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Abstract 
 

In recent years, the theory of the effect of saturation of EPR spectra of free radicals 
undergoing spin exchange has been extended to spin exchange frequencies where “peculiar” 
behavior occurs.  In a paper by Salikhov (Appl. Magn. Reson. (2021) 52:1063–1091), analytic 
expressions were developed that predict the dependence of measurable EPR parameters on the 
exchange frequencies and the microwave field strength.  This work is an experimental test of that 
theory where, in principle, there are no adjustable parameters. 
 
Dedicated to Professor James D. Currin (1931 – 2017) whose theory of Heisenberg Spin 
Exchange in 1962 for unsaturated spectra of free radicals in liquids holds up to this day. 
 
1 Introduction 
 

We learned already in 1962 that the EPR spectrum of a free radical undergoing 
Heisenberg spin exchange (HSE) showed a dispersion (DIS) signal in addition to the “normal” 
absorption of energy (ABS) [1].  It was recognized that the study of HSE was an ideal method to 
investigate bimolecular collisions in liquids, a fact that stimulated the rapid development of the 
field: see [2, 3] and references therein for a historical survey and [4] for a comprehensive, 
modern treatment of the subject as applied to nitroxide free radicals (nitroxides).  This work is 
limited to 15N nitroxides.  All spectra are in the fast-mobility regime presented as first-
derivatives with respect to the swept external magnetic field.  The DIS component was largely 
ignored or avoided in the case of 14N by studying the center-field line, (cf), until 1980 when a 
comprehensive monograph devoted to HSE was published in English [2].  At that time, DIS was 
recognized to render the resonance line non-Lorentzian; however, it was not used to study the 
spin exchange frequency, 𝜔𝜔𝑒𝑒𝑒𝑒, until 1997 [3].  DIS was treated with perturbation theory in [2] 
where 𝜔𝜔𝑒𝑒𝑒𝑒 ≪ 𝛾𝛾𝐴𝐴0.  𝐴𝐴0 (G) is the 15N or 14N isotropic coupling constant for 𝜔𝜔𝑒𝑒𝑒𝑒 → 0 and 𝛾𝛾 the 
gyromagnetic ratio of the electron.  In the slow exchange regime, DIS increased linearly with 
𝜔𝜔𝑒𝑒𝑒𝑒 [2].  As expected, as 𝜔𝜔𝑒𝑒𝑒𝑒/𝛾𝛾𝐴𝐴0 increased, the perturbation theory result was found to be 
inadequate to interpret experimental results [5]; however, allowing the amplitude of DIS to 
increase non-linearly with 𝜔𝜔𝑒𝑒𝑒𝑒 led to good agreement.  In 2002 [5], it was proposed that each 
line was the superposition of only one ABS and one DIS for all values 𝜔𝜔𝑒𝑒𝑒𝑒 based on 
experimental evidence [5].  This conjecture was later confirmed numerically [6] and theoretically 
[7]. 

In [7], Salikhov proposed a new, important view of the effect of HSE on EPR spectra for 
unsaturated 15N nitroxides, that established that the two lines are collective states of two sub-
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ensembles of spins, referred to as spin modes, and each is composed of only one ABS and one 
DIS. 

Until 2017 [8], most studies of HSE were limited to unsaturated spectra; i.e., 
𝐻𝐻12𝛾𝛾2𝑇𝑇1𝑇𝑇2 ≪ 1, where 𝐻𝐻1 is the circularly polarized magnetic induction of the microwave field 
[9].  For 𝐻𝐻1 → 0, Salikhov [7] derived eqs 1 – 3 valid for all 𝜔𝜔𝑒𝑒𝑒𝑒 < 𝛾𝛾𝐴𝐴0 as follows: 
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𝜔𝜔𝑒𝑒𝑒𝑒/𝛾𝛾𝐴𝐴0 = �1 − [𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎2 /𝐴𝐴02]0 
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where the subscripts denote the values as 𝐻𝐻1 → 0.  The dependence on 𝐶𝐶 is suppressed except 
that �Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 (0)� means the limit 𝐶𝐶 → 0.  �Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 (0)�

0
= 2𝑇𝑇2−1/√3 [10].  𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑉𝑉𝑝𝑝𝑝𝑝, Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 , and 

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 are defined in Fig. 2 of Results and Discussion below. 
In a series of three papers [9, 11, 12], Salikhov predicted a number of “peculiar’ 

behaviors that had not been tested experimentally.  See the SI of [13] for a brief summary of the 
new predictions. 

One such prediction, that 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 would increase with increasing 𝐻𝐻1, that Salikhov 
attributed to the formation of spin polaritons, collective modes between the spin system and the 
photons, was confirmed qualitatively in [13, 14].  The purpose of the present work is to study the 
predictions of [9] quantitatively.  We find remarkable agreement between theory and experiment 
over the range of 𝐻𝐻1 available with a standard commercial CW EPR spectrometer. 
 
2 Theory 

In the presence of spin exchange, Salikhov [9] (in eq 6) derived the matrix 𝓛𝓛 (Liouville 
linear operator) which contains terms describing the effects of spin coherence transfer between 
the two resonance frequencies for a S = ½. I = ½ spin system each of which have the same values 
of 𝑇𝑇1 and 𝑇𝑇2.  From there, he provided two ways to obtain measurable parameters: (1) from 
computing and fitting the spectrum or (2) from analytical equations [9].  We have confirmed that 
both approaches yield identical results.  To obtain experimental parameters, fitting the spectrum 
is the only option.  Theoretical parameters may be obtained from either fits of the theoretical 
spectra or from the analytical forms.  The fits are precise, but tedious; thus we use the analytical 
forms. 

Reference [9] provides the theory for this work; for the reader who wishes a broader view 
of modern HSE theory, see ref. [15]. 
 
2.1 Expression for the Spectrum 
 

For given values of 𝑇𝑇1 and 𝑇𝑇2, the first-derivative spectrum derived from eq 7 of  [9] is as 
follows: 
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Here, ℛ1 = 1/𝛾𝛾𝑇𝑇1,  ℛ2 = 1/𝛾𝛾𝑇𝑇2, and 𝜔𝜔𝑒𝑒𝑒𝑒′ = 𝜔𝜔𝑒𝑒𝑒𝑒/𝛾𝛾 = 𝐾𝐾𝑒𝑒𝑒𝑒𝐶𝐶/𝛾𝛾, all having units G, and where 
𝒜𝒜 ≡ (𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1), ℬ ≡ (𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ2), 𝒟𝒟 ≡ (∆𝐻𝐻2 + ℬ2) and ∆𝐻𝐻 = (𝐻𝐻 − 𝐻𝐻0).  The derivative is 
effected numerically.  Note that 𝑇𝑇1 is the spin lattice relaxation time directly to the lattice, 
measurable for 𝐶𝐶 → 0. 
 

2.2 Analytical Expressions for the Measurable Parameters 

The resonance frequencies are found (in frequency units) as the real part of the complex 
eigenvalues of the evolution operator 𝓛𝓛 given in eq (10) of [9] as follows: 
 

𝜔𝜔± = 𝜔𝜔0 ± (1/2)1/2𝑅𝑅𝑅𝑅�[𝒦𝒦1 + (𝒦𝒦2)1/2]1/2�. (6) 

 

Subtracting to obtain the spacing between them and converting to magnetic field units gives: 

 
𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = 21/2𝑅𝑅𝑅𝑅�[𝒦𝒦1 + (𝒦𝒦2)1/2]1/2�, (7) 

 
where 𝒦𝒦1 and 𝒦𝒦2 are expressed as: 
 

𝒦𝒦1 = {−1/[ℛ1(𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1)]}{ℛ1(𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1)[−(𝐴𝐴02 2⁄ ) + 𝜔𝜔𝑒𝑒𝑒𝑒′ 2 + 2𝜔𝜔𝑒𝑒𝑒𝑒′ ℛ2 + 2ℛ2
2] 

                    + [2ℛ1ℛ2 + 𝜔𝜔𝑒𝑒𝑒𝑒′ (ℛ1 + ℛ2)]𝐻𝐻12}, 

 

(8) 

 
𝒦𝒦2 = {−𝐴𝐴02ℛ1(𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1)(𝜔𝜔𝑒𝑒𝑒𝑒′ + 2ℛ2)[ℛ1(𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1)(𝜔𝜔𝑒𝑒𝑒𝑒′ + 2ℛ2) + (𝜔𝜔𝑒𝑒𝑒𝑒′ + 2ℛ1)𝐻𝐻12]  

             + [𝜔𝜔𝑒𝑒𝑒𝑒′ ℛ1(𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1)(𝜔𝜔𝑒𝑒𝑒𝑒′ + 2ℛ2) + 𝜔𝜔𝑒𝑒𝑒𝑒′ (ℛ1 − ℛ2)𝐻𝐻12]2}/[ℛ1
2(𝜔𝜔𝑒𝑒𝑒𝑒′ + ℛ1)2].1 

 

(9) 
 

Note that the expression for 𝒦𝒦2 (R2) in eq 9 of [9] has a syntax error.  The final bracket 
‘}’ in the denominator must be deleted.  The final parenthesis that appears in the numerator must 
be replaced by the bracket ‘}’. 

The expression for ∆𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 , eq 11 of [9], is given by the imaginary part of the complex 
eigenvalues of the evolution operator 𝓛𝓛: 
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In eq 12, ℳ = (1 + 𝜔𝜔𝑒𝑒𝑒𝑒′ ℛ1⁄ ), 𝒬𝒬 = (𝐴𝐴0/ℛ2)2, and 𝒮𝒮 = 𝐻𝐻12/ℛ1ℛ2.. 

 The integrated intensity for 𝜔𝜔𝑒𝑒𝑒𝑒 < 𝛾𝛾𝐴𝐴0, given in eq 38 of [9], has the following form: 
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in arbitrary units, 𝒴𝒴 = (𝜔𝜔𝑒𝑒𝑒𝑒′ +ℛ1), 𝒵𝒵 = (𝜔𝜔𝑒𝑒𝑒𝑒′ +ℛ2). 
 Note that eqs 6 – 13 were programmed in Excel by one of us and in MATLAB by 
another, yielding identical results.  We have confirmed that for 𝐻𝐻1 → 0, Currin’s equations [1] 
are identical to eq 4 both for  𝜔𝜔𝑒𝑒𝑒𝑒 < 𝛾𝛾𝐴𝐴0 and 𝜔𝜔𝑒𝑒𝑒𝑒 > 𝛾𝛾𝐴𝐴0 [1, 6] and the Appendix of [3].  For the 
peculiar behavior in the regime 𝜔𝜔𝑒𝑒𝑒𝑒 > 𝛾𝛾𝐴𝐴0, see [16] where two ABS are observed 
experimentally, one positive and the other negative (emissive).  The negative signal has been 
termed the Phantom [16]. 
 
3 Materials and Methods 
 
3.1 Materials 
 
Per deuterated 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (pdT) was purchased from CDN 
Isotopes and the K2CO3 from Mallinckrodt and were used as received.  15PADS was synthesized 
as described in detail in the SI of [13].  Solutions were prepared with Millipore water buffered 
with 50-mM K2CO3. 

 
3.2 Purity of 15PADS 
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The purity of 15PADS was determined by a new technique that we describe briefly 

anticipating that the approach may be useful for other purposes.  Figure 1 displays the EPR 
spectrum of a mixture of 1.50-mM pdT (1st, 3rd, and 5th lines) and 1.00-mM 15PADS (2nd and 4th 

lines) at 295 K. 

 
Fig 1 a EPR spectrum of an aqueous mixture of 1.50 pdT (1st, 3rd, and 5th lines) and 1.00 mM 
15PADS (2nd and 4th lines) buffered with 50-mM K2CO3 at 295 K.  𝑃𝑃 = 1.26 mW.  The weak 
lines are due to 13C in natural abundance in pdT.  The fit, nearly perfect except for the 13C lines, 
is not shown for clarity.  b the residual = spectrum minus the fit. 
 

The weak lines are due to 13C in natural abundance in pdT which are not modeled in the 
fit, thus they appear in the residuals together with the noise.  After decomposing the lines into 
ABS and DIS with the program Lowfit (see below), the doubly-integrated intensity, 𝐼𝐼, of ABS 
for each pdT and 15PADS line was calculated.  The lines are well-resolved; however, this is not 
necessary because Lowfit includes line overlap.  Because the 13C lines are not included in the fit, 
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 was increased by 1%, the natural abundance of the isotope.  〈𝐼𝐼15𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃〉 is computed as twice 
the mean value of the two lines and 〈𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝〉 as three times the mean value of the three lines.  
Normalized to 𝐶𝐶 = 1.00 mM and 1.50 mM, respectively, the purity of 15PADS relative to pdT 
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was computed from the ratio of 3〈𝐼𝐼15𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃〉/2〈𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝〉 = 0.856 ± 0.003.  The uncertainty was 
computed from the propagated values of the standard deviation (sd) for each isotope which is 
seen to be negligible.  The accuracy of the concentration is limited to that of the pdT, quoted as 
1%.  In addition to this application to compare numbers of spins, this level of precision could be 
useful in studies of, for example, (1) different radicals to compare the rotational correlation times 
in exactly the same experimental conditions, (2) to compare the parameters of a radical 
associated with an aggregate such as a micelle with another associated with the bulk solvent, or 
(3) compare a radical with its deuterated counterpart to investigate the intercept discrepancy for 
partially resolved spectra [17]. 

3.2 Samples and CW EPR  
 

A 136-mM solution of 15PADS was prepared by weight in aqueous 50-mM K2CO3, 
yielding a nominal concentration of 116 mM taking into account its 85.6 % purity.  Samples of 
lower concentrations were prepared by serial dilution.  The samples were deoxygenated by 
bubbling N2 gas for 20 minutes through a 5-µL pipette.  The same pipette was filled by capillary 
action to 2/3 full, sealed at each end with Sigillum Wax Sealant (Globe Scientific 51601), and 
stored under a positive pressure of N2 gas.  This sample preparation was effected twice, in runs 
called Series 1 and Series 2. 

Each sample was inserted into a quartz tube which was transferred quickly to the 
microwave cavity (ER 4119HS, TE011) of a Buker EMXplus EPR EPR spectrometer where an N2 
gas flow maintained the sample deoxygenated and controlled the temperature to 295 K.  The 
5000-point spectra were obtained with 100-kHz modulation with an amplitude of 0.1 G, time 
constant 0.01 ms, and conversion time 1 ms.  Continuous wave saturation curves (CWS) were 
obtained using the 2D-Field-Power routine in Bruker’s Xenon software package at 20 power 
settings.  The conversion from power, 𝑃𝑃, to the magnetic induction of the microwave field, 𝐻𝐻1 =
 Γ�𝑄𝑄√𝑃𝑃, was carried out using a standard line sample of 14PADS extending all of the way 
through the cavity as detailed in [18] where 𝑄𝑄 is the Q-value of the cavity and Γ is a constant 
pertinent to the sample and cavity configurations taking into account microwave-focusing effects 
of the glassware and the fact that a line- rather than a point-sample is used.  This resulted in Γ = 
0.0229 ± 0.0012 G/W1/2.  The samples were in 5-µL pipettes, with inside diameter equal to 0.146 
mm; therefore, they extend into the microwave electric field by 0.073 mm which affords large 
values of Q while minimizing heating effects.  Employing the known temperature dependence of 
𝐴𝐴0 of 14PADS [19], the temperature rise at the maximum power of 200 mW was found to be less 
than 1 K.  The Bruker set up affords straightforward measurements of 𝑄𝑄; however, only to 2 
significant figures.  During the course of the experiments 79 values of Q were obtained.  By 
measuring CWS of �Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 �0 it was determined that the average value <Q> = 7500 ± 600 gave 
more consistent results than using individual values.  Thus, 𝐻𝐻1 = (1.98 ± 0.13) √𝑃𝑃 G with 𝑃𝑃 in 
W. 

The spectra are decomposed into their ABS and DIS components with the program 
Lowfit that is described in detail in the SI of [13] together with an instructive example.  Briefly, 
Lowfit separates ABS and DIS and accounts for overlapping lines.  For 𝐶𝐶 < 0.3 mM, the lines 
are slightly non-Lorentzian [18]; however, for 𝐶𝐶 > 0.8, the most precise fits are Lorentzian.  The 
experimental values of 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝 were corrected for instrumental dispersion as detailed in [8]. 
 



 7 

4 Results and Discussion 
 

For Series 1, Fig. 2 shows spectra and decomposed components of 116 mM 15PADS at a 
𝐻𝐻1 = 0.0353 G and at d 𝐻𝐻1 = 0.885 G.  Parameters derived from the components are defined. 

The parameters from Fig. 1 are as follows: Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿  = b 5.674 ± 0.039 G and c 7.086 ± 
0.064 G; 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝 = c, b 0.451 ± 0.009  and f, e 0.484 ± 0.009; and 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = b 15.448 ± 0.005 G 
and e 16.776 ± 0.005 G.  Values at 𝐻𝐻1 → 0: �Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 �0 = 5.68 ± 0.08 G, (𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎)0 = 15.455 ± 0.007 
G, and �𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝�0 = 0.452 ± 0.009.  Note that only one value of 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝 from each spectrum 
is available because the instrumental DIS must be corrected, e.g. [20]. 

The results are presented as the ratio of the parameters divided by their values at 𝐻𝐻1 → 0 
in order to focus on their behavior vs. 𝐻𝐻1.  This allows greater visual detail because 𝜔𝜔𝑒𝑒𝑒𝑒 
influences the parameters more than 𝐻𝐻1 [9].  To appreciate this point, compare Figs. 2b and 2a in 
[13]. 
 

 
Fig. 2  EPR spectra of a deoxygenated aqueous solution of 116 mM 15PADS of Series 1 at a 𝐻𝐻1 
= 0.0353 G and at d 𝐻𝐻1 = 0.885 G.  The decomposed ABS components are displayed in b and e 
and the DIS component in c and f, respectively.  The parameters Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 , 𝑉𝑉𝑝𝑝𝑝𝑝, 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 are 
defined.  The residuals, defined as the spectrum minus ABS + DIS, are displayed along the 
baselines of a and d, respectively. 
 

Table 1 details the values of the parameters at  𝐻𝐻1 → 0.  Table 2 gives the values of 
𝜔𝜔𝑒𝑒𝑒𝑒/𝛾𝛾 derived from eqs 1 – 3. 
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Table 1 Parameters at 𝐻𝐻1 → 0 
𝐶𝐶, mM �Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 �0, Ga (𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎)0, Gb �𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝�0

b 

Series 1 
116 5.68 ± 0.08 15.455 ± 0.007 0.452 ± 0.006 
98.6 4.64 ± 0.06 16.370 ± 0.006 0.346 ± 0.005 
82.6 3.75 ± 0.05 16.976 ± 0.005 0.266 ± 0.004 
66.0 2.82 ± 0.04 17.449 ± 0.003 0.190 ± 0.003 
49.8 1.99 ± 0.03 17.747 ± 0.002 0.128 ± 0.002 
33.3 1.26 ± 0.02 17.916 ± 0.002 0.0753 ± 0.001 
18.0 0.69 ± 0.02 17.999 ± 0.001 0.0349 ± 0.001 

Series 2 
116 5.57 ± 0.04 15.808 ± 0.007 0.436 ± 0.006 
98.6 4.59 ± 0.03 16.629 ± 0.006 0.337 ± 0.005 
82.6 3.74 ± 0.03 17.195 ± 0.004 0.262 ± 0.004 
66.0 2.83 ± 0.02 17.652 ± 0.003 0.188 ± 0.003 
49.8 2.00 ± 0.02 17.948 ± 0.002 0.126 ± 0.002 
33.3 1.27 ± 0.02 18.119 ± 0.001 0.0741 ± 0.001 
18.0 0.68 ± 0.01 18.194 ± 0.001 0.0342 ± 0.001 

a Determined from the CWS of Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿  fit to eq 9 of [18].  b Determined from the CWS of 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 or 
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 fit to a quadratic.  Uncertainties, fit errors. 
 
Table 2 𝜔𝜔𝑒𝑒𝑒𝑒/𝛾𝛾, G determined from the parameter in the second row. 

C, mM 𝜔𝜔𝑒𝑒𝑒𝑒/𝛾𝛾, G 

 �Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 (0)�
0
, Ga [𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶)]0, Ga �𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝�0

a Averageb 

Series 1 
116 9.49 ± 0.13 9.26 ± 0.01 9.26 ± 0.10 9.34 ± 0.13 
98.6 7.69 ± 0.10 7.53 ± 0.01 7.49 ± 0.09 7.57 ± 0.11 
82.6 6.16 ± 0.09 6.04 ± 0.01 5.96 ± 0.07 6.06 ± 0.10 
66.0 4.55 ± 0.07 4.50 ± 0.01 4.38 ± 0.06 4.48 ± 0.08 
49.8 3.11 ± 0.05 3.12 ± 0.01 3.00 ± 0.04 3.08 ± 0.07 
33.3 1.84 ± 0.04 1.92 ± 0.02 1.78 ± 0.03 1.85 ± 0.07 
18.0 0.848 ± 0.03 0.849 ± 0.02 0.827 ± 0.01 0.841 ± 0.01 

Series 2 
116 9.31 ± 0.06 9.05 ± 0.01 9.00 ± 0.10 9.12 ± 0.17 
98.6 7.62 ± 0.06 7.43 ± 0.01 7.33 ± 0.09 7.46 ± 0.15 
82.6 6.14 ± 0.04 6.01 ± 0.01 5.88 ± 0.07 6.01 ± 0.13 
66.0 4.56 ± 0.04 4.49 ± 0.01 4.34 ± 0.06 4.46 ± 0.11 
49.8 3.13 ± 0.04 3.10 ± 0.01 2.95 ± 0.04 3.06 ± 0.10 
33.3 1.85 ± 0.03 1.86 ± 0.01 1.75 ± 0.02 1.82 ± 0.06 
18.0 0.845 ± 0.02 0.853 ± 0.020 0.810 ± 0.011 0.836 ± 0.023 

aUncertainties, propagated fit error.  bAverage, unweighted means; uncertainties, sd. 
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For the two series, Series 1 and 2, Fig. 3 shows the peculiar behavior of 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎, increasing 
as a function of 𝐻𝐻1, that Salikhov attributed to the formation of spin polaritons [9].  The solid 
lines are computed with eq 7 employing (𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎)0 taken from Table 1 with 𝛾𝛾𝛾𝛾1 = 𝛾𝛾𝛾𝛾2 = 7 G-1 
[21], 𝐴𝐴0 = 18.270 G and 𝜔𝜔𝑒𝑒𝑒𝑒 from column 2 of Table 2 for Series 1.  The purpose of employing 
the values of 𝜔𝜔𝑒𝑒𝑒𝑒 from Series 1 for both series and all parameters is to show the systematic 
discrepancies from different runs and different parameters.  Using the values from Series 2, 
would lower the solid lines for both series rendering the fits in b slightly better and those in a, 
slightly poorer.  The fits confirm that the theory is correct quantitatively.  Note that the 
uncertainties derived from the fit errors are smaller than the symbols in Fig. 3; thus, apparently 
there are systematic errors that are difficult to estimate. 
 

 
Fig 3  CWS of the normalized line separation.  a Series 1 and b Series 2.  𝐶𝐶 = 116 mM, open 
squares; 98.6, open circles; 82.6, open triangles; 66.0, open diamonds; 49.8, closed squares; 33.3, 
closed circles; and 18.0, closed triangles.  Uncertainties from fitting errors are less than the 
symbol size.  The solid lines are calculated from eq 7 with no adjustable parameters. 
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Fig 4  CWS of the normalized DIS contribution.  Same symbols as Fig. 3.  Uncertainties are 
estimated from the results of 14N PADS [22], see text.  The solid lines are calculated from eq 11 
using the same parameters as in Fig. 3 with no adjustable parameters. 
 
 Figure 4 shows the 𝐻𝐻1 dependence of 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≡ �𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑉𝑉𝑝𝑝𝑝𝑝� .  The solid lines are 
computed from eq 11 using the same parameters as in Fig. 3 with no adjustable parameters.  For 
14N, no estimate of the uncertainties is available from the two lines, thus, they are estimated to be 
± 1.4 % from experiments with 14N [3].  The agreement is satisfactory although there is an 
apparent discrepancy at higher values of 𝐻𝐻1. 

 
Fig 5  CWS of the Lorentzian line width.  Same symbols as Fig 2.  Uncertainties are the fit errors 
of the intercepts of CWS of 0.1 mM 15PADS plus the sd of the difference in lf and hf, taken in 
quadrature.  The solid lines are calculated from eq 10 with no adjustable parameters. 
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 Figure 5 shows the 𝐻𝐻1 dependence of ∆𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 .  The solid lines are computed from eq 10 
using the same parameters as in Fig. 3 with no adjustable parameters.  The uncertainties are 
propagated from those for � Δ𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 �0, Table 2, and the discrepancies in the two values of ∆𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 , 
taken in quadrature.  The agreement is satisfactory. 

We have not presented results for the peculiar behavior of the doubly-integrated intensity, 
𝐼𝐼 , eq 13, because at our maximum value of 𝐻𝐻1 = 0.885 G, no departure from normal saturation 
behavior is detectable.  The normal behavior is that 𝐼𝐼 increases with 𝐻𝐻1 before leveling out to a 
plateau [9].  Figure 6 shows 𝐼𝐼 in arbitrary units as a function of 𝐻𝐻1 where the maximum is not 
attained at maximum 𝐻𝐻1.  With this limited information, it is not possible to confirm a peculiar 
behavior; in fact, the solid lines are best fit to the Bloch equation, eq 11 of [18].  Figure 6 of [9] 
does show peculiar behavior; however, there, 𝛾𝛾𝑇𝑇1 = 20 G-1 which is a factor of about three times 
longer than we have treated.  Also, the range of 𝐻𝐻1 up to 3 G is more than three times greater 
than we have achieved. 
 

 
Fig 6  CWS of the doubly integrated intensity of 116 mM 15PADS for Series 2.  Circles, lf; 
squares, hf.  Solids lines, fits to Bloch equation.  See text. 
 
It is not promising to study 𝐼𝐼 with a commercial spectrometer; however, it might be illuminating 
to study the saturation of 𝑉𝑉𝑝𝑝𝑝𝑝 because it varies faster with 𝐻𝐻1 [18].  The theoretical prediction for 
𝑉𝑉𝑝𝑝𝑝𝑝 is not explicitly presented in [9]; however, it is easily computed from eqs 10 and 13 as 
𝑉𝑉𝑝𝑝𝑝𝑝 𝛼𝛼 𝐼𝐼/�∆𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿 �

2
 [10]. 

 
5 Conclusions 
 
 We have shown that spectra of 15PADS in aqueous 50-mM K2CO3 at 295 K which fulfill 
the assumptions of the theory that requires two identical Lorentzian lines are in accord with 
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theory.  In particular, the peculiar behavior of the saturation of 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎, previously confirmed to be 
in accord with theory qualitatively [13, 14], is now confirmed quantitatively.  The behavior of 
∆𝐻𝐻𝑝𝑝𝑝𝑝𝐿𝐿  and DIS under saturation, although not obviously peculiar, are also confirmed to be 
generally correct albeit with discrepancies outside of our estimates of the uncertainties at higher 
values of 𝐻𝐻1. 
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