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Abstract—We introduce the paradigm of validated decentralized
learning for undirected networks with heterogeneous data and
possible adversarial infiltration. We require (@) convergence to
a global empirical loss minimizer when adversaries are absent,
and (b) either detection of adversarial presence or convergence to
an admissible consensus model in their presence. This contrasts
sharply with the traditional byzantine-robustness requirement of
convergence to an admissible consensus irrespective of the adver-
sarial configuration. To this end, we propose the VALID protocol
which, to the best of our knowledge, is the first to achieve a
validated learning guarantee. Moreover, VALID offers an O(1/T")
convergence rate (under pertinent regularity assumptions), and
computational and communication complexities comparable to
non-adversarial distributed stochastic gradient descent. Remark-
ably, VALID retains optimal performance metrics in adversary-
free environments, sidestepping the robustness penalties observed
in prior byzantine-robust methods. A distinctive aspect of our
study is a heterogeneity metric based on the norms of individual
agents’ gradients computed at the global empirical loss mini-
mizer. This not only provides a natural statistic for detecting
significant byzantine disruptions but also allows us to prove the
optimality of VALID in wide generality. Lastly, our numerical
results reveal that, in the absence of adversaries, VALID con-
verges faster than state-of-the-art byzantine robust algorithms,
while when adversaries are present, VALID terminates with each
honest agent either converging to an admissible consensus or
declaring adversarial presence in the network.

I. INTRODUCTION

Machine learning is increasingly reliant on data from a
variety of distributed sources. As such, it may be difficult
to ensure that the data which originates from these sources
is trustworthy. Thus, there is a need to develop distributed
and decentralized learning strategies that can respond to bad
or even malicious data. However, worst-case or Byzantine re-
silience is an extremely strong requirement, that performance
be maintained if a malicious adversary controls a subset of
the processing nodes and takes any conceivable action. In
practice, an adversary launching such an attack against a
learning process requires tremendous resources which may not
be worth the cost to influence the learned model. Thus, even
though malicious adversaries are a threat, for the vast majority
of the time, they are not present. An algorithm that maintains
Byzantine robustness necessarily sacrifices performance when
no adversaries are present. Instead, we seek a middle ground
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in which there is no performance loss at all when adversaries
are not present, but they can still be detected if they are.

We consider decentralized learning in a network of agents
— in contrast to federated learning [1], [2], there is no
trusted central processing entity. Each agent in the network
may communicate with its neighbors in a topology graph,
and it has access to data samples from a certain distribution.
The goal is to learn a consensus model at each agent that
minimizes a total loss function from combining all agents’
individual data. Rather than Byzantine robustness, we require
the weaker assumption of validation. In particular, when
no adversaries are present, there should be no performance
degradation compared to the completely honest setting. When
one or more adversaries are present, one of two outcomes may
occur for each honest (non-adversarial) agent: either (i) the
model is learned with minimal deviation from the completely
honest setting, or (ii) the agent signals an alarm, indicating
that it has detected the presence of the adversary. In the latter
case, the honest agents signaling the alarm do not converge on
a model; however, once they signal the alarm, they may fall
back to a more conservative Byzantine resilient algorithm, or
even abandon the learning task in favor of ridding the network
of adversaries.

Outline of the paper: We formally introduce our problem
setting in Section II. Next, in Sections III and IV, we describe
our main results and give an overview of the VALID protocol.
Finally, in Section V, we give experimental results to verify
the performance of VALID on practical datasets and compare
it against relevant benchmarks. In the interest of space, we
present the detailed descriptions of our protocols and the proof
arguments in the extended version [3]. We begin with a review
of related work below.

Related work: Early works such as the Byzantine Generals
Problem [4], [5], [6], [7] laid the groundwork for Byzantine
fault tolerance. [8] introduced ’early stopping’ algorithms
allowing adaptivity to the actual number of Byzantine faults.
Along this direction, [9], [10], [11] study algorithms that
optimize performance in fault-free scenarios while retaining
worst-case robustness. Cachin et al.’s work [12] on broadcast
primitives for asynchronous Byzantine consensus is particu-
larly relevant to our validation focus.

Work in decentralized learning may be traced back to
distributed optimization methods (c.f,, [13], [14]). Subsequent
work has examined both deterministic and stochastic optimiza-
tion techniques in this context [15], [16]. See [17], [18] for a
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Fig. 1. This figure depicts the ¢-th round of a validated learning protocol (for
t=1,2,...,T). Agent v is an honest agent and agent c is a Byzantine agent.
The rectangles next to agents v and agent ¢ denote the available information
to them at the beginning of the ¢-th round.

comprehensive survey of various methods in this area.

Byzantine-resilience in distributed optimization setups was
first examined in the context of distributed estimation [19],
[20], [21], [22] and Federated Learning [23], [24], [25],
[26], [27]. The issue of Byzantine adversaries on distributed
optimization was first examined by Su et al. [28] and has
led to a substantial area of research, c.f. [29], [30], [31],
[32], [33], [34], [35], [36]. We refer the reader to [37] for
a comprehensive survey of these areas. In the context of
decentralized learning, two broad approaches have emerged
— screening-based protocols that involve outlier-robust ag-
gregation of other agents’ models by each agent [38], [39],
[40], [41] and performance-based protocols that involve using
each agent’s local data to detect and eliminate outliers [42],
[43]. Our validation requirement is similar to that in [22] that
examines the problem of distributed estimation with an option
to raise a “flag” if adversaries are detected.

II. PRELIMINARIES

A. Learning Problem

We consider the problem of distributed empirical risk mini-
mization across a set of agents V. Each agent v € V observes
data sequentially, drawn independently and identically accord-
ing to its local distribution P, € P(D), where the class of
data distributions P(D) under consideration is known a priori.
We employ a loss function f : R x D — R* that evaluates
the goodness-of-fit between the model vector & € R¢ and the
data D € D with smaller loss values indicating a better fit.

For any subset U = {uy,uz,...,u,} of V, the joint data
distribution is a product distribution Py = P,,; X Py, X ... X
P, € (P(D))Iu‘. The joint distribution of all agents’ data
Py is termed the global data distribution. The ideal learning

goal! is to find a global empirical loss minimizer
1

x*(Py) = argmin — Z Ep~p, f(x,D), (1)
xcR? |V‘ veEY
that  attains  the  loss  value  f*(Py) =

w1 Zvev Ep~p, f(2*(Py), D).

B. Network, Protocols, and Adversaries

1) Agent Graph: Agents are interconnected via an undi-
rected graph G = (V, ), where £ denotes the set of edges
that specify which pairs of agents can exchange information
noiselessly in each round. An agent v is considered a neighbor
of agent u, denoted as v € N(u), if and only if (v,u) € &.

'We refer to this as the “ideal” learning goal as finding *(Py) (and
hence, achieving f*(Py)) is, in general, too optimistic in the presence of
adversaries. We elaborate on this further in Section II-C

_‘Xb\e » Su = T and final model &, € R?
(M - u € N(v), 7 € [T]) W
(M,(L;) rueNw),Te[T]): >@— -;: OR
(7) >~
Dy’ :7elT Wap > <
(D77 1)) Uges 5L

Fig. 2. At the conclusion of the 7T-th round, agent v either sets its validation
state Sy, to T to indicate a valid consensus or to _L to declare Byzantine
presence.

2) Validated Learning Protocol: A Validated Learning Pro-
tocol II is a decentralized protocol that operates over a fixed
number of rounds, say 7. As depicted in Figure 1, in each

round t € [TL, each agent v observes a mini-batch of data
DY = (D}, DY),..., D), where D), € D for all

k € [K]. Subsequently, each agent v exchanges messages with
its neighbors based on the mini-batch Dq(}t) and accumulated
information from previous rounds. At the conclusion of round
T, agents independently compute their validation state S,
to be either “T” or “L”. If an agent v computes its final
validation state to be T, then it further outputs its final model
vector &,. We describe the desired outcome of a validated
learning protocol in Section II-D.

3) Adversaries: An unknown subset B of agents, termed
Byzantine agents, may exhibit adversarial behavior. We as-
sume that Byzantine agents have a causal global knowledge,
i.e., at the outset of the ¢-th round, such agents know all other
agents’ sent transmissions and observed local data upto (and
including) the ¢-th round. Additionally, Byzantine agents have
full knowledge of the graph (V, £), the global data distribution
Py, and the protocol II. Armed with this knowledge, each
Byzantine agent may produce arbitrary outputs (i.e., they may
deviate arbitrarily from II) when exchanging messages with
their neighbors. Agents in the subset H = V\ B are referred to
as honest agents. Honest agents are unaware of the presence
or identity of Byzantine agents.

C. Admissible Consensus Models

While the local distributions are not known a priori, we
assume that it is common knowledge among the agents that
Py, satisfies bounded heterogeneity. In this paper, the specific
constraint defined below is of particular interest.

Definition 1 (0-Heterogeneous Distributions). We say that the
global data distribution Py, € (P(D))M is §-heterogeneous
with respect to the loss function f if

1 *
7 2 [Eo,~p, (Vo (@ (Py). Do)l < 8
veV
where x*(Py) is as specified in (1). We denote the set of all
d-heterogeneous distributions in (P(D))lvl as Ps.

Remark 1. In the presence of Byzantine agents and hetero-
geneity, converging to x*(Py) is generally infeasible even
if honest agents are able to detect if other agents deviate
from honest behavior. To see this, consider a "benign” attack
strategy orchestrated by Byzantine agents. Armed with the
knowledge of P\, and 6, an adversary commandeers a subset
B of nodes and prescribes specific data distributions @,
for each v € B, while ensuring Py\p x Qp € Ps. Each
Byzantine agent v then simulates the actions of an honest
agent, drawing data from Q, instead of P,. This renders
the situation indistinguishable from a case where all agents,
including those in B, are honest and the actual global data
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distribution is Py\p X Qp. Note that f*(Py x Qp) is an upper
bound on the true global loss value f*(Py).

Remark 1 underscores the need for including adversarial
choices in attainable consensus models. We introduce the
notion of admissible consensus models that capture this notion.

Definition 2 ((U/, Py, J)-Admissible Consensus Models).
Given a set of agents U, a global data distribution Py,
and a § > 0, a model vector & € R is considered an
(U, Py, d)-admissible consensus model if there exist vectors
(gv : v € V\U) such that:

a) X yeu Bo~pr, Vo f(&, D) + 3 ey v = 0 and

Dby [Suc IEomr, Vo (@ D)3+ e 190l13] <
We denote the set of all (U, Py,0)-admissible models by
AU, Py, )2
D. Protocol objectives

The goal of a validated learning protocol is that each honest
agent either converges to an admissible consensus model or
correctly identifies that there is at least one Byzantine agent
in the network. Formally, let H (resp. H_ ) be the subset of
honest agents v that set their validation states S, to T (resp.
1) when the protocol terminates. Let € (typically o(1)) be a
non-negative tolerance parameter. We say a validated learning
protocol II terminates e-successfully if one of the following
outcomes is reached.

a) B=¢, Hr =V, and 5 3,0y 2" (Py) — @5 < e,

b) B # ¢, HT # ¢, and there exists £ € A(HT, Py,0)

such that 1 3, cp & — @05 < €.
¢) B#¢and H) =H.

E. Assumptions

Throughout this paper, assume that the Byzantine set 5
satisfies Assumption 1, the loss function f satisfies Assump-
tions 2, 3 and 4, the local data distributions P, satisfy
Assumptions 5 and 6 with respect to f, and the global data
distribution Py, satisfies Assumption 7 with respect to f.

Assumption 1 (Existence of a source component). The graph
Gpe = (V\ B, E\ Ep) is connected, where Eg = EN(Bx VU
V x B) is the set of edges that are incident on nodes in B.

Assumption 2 (Finite loss). suppep f(z, D) < 0oV € R%

Assumption 3 (5-smooth). There exists § > 0 such that for
all z,x' € R* and D € D,

IVaf(@,D) = Vaf(x',D)ll, < Bllz—',.
Assumption 4 (u-strongly convex). There exists (1 > 0 such
that for all x,x' € R% and D € D,

f(@.D) = f(z,D) + (Vaf(w D)2’ — @)+ 5 |2~ al).

Assumption 5 (Bounded loss variance). There exists oy > 0
such that, for each agent v and for every x € R?,

Ep~p,(f(z,D))* = (Ep~p, f(z,D))* < o}

Assumption 6 (Bounded gradient variance). There exists
og > 0 such that, for each agent v and for every x € R¢,

Ep~p, [|Vef(z,D)|3 — |[Ep~p, Vo f(z,D)|; < o2

2Note that when f is convex, for any Py € Ps, A(V,Py,d) =
{x*(Py)}. This follows from the uniqueness of the global empirical loss
minimizer for convex loss functions.

Assumption 7 (é-heterogeneous distribution). There exists
0 > 0 such that Py is 6-Heterogeneous with respect to f.

The following assumption is used in Theorem 2

Assumption 8 (f-completeness). We say that Ps is f-

complete if for every Py, € Ps, & € R% and (g, : v €
B) € R8I satisfying
> Epep,Vef(@, D)+ g, =0and
u€H vEB
1 . 2 A2
77 | 2 [Bo~p. Vet @ Dl + 3 I9u1l3 | <6,
ueH vEB

there exist distributions (Q, : v € B) such that Py x Qp € Ps
and Ep.g,Vaf(&,D) = g, for each v € B.

III. MAIN RESULTS

Theorem 1 (The VALID protocol). Suppose that Assump-
tions 1-7 are satisfied. There exists a validated learning
protocol VALID over T rounds with the following guarantees
under any Byzantine attack,

A. Successful termination: VALID terminates O(1/T)-
successfully with probability 1 — exp(—O(KT)).

B. Convergence rate: When H+ # ¢, there exists & €
A(H~, Py,0) such that the final model vectors (&, :
v € HT) satisfy Y ,ep &0 — &5 = O(E]6/T).

C. Computational and Communication complexity: With
respect to the model dimension d, the number of iter-
ations T, and the mini-batch size K, for each honest
agent, the complexities of VALID scale as:

i) Computational complexity: O(c(d)T K +|V||€|dT),
where c(d) is the scaling (w.r.t. d) of the complexity
of evaluating V. f (-, ).

ii) Communication complexity: O(dT + |E|?).

Remark 2. Even though honest agents do not know a priori
whether or not B = ¢, the rate of convergence of the model
iterates azgf') to the global optimal consensus model in the
setting with B = ¢ is identical to that of non-Byzantine
stochastic gradient descent (where it is known that B = ¢).
Further, regardless of B, the computational and communica-
tion complexities of VALID scale comparably to those for
non-Byzantine distributed stochastic gradient descent [14].

Theorem 2 (Optimality of VALID). Suppose (f,Ps) satisfy
Assumptions 3- 8. Let 11 be any validated learning proto-
col such that under no Byzantine attack, 11 terminates e-
successfully with probability 1 —~. For any B CV, Py € Ps,
and & € AV \ B, Py, ), there exists a Byzantine attack such
that, with probability at least 1 — v — o(1), 11 terminates
O(1/T)-successfully with S, = T for each v € V and

s
Yvens @0 — &y = OV \ BJ§/T).
IV. THE VALID PROTOCOL

In this section, we describe our proposed VALID protocol.
Due to space constraints, we prove Theorems 1 and 2 as well
as provide additional algorithmic descriptions in [3]. VALID
consists of two phases, the learning phase consisting of the
LEARNMODEL sub-protocol and the validation phase consist-
ing of the VALIDATEMODEL sub-protocol
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Fig. 3. The above figure shows the messages passed to node v by its neighbors
in round ¢ — 1 and the messages passed from node v to its neighbor in round
t of the LEARNMODEL protocol. Our LOCALVALIDATION protocol verifies
if these messages are consistent with each other. For instance, if agent v
performs all computations honestly, the messages ior a single round must
satisfy the property that acg,,l) = :cii) = wE,C) and g a = g(t =gy C) for all
t. Further, the messages passed in different rounds are related bg/ the ev(;luality
<t):( — 3z (=1 4 n® (x{ (t= 1)+ (t— 1>+ (t=1

A. Learning phase
The learning phase is based on distributed stochastic gra-

dient for non-Byzantine networks (c.f. [14]). In each round
(t)

t=1,2,...,T, each agent v computes its model iterate x,
and the gradient iterate gf,t and transmits these to all its
neighbors.

B. Validation phase

The validation phase comprises of local validation, global
validation, and validation state agreement sub-protocols. Local
validation examines message consistency in relation to the
inputs, as shown in Figure 3. Global validation confirms the
agents’ model and gradient iterates are consistent with a J-
heterogeneous data distribution. Roughly speaking, success-
ful local and global validations indicate that any Byzantine
agents’ iterates align with a (V' \ B, Py, §)-admissible model.
If either of these checks fails, the detecting agent’s alarm
state Sq(,o) flips to _L. The validation state agreement sub-phase
ensures unanimous _L final states among honest agents if even
one alarm state is _L. However, even when the alarm state of
all agents is T, Byzantine activity during the validation state
agreement phase may still lead some honest agents to set L.
In this scenario, agents in H converge to a valid consensus
model, while those in H  finalize their states as _L.

1) Primitives: We introduce the validated broadcast prim-
itive and the hash function employed in our protocol.

a) Validated Broadcast: This sub-protocol aims to uni-
formly broadcast a source agent’s message, ensuring that
honest agents either receive it intact or flag their validation
state as L. Initially, only the source agent has the target
message; others have a null message ‘@’. Agents exchange
messages with neighbors, updating their own only if it was
null or flagging L upon discrepancies. After min{|V|, ||}
exchanges, all honest agents either possess the unaltered
message or have flagged L.

b) Polynomial Hashing: Let F be a large enough fi-
nite field. Our hashing schemes are based on the following
polynomial hash. For any vector £ € R¥T~2) and s € T,
define the hash HASH : F x RY7T=2) — R as HASH(s,¢) =
ST ¢int(s'~1), where, int(s"™1) is integer representa-
tion of the finite field element s'~!. Note that for a fixed key
s, HASH(s, £) is a linear function of &.

2) Local Validation: If agent v is honest, the transcripts on
the edges incoming and outgoing from it must satisfy consis-

tency and boundedness properties. Specifically, let (w&ﬁ,gfﬂl)

be the pair of vectors transmitted by agent u to agent v at the
end of round ¢ of the learning phase. By Lemma 4, an honest
agent’s transmissions must be bounded in magnitude. Next,

let Xout 2 00 .y =12 7T, Xin 2 [z 4=
0,1,...,7—1]T, Xinn 2 [77(%“) t=0,1,...,7—1]7
and and T, = [« (t)g(t) =1,2,...,T]" denote R7-
valued partial transcripts on the edge (u,v). An honest agent
v implies that there exist X o, X o, X . X'™" and T, such that
X" = xou, X = Xin X‘“ & = X1 and T, = Ty,

v vu U’

for u € N (v). Further, if every agent performs communication
and computatlons w1th these variables honestly, these variables

further satisfy X, = X, +Zu€/\f v)(Xmm —X;n’n) -T,.
The LOCALVALIDATE protocol ﬁrst checks whether the
norms of the messages transmitted by each neighbouring
agent satisfy the bounds of Lemma 4 and then efficiently
confirms transcript vector consistency for each agent v by
using hash values instead of transmitting entire transcripts,
thereby reducing communication cost. Agents first draw a
private key s, to compute and broadcast hash values of
their incident transcript vectors. Following this, private keys
are broadcast. This sequence prevents Byzantine agents from
knowing other agents’ keys before sharing their own hash
values. Agents then recompute and broadcast hash values of
their incident transcript vectors using all received keys. Broad-
casts are executed using the validated broadcast protocol. Any
discrepancies in consistency checks (or during the validated
broadcast) prompt agents to set their alarm state SSO) to L.
3) Global Validation: The intuition behind the global val-
idation phase is that when B = ¢, for some collection of
vectors (g, : v € V) taken from RY, the gradient vectors

must satisfy HlEDu)gqu g,ll = 0(1/t) for all (v,u) € €&,
2,

ZUEV gv - O’ and Z'UEV ”gvHQ S J.
a) Final gradient estimation and broadcast: Let v be

small enough (as specified in [3]). For each neighbor u €
N (v), node v € V maintains estimates gy, of g, £y, of

llg; ||, using the following weighted sums:
-1 T

e IR
éu?) = ZFYT = 1‘

Next, every node v broadcasts ((guv,&w)
using the validated broadcast algorithm.

b) Heterogeneity and optimality test: Set a slack param-
eter € > 0. Upon receiving the estimates ((Guy, fuv) : (u,v) €
£), the following verification is performed by every agent.

1) Consistency check: If (g, &w) % (Guuv, éw/) for
some v,v" € N(u), declare the presence of an adver-
sary. Else, set (97, 0%) = (Guv, buy) for any v € N (u).
2) Optimality check: If Hﬁ > ey 9 ’2 > ¢, declare the
presence of an adversary.
3) Heterogeneity check: If 3", ¢\, EZ
the presence of an adversary.
4) The Validation State Agreement sub-phase: The goal of
this sub-protocol is to ensure that if any honest agent detects
a Byzantine presence, all others recognize this alert. Agents

Guv = and

(4)

uv
2

Cu e N())

> § + ¢, declare

Authorized licensed use limited to: Arizona State University. Downloadeddy()3ebruary 04,2025 at 01:31:58 UTC from IEEE Xplore. Restrictions apply.



exchange their validation states with neighbors, updating to L
if any neighboring state is L. After a set number of exchanges
(up to min{|V|,|€|} times), agents concur on T if B = ¢,
or on _L if Byzantine presence was detected before this sub-
protocol.?

V. EXPERIMENTS

We test the performance of VALID and compare it with two
state-of-the-art Byzantine-resilient algorithms for decentral-
ized training, UBAR [42] and Bridge-median (Bridge-M) [40].
UBAR employs a combination of distance- and performance-
based algorithms to mitigate the effect of adversaries. It checks
the models sent by neighboring agents and discards outliers
(based on the distances between vectors of parameters). Next,
it tests the remaining models against the validation dataset, and
takes the average of those with the best performances. Bridge-
M screens the incoming models and applies a coordinate-wise
median on the received parameters.

1) Network: We consider an undirected graph with n = 20
agents. The graph consists of two fully connected subgraphs
of 10 agents each. These two subgraphs are connected with
two edges chosen randomly. This ensures that there is a benign
path between any two benign agents, provided there is at most
one adversary.

2) Dataset and hyperparameters: We evaluate our valida-
tion scheme by training a Neural Network (NN) with three
fully connected layers. Each of the first two fully connected
layers is followed by ReLU, while softmax is used at the
output of the third layer. We used a batch size of 300 and a
decaying learning rate of ””7’7,, where [7r;,;+ = 5 denotes
the initial learning rate.

We consider two settings of data distributions - i.i.d. and
moderately non-i.i.d., both based on the MNIST dataset [44].
To simulate independent and identically distributed (i.i.d.)
data of every agent, the whole training dataset is shuffled
randomly and partitioned equally among the agents. To model
moderately non-i.i.d data of the agents, we first distribute i.i.d.
data, as described above. Next, each of the 10 agents in the first
subgraph randomly and independently picks four label classes
out of “0”, “17, “2”, “3”, and “4”, and rotates the images from
these four classes by 90 degrees. The procedure is repeated
for the 10 agents in the second subgraph, but now the four
label classes are chosen from “57, “6”, “7”, “8”, and “9”. As
a result, the data distributions among the agents within each
subgraph are closer to each other than to the data distribution
of the agents in the other subgraph. Also, each image in the
test dataset is rotated with a probability 0.4.

We now present our results for the moderately non-i.i.d. set-
ting. Due to limited space, the results for i.i.d data distribution
on MNIST are presented in [3].

init

A. No-adversary case

Fig.4 compares the performances of UBAR*, Bridge-M, and
VALID schemes in non-i.i.d. setting. The negative effect of

3Note that even without prior Byzantine detection, some honest agents (i.e.,
those in #_ ) might adopt the validation state L if Byzantine agents start
intervening during this sub-protocol. In such cases, all honest agents may not
reach consensus on the validation state since the alert raised by an honest
agent detecting this Byzantine activity may not propagate to all agents before
this sub-phase terminates (in a fixed number of time steps).

4Note that UBAR scheme is not specifically designed for non-i.i.d. setting.
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Fig. 5. Performance of VALID, UBAR, and Bridge-M under Gaussian attack
(1 adversarial agent, non-i.i.d. setting).

non-i.i.d. data is more pronounced for UBAR and Bridge-
M schemes. As UBAR is a performance-based scheme, it
is hard for the agents to distinguish whether a high loss
value for a given model sent by a neighboring agent can
be attributed to a potential attack or to the heterogeneous
nature of the data. Performance of the Bridge-M scheme
also degrades in non-i.i.d setting, due to the coordinate-wise
median choice of the parameters. To the contrary, in VALID,
agents take the weighted average of all models received from
their neighboring agents.

B. Effect of an attack

We consider the following attack model: an adversary adds
Gaussian noise A (0,0%) to each of its model parameters
before sending them to its neighboring agents. While VALID
demonstrates good performance in non-i.i.d setting, it is not
a Byzantine-resilient scheme and its performance degrades in
the presence of an adversary as the variance of the noise o
increases. In contrast, UBAR and Bridge-M are Byzantine-
resilient schemes and their performances remain almost the
same in the presence of an adversary with different values of
o as depicted in Fig. 5. However, VALID is able to detect the
attack using the heterogeneity and optimality checks presented
in section IV-B3. As depicted in Fig. 5, the sensitivity of
VALID to detect the attack increases with ~. Therefore, it
can detect weak attacks with the appropriate choice of ~.
We experimentally select v < Ve, Where ymax is the
largest value that can successfully pass the heterogeneity check
without triggering a false alarm in the non-i.i.d. setting with
no attack.
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