5
↔5 3.84

]
↙ 0,

which means that the unstructured condition guarantees the
uniqueness of the NE in this game, yet the game fails to satisfy
the sufficient structured condition. This is an example when the
internal impact of a partition is weak but the external impact
between partitions is strong.

We end this section by summarizing the types of games and
partition structures that result in small sufficiency gaps between
the two sets of conditions. The sufficiency gap is small if the
partition members have similar component-level internal impacts;
or if the members have similar connections to members in other
partitions and have similar component-level external impacts; or
if the member with the weakest component-level internal impact
also has the strongest component-level external impact. We further
elaborate on these comparisons through experiments in Section 7.

5 STABILITY

We next examine conditions for the stability of the NE in these
games. When small changes occur to the underlying model pa-
rameters, a new NE may result. Intuitively, if the new NE is close
enough to the original one, then we say the original NE is stable.

Formally, we generalize our utility functions in Eqn (1) to
the family of parameterized functions ui(xi,x→i,pi), where
pi = [p(1)i , · · · , p(K)

i ] ↓ RK is a vector valued perturbation
parameter or shock on ai, and p = [p1, · · ·pN ] ↓ RNK denotes
the vector of all perturbations/shocks. Moreover, let x↔(p) be the
action profile at the NE of the game under perturbation vector p
and x↔ be the NE of the unperturbed game (x↔ := x↔(0)).

We denote a ball of radius r > 0 centered at x ↓ RN by
B(x, r) :=

{
y ↓ RN : ⇑x↔ y⇑2 < r

}
.

Definition 5. ( [36]) A NE x↔ is stable if ∝r > 0, d > 0 such
that ⇐p ↓ B(0, r), the NE x↔(p) exists and satisfies

⇑x↔(p)↔ x↔⇑2 ⇔ d⇑H(x↔(p),p)↔H(x↔(p),0)⇑2 ,

where H(x,p) = (Hi(x,p))Mi=1 with

Hi(x,p) = xi ↔BRi(x→i, G,p) .

Definition 5 states that if an NE x↔ is stable, the NE of
the perturbed game (x↔(p)) remains close to the NE of the
unperturbed game (x↔(0)).

5.1 Stability Condition Without Network Structure
To determine whether an NE x↔ is stable, [11] proposed dividing
the agents’ action indices into three disjoint sets based on x↔:

A(x↔) :={j = ϱ(i, k) | x(k)↔
i > 0, x(k)↔

i = B̃R
(k)
i (x↔

→i, ui)},

I(x↔) :={j = ϱ(i, k) | x(k)↔
i = 0, x(k)↔

i > B̃R
(k)
i (x↔

→i, ui)},

B(x↔) :={j = ϱ(i, k) | x(k)↔
i = 0, x(k)↔

i = B̃R
(k)
i (x↔

→i, ui)},

where B̃Ri(x↔
→i, ui) is the unbounded best response and can

take negative values, B̃R
(k)
i denotes the k-th action dimension
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unbounded best response, and ϱ : {1, . . . , N} → {1, . . . ,K} ⇒↘
{1, . . . ,KN} maps the N → K agent-action indices pair to the
KN indices in the unstructured operator F . A(x↔) is referred
to as the set of active indices, I(x↔) the set of strictly inac-
tive indices, and B(x↔) the set of borderline inactive indices.
Intuitively, with a small parametric perturbation p, agent action
indices in A(x↔) remain active (x(k)↔

i (p) > 0) and agent action
indices in I(x↔) remain inactive (x(k)↔

i (p) = 0), while agent
action indices in B(x↔) can transform from inactive to active
(x(k)↔

i (p) > x(k)↔
i (0) = 0). Under these definitions, [11]

established the following sufficient condition for the solution to
V I(Q,F ) to be stable in the sense of Definition 5.

Theorem 5.1. ( [11]) Consider the matrix

↭A,BFA,B(x
↔) =

[
↭AFA(x↔) ↭BFA(x↔)
↭AFB(x↔) ↭BFB(x↔)

]
(7)

where ↭S1FS2(x
↔) is a sub-matrix of ↭F (x↔) with rows and

columns corresponding to the agent action indices in sets S1 and
S2 (not necessarily groups), respectively, and ↭A,BFA,B(x↔) is
generated by selecting rows and columns corresponding to A′B
from the game Jacobian ↭F (x↔). If ↭A,BFA,B(x↔) is positive
definite on Q, then the solution x↔ to V I(Q,F ) is stable.

Below we provide an easier to verify condition as compared to
that in Theorem 5.1 by taking the partition structure into account.

5.2 Stability Condition with Partition Structure
Similar to [11], we divide partitions into active, strictly inactive,
and borderline inactive sets. Specifically: (1) a partition is active
if at least one agent action index in that partition is active at NE
x↔; (2) if all agent action indices in a partition are strictly inactive,
then the partition is strictly inactive; (3) if all agent action indices
of a partition are inactive and at least one of them is borderline
inactive, then the partition is considered as a borderline inactive
partition. Formally, we have,

AS(x
↔) := {Pi | x↔

Pi
⇓= 0},

IS(x
↔) := {Pi | x↔

Pi
= 0,x↔

Pi
> B̃RPi(x

↔)},
BS(x

↔) := {Pi | x↔
Pi

= 0}↔ IS(x
↔), (8)

where AS(x↔), IS(x↔), BS(x↔) denote the set of active, strictly
inactive and borderline inactive partitions, respectively. We use
x↔
Pi

, and B̃RPi(x
↔) to denote the vectors by choosing all indices

in partition Pi from x↔, and B̃R(x↔).

Theorem 5.2. Consider an NE x↔ of the network game. Re-index
all partitions in AS(x↔)′BS(x↔) with indices 1, 2, · · · , Z , Z =
|AS(x↔)|+ |BS(x↔)|. Then, define

HS(x↔) =





ςS1 (x
↔) ↔φS12(x

↔) . . . ↔φS1Z(x
↔)

↔φS21(x
↔) ςS2 (x

↔) . . . ↔φS2Z(x
↔)

...
...

. . .
...

↔φSZ1(x
↔) ↔φSZ2(x

↔) . . . ςSZ(x
↔)





where φSij(x
↔) = ⇑↭jFi(x↔)⇑2, ςSi (x

↔) = ⇑↭iFi(x↔)⇑2. If
the following conditions hold simultaneously:

1) HS(x→) ↖ 0,
2) ↭iFi(x↔) ↖ 0, ⇐Pi ↓ AS ′BS ,

then x↔ is stable. Moreover, these conditions are sufficient for
↭A,BFA,B(x↔) ↖ 0, i.e., the condition for stability on an
unstructured network (Theorem 5.1) holds under these conditions.

Intuitively, the matrix HS(x↔) captures the mutual influence
between active and borderline inactive partitions at the current
NE profile. The borderline inactive partitions can turn into active
partitions under parametric perturbations. When such flips are
significant, large fluctuations can appear in the network, which
can be further amplified through rebounds and reflections. In this
case, new equilibria may not exist, and even if they do, they
may be far away from the original equilibrium. However, when
HS(x↔) ↖ 0 holds, the maximum impacts of flipping partitions
from (borderline) inactive to active are bounded, and therefore the
current NE remains stable.

In terms of the complexity of verifying these conditions, note
that HS is a Z → Z matrix. Similar to the comparison shown
in Section 4, if we denote Y = |A(x↔)| + |B(x↔)|, then the
computational complexity of condition verification in Proposition
5.2 vs. Theorem 5.1 are O(Z3 + Z2N

3
) vs. O(K3Y 3), where

N is the average group size. Therefore, since Z < KY (ZN ∞
KY ), the computational complexity of condition verification in
Proposition 5.2 is lower than that of Theorem 5.1.

We conclude this section with a stability condition on !S .

Theorem 5.3. Assume !S is symmetric. Then if both of the
following conditions hold:

1) !S ↖ 0,
2) !U

Pi,Pi
, ⇐i are P-matrices,

the network game’s NE is unique and stable.

6 CENTRALITY

In network games, notions of node centrality are used to measure
the influence of individual nodes on network-level outcomes.
Degree centrality is one of the centrality metrics which has gained
attention in the literature [37], [38]. In a directed graph, two
different measures of degree centrality are considered for each
node: in-degree centrality, which is a count of edges directed to
a given node, and out-degree centrality, which is the number of
outward edges from the given node. In this section, we propose a
generalization of the degree centrality for disjoint partitions.

Recall that we capture the influence of a partition using the
Jacobian matrix ↭F (x). Matrix ↭jFi(x) measures the sensitivity
of partition i to the action profile of partition j. Accordingly, we
define our generalized centrality measure as follows.

Definition 6. Generalized Degree Centrality (GDC): Following
Definition 4, denote εS

ij = supx↓Q ⇑↭jFi(x)⇑2, and ωS
i =

infx↓Q ⇑↭iFi(x)⇑2. The generalized degree centralities for par-
tition Pi are given by:

Din
i =

∑

j:j ↑=i

εS
ij

ωS
i

, Dout
i =

∑

j:j ↑=i

εS
ji

ωS
j

, ⇐i, j ↓ N[1,M ] .

Moreover, the maximum GDCs are defined as follows:

Din
max = max

i↓N[1,M ]
Din

i , Dout
max = max

i↓N[1,M ]
Dout

i .

The above definition can be interpreted as follows: out-degree
centrality measures the influence of a given partition Pi on the
network based on three factors, (1) connectivity, or the number
of links directed outward from Pi, (2) the internal impact of the
target partitions that receive impact from Pi, and (3) the external
impact Pi has for every target group. In Definition 6, Dout

i and
Din

i capture these factors through the summation of
εS
ji

ϑS
j

and
εS
ji

ϑS
i

.
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In addition to capturing importance due to their roles in
the network, each partition can be endowed with certain exoge-
nous (non-network related) importance (not to be confused with
external impact from another partition). This will result in an
extended centrality measure. The following is a generalization of
the extended centrality measure defined in [39].

Definition 7. Generalized Extended Degree Centrality (GEDC):
Let e ↓ RM

>0 denote the vector of external importance, where
(e)i = ei > 0 is Pi’s external importance. The generalized
extended degree centralities for Pi are given by

Din
i (e) =

∑

j:j ↑=i

εS
ij

ωS
i

ej
ei
, Dout

i (e) =
∑

j:j ↑=i

εS
ji

ωS
j

ei
ej

, ⇐i, j ↓ N[1,M ]

and the maximum GEDCs are defined as

Din
max(e) = max

i↓N[1,M ]
Din

i (e), Dout
max(e) = max

i↓N[1,M ]
Dout

i (e) .

When e = ω1,ω > 0, Definitions 6 and 7 are equivalent. We
now connect our centrality measure and the uniqueness of the NE.

Theorem 6.1. If both of the following conditions hold:
1) !U

Pi,Pi
, ⇐i are P-matrices,

2) ∝ e ↖ 0 such that Din
max(e) < 1, or Dout

max(e) < 1,
then the NE is unique. If in addition !S is symmetric, the NE is
unique and stable.

Theorem 6.1 implies that if either the in-degree or out-degree
GEDCs are bounded, then the NE is unique. On the other hand,
if neither the indegree nor outdegree is bounded, then at least one
partition has an outsized effect on the network. This partition’s
decision can change the state of the network significantly, resulting
in possibly multiple equilibria.

Theorem 6.1 is similar to Proposition 7 in [30], but differs
as follows. In our work, εS

ij represent the influence of partitions
on each other, while εij in [30] represent the component-level
influence of agents on each other. Moreover, when both conditions
in Theorem 6.1 hold, !S ↖ 0; this then becomes a special case
of the condition in Corollary 4.3.2 (where !S is symmetric).

Moreover, if !S is symmetric, Theorem 6.1 shows that the
unique NE is also stable. Intuitively, this is because if a partition’s
degree centrality is not bounded, it has a considerable impact on
the network, and the NE may not be stable as a small perturbation
affecting this partition can influence the network dramatically.

7 NUMERICAL RESULTS
We now present numerical results to compare the verification
complexity and sufficiency gaps on the two sets of structured
and unstructured conditions. We first use games where both sets
of conditions are satisfied to allow comparisons of verification
complexity. We then generate games using different parameter
settings, and measure how frequently the structured conditions
fail while the unstructured conditions are satisfied, to assess
the sufficiency gap. We detail the generation steps of the game
instances on which these comparisons are done in Appendix J.2.

7.1 The Computational Complexity Gap
As discussed in Section 4, the verification of uniqueness condi-
tions on structured networks is of lower complexity. There are
several factors that determine how big this complexity gap is,
which we examine in this section.

The first factor is the size of the network (total number
of agents). Specifically, the complexity gap increases with the
number of agents, and is at least quadratic in the number of
groups. Table 1 lists the verification complexity (in floating point
operations, FLOPs) of the conditions in Corollary 4.3.2 with a
dense ”U matrix. We see that the verification complexity of
structured conditions is orders of magnitude lower than that of
the unstructured conditions, and the gap increases with the size of
the network. Table 2 shows the difference in CPU times, where
the results are averaged over 50 different instances. Moreover, the
complexity reduction in verifying the conditions in Theorem 4.3 is
much more significant than those in Corollary 4.3.2. For instance,
the verification complexity of conditions in Theorem 4.3 on a
game of size 10→ 10 (10 partitions of 10 agents each) on a dense
!U matrix is 1.08→1035 FLOPs while that on the corresponding
!S matrix is 1.26→ 106 FLOPs. We refer the interested reader to
Appendix I for additional comparisons.

Size (Ni →M ) Unstructured Structured

10→ 10 6.67→105 5.83→104

20→ 20 4.27→107 1.99→106

50→ 50 1.04→1010 2.02→108

100→ 100 6.67→1011 6.57→109

200→ 200 4.27→1013 2.12→1011

TABLE 1
Verification complexity in number of FLOPs of conditions in Corollary

4.3.2 over the number of agents.

Size (Ni →M ) Unstructured (sec) Structured (sec)

10→ 10 0.0031±0.0011 0.003±0.0002

20→ 20 0.0575±0.0074 0.0213±0.0019

50→ 50 5.851±0.197 0.6768±0.0442

100→ 100 332.8±1.6 7.052±0.203

200→ 200 Memory Overflow 116.8±6.9

TABLE 2
Verification complexity in CPU times of conditions in Corollary 4.3.2
over the number of agents; all times are in seconds. All experiments

were performed on a machine with A 6-core 2.60/4.50 GHz CPU with
hyperthreaded cores, 12MB Cache, and 16GB RAM.

The second factor affecting the complexity gap is how (a
given number of) agents are partitioned into groups. Figure 5 and
6 shows the complexity (in FLOPs) of verifying the structured
condition (of !S being a P-matrix) in two games of size 50 and
100 agents, respectively, both with a dense !U matrix, as we vary
the number of groups. Here, we set to groups to be of equal size,
rounding off to the nearest integer if needed; e.g., with 10 agents
and 3 groups, the partition sizes are 3, 3, 4.2

We see that in each game the complexity has a V shape,
reaching a minimum when M ∞

∈
N . To explain this, note that

we can approximate the complexity of LU decomposition by 2
3p

3

for a matrix of size p → p; for a p → k matrix (p > k), the
approximate number of FLOPs for singular value decomposition
is 2pk2 ↔ 2

3k
3 ( [40, p. 75], based on QR decomposition using

2. Here we are comparing the structured complexity between games of
different sizes. For a given size N with M equal-sized partitions, the structured
and unstructured conditions have the same complexity when M = 1 or N .
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Householder transformations). Then the complexity for checking
the conditions in Theorem 4.3 is given by (S = N/M ):
(
M
2

)(
2S3↔2

3
S3

)
+M

S∑

k=1

(
S
k

)(
2

3
k3

)
+

M∑

k=1

(
M
k

)(
2

3
k3

)
.

As max{M !, S!} will be the dominant term in the (expanded)
expressions, the minimum is achieved when M = S =

∈
N .

Fig. 5. Verification
complexity (FLOPs)
of conditions in
Theorem 4.3 over the
number of groups.

Fig. 6. Verification
complexity (FLOPs)
of conditions in
Corollary 4.3.2 over
the number of groups.

Fig. 7. Complexity
(FLOPs) over
different partitions
in games with 50
agents, 2 groups and
a dense !U matrix.

Note also that in Figure 5 the two curves overlap almost
completely beyond the minimum. This is because checking if !S

is a P-matrix has two phases: generating !S , then an eigendecom-
position on it. When M is small the first phase dominates, whereas
when M is larger than

∈
N the second becomes dominant. Since

!S is M → M , when M is large the complexity depends much
more on M than on the network size N .

In another experiment, we verify the conditions in Corollary
4.3.2 on two games of sizes 50 and 100, respectively, both with
a dense !U matrix. The results are shown in Figure 6. This time
the minimum occurs at some M >

∈
N . This is because the

approximated complexity is given by
(
M
2

)(
2S3 ↔ 2

3S
2

)
+

2
3M

3 + 2
3S

3, which has a minimum at M >
∈
N .

A third factor affecting the complexity gap is the size dis-
tribution of groups, given fixed N and M . Figure 7 shows the
complexity of verifying whether !S is a P-matrix in a 50-agent,
2-partition game with a dense !U matrix, as we vary the size of
the first group. We see that the complexity reaches its minimum
when the two groups are equal sized.

More generally, when we have more action dimensions and
create partitions based on them, we can expect that some of the off-
diagonal elements in the structured matrix !S will be computed
with much lower complexity. To see why, consider two games, one
with N = 100, K = 1 and 10 groups of size 10 each, the other
with N = 50, K = 2 and 5 groups of size 10 each. If we create
a partition for all agent-action components from the same group
in the same action, we get 10 partitions for both games. While the
first game is similar to the samples in this section, the second game
has 20 off-diagonal elements in !S computed from the coupled
cost. Computing these 20 elements are easier than computing the
2-norm of a matrix since the corresponding block is a diagonal
matrix. Moreover, if all agents have the same cost function, then
these 20 elements are the same and based on one utility function,
which makes the computation even easier.

7.2 The Sufficiency Gap
The structured conditions are stronger than their unstructured
counterparts, thus may fail to discover the uniqueness and stability
of an NE in a game that fails the former while satisfying the latter.
We showed this using an example in Section 4. In what follows we

will use numerical results to measure this sufficiency gap. We will
focus on the uniqueness conditions, and note that the comparison
of stability conditions is very similar.

Each of the next set of figures is a heat map showing how often
these two conditions in Corollary 4.3.2 (over ”S and ”U , respec-
tively, with sample games that guarantee both ”S and ”U are
symmetric) yield the same or different result. The former means
either both are satisfied or not satisfied, while the latter necessarily
means the structured condition fails and the unstructured condition
holds. Each game is of size 400, with 20 groups of 20 members
each. For each cell in the heat map, 50 sample games are generated
using a set of parameters corresponding to the cell indicated on
the figure; the cell color indicates the fraction of these games that
resulted in a difference (sufficiency gap), the higher the fraction,
the darker the color. In each of the heat maps, we can see regions of
darker cells (clearly) separating the map into two lighter regions.
In general, the bottom left represents parameter settings where
both structured and unstructured conditions are satisfied and the
top right represents settings where both conditions do not hold.

Specifically, in Figures 8, 9, and 10 we hold component-
level external impact fixed (at weak, medium, and strong
levels, respectively, corresponding to connection frequency at
0.2, 0.5, 0.8 respectively; in-partition connection strengths
at 0.2/Ni, 0.5/Ni, 0.8/Ni respectively, for partition Pi (nor-
malizing the strengths to make external and internal impact
comparable); between-partition connection strengths fixed at
0.2/N, 0.5/N, 0.8/N (normalize the strengths, similar as above),
while changing the variances of component-level internal impact.
We note that the normalized upper bound for the model parameters
are chosen at 1 when we study the sufficiency gaps, because higher
values cause both sets of conditions to fail thereby reducing the
significance of such sample games. Please refer to Appendix J for
more details on the settings.

Overall the sufficiency gap is quite low, i.e., the two types
of conditions yield the same outcome in the vast majority of
parameter settings (as evidenced by mostly 0 values/light-colored
cells on these heat maps). The measured difference (obtained by
adding the number of different results in every cell and dividing
by the total number of sample games) in Figures 8, 9, and 10 are
0.26%, 5.58%, 0.05%, respectively.

Figures 8 and 9 show a similar pattern. In the top right corners
where component-level internal impact has large variance both
between and within groups, neither condition is true, while in the
lower left corners both conditions are satisfied, giving rise to the
broad agreement (light regions). In comparing the two, we see
that the dark region expands and shifts leftward and downward
in Figure 9, suggesting that the gap between the two conditions
is bigger and triggered by lower variances in component-level in-
ternal impact when the component-level external impact increases
from weak to medium. Furthermore, high within-partition variance
combined with low between-partition variances in component-
level internal impact results in the largest gap. The reason is the
“weakest member effect” discussed in Section 4, where the ωS

i
values depend highly on the minimum component-level internal
impact ωU

k of members in Pi, which makes the abstraction !S

inaccurate, causing a larger gap. Interestingly, an increase in
between-partition variances in component-level internal impact
can mitigate the above effect and reduce the gap. On the other
hand, when the component-level external impact is sufficiently
high, Figure 10 shows that the sufficiency gap all but disappears
as now most game instances do not satisfy either condition.
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Fig. 8. Sufficiency gap
over the variance of
internal impact, weak
ext. impact.

Fig. 9. Sufficiency
gap over the variance
of internal impact,
medium ext. impact.

Fig. 10. Sufficiency
gap over the variance
of internal impact,
strong ext. impact.

We next fix the agent’s component-level internal impact at
1, the between-partition (resp. within-group) component-level
external impact at strong, and vary the within-partition (resp.
between-group) component-level external impact strength (x-axis)
and connection frequency (y-axis), shown in Figure 11 (resp.
Figure 12). We see that the gap is generally small (2% gap for
both). In both figures the disagreement is concentrated around
a reciprocal curve, suggesting that when the product of the two
parameters is around a critical level, the sufficiency gaps occur.
They also suggest that the role of between-partition and within-
partition external impact is very similar under these two sets of
conditions. The dark regions in these two figures suggest that when
individuals have a homogeneous internal impact, games where
the expected sum of component-level external impact is about
10% higher than the expected sum of component-level internal
impact, are most likely to have sufficiency gaps. We provide more
detailed discussions in Appendix J. Moreover, the dark cell curve
in Figure 12 shows that when the between-partition connection
frequency gets lower, the chance of having a sufficiency gap is
higher. This is because a mismatch similar to Example 2 (an
agent with weak component-level internal impact does not receive
strong component-level external impact but a member in the same
partition with strong component-level internal impact does) is
more likely to happen in this case.

Fig. 11. Sufficiency comparison
over the within partition connec-
tions, when every agent has the
same internal impact and strong
between partition influence.

Fig. 12. Sufficiency comparison
over the between partition con-
nections when every agent has
the same internal impact, medium
within partition influence.

These numerical results suggest that in general, when network
communities are formed around homogeneous agents, i.e., those
with similar component-level internal impact, component-level
external impact and connectivity, then the two types of conditions
yield identical verification outcomes.

More generally, when we have more action dimensions and
create partitions based on them, we can expect some of the off-
diagonal elements in the structured matrix !S to be computed
from the coupled cost function. Similar to Section 7.1, we compare
the sufficiency gap in two games, one with N = 100, K = 1 and
10 groups of size 10 each, the other with N = 50, K = 2

and 5 groups of size 10 each, and create 10 partitions for both
games. Again, the first game is similar to the samples in this
section, while the second game has 20 off-diagonal elements in
!S computed from the coupled cost. When all agents have the
same cost functions, these 20 elements do not suffer from the
strongest link effect and thus further reduce the sufficiency gap.

We also perform similar experiments on the real-world email-
Eu-core network [41]. This is a binary directed graph with edges
indicating whether an email was ever sent from one node to
another, where nodes represent people from a large European
research institution. We compare three ways of partitioning the
agent-action space in Fig 13, 14, 15: (1) original partition based
on the nodes’ department affiliation, (2) degree-based, which puts
nodes with similar in- and out- degrees in the same partition, and
(3) connection-type: which puts nodes with similar fraction of
within-department connections in the same partition. We observe
that the degree-based partition performs best, as it successfully
identifies and retains the importance of strongly connected sub-
graphs in our reduced conditions. We provide further elaborate
and additional experiments on this network, in Appendix J.3.

Fig. 13. Sufficiency
gap, original partition.

Fig. 14. Sufficiency
gap, degree-based.

Fig. 15. Sufficiency
gap, connection-type.

8 CONCLUSIONS AND DISCUSSIONS

We introduced and studied a family of structured network games
with non-linear best response functions. Prior works on network
games have found sufficient conditions for the uniqueness and
stability of Nash equilibria which are mostly difficult to verify.
In this work, we showed that the existence of structure in the
network (e.g., in the form of communities, or when there are multi-
relational dependencies between agents), helps us find alternatives
for such conditions, which we refer to as “structured conditions”
as opposed to the “unstructured conditions” in previous works.
In particular, we show that the structured conditions for the
uniqueness and stability of NE are related to matrices which are
possibly lower dimensional, with their dimensions depending on
the number of partitions naturally arising in a network due to its
structured nature. We also demonstrated both analytically and nu-
merically that the structured conditions are sufficient conditions to
the unstructured conditions, and that their verification is of much
lower computational complexity. We used numerical experiment
results to show that the sufficiency gap between the structured
conditions and unstructured conditions is small in general and
typically occurs in games with some specific characteristics.
Moreover, we proposed a new notion of degree centrality to
evaluate the influence of a partition in the network, and used it
to identify additional conditions for uniqueness and stability.
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[26] T. Tatarenko, W. Shi, and A. Nedić, “Accelerated gradient play algorithm
for distributed nash equilibrium seeking,” in 2018 IEEE Conference on
Decision and Control (CDC), 2018, pp. 3561–3566.

[27] M. Newman, “Detecting community structure in networks,” Eur Phys J,
vol. 38, 03 2004.

[28] ——, “Finding community structure in networks using the eigenvectors
of matrices,” Physical review. E, Statistical, nonlinear, and soft matter
physics, vol. 74, p. 036104, 10 2006.

[29] A. Galeotti, B. Golub, and S. Goyal, “Targeting interventions in net-
works,” Econometrica, vol. 88, pp. 2445–2471, 01 2020.

[30] G. Scutari, F. Facchinei, J.-S. Pang, and D. P. Palomar, “Real and complex
monotone communication games,” IEEE Transactions on Information
Theory, vol. 60, no. 7, pp. 4197–4231, 2014.

[31] F. Facchinei and J. S. Pang, “Finite-dimensional variational inequalities
and complementarity problems-volume i,” Springer Series in Operations
Research, vol. 1, 01 2003.

[32] G. Coxson, “The p-matrix problem is co-np-complete,” Math. Program.,
vol. 64, pp. 173–178, 03 1994.

[33] M. Tsatsomeros, “Generating and detecting matrices with positive prin-
cipal minors,” Asian-Inf.-Sci.-Life, vol. 1, 01 2002.

[34] K. G. Murty and F.-T. Yu, Linear complementarity, linear and nonlinear
programming. Citeseer, 1988, vol. 3.

[35] G. Scutari, D. P. Palomar, and S. Barbarossa, “Asynchronous iterative
water-filling for gaussian frequency-selective interference channels,”
IEEE Transactions on Information Theory, vol. 54, no. 7, pp. 2868–2878,
2008.

[36] J. Kyparisis, “Uniqueness and differentiability of solutions of paramet-
ric nonlinear complementarity problems,” Mathematical Programming,
vol. 36, no. 1, pp. 105–113, 1986.

[37] P. Bródka, K. Skibicki, P. Kazienko, and K. Musia!, “A degree centrality
in multi-layered social network,” in 2011 International Conference on
Computational Aspects of Social Networks (CASoN). IEEE, 2011, pp.
237–242.

[38] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted
networks: Generalizing degree and shortest paths,” Social networks,
vol. 32, no. 3, pp. 245–251, 2010.
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APPENDIX A
SUMMARY OF NOTATIONS

Notation Meanings

ai i-th agent in the game

N The set of agents

ui Utility function of ai

di Individual component of ui

fi Network interaction component of ui

xi Action profile of ai

x→i Action profile of all agents other than ai

x Action profile of all agents

x↑ Equilibrium action profile

K The action dimension number

G Adjacency matrix

G
(k) Adjacency matrix on the k-th action dimension

G
(k)
ij Influence strength from aj to ai on the k-th action

dimension

Pi The i-th partition

F Best response operator

↑F Game Jacobian

BRi Best response function of Pi

Qi Action space of Pi

Q Action space

!U A matrix for unstructured network equilibrium uniqueness
condition

!S A matrix for structured network equilibrium uniqueness
condition

”U A matrix for an alternative unstructured network equilib-
rium uniqueness condition

”S A matrix for an alternative structured network equilibrium
uniqueness condition

ω Spectral radius

εk The k-th lowest eigenvalue

ϑ
U
i Internal impact term in !U

ϖ
U
ij External impact term in !U

ϑ
S
i Internal impact term in !S

ϖ
S
ij External impact term in !S

AS(x↑) The set of active partitions at x↑

AS(x↑) The set of borderline active partitions at x↑

IS(x↑) The set of inactive partitions at x↑

H
S A matrix for structured network equilibrium stability

condition

D
in
i Generalized in-degree of Pi

D
out
i Generalized out-degree of Pi

D
in
max Maximum generalized in-degree

D
out
max Maximum generalized out-degree

TABLE 3
Summary of notation.

APPENDIX B
VALUES USED IN FIGURE 1-4
We use Figures 1-4 to illustrate the high level idea of the
partitioning on structured multi-relational networks. In Figure 1
and 2, using the linear quadratic utility functions ui = bixi +∑

j ↑=i gijxixj ↔ 1
2x

2
i , the adjacency matrices are

G =




0 0.6 0.2
0.6 0 0.2
0.2 0.2 0



 , G =




0 0 0.2
0 0 0.2
0.2 0.2 0





respectively. In Figure 3 and 4, when using the utility function

ui = bixi +
∑

j ↑=i

g(1)ij x(1)
i x(1)

j +
∑

j ↑=i

g(2)ij x(2)
i x(2)

j

↔ 1

2
((x(1)

i )2 + (x(2)
i )2 + 0.2x(1)

i x(1)
j ),

the adjacency matrices are

G(1) =




0 0.6 0
0.6 0 0
0 0 0



 , G(2) =




0 0 0
0 0 0.6
0 0.6 0



 ,

G =

[
G(1) 0
0 G(2)

]
.

APPENDIX C
PROOF OF LEMMA 4.2
Proof. We will prove that ⇑!U

Pi,Pj
⇑2 ≃ εS

ij . The proof establish-
ing ⇑!U

Pi,Pi
⇑2 ⇔ ωS

i is similar.
From the definition of εS

ij in Eqn (4) , we denote the action
profile in Q that obtains the value of εS

ij as x̂(i, j), i.e.,

εS
ij = sup

x↓Q
⇑↭jFi(x)⇑2 = ⇑↭jFi(x̂(i, j))⇑2,

where ↭jFi(x̂(i, j)) ↓ RNi↗Nj . We note here that since our
action space Q is compact and ↭F is assumed to be continuous
and differentiable on q, there exist maxima for ⇑↭jFi(x)⇑ such
that x̂ ↓ Q. Therefore, the supremum equals the maximum and
can be achieved. Since we will only focus on a specific pair of
(i, j) values where i ⇓= j in this part, we will simply use x̂ to
denote this action profile for convenience.

Also, based on the definition of εU
kl, we have

εU
kl = sup

x↓Q
|↭lFk(x)| ≃ |↭lFk(x̂)|,

where ↭lFk(x̂) ↓ R.
Next, we perform Singular Value Decomposition on ↭jFi(x̂)

such that ↭jFi(x̂) = USV T . From this, we can get the left
singular vector u ↓ RNi and the right singular vector v ↓ RNj

that correspond to the largest singular value εS
ij , where ⇑u⇑ =

⇑v⇑ = 1. Then

uT
↭jFi(x̂)v = εS

ij · ⇑u⇑ · ⇑v⇑ = εS
ij .

To proceed with the proof, we introduce the following matrix
A obtained from matrix ↭jFi(x̂(i, j)) by replacing every element
with its absolute value, formally,

A = (|↭lFk(x̂)|)k,l:ak↓Pi,al↓Pj .

We also introduce vectors u+ and v+, where

u+ = (|uk|)Ni
k=1, v

+ = (|vl|)
Nj

l=1.
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Then, ⇑u+⇑ = ⇑v+⇑ = 1, and it is easy to see that

(u+)TAv+ ≃ uT
↭jFi(x̂)v,

Next, consider the product uT!U
Pi,Pj

v. We denote the index
in !U

Pi,Pj
that corresponds to the element up and vq as kp and lq

respectively, so that,

uT!U
Pi,Pj

v =
Ni∑

p=1

Nj∑

q=1

!U
kplq · up · vq .

then we have

⇑!U
Pi,Pj

⇑ = ⇑ ↔!U
Pi,Pj

⇑ · ⇑u+⇑ · ⇑v+⇑
≃ (u+)T (↔!U

Pi,Pj
)v+

= ↔
Ni∑

p=1

Nj∑

q=1

!U
kplq · |up| · |vq|

=
Ni∑

p=1

Nj∑

q=1

εU
kplq · |up| · |vq|

≃
Ni∑

p=1

Nj∑

q=1

|↭lqFkp(x̂)| · |up| · |vq|

= (u+)TAv+

≃ uT
↭jFi(x̂)v

= εS
ij .

This completes the proof.

APPENDIX D
PROOF OF THEOREM 4.3
Proof. Given the community level partition Q =

∏M
i=1 Qi, we

denote ↭Fi(z) = ((↭iFj(z))Mj=1)
T ↓ RNi↗N .

We use the notation L(x,y) to denote the line segment
between two points x and y in RN . Formally,

L(x,y) = {ωx+ (1↔ ω)y : 0 ⇔ ω ⇔ 1} .

Under Assumption 1 in Section II, Fi : Q ↘ RNi , Q ↗ RN is
continuously differentiable on Q, and for ⇐x,y in Qi, L(x,y) ↗
Qi. According to [42, Theorem 12.9] we know that for every
vector a in RNi , there is a point z ↓ L(x,y) such that:

a · (Fi(x)↔ Fi(y)) = a · (↭Fi(z)(x↔ y)). (9)

Let a in equation (9) be (xi ↔ yi)
T , and denote l = (lj)Mj=1,

where lj = ⇑xj ↔ yj⇑2, ⇐j ↓ N[1,M ], then,

(xi ↔ yi)
T (Fi(x)↔ Fi(y))

= (xi ↔ yi)
T (↭Fi(z)(x↔ y))

= (xi ↔ yi)
T [

M∑

j=1

↭iFj(z)(xj ↔ yj)]

≃ (xi ↔ yi)
T
↭iFi(z)(xi ↔ yi)

↔|
∑

j ↑=i

(xi ↔ yi)
T
↭iFj(z)(xj ↔ yj)|

≃ ωS
i (li)

2 ↔
∑

j ↑=i

εS
ij · li · lj

= li · (!Sl)i (10)

By [43, Theorem 3.3.4(b)], a real square matrix M ↓ Rn↗n

is a P-matrix if it satisfies ⇐l ↓ Rn

max
i↓N[1,M ]

li(M l)i > 0

Denote b = maxi↓N[1,M ]
li·[!Cl]i

↘l↘2
2

> 0. Then, we have

max
i↓N[1,M ]

(xi ↔ yi)
T (Fi(x)↔ Fi(y)) ≃ max

i↓N[1,M ]
li · [!Cl]i

≃ b · ⇑x↔ y⇑22
which, according to Definition 2.(b), shows that F satisfies uni-
form block P-condition. Therefore, by [10, Proposition 2 part
(b)] and [31, Proposition 3.5.10 part (b)], the Nash equilibrium
is unique.

Finally, we show that the two conditions
1) !S is a P-matrix,
2) !U

Pi,Pi
are P-matrices,

are sufficient for !U to be a P-matrix. Using Lemma 4.2,

!S ↓ RM↗M is a P-matrix

∋ max
j

lj(!
Sl)j > 0, ⇐l ⇓= 0, l ↓ RM ,

i := argmax
j

lj(!
Cl)j ,

∋ xi(!
U
Pi,: · x)Pi

≃ ⇑!U
Pi,Pi

⇑ · ⇑xi⇑2 ↔
∑

j ↑=i

⇑!U
Pi,Pj

⇑ · ⇑xi⇑ · ⇑xj⇑

≃ liω
S
iili ↔

∑

j ↑=i

liε
C
ij li = li(!

Cl)i > 0,

△ max
k↓Si

xk(!
Ux)k > 0,

△ max
k

xk(!
Ux)k > 0, ⇐x ⇓= 0,x ↓ RN ,

∋ !U ↓ RN↗N is a P-matrix

APPENDIX E
PROOF OF COROLLARY 4.3.2
Proof. We can see that I + ”S ↖ 0, iff ϖ1(”S) > ↔1, and from
symmetry, I+”S is a P-matrix. The !S matrix can be obtained by
scaling the ith row of I + ”S by ωS

i , which is a positive number.
Therefore, the determinant of every principal minor of !S has the
same sign as the determinant of the corresponding principal minor
of I + ”S , and thus !S is also a P-matrix. By Theorem 4.3, the
Nash equilibrium is unique and the sufficiency holds.

APPENDIX F
PROOF OF THEOREM 5.2
We prove for the K = 1 case and the proof generates to an
arbitrary K .

Proof. When we consider borderline inactive and active groups,
the set of all their members are a superset of the union of the
borderline inactive and active set of agents.

We denote

Y = {ak|ak ↓ Pi, s.t.Pi ↓ AS(x
↔) ′BS(x

↔)}

as the set of all agents that belong to communities in AS(x↔) ′
BS(x↔), then we have A(x↔)


B(x↔) ↗ S . Similar to Theorem
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5.1, we denote ↭SFS(x↔) as a sub-matrix of ↭F (x↔) whose
columns and rows correspond to the agents in set S .

Our proof proceeds by the following logic:

HS(x↔) ↖ 0 △ ↭SFS(x
↔) ↖ 0 △ ↭A,BFA,B(x

↔) ↖ 0.

For the first part, we adopt techniques similar to those we used
in Appendix D. For ⇐v ↓ R|S|

≃0, we denote l = (li)Zi=1 ↓ RZ
≃0,

where li = ⇑vi⇑2, ⇐i ↓ N[1, Z]. Then we have

vT
↭Y FS(x

↔)v

=
Z∑

i=1

Z∑

j=1

zT
j (↭jFi(x

↔))vi

=
Z∑

i=1

vT
i (↭iFi(x

↔))vi +
Z∑

i=1

Z∑

j=1,j ↑=i

vT
j (↭jFi(x

↔))vi

≃
Z∑

i=1

ςSi · ⇑vi⇑22 ↔
Z∑

i=1

Z∑

j=1,j ↑=i

φSij · ⇑vi⇑2 · ⇑vj⇑2

=
Z∑

i=1

ςSi · li2 ↔
Z∑

i=1

Z∑

j=1,j ↑=i

φSij · li · lj

= lTHS(x↔)l > 0

which shows ↭SFS(x↔) ↖ 0 and completes the proof of the first
part.

For the second part, we know from the Sylvester’s crite-
rion that an N → N Hermitian matrix (for real valued matri-
ces, it is symmetric) is positive definite if and only if every
leading principal component of it (the top left k → k sub-
matrices, for k = 1, . . . , N ) has a positive determinant. Since
A(x↔)


B(x↔) ↗ Y , we know that ↭A,BFA,B(x↔) is a leading

principal minor of ↭Y FY (x↔) and thus ↭A,BFA,B(x↔) ↖ 0,
which completes the proof.

APPENDIX G
PROOF OF THEOREM 5.3
Proof. Since !S ↖ 0, we know from Theorem 4.3 that the Nash
equilibrium is unique. It remains to prove that this NE x↔ is stable.

We denote !S
A,B ↓ Z→ Z as the principal minor of !S by

picking out all the rows and columns corresponding to groups in
AS(x↔)


BS(x↔), and thus !S

A,B ↖ 0.
Without loss of generality, suppose P1,P2 ↓

AS(x↔)

BS(x↔), then we know their new indices in

HS(x↔) remain unchanged. We know from the definition that
ωS
1 ⇔ ςS1 and εS

12 ≃ φS12 (similar comparison can generalize to
all other elements), and thus for ⇐v ↓ RZ , we have

vTHS(x↔)v

=
Z∑

i=1

Z∑

j=1

GS
ij(x

↔) · vi · vj

=
Z∑

i=1

ςSi · v2i ↔
Z∑

i=1

Z∑

j=1,j ↑=i

φij · vi · vj

≃
Z∑

i=1

ωS
i · v2i ↔

Z∑

i=1

Z∑

j=1,j ↑=i

εij · vi · vj

= vT!S
A,Bv > 0,

which shows HS(x↔) ↖ 0, and thus x↔ is stable.

APPENDIX H
PROOF OF THEOREM 6.1
Proof. First of all, when e = 1, ⇐t > 0, Dout

max(1) < 1 implies

ωS
i >

∑

j ↑=i

εS
ij , ⇐i = 1, . . . ,M,

and this shows that the !S matrix is diagonally row dominant,
and thus is a P-matrix [33] (Generating method 4.1, this matrix is
a positively stable P-matrix).

For an arbitrary e ↖ 0, we define the following matrix
ES , where the ith column of ES is equal to ei times the ith
column of !S . Then since ei > 0, every principal minor’s
determinant of ES is equivalent to the corresponding principal
minor’s determinant of !S and thus ES is a P-matrix iff !S is
a P-matrix. Then, it’s easy to see that Dout

max(e) < 1 implies the
diagonal row dominance of ES , which is sufficient to show ES

is a P-matrix. This completes the proof of the out-degree part and
the in degree part is similar. Moreover, the stability result follows
from Theorem 5.3 and the in and out degree parts of this theorem.

APPENDIX I
COMPLEXITY OF CONDITION VERIFICATION IN THE-
OREM 4.3

Size Unstructured Structured

10→ 10 1.08→1035 1.26→106

20→ 20 1.39→10127 1.69→1010

50→ 50 4.90→10761 6.34→1020

TABLE 4
Verification complexity in FLOPs of conditions in Theorem 4.3 over

number of agents.

APPENDIX J
SUPPLEMENTARY REASONING IN SECTION 7
We begin with the claim that the upper bounds are large enough
for the study of sufficiency gaps.

When the parameters that control the external impact are all
chosen at their normalized upper bound, the expected sum of the
off-diagonal elements will be twice as high as the mean value of
the internal impact. For our choices of Sin

low, S
in
high, S

out
low, S

out
high,

the !U will not be a P-matrix with probability 1 and thus !S will
not be a P-matrix. For example, we assume that !U is symmetric,
and for a matrix with positive diagonal elements and non-positive
off-diagonal elements, as long as the sum of the absolute values of
the off-diagonal elements is greater than the sum of the diagonal
elements (the sum of all its elements is negative), then we know
1T!U1 < 0 and it is not positive definite and thus not a P-matrix.
Increasing such upper bounds will only increase the upper right
area above the curve formed by dark cells.

For the parameters that control the internal impact variances,
the argument is similar, when the values of chighPi

↔ clowPi
are

chigh ↔ clow close to 1, then the agent with the lowest internal
impact will have an internal impact close to 0 and !U will not
be a P-matrix. Figures 18 and 19 shows the comparison after we
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double such normalized upper bounds, and support our argument
above.

Next, we elaborate more on the “critical values” in Figures 11
and 12.

If agents have homogeneous internal impact, i.e., ωU
k are

constant, then when E[
∑

k ↑=l ε
U
kl] is about 10% higher than∑N

k=1 ω
U
k , the games are most likely to have sufficiency gaps. We

discussed above that when !U is symmetric, and
∑

k ↑=l ε
U
kl >∑N

k=1 ω
U
k , then the unstructured condition is not satisfied, which

is sufficient to conclude that the structured condition does
not hold either. But when it’s E[

∑
k ↑=l ε

U
kl] >

∑N
k=1 ω

U
k ,

there are realizations (sample games under our choices of
Sin
low, S

in
high, S

out
low, S

out
high) that have

∑
k ↑=l ε

U
kl <

∑N
k=1 ω

U
k and

thus are possible candidates for causing sufficiency gaps between
the two sets of conditions. However, if E[

∑
k ↑=l ε

U
kl] is sufficiently

larger (30% or more)
∑N

k=1 ω
U
k , all sample games will have

neither set of conditions satisfied, which corresponds to the top
right corner of the figures.

J.1 Sufficiency gap heatmaps for multipartite graphs

Fig. 16. Sufficiency
gap frequency over
the between group
external impact, fre-
quency 0.83%.

Fig. 17. Sufficiency
gap frequency over
the internal impact
variances, with weak
external impact,
frequency 0.18%.

Fig. 18. Sufficiency
gap frequency over
the internal impact
variances, with
medium external
impact, frequency
6.31%.

Fig. 19. Sufficiency gap fre-
quency over the internal impact
variances, with medium external
impact, frequency 2.09%, dou-
bled upper bounds.

Fig. 20. Sufficiency gap fre-
quency over the internal impact
variances, with strong external
impact, frequency 26.93%.

J.2 Procedure for Synthetic Game Instance Generation
A game is generated for a specified size (number of agents
N , number of action dimensions K = 1, number of partitions
M , and size of each partition Ni) and using utility functions
ui(x, G) = xi(bi +

∑
j gijxj) ↔ ci

2 x
2
i . The rest of the game

is given by the interaction matrix G, and the vectors b = (bi)Ni=1
and c = (ci)Ni=1. In generating a random G, the diagonal elements
are set to 0 without loss of generality. Each partition is associated
with consecutive agent indices and thus the diagonal blocks

represent each partition and the off-diagonal blocks represent
cross-partition interdependencies. The off-diagonal elements in a
diagonal block are generated using a Bernoulli distribution with
parameter P in

exist, the probability for an connection (non-zero
element) to exist between any pair of agent-action indices. If such
a connection exists, its value (strength of the connection), gij , is
drawn from a uniform distribution on the interval [Sin

low, S
in
high].

We generate gij and gji independently. These elements also
determine the off-diagonal elements in the diagonal blocks of !U

and the diagonal elements ωS
i in the !S matrix.

The off-diagonal blocks of G are generated using the same
approach, with parameters P out

exist and [Sout
low, S

out
high]. These deter-

mine the connection frequencies and strengths between groups.
These elements also determine the off-diagonal blocks of the !U

matrix as well as the off-diagonal elements εS
ij in the !S matrix.

In subsequent numerical results, a dense matrix G refers to
both P in

exist = 1 and P out
exist = 1, i.e., the entries in !U and !S

are non-zero with probability 1.
The vector of individual cost c is generated by first choosing a

fixed mean value c = 1
2 (so that E[ωU

k ] = 1) for all the cost terms.
We then generate a partition mean cPi by sampling uniformly at
random from an interval [clow, chigh], where clow + chigh = 1.
Next, within each group, we choose an interval [clowPi

, chighPi
],

where (clowPi
+ chighPi

)/2 = cPi and then sample uniformly
at random the individual cost terms from this. All individual
cost terms are set to strictly positive values, otherwise neither
structured nor unstructured conditions hold, making the game
instances trivial. The individual benefit is set to b = 1 as it does
not affect either !U or !S . In generating these values we fix the
global mean but change the variance.

J.3 Sufficiency gap on email-Eu-core network data

We next perform a similar set of experiments using a real-world
directed graph. This dataset is from the email-Eu-core network
[41] and provides a binary directed graph with edges indicating
whether an email was ever sent from one node to another, where
nodes represent people from a large European research institution
and each node has a department affiliation. We will use this graph
to run game simulations and test the identified conditions on this
network’s structured and unstructured ! matrices. In doing so, we
add an edge weight ↼ to all the edges; this is shown as the x-axis
“external connection strength” in the figures below. We also need
to equip the game with a utility function (detailed shortly).

This graph is highly asymmetric. As discussed in Section 4,
the conditions on asymmetric ! matrices is much more compu-
tationally costly to verify than the conditions on symmetric ”
matrices of the same size. As a result, verifying the conditions on
the entire network with 1005 nodes leads to memory overflow.
Consequently, our experiments are on down-sampled versions
of this graph. We employ the following three types of network
sampling methods to generate sub-graphs for our experiments:

• Sample M departments (groups) uniformly at random with
all nodes in each;

• Sample Nsample nodes uniformly at random;
• Sample M departments (groups) with at least M members

uniformly at random first, and then sample M nodes from
each department.
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We will use the following utility function of a node ai (an
agent) given the sampled network:

ui(xi,x→i) =
↼

D

∑

j ↑=i

(Gsample)ijxixj ↔
1

2
x2
i ,

where D =
∑Nsample

i=1 Din
i +Dout

i

2Nsample
, Nsample is the number of

sampled nodes, and Gsample is the corresponding sampled sub-
matrix.

We want to compare different ways of partitioning the agent-
action space. Since each node is associated with a department, we
can naturally partition the network in terms of departments; we
will call this the original partition. We can also create partitions
on the nodes using the following criteria:

• Degree-based: rank the nodes by the average of the in-degree
and out-degree of a node, and then put nodes with similar
degrees in the same partition;

• Connection-type-based: rank the nodes by the fraction of
their within-department connections (number of connections
in the department over the node’s total number of connec-
tions), and create partitions that include nodes with similar
fraction in the same partition.

As results in Figures 21-29 show, degree-based partition re-
sults in significantly lower sufficiency gap and clearer patterns
on when the structured conditions fail compared to the original
partition. In contrast, the connection-type-based partition results
in higher sufficiency gaps and thus is not ideal. The average
sufficiency gap is given for each figure in the caption. We can
see from the numerical results that when we re-group the nodes
based on their degree information, not only the overall sufficiency
gap is lower, but the sufficiency gaps are also less sensitive to the
network size and only sensitive to the relevant internal/external
impact strengths.

Fig. 21. Sufficiency
gap when sampling
M departments, orig-
inal partition, 6.22%.

Fig. 22. Sufficiency
gap when sampling
M departments,
degree-based
partition, 1.84%.

Fig. 23. Sufficiency
gap when sampling
M departments,
connection-type-
based partition,
20.40%.

Fig. 24. Sufficiency
gap when sampling N

nodes, original parti-
tion, 21.39%.

Fig. 25. Sufficiency
gap when sampling N

nodes, degree-based
partition, 3.73%.

Fig. 26. Sufficiency
gap when sampling
N nodes, connection-
type-based partition,
28.63%.

Intuitively, these observations can be explained as follows. The
high degree nodes in our sample network are frequently connected

Fig. 27. Sufficiency
gap when sampling
M departments, each
with M nodes, origi-
nal partition, 9.94%.

Fig. 28. Sufficiency
gap when sampling
M departments,
each with M nodes,
degree-based
partition, 3.49%.

Fig. 29. Sufficiency
gap when sampling
M departments,
each with M nodes,
connection-type-
based partition,
23.06%.

with each other. Therefore, the degree-based partition perform
best, as they successfully identify and retain the importance of
such strongly connected sub-graphs in our reduced conditions.
Moreover, we note that the singleton nodes who have no con-
nections to others are put in the same partition. From the previous
analysis, this means that the structured and unstructured conditions
hold if and only if the corresponding conditions hold on the non-
singleton nodes’ sub-graph.

J.4 Sufficiency gap heatmaps for stability conditions
We show the sufficiency gap experiment results for stability
condition verification in Theorem 4.3, which show very similar
trends as the uniqueness condition verification in Theorem 5.2.
We note that using the GEDC for stability condition verification
is equivalent in terms of computation complexity and sufficiency
gaps.

Fig. 30. Stability
condition sufficiency
gap frequency over
the internal impact
variances, with weak
external impact,
frequency 0.55%.

Fig. 31. Stability con-
dition sufficiency gap
frequency over the
internal impact vari-
ances, with medium
external impact, fre-
quency 1.97%.

Fig. 32. Stability
condition sufficiency
gap frequency over
the internal impact
variances, with strong
external impact,
frequency 5.50%.

Fig. 33. Stability
condition sufficiency
gap frequency over
the internal impact
variances, with overly
strong external
impact and game
known to be unstable,
frequency 0.0%.

Fig. 34. Stability con-
dition sufficiency gap
frequency over the
internal impact vari-
ances, with medium
external impact, fre-
quency 1.90%.

Fig. 35. Stability
condition sufficiency
gap frequency over
the internal impact
variances, with strong
external impact,
frequency 1.19%.


