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Abstract—Drone-based applications involving real-time video
analytics are emerging to serve diverse situational awareness use
cases ranging from precision agriculture to disaster response.
Hence, there is a need to study robust security measures to ensure
the integrity of information and safeguard communication, as
well as data transmission in drone video analytics. In this paper,
we investigate methods to enhance the security management of
drone video analytics in terms of reliability and integrity within
realistic settings using testbed resources in the NSF-supported
AERPAW infrastructure. Specifically, we study security mech-
anisms to model and detect threats such as Replay, Packet
Injection, and Physical Capture attacks caused by situations
in dynamic and potentially adversarial network environments.
In addition, we generate balanced datasets through Generative
Adversarial Networks (GAN) to address challenges posed by
unbalanced datasets that are common when applying machine
learning models for attack detection impacting drone video
analytics traffic. Our experimental environment in AERPAW
involves a setup for secure communication through a MAVLink-
based (open-standard) drone communication protocol that uses
continuous authentication via digital signatures. Our experiment
results compare the efficiency gains achieved through secure
MAVLink-based communication with unsecured counterparts,
examining factors such as packet encryption, digital signatures,
and nonces. Further, our results provide valuable insights into
the adaptability of security mechanisms for drone video analytics
within realistic environments.

Index Terms—Drone-based applications, security management,
attack detection, threat impact mitigation, experimental testbed

I. INTRODUCTION

Drone-based applications have been increasingly employed
in various use cases, encompassing both civilian and military
applications, spanning from precision agriculture to communi-
cation coverage extension [1]. In addition, drone systems can
be embedded with high-resolution video cameras and deployed
in real-time scenarios, where drones can be used for situational
awareness tasks such as video surveillance, object detection, or
tracking [2]. Simultaneously, video analytics with drones can
play a crucial role in applications such as search and rescue,
traffic management in smart cities, and disaster response [3].

In addition, these systems may face cyber threats, including
GPS spoofing attacks, Distributed Denial-of-Service (DDoS)
attacks, and Man-In-The-Middle (MITM) attacks, which could
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potentially compromise the integrity of collected information,
due to these systems’ unique network and dispersed physical
systems that can be located in remote places [4]. Thus, there
is a need to study robust security measures that safeguard
communication and data transmission within these real-time
applications and ensure the success of mission tasks by pro-
tecting against unprecedented accidents or potential attacks
impacting drone video analytics.

In this paper, we investigate methods to enhance the security
management of drone video analytics in terms of reliability
and integrity within realistic settings using testbed resources
in the NSF-supported Aerial Experimentation and Research
Platform for Advanced Wireless (AERPAW) infrastructure [5].
The AERPAW, as the pioneering wireless research platform,
is dedicated to exploring the convergence of 5G technology
and autonomous drones, showcasing its relevance and benefits
to our proposed research. Specifically, we study security
mechanisms to model, detect and defend against diverse and
sophisticated threats such as Replay, Packet Injection, and
Physical Capture attacks caused by situations in dynamic and
potentially adversarial network environments using a STRIDE-
Per-Element [6] threat model considering each of the drone
video transmission elements. In addition, we generate balanced
datasets through Generative Adversarial Networks (GAN) [7]
to address challenges posed by unbalanced datasets that are
common when applying machine learning models for accurate
attack detection impacting drone video analytics traffic.

For our study, we set up an experiment in AERPAW that
involves secure communication through a Micro Aerial Vehicle
Link (MAVLink)-based (open-standard) drone communica-
tion protocol [8] over wireless channels using continuous
authentication via digital signatures. Notably, MAVLink is
susceptible to various attacks due to the absence of inherent
security measures, and the protocol lacks native support for
confidentiality and authentication mechanisms [9]. To address
these limitations, our study considers proactive measures to se-
cure data communication with MAVLink packets and enables
the protocol to establish continuous authentication, thereby
enhancing the overall security of drone video analytics.

In our AERPAW experiment, we emulate real-world condi-
tions while designing a controlled environment for our exper-
imentation of security management for drone video analytics.
Moreover, we leverage advanced digital signatures to ensure
the continuous verification of the integrity of communication



between drones, or between drones and the Ground Control
Station (GCS). Our experiment results from the AERPAW
testbed compare the efficiency gains achieved through secure
MAVLink-based communication with unsecured counterparts,
examining factors such as packet encryption, digital signatures,
and nonces. Further, our results provide valuable insights
into the adaptability of security mechanisms for drone video
analytics within realistic environments.

The remainder of the paper is organized as follows: Section
II provides the background and related work. In Section III,
we describe the deployment and network environment setup
for the experimentation with a video streaming application.
Section IV details our security management study. Section V
describes the testbed experiment results and salient findings.
Lastly, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce and motivate drone video
analytic applications. Next, we introduce AERPAW benefits
for our security management study.

A. Security in Drone Video Analytics Applications

Drone video analytics has revolutionized visual situational
awareness use-cases in precision agriculture e.g., to support
efficient farming practices, providing insights into crop health,
disease detection, or yield prediction, informing farmers’
decision-making [10]. It also has helped bolster disaster re-
sponse efforts e.g., to improve search and rescue operations in
scenes of interest where first responder mobility is limited [2].
Thus, drone video analytics plays a crucial role in achieving
efficiency and foresight in critical mission tasks involving edge
computing and wireless communications [11]. However, there
is currently a limited understanding of how hackers can carry
out cyber attacks to take control of drones, leading to inter-
ception or even crashes that impact mission success. Drones
can also be exploited for malicious purposes through physical
hijacking to corrupt software or datasets in the field. Therefore,
it is crucial to study and develop novel methods to accurately
detect and effectively prevent such attacks to mitigate potential
damages [12]. The methods for securing drone video analytics
need to ensure the integrity of information and safeguard
communication and data transmission in critical mission tasks.
Moreover, they need to feature advanced encryption protocols
to enable secure communication channels.

B. AERPAW Benefits for our Experimental Research

Real-world experimentation with drones can present chal-
lenges due to their complex nature or regulatory and safety
concerns imposed by aviation regulations. These challenges
restrict how and where drones can be operated, consequently
limiting the scope of experimentation. Furthermore, the inte-
gration of drones into complex applications requires seamless
communication and coordination, in addition to a robust and
secure network infrastructure, adding extra layers of com-
plexity. To address these challenges, there is a need for
a controlled experimentation platform that can facilitate a

realistic environment, not only to tackle these complexities but
also to investigate potential vulnerabilities in communication
channels and ensure that data integrity is preserved. The AER-
PAW infrastructure offers unique capabilities to explore such
security concerns, and supports conducting experiments in
real-world scenarios, playing an important role in investigating
security threats and leveraging insights gained through cutting-
edge technology integration.

III. AERPAW EXPERIMENT CONFIGURATION

In this section, we first provide details on the deployment
and operation environment setup in AERPAW. Subsequently,
we describe our drone video analytics application used in our
AERPAW experiments.

A. Operation Deployment Setup

In leveraging AERPAW for the enhancement of drone
video analytics-related security management, our operational
development setup adheres to the batch-mode access provided
for all canonical (Program-it-Yourself) experiments within the
AERPAW infrastructure. Experimenters are tasked with fully
developing their experiments within the virtual environment,
recognizing that AERPAW is primarily designed to operate
in batch mode rather than as a live model. This operational
approach necessitates the preparation and submission of exper-
iments, which are subsequently executed at a later time when
the required resources become available.
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Figure 1: Five sequential steps guide the experimenter in AERPAW experi-
ment development process that includes: i) Beginning in the Virtual Digital
Twin Environment, the experimenter develops the experiment and submits
testbed execution requests upon completion, ii) AERPAW Ops/Control then
transitions the experiment to the physical testbed, iii) execution, led by
AERPAW Ops/Control and safety pilots, follows on schedule, iv) post-physical
experimentation, the experiment seamlessly returns to the virtual environment,
and v) the experimenter reviews results in AERPAW’s virtual digital twin,
enabling iterative refinement and re-submission.

The deployment and network environment for our exper-
iment involves a specific setup or development process that
must be followed before submitting experiments for execu-
tion on the AERPAW physical testbed. Figure 1 outlines
AERPAW’s usage workflow, encompassing both the virtual
(digital twin) and physical (testbed) environments. The initial
step requires users to design the experiment through the
experimenter portal, creating an initial definition. During this
phase, users must specify the subset of AERPAW fixed nodes
to be included in the experiment, considering the unique ge-
ographical locations of these nodes. This structured workflow
ensures a systematic and effective development process for our
experiment within the AERPAW infrastructure.
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In our operational setup for leveraging AERPAW to enhance
drone video analytics security management, we specify the re-
quired portable nodes for the experiments’ configuration. Once
the experiment design is complete, we submit it for execution
by AERPAW operations personnel (Ops), who schedule it for
a time when the necessary resources are available. The results
are then received through the virtual environment, allowing
for a comprehensive evaluation of drone video analytics per-
formance and security within the AERPAW infrastructure.

B. Experimentation Deployment Setup

The first step in the deployment of the environment setup
is based on the FlyPaw work in [13]. We use AERPAW’s
software libraries to instruct a drone to follow a pre-planned
trajectory from a .plan file. Second, once this runs, AER-
PAW’s finite state machine functionality can be employed to
fulfill custom requirements when the vehicle is in transit or
stopped at a way-point by transitioning to a certain state to
execute appropriate actions. Third, we start with a develop-
ment environment, which is executed through the Operator
Experiment Oversight (OEO) Console, connected to a local
QGroundControl [14] via an SSH tunnel.

Our experimentation is based on nodes LPN1 (A large drone
node) and LW1 (A fixed radio node at the Lake Wheeler
site), as pictured in Figure 2. Our experiment deployment
is distributed on a specific set of AERPAW Radio Nodes
(ARN) in the testbed environment. The first step is the
experimentation mode in the AERPAW Virtual Node (AVN)
environment, which provides a virtual machine instance for
each node with an additional instance for the OEO Console.
Experimenters have live access to develop their experiments
here. Security measures are implemented in this stage. Conse-

LW1 (A fixed radio node at the Lake Wheelersite)
LPN1 (A large drone node) 

Figure 2: LPN1 and LW1 nodes used in experiments at Lake Wheeler site.

quently, a custom-designed emulation of the radio environment
and vehicle mobility is integrated into this environment. This
allows the software developed by the experimenter to run
seamlessly. As AERPAW is a batch-mode processing facility,
after experiments are done in the AVN, the experiments are
later run over the actual AERPAW fixed and portable radio
nodes in the field. Lastly, our experimental results are recorded
and transmitted back into the development virtual nodes for
analysis. The communication within the nodes is accomplished
with MAVLink as a lightweight and efficient protocol. This
aims to connect the various components of the experiment and

transmit telemetry data. In addition, this serves as command
control. For the autopilot software, ArduPilot [15] is used as
a software suite for managing vehicle control.

The small size file features a lower resolution, minimiz-
ing the overall data size, with 360p resolution, 12fps frame
rate. Moderate video compression is applied, maintaining an
acceptable quality. In contrast, for large video files, with
720p resolution, 15fps frames rate. We stressed the system’s
capabilities with higher resolution, frame rate, and duration
of the file. Minimal compression techniques are applied to
assess how well the system handles varying levels of security
measurements. The video data is transmitted from the drone
to the GCS, and the video data is processed before being
displayed as a situation-specific video feed to the operator.
Other additional information is also displayed in terms of e.g.,
status, GPS coordinates, and battery levels, which enhances
the overall situational awareness for both the drone and the
operator.

IV. SECURITY MANAGEMENT IN OUR AERPAW
EXPERIMENT

In this section, we describe the attack vectors and perform
threat modeling for the drone video transmission elements.
Subsequently, we present algorithms for diverse attack detec-
tion and describe our approach to enhance security measures
through use of balanced datasets obtained through GAN.

A. STRIDE Threat Modeling and Attack Detection

We performed an analysis involving a threat model based
on Spoofing (S), Tampering (T), Repudiation (R), Information
Disclosure (ID), Denial of Service (DoS), and Elevation of
Privilege (EoP). Specifically, we used the (STRIDE)-Per-
Element [6] threat model in order to understand the attack
vectors and the possible adversary consequences. Table I
describes in detail the threat categories, elements, descriptions,
and attack vectors that relate to the drone video transmission
elements. Herein, we describe the attack vectors:
Replay Attacks: This refers to security threats where an
attacker intercepts and maliciously re-transmits or duplicates a
previously captured communication. Severe consequences of
this attack include the cause of misinformation, loss of control
over the drone, or unauthorized access. Sequential nonces are
introduced as a mechanism to inhibit replay attacks. Video
transmission applications often maintain a stateful counter
based on the number of frames transmitted, so this value can
be combined with the number of packets transmitted for each
individual frame to produce a unique and incremental nonce
value. In order to validate sequential nonces, the receiver only
accepts those frames with nonces that are strictly greater than
all the preceding nonces.
Packet Injection Attacks: These attacks pose security threats
where an unauthorized entity sends extraneous packets by
positioning themselves between the drone and the GCS via
a Man-in-the-Middle (MITM) attack. Malicious actors may
insert fake video data to mislead users about the video
transmission. For example, attackers could transmit frames
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Table I: STRIDE-Per-Element Threat Model considering each of the drone
video transmission elements.

Element Description Attack Vectors

S External Entity Attacker mimics GCS identity Packet Injection
T Data Flow Modification of video data in transit Replay, Packet Injection
R Process Denying involvement in video manipulation -
I Data Store Unauthorized access to stored video data Physical Capture
D Data Flow Disruption or denial of video transmission -
E External Entity Unauthorized access to privileged functions -

that indicate an attack in one area to divert attention from
another. Alternatively, attackers could send fake frames to
cover footage of physical intrusions. Algorithm 1 describes
the initialization and procedure for a packet injection attack
detection through the use of a digital signature, which allows
for continuous authentication by repeatedly verifying the iden-
tity of the sender.

Algorithm 1 Packet Injection Attack Detection during MAVLink-based
Video Transmission
MAVLink Communication, Transmission Time Packet Injection Attack Detection Result
Initialization: L← Digital Signature Length
K ← Sender’s Public Key
Result ← No Packet Injection Attack Detected
Procedure:
for Current Time in Transmission Time do

Packet ← Get Packet(Drone, GCS)
Digital Signature ← Get First N Bytes(Packet, L)
Plaintext ← Get Last N Bytes(Packet, Length(Packet) −L)
Message Hash ← SHA256 Hash(Plaintext)
Signature Verified ← Verify Digital Signature(Message Hash, Digital Signature,
K)
if Signature Verified then

Accept Packet(Packet)
end
else

Drop Packet(Packet)
Result ← Result ⊕ Packet Injection Attack Detected

end
end

Physical Capture Attacks: these may lead to unauthorized
physical interference with a drone by an external actor. They
involve the threat agent gaining physical control of the drone,
either by capturing it in flight or on the ground. This attack
can allow the threat agent to capture images or videos, gain
access to this information, or intentionally damage or destroy
the captured drone, leading to financial losses and potential
harm to other actors. Algorithm 2 describes the initialization
and procedure for a physical capture attack detection. We take
the cross-product of the distance vectors between the drone
and the waypoints at either end of its path to ensure that it
stays in line with the expected path. Additionally, we allow
the drone an accepted range around the two endpoints of its
path.

Algorithm 2 Detecting Physical Capture Attacks during Drone Operation
Pos, Start, End PhysicalCaptureDetected
Initialization: d← DistanceThreshold x← CrossProductThreshold
Procedure:
CrossProduct ← (End.Lat− Pos.Lat)× (Start.Lon− Pos.Lon)−
(End.Lon− Pos.Lon)× (Start.Lat− Pos.Lat)
if |CrossProduct| ≤ x or distance(Pos, Start) ≤ d or distance(Pos, End) ≤ d then

return False
end
return True

B. Enhancing Security Measures through the use of GAN

Our primary objective for this contribution of the paper is
to assess the effectiveness of our security measures in real-
world scenarios within the AERPAW testbed. This involves
not only validating the efficacy of our security measures but
also gaining valuable insights into expediting the detection
of unsecured communication. In real-world scenarios, cyber-
attack datasets typically display an imbalance, with normal
traffic significantly outweighing malicious or intrusive traf-
fic [16]. Such disproportion presents challenges in training
models to recognize and learn patterns of malicious activity,
which are relatively scarce. Consequently, models tend to
develop a bias towards identifying the majority class, i.e.,
normal traffic. This bias, while not hindering the overall
detection of intrusions or malicious activities, adversely affects
the accurate classification of specific attack types. As we
integrate our security measures for drone video analytics
into the AERPAW experiment environment, we encounter
similar challenges related to unbalanced and limited datasets
concerning network traffic, cyber-attacks, and drone attacks.
These challenges pose difficulties in accurately determining
unsecured communication situations.

By leveraging GANs, we showcase the effectiveness of
GAN-generated balanced datasets in bolstering security mea-
sures in dynamic and challenging drone application envi-
ronments. The utilization of GANs empowers us to address
data imbalances, ensuring that our security models are well-
equipped to handle the complexities inherent in real-world
scenarios. GAN utilizes two deep learning sub-models: the
generator and the discriminator. The generator aims to produce
the most realistic dataset possible, while the discriminator is
trained to distinguish between realistic and generated datasets.
The sub-models are trained based on each other’s outputs,
improving with each generation. This method surpasses the
simple data augmentation techniques that cause the need to use
over-sampling balancing methods and thus provides balanced
datasets as well as mitigates issues related to overfitting.
Since the GAN model can be retrained with new datasets,
the technique can be adapted to evolving attack vectors.

Table II illustrates the results of a supervised learning
analysis conducted on a sample unbalanced dataset comprising
100,000 samples. The dataset encompasses diverse attack
traffic, facilitating a comparative examination of the precision
between real attack traffic and generated attack traffic at a
20:7:3 ratio between normal traffic, traffic with injected pack-
ets, and Replay attack traffic. We can observe from the table
that it becomes evident that attack detection models exhibit
higher precision scores when trained on the imbalanced dataset
compared to the balanced one. Examining the training speed,
both training and prediction times are markedly lower with
imbalanced datasets, except for the Random Forest model.
This can be attributed to models having less data to train
on for each minority class. However, the balanced dataset
demonstrates faster prediction times, which is often more
relevant in real-time attack detection.
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Table II: Accuracy (precision and recall) and Run Time (in seconds) comparison results on Imbalanced (ID) and Balanced Dataset (BD) under various models,
i.e., Random Forest (RF), Gradient Boosting Machine (GBM), Support Vector Classifier (SVC), K-Nearest Neighbor (KNN), and Naive Bayes (NB).

Model
Run Times Normal Traffic Packet Injection Traffic Replay Attack Traffic

Training Time Prediction Time Precision Recall Precision Recall Precision Recall
I D / B D I D / B D I B / B D I D / B D I D / B D I D / B D I D / B D I D / B D

RF 313 s / 269 s 0.46 s / 0.32 s 76.0 % / 49.2 % 98.8 % / 92.5 % 95.5 % / 87.8 % 48.5 % / 51.9 % 94.6 % / 95.7 % 94.5 % / 97.4 %
GBM 1.73 s / 252. 1 s 0.02 s / 0.31 s 76.0 % / 49.3 % 98.9 % / 92.9 % 95.6 % / 88.5 % 48.4 % / 51.7 % 94.3 % / 95.7 % 95.7 % / 97.5 %
SVC 262.7 s / 296.3 s 48.8 s / 0.38 s 75.2 % / 49.2 % 99.4 % / 92.7 % 98.4 % / 88.6 % 44.2 % / 51.9 % 89.1 % / 95.7 % 94.7 % / 97.5 %
KNN 0.030 s / 0.027 s 2.2 s / 2.0 s 75.0 % / 47.9 % 91.2 % / 49.7 % 74.5 % / 63.2% 46.3 % / 57.5 % 85.4 % / 89.3 % 95.5 % / 98.0 %
NB 0.076 s / 0.075 s 0.001 s / 0.0001 s 76.5 % / 49.3 % 92.2 % / 91.2 % 72.9 % / 83.6 % 52.9 % / 53.5 % 89.1 % / 96.1 % 96.0 % / 96.1 %

The utility of GANs extends to the detection of sophisti-
cated cyber threats as well. They achieve this by generating
diverse attack variations, which enhances the sensitivity of the
models to these threats. In conclusion, the integration of GAN
models enhances the efficacy of security measures used for
drone video analytics in the AERPAW testbed by addressing
challenges posed by unbalanced datasets and facilitating the
accurate detection of diverse threats.

V. TESTBED EXPERIMENT RESULTS

As security measures are rarely used in isolation, our
experiments are run in the context of the FlyPaw route-
planning algorithm for scenarios with limited connectivity.
The FlyPaw algorithm [13] minimizes the age of information
by selectively backtracking to places with strong connections
using a decision tree when it loses connection, as detected by
iPerf3 calls. Our experiments consist of a large drone node
that transmits video data at three waypoints back to a fixed
“base station” node (LW1). As two of these waypoints are
outside of the base station’s range of connectivity, the FlyPaw
algorithm backtracks the drone to deliver the information.
We conducted experiments to measure the effectiveness of
responses to several attack scenarios in the AERPAW testbed.

A. Attack Scenarios
Replay: Both an unsecured system and a system secured using
nonce values were tested against simulated Replay attacks.
Figure 3(a) illustrates the number of packets received (either
authentic or duplicated) during an attack that replays every
packet in a vulnerable system in comparison to a secured one.
In addition to the mitigation of these attacks using nonces, we
show the corresponding packets received over time.
Packet Injection: We tested the efficacy of using Digital Sig-
nature Standard (DSS) fips-186-3 in the AERPAW testbed via
simulating packet injection attacks against the video analytics
setup. Figure 3(b) describes the number of frames received
over time. During the attack, three fake frames were injected
per real frame, including a null signature in the DSS setup.
Physical Capture: We simulated physical capture attacks on
the drone by directly modifying AERPAW’s software library
to cause unexpected behavior. We tested how the interval at
which Algorithm 2 is run affects the delay in recognizing
physical capture attacks, as shown in Figure 3(c). While the
use of smaller polling intervals detects attacks quicker, it can
strain the drone’s ability to perform other tasks.

B. Digital Signature and Encryption Algorithms in AERPAW
Packet Encryption Impact Analysis: Encrypting information
is a necessary step in modern systems to maintain data privacy.

We compare the encryption algorithms ChaCha20, Advanced
Encryption Standard (AES), and RSA with PKCS#1 OAEP to
assess their utility in drone-based video analytics, as shown
in Figure 4(a) [17]. While ChaCha20 is commonly chosen
as an efficient algorithm, both AES and PKCS#1 yielded
comparable results in our use case, as they all have minimal
effects on both the mission time and the transmission rate of
frames. PKCS#1 was found to cause a slightly larger reduction
in the transmission rate, which is likely due to its transmission
of 288 extra bytes per frame, but this was not enough to
propagate into a larger mission time.
Digital Signature Assessment: To assess the computational
overhead incurred through the use of continuous digital signa-
tures, through our proof of concept implementation in AER-
PAW, we compare the following digital signature algorithms
to the baseline unsigned performance: DSS fips-186-3, Elliptic
Curve Digital Signature Algorithm (ECDSA), and PKCS#1
with 56-, 96-, and 256-byte digital signatures, respectively
[18]. As shown in Figure 4(b), the use of digital signatures
was found to result in a substantial decrease in the speed of
video transmission, but this effect was still minor in the wider
context of the entire mission.

C. Analysis and Discussion

Our experiments suggest that the use of fundamental secu-
rity measures (i.e., encryption, digital signatures, and nonces)
in AERPAW does not significantly hinder drone-based mission
objectives in video analytics scenarios. For example, while
ECDSA was found to decrease the rate of video frame
transmission by 19.06%, this figure only results in a modest
increase in mission time due to the fact that a drone spends
more time in flight rather than actively transmitting video
data. This increase was found to be 0.93% and 2.26% for
the scenarios with small and large videos, respectively. This
difference can be attributed to the proportion of time being
used to transmit video in the two scenarios involving small
and large videos. Since the larger video requires more time to
transmit, small decreases in the transmission rate result in a
much greater impact on the mission time.

VI. CONCLUSION

In this paper, we addressed security needs in drone-based
applications, specifically focusing on video analytics using the
AERPAW testbed. We investigated security management to
enhance video streaming reliability and integrity during critical
missions. In addition, we implemented the MAVLink-based
drone communication protocol for secure communication with
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Figure 3: Attack scenarios for Replay, Packet Injection, and Physical Capture attacks. (a) Over the interval between 20 and 30 seconds, each package sent
was duplicated to disrupt the system, (b) The number of frames received over time, in which three fake frames were injected per real frame, and (c) Delay
in the detection of physical capture attacks based on polling interval.
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Figure 4: Comparison of performance results between Encryption and Digital
Signature Algorithms in the AERPAW testbed.

continuous authentication using digital signatures. To over-
come challenges posed by unbalanced datasets in machine
learning models for attack detection, we utilized Generative
Adversarial Networks (GAN) for creating balanced datasets,
as well as improving the detection of sophisticated cyber
threats. Our experimental results demonstrate the efficacy of
these security measures, with a comparative analysis con-
sidering packet encryption, digital signatures, and nonces in
secure MAVLink-based communication. Future work includes
exploring additional attack vectors, further investigations on
machine learning for enhanced security, and addressing system
scalability for larger drone networks and complex mission
scenarios.
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