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Abstract—Motivated by the design of low-complexity low-
power coding solutions for the Gaussian relay channel, this work
presents an upper bound on the minimum energy-per-bit achiev-
able on the Gaussian relay channel using rank-1 linear relaying.
Our study addresses high-dimensional relay codes and presents
bounds that outperform prior known bounds using 2-dimensional
schemes. A novelty of our analysis ties the optimization problem
at hand to the solution of a certain differential equation which,
in turn, leads to a low energy-per-bit achievable scheme.

I. INTRODUCTION

As communication capabilities are built into an increasingly
diverse array of technologies, coding strategies are needed for
more (and often more constrained) communication scenarios.
In some cases, the constraints are not new. Worries about
power limitations, for example, and characterizations of the
minimal energy required, on average, to reliably deliver each
bit of information across a noisy channel (the so called “min-
imum energy-per-bit”) date all the way back to Shannon [1].
Given the proliferation of low-power wireless devices with
built-in communication capabilities, such characterizations are,
arguably, even more relevant today than they were in 1949
when Shannon proposed the question and derived an asymp-
totic solution of the minimum energy-per-bit for a point-to-
point channel with additive, white Gaussian noise. Wireless
communication devices motivate much of the ongoing work
on this problem. Examples of results in this area include,
among many others, characterizations of the minimum energy-
per-bit in the finite blocklength domain with and without
feedback [2], in broadcast and interference channels with
correlated information [3], and in relay channels [4].

Motivated by wireless communication scenarios where
power constraints are especially restrictive, this work provides
a bound on the minimum energy-per-bit for the relay channel
under a constrained family of codes. We choose the relay
channel since it is well matched to low-power devices that
may be unable to meet their communication goals without the
aid of a helper, here described as a relay node. We maintain
low coding complexity by using a constrained family of codes
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— namely, where the relay performs only linear operations,
and where the transmitter sends a Gaussian vector whose
covariance matrix has rank 1. Our desire to limit coding
complexity is motivated by the observation that devices with
tight power constraints are often also extremely constrained in
computational resources. In some cases, limits on computation
can be traced back to power constraints; in particular, while
the energy costs for using a code are typically far smaller than
those for transmission, at extremely low power the two can
become comparable, leaving the code operation to compete
for resources with the cost of transmission.! Complexity
constraints can also arise when constraints on price, weight,
or size result in limitations on the computational resources on
board a given communication device.

The main result of this work is an upper bound on the
minimum energy-per-bit achievable on the Gaussian relay
channel using the family of low-complexity rank-1 linear
relay codes, described in Section II. The minimum energy-
per-bit achievable by this family of codes can be posed as a
non-convex optimization problem. We analyze the necessary
optimality conditions for this problem and find that taking
a limit of these optimality conditions leads to a system of
differential equations.> Solutions to this system gives rise to
our achievable bound, presented in Section III and proved via
a number of lemmas in Sections IV and V.

II. PROBLEM DESCRIPTION

Notation: We use log to denote log base-2, and In for natural
log. For any p > 1, ||z||, denotes the p-norm of x; when the
subscript is left off we mean 2-norm. The set of real numbers
is denoted R and the set of positive integers N. For an integer
M, [M] denotes {1,2,...,M}.

IThe costs of code operation are device specific and are not included in
any of the prior minimum energy-per-bit characterizations cited above or in
our characterization.

2The title is a reference to the Monty Python sketch [5]; at the outset the
authors were certainly not expecting to find a differential equation.
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The Gaussian relay channel has two gain parameters a and
b. At time instance i, the transmitted signals at the transmitter
and the relay are denoted X; and X,; respectively. The
received signals at the relay and receiver are

Yri = aX;+ Zy, Yi=X; +0X: + Z; 1

where {Z;} and {Z,;} are independent white Gaussian noise
sequences with mean 0 and variance 1. We assume without
loss of generality that @ and b are non-negative. In addition,
we assume that both are strictly positive, since if either is 0,
the relay is effectively removed from the network.

An (n, M)-code with strict causality at the relay is given
by encoding functions at the transmitter and relay

" [M] — R", T RV SR i=1,...,n (2)

and a decoding function m : R™ — [M]. The probability of
error is

M
1 ~ n n n
P = — 3" B{i(Y") # m|X" = 2" (m),
m=1

Xri = xri(yri_l)} (3)

where Y,.;, Y; are related to X;, X,; by (1). The energy-per-bit
is denoted

||2 i—1

+ SUPyn Z;L:l Tpg (yr )2

log M '
We say energy-per-bit £ is achievable if there exists a sequence
of codes where P\ — 0 and lim sup £ < €. The minimum
energy-per-bit £* is the infimum of all achievable energies-
per-bit.

A linear relay code is one where, at every time instant,
the relay sends a linear combination of its received signals.
This relaying can be described by a strictly lower-triangular
matrix D, to ensure that coding at the relay is strictly causal.
Under this assumption, it is optimal that the transmitter send a
Gaussian vector. Thus, the code can be described by the matrix
D and the covariance matrix ¥ for the transmitted vector. Let
&'r be the minimum energy-per-bit achievable by linear codes.
From results in [4], it follows that &£ is equal to

tr(X + a>DX DT + DDT)

max,, ||z™(m)

£M = 4)

inf
keN, 1 o, det(( + abD)(I +abDT) + T+ v?DDT)
S e det(I + b2DDT)

o)
where S fﬁ is the set of positive semi-definite k x k matrices,
and LF is the set of strictly lower triangular k x k matrices. In
addition, let £]j g be the value of (5) where ¥ is constrained
to be rank-1. Obviously £* < &g < & g. Our main result
will be an upper bound on &£ ;.

A. Prior Bounds

In [4] it is shown that the block-Markov achievable scheme
(i.e., partial decode-forward) from [6] leads to the upper bound
on the minimum energy-per-bit

(6)

2 b2
5*<21n2mm{1, @+ }

(11 0?)

It is also shown in [4] that linear relaying can outperform this
bound, using a k = 2-dimensional linear scheme given by

_ B Bl —5) _ 100

E_QPI{ BI-B) 1-8 } D‘[d 0}
(7N
where 8 € [0,1] and d = %, and where P;, P, are

the powers used at the transmitter and relay respectively. Note
that X in (7) has rank 1.

In addition, [4] found that the cut-set bound from [6] leads
to the lower bound on the minimum energy-per-bit given by

14+ a?+ b2
(14 a2)(1+b2)"

In [7], an LTI filtering approach was taken to coding for the
relay channel. These also constitute linear codes, although for
the strictly causal case for channels with constant gains, the
achievability bounds do not appear to be any better than those
from [4]. Linear codes for the Gaussian relay channel were
also considered in [8], which derived methods to simplify the
optimization problem for > and D for a given dimension k.
This approach is interestingly complementary to ours, in that
[8] finds optimal X for a given D, whereas we focus on finding
optimal D for a given Y. Even with these simplifications,
finding optimal (X, D) pairs is challenging, particularly for
large k, so we have chosen to omit comparisons in this paper.

E*>2In2 (8)

III. MAIN RESULT

To state our result, we first need the following lemma,
proved in [9].
Lemma 1: Fix any Ay, By > 0 where Ay/By < a?. Let?

1 1

¢:Afo+If_Ff7 9)
1 “ 12 1 4us
fluy = LotV PRI g

There exists a unique pair (Ao, 1) such that Ag > Ay, ¢ >0
and

/A° flwydw A 1 an
A, 1+wf(w)?  ap By’

A 2 3

° flw)dw AOBf)
/Af Trufw? " < gz ) (12

Now we make some definitions that will be used to state our
main result. Given any Ay, By > 0 satisfying Ay/By < a?,
define £(Ay, By) as follows. First let (A, 1) be the pair from
Lemma 1. Also let f(w) be the function in (10). Then define

Q1+ Q2

E(Af, By) = ——— (13)
§loga—§ (?f + AgBy — Afo)
where
1  A3B;
Bo=f(4), Qi=-— a2¢§ : (14)

3Note that f implicitly depends on Ay, By through ¢.
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Fig. 1. Comparison between bounds on the minimum energy-per-bit for the
Gaussian relay channel. Bounds are computed for channel parameters a = 1.1
and b € [0, 10]. The normalized energy-per-bit £/(21n2) is plotted for each
bound. The block-Markov achievable bound is (6), the 2 x 2 bound is from
(7), the rank 1 bound is from Thm. 1, and the cut-set bound is (8).

1 A3 A2(A¢B%2 -1
Q= — + 0 o(As By ~1) (15)
b2 " a5h2e)3 a'b2¢2 By
Theorem 1: For any a,b > 0,
Er < inf 5(Af,Bf). (16)

Af,Bf>0:Af/Bf§a2

Theorem 1 is derived from the optimality conditions for
the optimization problem 5 when X is rank-1, then taking a
limit as the energy per symbol goes to 0, and analyzing the
resulting differential equation. For this reason, we suspect that
the bound in Thm. 1 is optimal or close to optimal among
rank-1 linear codes. The details of the proof of Theorem 1
make up the remainder of the paper. We have attempted to
make the main steps of the proof readable in the body of the
paper, while pushing more technical elements of the proof into
Lemmas 2-5, which are proved in the [9].

Numerical results for the bound from Thm. 1 compared to
bounds mentioned in Sec. II-A are shown in Fig. 1. As shown
in the figure, our bound consistently outperforms the k£ = 2
bound in (7), and it sometimes outperforms the block-Markov
bound in (6).

IV. TRANSFORMING THE OPTIMIZATION PROBLEM

The first step toward proving Thm. 1 is to transform the
optimization problem in (5) under the assumption that 3 has
rank 1. Specifically let X = ss” where s € R*. Let the matrix
G be such that GGT = (I +bv*DDT)~!, and let v = GT (I +
abD)s. Then the quantity inside the log in (5) is

det (1 4+ abD)ss™ (I + abD™) + I + b*DD7)

det (I +b2DDT) a7
=det [GT ((I +abD)ss™ (I +abD™) +1I+b*DD") G]
(18)

=det [G" (I 4+ abD)ss" (I + abD™)G + I (19)
= det(I + voT) (20)
=1+v|? 21
=1+ s"(I +abDT)GG* (I + abD)s (22)
=1+s"(I+abD")(I +*DD")" (I + abD)s (23)

where (21) follows because the eigenvalues of I + vv! are
1 + ||v||?> and 1, the latter with k — 1 repetitions. We thus
define, for any k, s € R*, D € RF¥F,

Eir(s, D) =
||s[|? + a?||Ds||? + tr(DDT)
$log(1 4 sT(I + abDT)(I + b2DDT)=Y(I + abD)s)

(24)
Also define
Er(s) = sup &Enr(s, D). (25)
DecLk
Thus
Eilr =sup sup Efir(s). (26)

keEN scRk

We now make the following definitions, which will allow
us to analyze the optimization problem over D in (25):

u = Ds, 27
2= (I+b*DDT) (s + abu), (28)
r=abs — b?D7T 2. (29)

Given s and D, z is well-defined since I +b2DD7 is positive

definite, and so it is invertible. With these definitions, (23)
becomes 1 + (s + abu)? 2. In addition,

s+abu= (I +b*DD")z = 2z + D(b’ D" 2)

=z+ D(abs —r) = z + abu — Dr.

(30)
€2y

Thus, Dr = z—s. Now for any s, £ z(s) is the optimal value
of the optimization problem

Is* + a?[Ju]|? + tr(DDT)

minimize
u,z,r,D Llog(1+ (s + abu)Tz)
subject to Ds=u
’ 32
Dr=z-—s, (32)
0’DTz = abs —r,
D;j =0, j=>i.

The next step is to write optimality conditions for this
optimization problem. Since the problem is non-convex, these
are necessary but not sufficient conditions. Specifically, in the
following lemma, proved in [9], we find necessary conditions
for optimal u, z,r, D given s. While this lemma is not actually
necessary to the proof of Thm. 1, we include it as motivation
for the system of differential equations that we study in Sec. V.

Lemma 2: Fix k € N and any vector s € R¥ such that
s> = Q1 > 0. Let u, 2,7, D solve (32). Let

Si:ZS?, TZ-:ersj, Ri:er-,

J:<i J:g<i Jig<i

(33)
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Vi= Y wz, Zi= Y Z. (34)
Gii>i Gii>i
There exists A > 0 such that
Dij = —a®u;s; + % j<i, (35)
Ti_15;
U; = 5 36
(1+a2S;i-1)(A = Ri—1) + a*T7 GO
A1 28_1)s;
5= A+aSi)es 37)
(1 + 0,251'_1)(>\ — R¢_1) + CLQTi_l
A ab + a?b*V;)s;
= 38
" A+ b2Z; %)
2a1T]
(s + abu)T2 = Zo + aQy — “b oy %, (39)
201,112 7y _ 0Ty Ry
V. FROM OPTIMALITY CONDITIONS TO A DIFFERENTIAL

EQUATION

Consider a fixed vector s € R and the corresponding
running sum S; defined in (33). From the definitions in (33)-
(34), the remaining sequences satisfy the difference equations
Zi =21 — 222 )

R, =R;_1 +Tz‘2'

Vi=Vi1 —wiz,
Ty =Ti—1 + 1isi,

(41)
(42)

In turn, w; and z; depend on 7;_1 and R;_1, and r; depends
on V;, Z;. Thus, these sequences can be computed in order.
Moreover, these computations can be viewed as a variation on
Euler’s method to approximate the solution to a differential
equation. This differential equation emerges from Lemma 2
by taking a limit as max; s? — 0. Since Sy = 0 and Sy, =
|ls||* = @1, we use S as the independent variable, where S
goes from 0 to Q1. We use (-)' for -%(-). The system of
differential equations is

T
= 4
YT W+ a2S)(A— R) + a?T? (“43)
A(1 +a%S)
= 44
= 0+ a5\ —R)+ a1 “4)
A(ab + a?b?V)
A2 (45)
T'=r, R=r* V =-uz, Z'=-2" (46
We also have the boundary conditions
T(0) = R(0) =V(Q1) = Z(Q1) = 0. (47

In order to show that this differential equation does in
fact result from taking a limit of the optimality conditions
in Lemma 2, we need a very general lemma regarding a
variation on Euler’s method for approximating a differential
equation. Specifically, consider an arbitrary multi-dimensional
differential equation

(48)

where 6(t) € R™. The usual Euler’s method is to fix a step
size A > 0, and form a sequence by initializing 8y = 6(0),
and then proceeding forward by

Ois1 = 0; + AF(6;,iA). (49)

A careful consideration of (41)—(42) reveals that this is not
quite what is happening there, because the updates of T; and
R; use r;, which is a function of the just-calculated values of
Vi, Z;, rather than those from the previous round, V;_1, Z;_1.
Thus, we need to analayze a slight variation on Euler’s method,
wherein the entries of 6 are updated one-by-one, each using
the most recent value of the other entries when calculating the
next step. Specifically, for any j € {0,...,m}, let

91@ =(0it11,--,0it1-1,0i 55, 0im). (50)
Now we replace the update rule in (49) by
Oii1; =0, + AF;09iA), j=1,....m.  (51)

The following lemma, proved in [9], shows that, for any
differential equation that is sufficiently well-behaved, this
modified Euler’s method approaches the true solution as the
step size goes to zero. The proof of the lemma is similar to
the proof that the global error of the standard Euler’s method
vanishes with step size, as in [10, Thm. 12.2].

Lemma 3: Let 0(t) € R™ for ¢ € [0,7T)] satisfy the
differential equation in (48), and let 6y, 61, . . . be derived from
the update rule (51) with initial condition 6y = 6(0) and step
size A. Assume there exist sets A(t) C R™ for t € [0,7]

such that
inf{||6(t) — 0] : t € [0,T],0 e R™\ A(¢)} > 0. (52)

Also, assume thqre exist constants K1, Ko, K3 such that, for
all t € 0,7], 0,0 € A(t), and all j € {1,...,m}

|F5(0,t) — F5(0,1)] < K116 — 6], (53)
0
’atFj(G,t)‘ < Ko, 54
IF(8,t)] < Ks. (55)
Then
lim max | l10GiA) — 6;]| = 0. (56)

A—0 =0,...,|T/A

The following lemma, proved in [9], shows that our differ-
ential equation of interest in (43)—(47) does in fact satisfy the
assumptions of Lemma 3, at least under certain conditions,
and thus the sequences defined by the optimality conditions
in Lemma 2 do approach the differential equation solutions,
which leads to an achievable energy-per-bit.

Lemma 4: Fix any A > 0and Q7 > 0. Letu,z, v, T, R, V, Z
be functions that solve the differential equation system (43)—
(47) where

Sei[ng ](1 +a?S)(\— R(S)) +a*T(S)? >0, (57
sup max{|T(S)], [R(S)|, [V(S)],|Z(5)[} <oo. (58)

SE[O,Q1]
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Then
Q1 + aT(Q1)
%log (1 + Z(0) + a?2Q1 —

_ R(@Q1)
2

Eiik < 207(Q1) | R(Ql))'
b b2
(59)
To proceed, we analyze the the differential equation system
in (43)—(46). Define the following variations on T, R, Z, V:

_ T - R-\

TZX? R:T, (60)

_ 1 A

V=a®N(=+V)], Z=XN|(5+Z (61)
ab b

Furthermore, let S = 1 / a®+ S (so that derivatives yvith respect
to .S are equivalent to derivatives with respect to .S). Then the
system simplifies to

T = % R = (T")?, (62)
_ S ? . TZ
7 =—| —— V=2 63
(SR + T2> ’ S’ (63)
with boundary conditions
_ _ 1
- A3 _ a)?
Z(Q1) = h V(Q1) = 5 (65)
Observe that
SV -T2 =V + 5V -T'Z-T7 66)
=V+TZ -V -TZ =0. (67)

Thus, for any solution, there exists a constant ¢y where*

SV -TZ =c. (68)

The above analysis, resulting in (68), effectively reduces
the differential equation system from 4 variables to 3. The
following definitions will allow us to further reduce the system
to 2 variables:

72 — SR

A= 03?, B=c¢{'5Z. (69)
We have
2T — R— SR 2(T? - SR)
A/:cf( = - e > (70)
28TT" — 2(T)? — 2T? 4-2
_ 2 S SR — Si([ )? + 2SR an
Sd
—(T - 8T")? -T? + SR
S )53 (72)
2 — r 7 2
g (T V A
=—=(=z-=) -3 7
S (S Z S 73)
o s G 2
¢t (TZ -8V A
=—= —— -= 74
S( Sz ) S (74)
8
5 A 1 A
=1 == 75
S3z2 S SB2 S (75)

4We write cg’ instead of c¢; because later on it will make things simpler.

Also
B' =c*SZ' + 2) (76)
_ g 2
—4
=c -S| —==——= Z 77
. ( (_SR+T2> + ) (77)
433
¢ °S 4 1 B
= ==+ —=. 78
(CSR+ 7122 O sty
That is, we have the self-contained two-dimensional system
1 A 1 B
= = =+ = 79
537 5 ety P

To solve the two-dimensional system, we observe that

11\ 1\ 1 ,
(am 3 1Y (- L) a (a0 ) s

(80)
(-3 (59
+ <A+Blg> <§1AQ+2> _ (81)
Thus, there exists a constant ¢y where
AB+%—é:02. (82)

Note that B = f(A) solves (82), where f is defined in (10)
with ¢ = c,. Assuming B = f(A), we can reduce to a single-

variable differential equation
1 1
A = — —Al.
1/a?+5 < f(A)? >

To complete the achievability proof in Thm. 1, we fix
Ay, By > 0, and construct a solution to the two-dimensional
system where A(Q1) = Ay, B(Q1) = By, with ¢; = by and
co = ¢, which allow us to satisfy the boundary constraints. The
following lemma, proved in [9], provides the details, showing
that these differential equation solutions exist, that they satisfy
the assumptions of Lemma 4, and giving the result in the
theorem.

Lemma 5: Given any Ay, By > 0 satisfying A;/By < a?,
let (Ao, ¢1) be the pair from Lemma 1. Then there exist A > 0
and functions that solve the differential equation system (43)—
(47), satisfying the conditions (57)—(58), where ()1 is given in

(83)

o (Q1)  R(Q)
al'(Q1) R(Q1)
U U 84)
where ()5 is given in (15), and
2aT R
1+2(0) + a®Qy — = éQl) + (b?l) (85)
A
- ag <Bf + AoBy — Afo> (86)
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