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ABSTRACT

We investigate ocean circulation changes through the lens of data assimilation using a reduced-order model. Our primary interest lies in
the Stommel box model, which reveals itself to be one of the most practicable models that has the ability of reproducing the meridional
overturning circulation. The Stommel box model has at most two regimes: TH (temperature driven circulation with sinking near the north
pole) and SA (salinity driven with sinking near the equator). Currently, the meridional overturning is in the TH regime. Using box-averaged
Met Office EN4 ocean temperature and salinity data, our goal is to provide a probability that a future regime change occurs and establish how
this probability depends on the uncertainties in initial conditions, parameters, and forcings. We will achieve this using data assimilation tools
and DAPPER within the Stommel box model with fast oscillatory regimes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0215236

The Atlantic Meriodional Overturning Circulation (AMOC), a
crucial element of the global ocean circulation system, is primar-
ily influenced by the temperature and salinity gradients between
the north pole and the equator. As climate change progresses,
it becomes increasingly important to understand its potential
impacts on the direction and behavior of this current. To inves-
tigate these effects, we will simulate the AMOC with the aid of
the simplified Stommel box model. We show that the Stommel
model has no periodic solutions. Instead, depending on its model
parameters, either a solution with sinking near the pole, repre-
senting the current circulation, or near the equator is retrieved.
Using a twin experiment, it is shown that data assimilation can be

used to retrieve estimates for the model parameters. Finally, by
assimilating the MetOffice EN4 dataset, realistic estimates for the
model parameters are produced, which are then used to estimate
the probability of an AMOC direction reversal under different
possible future climate change scenarios.

I. INTRODUCTION

Thermohaline circulation is the global current driven by den-
sity variations in the oceans. Its branch in the Atlantic ocean
is known as the Atlantic Meridional Overturning Circulation
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(AMOC). In the northern part of the Atlantic, it transports warm,
salty water from the subtropics to the Arctic. Here, it comes into
contact with colder (sub)polar waters and sink forming the North
Atlantic Deep Water and flows southward in the deep ocean.1 It
plays a crucial role in the climate system, especially for the cli-
mate in northwestern Europe. Based on a simple two-box model,2

it is suggested that AMOC can be described as a bistable sys-
tem characterized by two distinct equilibrium states: TH (thermally
driven), representing the current circulation regime with sinking
near the pole, and SA (salinity driven), signifying reversed cir-
culation with equatorial sinking. The existence of multiple equi-
libria has since been confirmed by both reversal visible in the
paleo-record as well as more sophisticated climate models; see,
e.g., Refs. 3–5.

In the region where sinking occurs, temperature and salin-
ity exert opposing effects on density. On one hand, heat exchange
with the cold (sub)polar environment cools down the subtropical
water that is being advected northward increasing its density. On
the other, contact with melt water freshens it, decreasing its density.
Currently, the former effect dominates. However, it is feared that
climate change driven increases in temperature, and ice melt and
precipitation can tip the balance to the latter, thus reversing the cir-
culation. The transition between the circulation regimes can occur
through various mechanisms.6–8 Beyond a critical point, parameter
values may lead to bifurcation-induced tipping (B-tipping). Alter-
natively, the rate of parameter changes might trigger rate-induced
tipping (R-tipping). Furthermore, system variability due to inherent
noise could result in noise-induced tipping (N-tipping). Previous
research, as documented in Refs. 9–16, has established thresholds for
tipping occurrence. In Ref. 17, the Stommel box model is coupled
to a sea-ice component in the polar box and displays rate-induced
tipping.

It is still an open question how close to such a tipping point
the world is.9 In 2023 alone, two studies on the topic18,19 have
received considerable attention in the press, but their results have
been criticized.20 The aim of this study is twofold. The first is to
explore whether it is possible to use observations of ocean temper-
ature and salinity in combination with a reduced-order model in a
process called data assimilation to estimate model parameters. The
second is to determine how the addition of forcing, both seasonal
and climatological, to the Stommel model affects this probability of
an AMOC reversal.

It is important to note that while one might assume that a
two-box model would have limitations in fully describing tipping
behavior, our approach, incorporating high-frequency oscillations,
parameter variability, and data assimilation, brings us close to real-
istic scenarios. This methodology also sheds light on the feasibility
of assimilating data to further understand the qualitative dynam-
ics of our model. It offers a window of validity for our predictions,
considering factors, such as the strength of the forcing.

A. Leveraging conceptual models for parameter

estimation and predictive analysis

The use of conceptual models, such as the Stommel box model,
for parameter estimation and prediction of complex systems, such
as the AMOC, is motivated by several important considerations.

First, reduced-complexity models often provide clearer insights into
the fundamental mechanisms driving the system’s behavior, which
can be obscured in more complex models.21–23 This interpretability
is vital for understanding the key processes governing AMOC
dynamics.

In light of these advantages, our objective is to model the
AMOC and examine its behavior under various conditions. We
aim to assess the feasibility of estimating temperature diffusivity,
salinity diffusivity, and advection parameters by assimilating ocean
temperature and salinity data. Additionally, we seek to forecast the
probability of circulation regime changes. The simplicity of the cho-
sen conceptual model makes this analysis possible as we are able to
initialize large ensembles at low computational cost. It also serves as
a baseline in complexity with more detailed versions of the model
available for further studies on higher order dynamics.24,25

Last, these models serve as useful benchmarks against which
more complex models can be evaluated, helping to assess whether
increased complexity leads to improved predictive skill.12,26–29 While
we acknowledge the limitations of conceptual models, their use
in conjunction with data assimilation techniques offers a power-
ful approach to understanding AMOC dynamics and predicting
potential tipping points.

B. Outline of the paper

The outline of the paper is as follows. First, we introduce the
autonomous and non-autonomous Stommel model in Sec. II and
study the qualitative behavior of the solutions as time goes to infin-
ity. In Sec. III, we explain our data assimilation method and the
assimilated observations. In Sec. IV, we conduct a twin experiment
to investigate the potential of data assimilation to estimate model
parameters. In Sec. V, observations based on the Met Office Hadley
Centre EN4 data set are assimilated in a non-autonomous Stommel
model, and the impact of the different forcings on the tipping proba-
bility is investigated. In Sec. VI, we present and analyze the results of
our data assimilation experiments, examining the model’s behavior
under various climate change scenarios and assessing the likelihood
of AMOC regime shifts. Finally, in Sec. VII, we discuss our findings.

II. MATHEMATICAL ANALYSIS OF THE STOMMEL BOX

MODEL: AUTONOMOUS AND NON-AUTONOMOUS

PERSPECTIVES

A. The Stommel box model

The Stommel model comprises two fully mixed water contain-
ers (shown in Fig. 1). One represents the region of the North Atlantic
just north of the equator with temperature and salinity denoted as
(Te∗, Se∗), while the other symbolizes the polar region with temper-
ature and salinity as (Tp∗, Sp∗). (The asterisk subscripts here denote
variables with a unit.) These containers are interconnected by both
a capillary tube and an overflow area, facilitating water circulation
while preserving a constant volume in each container. The relative
salinities and temperatures of each box determine the flow of water,
and when the flow of water reverses, we consider that to be a regime
change.

Initially, then, this scenario is described with four equations,
which are described below:
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FIG. 1. A conceptual depiction of how Henry Stommel modeled thermohaline
circulation. The circulation between the two connected bodies of well-mixed water
in the Stommel model is driven by density gradients between the two boxes.

1x1z1ye

dTe∗

dt∗
= kT1x1ye

(

Ta
e − Te∗

)

+ |9∗|
(

Tp∗ − Te∗

)

,

1x1z1ye

dSe∗

dt∗
= kS1x1ye

(

Sa
e − Se∗

)

+ |9∗|
(

Sp∗ − Se∗

)

,

(1)

1x1z1yp

dTp∗

dt∗
= kT1x1yp

(

Ta
p − Tp∗

)

+ |9∗|
(

Te∗ − Tp∗

)

,

1x1z1yp

dSp∗

dt∗
= kS1x1yp

(

Sa
p − Sp∗

)

+ |9∗|
(

Se∗ − Sp∗

)

− m∗Sp∗,

with 1z, 1x being the depth and the zonal width of the boxes and
1yp, 1ye the meridional width of the polar and equatorial box,
respectively, kT the temperature diffusion coefficient, and kS the
salinity diffusion coefficient. The model incorporates the exchange
of heat and salt within each box as a response to surface forcing,
employing relaxation toward specified ocean surface temperature
and salinity values (Ta, Sa). Next to this, the model accommodates
for the addition of fresh water supply to the polar box at a discharge
rate of m∗. In particular, this quantity represents the melting of ice-
bergs due to climate change and the release of additional fresh water
that comes from that.

The flow rate is given by the following equation:

9∗ = γ1x1z
(

ρp∗ − ρe∗

)

/ρ0, (2)

where γ is the advection coefficient and ρ0 is a reference density.
Since those are both constants, the flow rate is linearly related to the
difference in the water density between the two boxes. We note that
if the flow is due to denser water in the polar box, as it is for the
current TH regime, the flow rate is taken to be positive.

The Stommel system also assumes the following linear equation
of state:

ρ∗ = ρ0(1 − αT(T∗ − T0) + αS(S∗ − S0)), (3)

where a “0” subscript indicates a reference value, αT is the thermal
expansion coefficient, and αS the haline coefficient.

However, by instead looking only at the temperature and salin-
ity relative to one another, we can reduce this down to a two
variable system by subtracting the equations for the pole box from
the equatorial box in the case that m∗ = 0,

dT

dt
= η1 − T(1 + |T − S|),

dS

dt
= η2 − S(η3 + |T − S|),

9 = T − S,

(4)

where

T =
1zγαT

1ykT

(Te∗ − Tp∗),

S =
1zγαS

1ykT

(Se∗ − Sp∗),

9 =
1

1y1xkT

9∗,

t =
kT

1z
t∗,

1y :=
1yp1ye

1yp + 1ye

.

Here, η1, η2, and η3 are parameters independent of the ocean
state. Their full values are as follows:

η1 =
1zγαT

1ykT

(

Ta
e − Ta

p

)

, (5)

η2 =
kS

kT

1zγαS

1ykT

(

Sa
e − Sa

p

)

, (6)

η3 =
kS

kT

. (7)

Setting dT
dt

= 0, dS
dt

= 0 in Eq. (4), we get the following equilib-
rium solutions:

T =
η1

1 + |9|
and S =

η2

η3 + |9|
.

In the TH regime, we have 9 = |9|. In this case, the effect of the
temperature difference dominates the effect of the salinity difference
and the system is thermally driven. We find that

η2 = −92 − η39 + η1

(
η3 + 9

1 + 9

)

. (8)

On the other hand, in the SA regime, we have 9 = −|9|. In this
case, the transport due to the salinity difference dominates over the
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transport due to the temperature difference. We find that

η2 = 92 − η39 + η1

(
η3 − 9

1 − 9

)

. (9)

The solutions from Eqs. (8) and (9) for fixed η1, η3 can be
shown together as a function of the dimensionless transport. From
this, it is clear that for a range of η2, three steady-state solutions
for the transport are possible since the vertices of both parabolas
described above lie in the area where ψ > 0, meaning that the TH
regime provides two solutions for certain values of η2 and the SA
regime provides one.

B. The non-autonomous Stommel model

We extend the Stommel model to include seasonal variations,
represented by periodic changes in surface temperatures and salini-
ties. We also know that any oscillatory behavior will not arise from
the autonomous Stommel model (see Appendix A) and, thus, will
solely emerge due to the fact that η1 and η2 are no longer constant in
time but oscillate, i.e.,

η1 = η1,auto + B sin(�t), (10)

η2 = η2,auto + B̂ sin(�t), (11)

with η·,auto representing the values used in the autonomous system

in Eq. (4). Here, B and B̂ are distinct, but we define A = B − B̂ for
future use. Using that, our definition of 9 , and the overall Stommel
system, we can write

d

dt
9 =

d

dt
(T − S) =

dT

dt
−

dS

dt

= (η1,auto + B sin(�t) − T(1 + |T − S|))

− (η2,auto + B̂ sin(�t) − S(η3 + |T − S|))

= η1,auto − η2,auto + η3S − T − (T − S)|T − S|

+ (B − B̂) sin(�t)

= η1,auto − η2,auto + η3S − T −9|9| + A sin(�t),

then we substitute in S = T − 9 , which ultimately gets us

d

dt
9 = η1,auto − η2,auto + (T − 9)η3 − T − 9|9| + A sin(�t),

(12)

d

dt
T = η1,auto + B sin(�t) − T(1 + |9|)

for a system without a climate change, in particular, for a system in
which m∗ = 0.

In order to get a full picture of the dynamics of Eq. (12), it
is, thus, fitting to analyze its 9-vs.-η2,auto bifurcation diagram. It
is worth noting that the discontinuity surface 60 = {(T, S) ∈ R

2
+|T

= S} gives rise to a Non-Smooth Fold (NSF) bifurcation, black
star in Fig. 2, where the stable equilibrium branch terminates at
η2c ≡ η1η3.

Understanding NSF bifurcations can be helpful in predicting
critical transitions or tipping points in complex systems, aiding in

FIG. 2. A 9-vs.-η2,auto bifurcation diagram for the system in Eq. (12) with
η1,auto = 3, η3 = 0.1, and A=B=0. The solid red and blue lines are stable equilib-
ria, while the dotted blue line represents an unstable equilibrium. The solid black
circle indicates the system’s saddle-node bifurcation, while the black star indicates
the NSF bifurcation. The dotted black line emphasizes the discontinuity set 60.

risk assessment and management. This paper examines the non-
autonomous Stommel box model as a foundation for studying tran-
sitions in thermohaline circulation, while providing insights into the
dynamical impact of NSF bifurcations.

In the context of our model, the NSF arises when the unsta-
ble equilibrium solution (dotted blue curve) and the focus (solid
red curve) intersect with the discontinuity surface. This tipping
point corresponds to the rapid transition from solutions near the
temperature-dominated branch of nodes (solid blue curve) to the
salinity-dominated branch of focus points.

For the non-autonomous Stommel model [Eq. (12)], under
high-frequency forcing, we observe amplification or attenuation
of patterns in ψ , which depends linearly on the amplitude-to-
frequency ratio (A/�). That is to say, solutions starting near the
NSF bifurcation point may naturally shift away toward higher val-
ues of η2 or be driven toward lower values under the effect of data
assimilation. The foundational work for this analysis can be found
in a paper by Budd et al.30 Their study provides valuable insights
into the expected behaviors of the parameters η1 and η2, as well
as the equilibria, when incorporating seasonal variations. Building
upon their findings, we extend the investigation by introducing data
assimilation techniques to further enhance our understanding of
these complex dynamics. By assimilating observational data into the
model, we aim to explore how the combination of seasonal vari-
ations and data assimilation influences the system’s behavior and
equilibria.

III. INVERSION OF THE STOMMEL BOX MODEL

The solution of the Stommel box model in (1) depends on
the surface diffusion parameters kT and kS as well as the advection
parameter γ . Given the simplified nature of the Stommel box model,
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it is not possible to estimate appropriate values for these parame-
ters from first principles. Data assimilation allows one to reconstruct
plausible values for these parameters from comparisons between
model output and observations. In this section, we will introduce
the data assimilation methodology and the assimilated observations.
The described model and methodology are implemented in the DA
Python package DAPPER.31

A. Ensemble Kalman filter

The true state of the system, which in our case consists of the
temperature and salinity in the ocean boxes as well as the advec-
tion and diffusion coefficients, is not known. However, based on,
e.g., the model output, it is possible to provide an estimate of the
true value in the form of a probability distribution. Data assimila-
tion (DA) is a procedure that combines this a priori distribution with
imperfect observations (see Sec. III B) to produce a posteriori distri-
bution with smaller spread around the truth. The most-likely value
for the truth based on the a priori distribution is referred to as the
forecast, while the most-likely value of the a posteriori distribution is
known as the analysis. In this work, we use a particular DA method
known as the augmented ensemble transform Kalman (ETKF)32 in
which both errors in the observations as well as the aprior distribu-
tion are assumed to be Gaussian. The mean and covariance of the
latter estimated from an ensemble of model runs. A more detailed
description of the augmented ETKF approach used can be found in
Appendix B.

B. Observations and model parameters

Geometry of the two boxes in the model, box-average tem-
perature and salinity, and observation error variances and box-
surface-averaged temperature and salinity necessary for the model’s
forcing are compiled based on the Met Office’s EN4 quality con-
trolled objective analysis33 with bathymetric bias corrections.34 The
EN4 dataset is a dataset of several types of in situ potential temper-
ature and salinity measurements interpolated onto a 1 × 1 degree
grid of the globe at 42 non-equally space depths on a monthly basis.
From this dataset, the vertical profiles in the North Atlantic between
23.5 ◦N and 89.0 ◦N and between 90.0 ◦W and 90.0 ◦E that are at
least 1.5 km deep are selected. These boundaries were chosen, and
such a model includes the North Atlantic north of the intertropical
convergence zone (5–15 ◦N) as well as Greenland and Norwegian.
The southern boundary was chosen because precipitation in the for-
mer leads to freshening of the ocean surface that the simple Stommel
box model geometry cannot accommodate. The northern boundary
was chosen because overflow from the Nordic sea over the Ice-
land–Schotland ridge has been shown to be the dominant source for
North Atlantic Deep water (NADW),35 which makes up the lower
branch of the AMOC circulation. Only the part of the profiles above
a depth of 3.5 km is used as this corresponds to the lower limit
of occurrence of the NADW. Data from the period 2004–2022 are
used. This selection is based on the fact that during this period,
extensive subsurface measurements were available thanks to the
Argo program36 as well as that they exclude a sharp spike of sur-
face temperatures at the beginning of the century probably caused
by processes our simple Stommel box model cannot represent.

The processes behind formation of North Atlantic Deep Water
(NADW) in the Arctic that makes up the deep-ocean part of
the AMOC are numerous, complex, and their relative impor-
tance is disputed. They include the overflow of intermediate waters
formed during the winter from the Nordic and Irminger seas over
the Greenland–Scotland ridge,35,37 downward convection in the
Labrador Sea driven by heat-loss38 and compensation for wind-
driven upward mixing in the Atlantic.39,40 Of these, only the former
mechanism is incorporated in the Stommel model. Therefore, we
divide the vertical profiles between the boxes as follows: those pro-
files in which surface temperature drops below the depth-averaged
temperature for on average 1 month per year or more, and, con-
sequently, convection due to heatloss can take place, are assigned
to the polar box. The other profiles are assigned to the equator
box. This choice was not only motivated by the physical formation
process of NADW, but also on more practical grounds. The data
assimilation system needs to be able to reduce the average tempera-
ture of the deep ocean if it is found to exceed observed values. This
definition of the polar box ensures that a mechanism to release heat
from the ocean is present. This choice is not entirely unproblematic
(see Sec. VII) and deviates from the one used by Refs. 41–43. Their
boxes extend to 23 ◦S, cover the whole Arctic Ocean, not only the
Nordic seas. Furthermore, they simple define the equatorial box to
be the part of the Atlantic Ocean between 30 ◦S and 40 ◦N as they
base deep-ocean temperatures and salinities on fit to a long-term
climate model output. Hence, overestimation of deep-ocean temper-
ature can be dealt with by lowering initial deep-ocean temperatures,
and no heat release mechanism is necessary. Furthermore, the fit in
Chapman et al.43 is based solely on temperature and salinity differ-
ences between the boxes, and hence, the box model does not need to
provide a deep-ocean heat release mechanism. In other box model
studies,44 no attempt is even made to match boxes and their values
with actual observations.

Volume V of each of the boxes is calculated by summing the
volume of all grid cells in the box. Similarly, surface area A is
calculated by summing the area of the EN4 grid cells in the top

FIG. 3. An example of an EN4 profile assignment in the year 2010. Green points
signify profiles assigned to the equatorial box, and blue points signify profiles
assigned to the polar box.

Chaos 34, 103131 (2024); doi: 10.1063/5.0215236 34, 103131-5

Published under an exclusive license by AIP Publishing

 16 O
ctober 2024 21:16:58

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

TABLE I. The zonal width, the meridional width, and the depth of the two boxes used

in the Stommel model based the EN4 data.

Polar Equator

1x (km) 7274 7274
1y (km) 324 2262
1z (m) 3148 3148

layer in both boxes. The depth of both boxes is then calculated as

1z =
Vp+Ve

Ap+Ae
. The cross section Ac between boxes is derived by sum-

ming the vertical area between profiles assigned to the polar box
and those assigned to the equatorial box. An example assignment is
shown in Fig. 3. From this, zonal and meridional size of the boxes is

defined as 1x = Ac
1z

and 1yp =
Ap

1x
, 1ye = Ae

1x
. The values resulting

from this exercise are shown in Table I.
For each month t and each of the two boxes, the box-averaged

temperature is calculated as

T·∗(t) =

(

∑

i

ViTi,∗(t)

) (

∑

i

Vi

)−1

, (13)

where i runs over all EN4 grid cells in the box below the surface
layer, Vi is the volume of the grid cell, and σT,i is the uncertainty
in temperature as specified in the EN4 data set. The variance in the
value is calculated as

σ 2
T∗(t) =

(

∑

i

Viσ
2
Ti,∗

(t)

) (

∑

i

Vi

)−1

. (14)

These calculations are repeated for salinity S. The values after Jan-
uary 2004 are used to create the observations to be assimilated in

d(t) =
[

Tp∗(t), Te∗(t), Sp∗(t), Se∗(t)
]T

. The 4 × 4 observational error
covariance matrix 6d is assumed to be diagonal. The values on the
diagonal are chosen to be the maximal values for σ 2

T∗(t) and σ 2
S∗(t)

in each box. The resulting time-average values for the observations
as well as the observational error standard deviation found this way
are shown in Table II.

The calculations in Eqs. (13) and (14) are repeated but now with
i running over all grid cells in the surface layer of a box. The signal
is then represented as

Ta(t) ≈ Ta
0 + Ta

sin sin

(
2π t

τ

)

+ Ta
cos cos

(
2π t

τ

)

, (15)

TABLE II. Time-average of the assimilated temperature and salinity observations

together with the observational standard deviation, i.e., the square-roots of the

diagonal of 6d.

Time-averaged obs. Obs. error std. dev.

Tp* (◦C) 1.2 0.3
Te* (◦C) 5.5 0.5
Sp* (ppt) 34.83 0.07
Se* (ppt) 35.15 0.07

TABLE III. Regression coefficients found by fitting model Eq. (15) to the surface

observations for temperature a and salinity a in polar ·p and ·e boxes. Also shown

is the seasonal amplitude

√

·2cos + ·2sin.

Field ·0 ·cos ·sin Seasonal amplitude

Ta
p (◦C) 1.5 −1.5 −1.1 1.9

Ta
e (◦C) 16.7 −2.4 −2.3 3.4

Sa
p (ppt) 33.05 0.22 0.32 0.39

Sa
e (ppt) 35.77 0.04 0.05 0.07

with τ = 1 year and T0, Tcos, Tsin determined by a weighted linear
regression against the box-averaged surface values using σ−2

T∗ (t) as
weights. The regression coefficient for surface temperature and their
equivalents for surface salinity are given in Table III.

The regression coefficients in Table III can be related to the per-
turbations added to η1 and η2 in Eqs. (10) and (11). These relations
can be found in Table IV.

The numerical scheme for the Stommel model uses a finite vol-
ume approach with an explicit fourth-order Runge–Kutta scheme
with a time step of 1 month. Initial conditions for the ocean temper-
atures and salinities in the different ensemble members are drawn
from a Gaussian distribution having the EN4 box-averaged temper-
atures and salinities for January 2004 as mean and 6d as covari-
ance. Initial values for the logarithm of the diffusion and advection
parameters are estimated by minimizing, using SciPy’s Nelder–Meat
method,

(

1T∗ − 1Teq

)2

σ 2
T,e + σ 2

T,p

+

(

1S∗ − 1Seq

)2

σ 2
S,e + σ 2

S,p

+

(

Q∗ − Qeq

)2

(2.5 Sv)2
, (16)

with 1T∗, 1S∗ being the difference between equatorial and polar
box’s initial ocean temperature and salinity, σT,·, σS,· the observa-
tional standard deviations in the third column of Table II, Q = 18 Sv
the observed meridional transport, and 1Teq, 1Seq Qeq equilib-
rium values for temperature, salinity difference, and transport that
depend on the model parameters; i.e., we pick parameters such that
our initial conditions are close to an equilibrium value. The loga-
rithms are perturbed by adding realizations from a Gaussian with a
standard deviation of 0.26. This corresponds to the assumption that
the relative error in these model parameters is 30%. These model

TABLE IV. Relation between the coefficients �, A, B, B̂ in Ref. 30 and the surface

forcing obtained from the EN4 observation data.

Dimensional Scale Nondimensional

� 2π rad yr−1
kT

1z
3564

B 1.51 ◦C
kT

αTγ1z

1yp1ye

1yp + 1ye

1.18

B̂ 0.32 ppt
kT

kS

kT

αSγ1z

1yp1ye

1yp + 1ye

0.66

A . . . . . . 0.52
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TABLE V. Parameters, forcings, initial conditions, and their sources.

Data Values Source Details

Temperature (ocean temperature) Pole: T∗
p = 1.23 ◦C, Equator: T∗

e = 5.4 ◦C Initial values from EN4 data

Salt (ocean salinity) Pole: S*p = 34.82 ppt, Equator: S*e = 35.15 ppt Initial values from EN4 data
temp_diff (surface heat mixing
coefficient) kT = 3.7 × 10−6 m s−1 Equation (16)
salt_diff (surface salinity mixing
coefficient) kS = 1.2 × 10−6 m s−1 Equation (16)
ρ0 (reference density) 1027 kgm−3 45
S0 (reference salinity) 35 ppt 45
T0 (reference temperature) 10 ◦C 45

αT (thermal expansion coefficient)
0.15 ◦C−1

ρref

45

αS (haline expansion coefficient)
0.78 ppt−1

ρref

45

Initial estimate Qoverturning (meridional
overturning flux) 18 Sv 46
γ (advective transport coefficient) 2.0 ms−1 Equation (16)
Ta(t) Oscillates over time Calculated from the EN4 dataset;

see Table III
Sa(t) Oscillates over time Calculated from the EN4 dataset;

see Table III
V_ice 2.9 × 106 km3

Greenland ice sheet melt period tmelt 10 000 y 47–49
Equatorial warming rate 0.03 ◦C yr−1 50–52
Polar warming rate 0.06 ◦C yr−1 52 and 53
Model time step 1 month

parameters are assumed to be constant in time. More specifically,
their values are held constant between DA corrections during the
prediction step (see Appendix B. However, the parameters for each
ensemble member might still change over time due to the DA cor-
rections reflecting that the probability density distribution for the
true value of the model parameters is not necessarily stationary.
Values for the other parameters used in the model can be found
in Table V. Note that this table includes an equatorial and a polar
warming rate, and that the polar rate is twice the equatorial. The
choice to use two warming rates was made to account for Arctic
amplification. Arctic amplification is the name for an effect observed
over many decades in which the Arctic warmed faster than other
parts of the globe.54 The precise magnitude of the difference is dis-
agreed upon, but many studies report that the poles warm around
twice the global average;55,56 therefore, we used this ratio to inform
our model.

IV. TWIN EXPERIMENTS

In this section, we will evaluate whether the data assimilation
system is capable of correcting ocean temperatures and salinities as
well as reconstructing the Stommel model parameters. In addition
to this, we want to see what happens with the AMOC circulation if
the effects of climate change are added to the model. This is done
by running an Observing System Simulation Experiment (OSSE) or

a twin experiment.57 In such an experiment, one of the ensemble
members is set apart as “truth” and withheld from the DA system
forming one of the twins. Artificial observations are created from the
“truth” by adding perturbations drawn from a Gaussian distribution
with covariance 6d with these perturbations mimicking observation
errors. After assimilating these observations into the experiment, the
forecasts and analyses, making up the other twin, can be compared
with the “truth” to quantify performance of the DA system.

We conduct simulations under four distinct scenarios. In the
first scenario, initial conditions and model parameters are perturbed
in the different ensemble members, but no data assimilation is used.
The second scenario mirrors the first, but now ocean tempera-
tures and salinities are assimilated each month during the period
2004–2022. For the third scenario, the effects of global warming
are taken into account. In this study, we take two processes related
to climate change into account. First, that the average temperature
increases faster near the pole (0.06

◦C
year

for a polar box) than at lower

latitudes (0.03
◦C
year

for an equatorial box). Second, that the Green-

land ice sheet melts add a constant rate m∗ =
Vice
tice

with Vice and tice

given in Table V. In order not to interfere with the DA, warming
and melting only start after 2022, i.e., after the end of the DA period,
and is applied uniformly to all ensemble members. The fourth sce-
nario matches the third and includes data assimilation. The model
time step is 1 month and DA is carried out monthly. Figure 4 shows
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FIG. 4. Forecast time series of temperature and
salinity differences between equatorial and pole
boxes for 100 ensemble members, with correspond-
ing dimensionless salinity-vs-temperature phase por-
traits. Green dots: initial conditions; dashed blue line:
TH-SA regime boundary; black paths: synthetic truth;
orange paths: ensemble mode. Rows show differ-
ent experiments: (a)–(c) nCC-nDA, (d)–(f) nCC-yDA,
(g)–(i) yCC-nDA, and (j)–(l) yCC-yDA. (nCC, no cli-
mate change; yCC, with climate change; nDA, no data
assimilation; yDA, with data assimilation). Columns:
temperature difference, salinity difference, dimen-
sionless temperature vs salinity phase portrait.
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the model ocean temperatures and salinities over 100 years for 100
ensemble members together with its most-likely value (the ensem-
ble mean) and the artificial truth. For times at which an update step
is carried out (see Appendix B) and two solutions are available, the
solution after the DA correction is shown. The timeseries obtained
in this way is referred to as the forecast solution. Temperatures and
salinities in the third column are non-dimensionalized using the
scaling constants in Sec. II A. Blue curves indicate the thermoha-
line (TH) regime, while red curves represent the salinity-driven (SA)
regime. As shown by (4), the solution to the Stommel equations can
be written solely as a function of the difference in temperature and
salinity between the equatorial and polar box. Therefore, the results
in Fig. 4 are depicted as a function of these differences only.

As seen in Fig. 4, none of the ensemble members predict a
change in the flow direction in the experiment with no climate
change and no data assimilation. This is notwithstanding the large
uncertainties in the model parameters. One can see that there is
a significant spread between trajectories in the time plots, but the
ensemble remains monomodal; i.e., the ensemble members do not
form different clusters. This is a necessary condition for the EnKF
to function properly. Comparison of Figs. 4(a), 4(b), 4(g), and 4(h)
with Figs. 4(d), 4(e), 4(j), and 4(k), respectively, shows that assimi-
lating temperatures and salinities for the period 2004–2022 reduces
the spread bringing all ensemble members closer to the truth. Tra-
jectories become and stay tightly connected in the time and phase
plots. This indicates that DA is successful in correcting the temper-
atures and salinities. When the effects of climate change are applied
in Figs. 4(g), 4(h), 4(j), 4(k), the solutions no longer converge toward
an equilibrium value. Instead, temperature and salinity keep increas-
ing reflecting the introduced changes in forcing. Apart from this, the
results are qualitatively the same as in the first two scenarios: the cir-
culation remains in a TH mode and the DA reduces the errors in the
ensemble members.

In order to verify whether the DA system is capable of correct-
ing the model parameters, the temperature diffusivity parameter,
the salinity diffusivity parameter, and the advection parameter are

shown in Fig. 5 as a function of time during the DA period together
with their true value. We see that the spread is sound as so far as the
truth lies within the range of the ensemble. Comparing the most-
likely estimate with the truth (in green), we see that initially DA can
increase the error in the model parameters. However, by the end of
the period, errors have reduced to values below the initial error.

To quantify the behavior of the ensembles in Fig. 4 in more
detail, the ensemble standard deviation, or the ensemble spread,
and RMSE for the different experiments are shown in Fig. 6 for
the different state variables. The first thing that stands out is that
ensemble spread and RMSE after the DA period generally stay con-
stant or decrease, even in the absence of DA. The second noticeable
point is that DA is successful in reducing the error in the model
parameters. Errors for the advection parameter [Fig. 6(g)] and the
temperature diffusion parameter [Fig. 6(e)] are decimated, while
that of the salinity parameter is reduced but not to the same extent
[Fig. 6(f)]. This reflects that salinity diffusion parameters are smaller.
Consequently, it takes the system more time to equilibrate with sur-
face salinity forcing and consequently, the DA is less sensitive to
changes in the salinity diffusion coefficient than in the advection
and the temperature diffusion coefficient. The fact that by the end
of the DA period, the spread in the salinity diffusion parameter is
still decreasing [Fig. 6(l)], while that in the temperature diffusion
parameter [Fig. 6(j)] and the advection parameter [Fig. 6(n)] has
leveled off suggest that further RMSE reduction for the former could
be achieved by extending the DA period. Finally, for a properly cali-
brated ensemble Kalman filter, the expectation value of the ensemble
spread and the root mean-square error (RMSE) should be equal.
Comparison of the RMSEs and ensemble standard deviations at the
end of the DA period shows that they are of a similar magnitude with
the spread slightly overestimating the uncertainty. Thus, confirming
that DA is performing as expected.

All ensemble members in Fig. 4 are in the TH circulation
mode. In order to see whether the setup is capable of produc-
ing solutions with the SA circulation, the impacts of the climate
change are scaled up. More precisely, the warming rate in the

FIG. 5. (a) Temperature (κT ), (b) salinity (κS), and (c) advective flux coefficients (γ ) of the ensemble plotted over the assimilation period for an experiment assimilating
18 years of synthetic data without any global warming effects (the experiment with global warming is effectively identical). The red curve represents the ensemble mode,
while the green line represents the true coefficient value.
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FIG. 6. (Black solid lines) RMSE and
(blue pulses) ensemble standard deviation of
(rows) different variables as a function of time
for (columns) the four different experiments
in Fig. 4. For visibility, only every sixth month
is shown.
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FIG. 7. (a) Temperature and (b) salinity time series, as well as (c) a phase portrait for an experiment with yearly warming of 0.03 ◦C per year in the equator (0.06 ◦C per year
at the pole) and a melt period of 1000 years without DA. Trajectories turning red indicate predicted flipping of the flow direction. The black trajectories represent the synthetic
truth values, and the orange represents the ensemble mode.

equatorial box is increased to 0.07 ◦C per year (the polar box warm-
ing rate is raised to 0.14 ◦C per year), and the melting period for
the Greenland ice sheet is reduced from 10 000 to 1000 years. Once
again, these climate change driven effects are only switched on
in 2022; otherwise, the DA system would try to correct errors in
the forcing by modifying the model parameters. In Fig. 7(b), the
salinity between-box difference in all ensemble members increases
due to the effects of climate change. This reduces the circulation
and the temperature difference starts to increase as a consequence
of the temperature difference present in the surface. Eventually,
Figs. 7(a) and 7(b) show that depending on initial conditions and
the model parameters of the ensemble member, there is a rapid
increase in the temperature and the salinity between-box difference,
resulting in a reversal of the AMOC circulation direction. There-
fore, the setup is capable of producing solutions with a circulation
change.

To summarize, in this section, we tested the ability of our setup
to predict the truth using a twin experiment. We find that the setup
produces an ensemble that covers the truth and can, with the suf-
ficient forcing, produce solutions both with the TH as well as the
SA circulation. DA is successful in reducing the spread and errors in
both temperatures, salinities, diffusivity parameters, and the advec-
tion parameter. The 18-year DA period used is sufficient to reduce
the uncertainty in temperature diffusivity and the advection param-
eter to the lowest value attainable with this setup, but the uncer-
tainty in the salinity diffusivity could have been reduced further by
extending the DA period. Having established that our DA setup has
the ability to recover the model parameters from temperature and

salinity observations, we will use those observations to find realistic
values for these parameters in Sec. V.

V. ASSIMILATING BOX-AVERAGED OBSERVATIONS IN

THE NON-AUTONOMOUS STOMMEL MODEL

In this section, we run simulations using (12) while assimi-
lating box-average observations compiled from the EN4 dataset as
described in Sec. III B. In this section, we pursue a twofold aim.
First, we attempt to find realistic values for the salinity diffusivity
kS, temperature diffusivity kT, and advection parameter γ as well as
the non-dimensional values η1, η2, and η3, which depend on these
parameters. Second, having found realistic values, we continue run-
ning the box model forward in time to determine the likelihood of a
circulation reversal happening in this century both for the case with
climate change and the case without.

A. Interfered model parameters

The three different model parameters are shown in Fig. 8 as a
function of time. As the effects of climate change are never applied
during the DA period (see Sec. IV), the figure will look the same
for both experiments with and without climate change. Notice that
we are still assuming that within the conceptual constraints of the
Stommel box model, the true value of these parameters is fixed in
time. The time dependence reflects that the probability distribution
for the truth is changing as more and more observations get assimi-
lated. Had we used the Rauch–Tung–Striebel smoother,58 we would
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FIG. 8. (a) Surface temperature (κT ), (b) surface salinity diffusivity (κS), and (c) the advection flux coefficients (γ ) for the different ensemble members as functions of time.
The red curves represent the ensemble mode.

have been able to correct the parameters in the beginning of the DA
window using observations at the end of the window. However, as
this would have not changed the final estimate, i.e., the value for the
model parameters at the end of the DA window used to propagate
the ensemble members forward, we have abstained from the addi-
tional effort. The figure shows an initial overestimation of the value
of all three coefficients: the mode of the ensemble and all ensemble
members exhibit a decreasing trend that starts to level off near the
end of the DA period. Similar to the twin experiment in Sec. IV, the
salinity diffusion parameter is slower to converge to its final value.
The ensembles for all three parameters show a steadily decreasing
spread indicating that the uncertainty of the parameter’s true values
decreases. The final estimates for the parameters, i.e., their values
at the end of the DA period, together with their 90% confidence
interval based on the ensemble spread, are given in Table VI.

The values for the non-dimensional parameters η1, η2, and η3

as appearing in Eq. (4) are shown in Fig. 9. The annual oscilla-
tions clearly visible in η1 and η2 are the result of a seasonal cycle
imposed on the surface forcing as Eq. (15). As climate change warms
the polar box faster than the equatorial one, the temperature differ-
ence between the two decreases over time resulting in a decreasing
slope in η1 after the DA period. The annually averaged values for
the ensemble mode of η1, η2, and η3 at the end of the DA period
are 9.2, 4.2, and 0.5, respectively. These are about double the values
explored in other Stommel box model literature.30,59 The absence of
certain physical relevant processes for the AMOC and might explain

TABLE VI. Most-likely estimates of model parameters after assimilating monthly

boxed-averaged temperatures and salinities for the period 2004–2022 together with

their 90%-confidence interval.

Parameter Most-likely 90%-confidence interval

kT (10−7 ms−1) 1.8 [1.2, 2.9]
kS (10−7 ms−1) 0.8 [0.5, 2.1]
γ (10−2 ms−1) 8.5 [6.1, 13.9]

a difference. See also the discussion of transport at the end of this
section.

VI. FUTURE CIRCULATION

The differences between the forecast temperature (forecast
salinity) in the equatorial box and the polar box for the 100 ensem-
ble members for the experiment without climate change are shown
in Fig. 10. It can be seen that during the DA period (first 18 years),
both temperature and salinity differences follow the trend in the
observations. However, they fail to reproduce the multiyear oscil-
lation that is visible in the salinity and especially in the temperature
observations. This is because such multiyear oscillations are missing
in the surface forcing. This results in the model overestimating the
salinity difference between equatorial and polar box, thus underes-
timating the transport between the boxes. As explained in Sec. II A,
the autonomous solutions converge to one of at most two possible
stable equilibria each associated with a different circulation regime.

FIG. 9. The values of parameters η1 [Eq. (10)], η2 [Eq. (11)], and η3 [Eq. (7)] as
a function of time for the experiment with climate change.
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FIG. 10. Forecast time series starting in 2004 representing the equator-pole difference in the (a) temperature and (b) salinity for the different ensemble members as well
as (c) the ensemble trajectories in a dimensionless temperature vs a salinity phase portrait. The orange dots with bright yellow errorbars represent the observed values and
their standard deviation. Solutions with TH circulation are shown in blue and those with SA circulation (if any) in red.

FIG. 11. The same as Fig. 10. Forecast time series starting in 2004 representing the equator-pole difference in (a) temperature and (b) salinity for the different ensemble
members as well as (c) the ensemble trajectories in a dimensionless temperature vs a salinity phase portrait, but now climate change forcing is applied outside the assimilation
period. The orange dots with bright yellow errorbars represent the observed values and their standard deviation. Solutions with TH circulation are shown in blue and those
with SA circulation (if any) in red. The end of the DA period is marked by a vertical dashed line.
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In the non-autonomous system, these equilibrium values will oscil-
late in time and the solution always “chases” one of them or switches
from chasing one to chasing the other. The figure shows that in
the absence of climate change, the circulation remains in the TH
regime for all ensemble members until at least 2104. Furthermore,
the solutions tend to values that are close to current conditions: in
the Stommel box model, the solutions for the temperature differ-
ences lie above the difference at the end of the DA period. However,
the differences are still within the range of contemporary tempera-
ture differences. The solutions for salinity differences are larger or
smaller at the end of the DA period than in 2104, partially offset-
ting the decreasing trend over the DA period. The relative spread
at the end of the century is also larger for the salinity differences
than for the temperature differences. This can be explained by our
observation in Sec. IV that the spread in the salinity diffusion param-
eter is larger than that in the temperature diffusivity parameter.
The values depend on the model parameters, and consequently, the
uncertainty for future ocean salinities is relatively larger than that in
ocean temperatures.

The solutions in which after the DA period, the polar surface
temperature increases with 0.06 ◦C y−1, the equatorial surface tem-
perature with 0.03 ◦C y−1, and in which the Greenland ice sheet
melts with a constant rate over 10 000 years are shown in Fig. 11.
Compared to Fig. 10(b), the salinity differences increase after the DA
period [Fig. 11(b)]. This is due to the ice melt. Next to this, the tem-
perature difference increase is smaller due to the differential increase
in the surface temperature between the two boxes [Fig. 11(a)]. Apart
from these points, there are no qualitative differences between the
figures. In particular, none of the ensemble members changes the
circulation regime.

The actual future rate of surface warming and ice melt will
depend on, among other things, future carbon emission and is

FIG. 12. Percentage of ensemble members that undergo a circulation regime
change. All runs use a similar setup to the experiment with climate change and
real data assimilation, but using different ice melt periods (x axis) and different
warmings rates for the equator box (y axis). The warming rate in the polar box
is twice that of the equator box. Bright red denotes mostly flipping, while blue
represents mostly remaining in the starting TH regime.

FIG. 13. The value of the between-box transport as a function of time for the
experiment with climate change. The vertical dashed line marks the end of
the assimilation period. The horizontal dashed line indicates observed current
transport.46

consequently uncertain. Therefore, the DA experiment has been
repeated several times for a range of plausible ice melting and
between-box surface warming rate differences.47–49,52,60 The percent-
age of ensemble members in which the circulation regime changes
from TH to SA are shown in Fig. 12. The figure shows that after
DA, the uncertainty in the regime is small: either all ensemble mem-
bers are in the TH regime or in the SA regime. Next to this, the
close-to-vertical slope of the boundary between the two regimes
indicates that faster ice melting is more influential in pushing the
solutions to the SA regime than faster warming over the pole than
equator. Measured melt rates over the last decade vary between 286
and 487 Gt y−1, which corresponds to a melt period of 7000–12 000
years.47–49 This would place the future climate firmly within the
zone of Fig. 12 in which circulation, the AMOC does not reverse
direction.

The transport between the two boxes is shown in Fig. 13.
Transports are an order of magnitude smaller than the typical
observational transect estimates over this period that lie in the
range 10–25 Sv.61 The decrease is, however, not the result of cli-
mate change, but occurs during the DA period; i.e., the DA is not
capable of simultaneously correcting temperatures, salinities, and
transports. The source of this discrepancy might lie in our box
definition. This will be discussed in more detail in Sec. VII. The
underestimation of current transports implies that the model is
closer to the tipping point than the real AMOC. Consequently, the
ice melt and warming rates in Fig. 12 at which the circulation flips
are in all likelihood an overestimation.

VII. CONCLUSION AND DISCUSSIONS

We have applied the Stommel 2-box model to replicate the
Atlantic meridional overturning circulation and investigated its
solutions, the feasibility of retrieving the temperature diffusivity,
salinity diffusivity, and the advection parameter by assimilating
ocean temperature and salinity parameters and to forecast the like-
lihood of a circulation regime change in the 21st century.
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We introduced seasonal variability and two of the effects of
climate change into the model: warming of the ocean surface at
different rates for the pole and the equator and the melt of the
Greenland ice sheet. Qualitatively, the Stommel box model (4) mir-
rors certain aspects of the non-autonomous Stommel box model
(12) close to the NSF (by setting A = B = 0 in the non-autonomous
case). The former presents a relatively generic and simple model
with a region of bistability of two stable states that lose stability via a
smooth saddle-node bifurcation, while the latter undergoes an NSF
bifurcation. The non-autonomous Stommel box model presented
provides a framework in which we can develop critical (tipping)
points by introducing high-frequency oscillatory forcing.

Using the setup, we tested whether it would be possible to
reconstruct the true value of the model parameters by assimilating
ocean temperature and salinity observation and use those param-
eters to forecast the future circulation regime of the AMOC. Our
twin experiments showed that the DA method is indeed capable of
reconstructing temperature diffusivity and the advection parameters
from observations. It also brings the salinity diffusivity closer to the
truth, but the 18-year DA period used is too short to convergence
to the minimal obtainable error. Using observed temperature and
salinity from the EN4 dataset, the most-likely values of the model
parameters have been determined with the DA system, indicating
uncertainties of the same order of magnitude. In the absence of
climate change, future temperature and salinity are expected to lie
in the same range of temperatures and salinities that have already
been observed in the period 2004–2022. With the effects of climate,
salinity differences between the equatorial and pole box can move
outside the current range because of the freshening caused by the
melting Greenland ice sheet. Running the model with different cli-
mate change scenarios showed that this freshening is relatively more
important to the direction of the AMOC circulation than changes in
the surface temperature. In particular, with the currently observed
ice sheet melting rates, the model does not expect a reversal of the
circulation direction to occur.

Though an interesting proof-of-concept that data assimilation
can help with reconstructing Stommel model parameters, the fore-
casts produced in this study should be interpreted with some care.
The simplicity of the Stommel box model means that it cannot rep-
resent the wide range of processes occurring in the North Atlantic
nor can it represent the North Atlantic geometry. In particular, we
have seen that our model underestimates the transports. In other
box-based studies,41–43,62 the question of the transport is avoided by
fitting temperature and salinity in boxes to a GCM with realistic
levels for the AMOC transport. Consequently, deficiencies in the
dynamics of the Stommel model do not impact the parameter fit.
In other multibox studies, comparison with observed values is not
even attempted.44 In Kuhlbrodt et al.39 and Gnanadesikan,63 it has
been argued that not the buoyancy forcing, but wind stresses are
the primary driver behind the AMOC. Indeed, Cimatoribus et al.12

have shown that the transport in a box-model increases strongly
with increasing wind stresses. The fact such wind forcing is entirely
absent in the Stommel model might explain why our transport esti-
mates are an order of magnitude smaller than those observed. The
omission of the southern Atlantic ocean in our setup might be
another contributing factor to the errors in AMOC transports. Our
two-box model considers the North Atlantic to be a closed system

and does not account for the southward transport of North Atlantic
Deep Water past the equator toward the Antarctic Circumpolar
Current nor for the northward flow of Antarctic Bottom Water and
waters from the Angulhas current (Sec. 14.2.14 in Ref. 1), which can
increase transports by creating diapycnal mixing.64 Accommodating
these concepts requires more complex conceptual models, such as
the Rooth model65 or full climate models. Finally, we noticed that the
volume of the boxes can have profound impact on the transports,
and this dependence deserves more attention in future box-model
studies.

As a last note, the simplicity of the chosen reduced-order model
makes our analysis possible as we are able to initialize large ensem-
bles at low computational costs. This setup can serve as a baseline
in complexity with more detailed versions of the model available for
further studies on higher order dynamics.
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2-2.html as the EN.4.2.2.analyses.g10.XXXX.zip files. The hadley_
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obs.py script used to process these observations can be found
in the inversion branch of the GIT repository.68 Also included
in this fork of DAPPER31 are the code for the Stommel model
(dapper/mods/stommel/_init_.py) as well as the scripts used to carry
out the data assimilation (dapper/mods/stommel/experiment.py)
using these observations and the scripts for the twin experiments.

APPENDIX A: LACK OF PERIODIC SOLUTIONS IN THE

STOMMEL BOX MODEL

In this Appendix, we go over why we can rule out the exis-
tence of periodic solutions in the autonomous Stommel box model.
Doing so guarantees that in the non-autonomous model, when
we do the twin experiments and begin assimilating real data, the
only oscillatory behavior will come from the periodic forcing. The
Poincaré–Bendixson theorem asserts that in a continuous dynam-
ical system, any confined solution will inevitably approach either
a fixed point or a limit cycle. In the next few paragraphs, we will
show that we get the former, not the latter in Eq. (4), where we take
0 < η3 < 1, η1 >

η3
1−η3

, with T, S ≥ 0.

To start, we have that

dT

dt
= f(T, S) = η1 − T − T|T − S|,

dS

dt
= g(T, S) = η2 − η3S − S|T − S|.

We define our Dulac function φ(T, S) = 1. Applying Dulac’s
criterion, we get

∂(φf)

∂T
+

∂(φg)

∂S
=

∂f

∂T
+

∂g

∂S
= −1 − η3 − 3|T − S|. (A1)

This is always strictly negative, and so by the Bendixson–Dulac
theorem, we get that there cannot be any closed trajectories either
entirely where T > S > 0, as well as in the area where S > T > 0.
However, there could be a closed trajectory that crosses between the
two areas, over the line T = S.

Now, assume we did have such a trajectory, a periodic solu-
tion C that enclosed a region D within T, S ≥ 0, and let us call the
part of D where T > S, D1, and the part where S < T as D2 so that
∂D1 = C1 ∪ C3 and ∂D2 = C2 ∪ (−C3).

As Eq. (A1) allows for a continuous extension from D1

(D2) to its compact closure D1 (D2),
∫ ∫

D1

(
∂f

∂T
+

∂g

∂S

)

dT dS
(
∫ ∫

D2

(
∂f

∂T
+

∂g

∂S

)

dT dS
)

exists and is, as shown above, strictly

smaller than zero. Applying Green’s theorem now gives

∫∫

D

(
∂f

∂T
+

∂g

∂S

)

dT dS

=

∫∫

D1

(
∂f

∂T
+

∂g

∂S

)

dT dS +

∫∫

D2

(
∂f

∂T
+

∂g

∂S

)

dT dS

=

∫

C1∪C3

(−g dT + f dS) +

∫

C2∪(−C3)

(−gdT + f dS)

=

∫

C1

(−g dT + f dS) +

∫

C3

(−g dT + f dS)

+

∫

C2

(−g dT + f dS) +

∫

(−C3)

(−g dT + f dS).

However, rearranging this, the second and fourth terms simply
cancel out. Furthermore, by definition, we have that dT

dt
= f(T, S) and

dS
dt

= g(T, S); therefore, we get

∫ ∫

D

(
∂f

∂T
+

∂g

∂S

)

dT dS =

∫

C1

(−g dT + f dS) +

∫

C2

(−g dT + f dS)

=

∫

C

(−g dT + f dS)

=

∫

C

(

−g
dT

dt
+ f

dS

dt

)

dt

=

∫

C

(

−
dS

dt

dT

dt
+

dT

dt

dS

dt

)

dt

=

∫

C

0 dt = 0.

However, earlier, we showed that this was less than zero; there-
fore, we have a contradiction. Consequently, no such loop C can
exist.

Thus, in the autonomous Stommel box model, it is impossible
for a periodic solution to exist for T, S ≥ 0.

APPENDIX B: ENSEMBLE KALMAN FILTER

Let

xt =

[

Te∗(t), Tp∗(t), Se∗(t), Sp∗(t), log
κT

κref

, log
κS

κref

, log
γ

κref

]T

represent a possible state of the system at time t with κref = 1 m2 s−1

being reference values to nondimensionalize the diffusion and
advection coefficients. As this state does not only include the state
variables [Te∗(t),Tp∗(t), Se∗(t), Sp∗(t)] but also the model parameters
κT, κS, and γ , it is referred to as the augmented state. Let

∫

X
p(x0) dx0

be the probability that the true state of the system at the beginning of
the model run lies in the set X . Using Bayes’ theorem and the chain
rule for probabilities, it can be shown66 that

p(xt|d0:t)
︸ ︷︷ ︸

posteriori

∼ p(dt|xt)

∫

p(xt|xt−1)p(xt−1|d0:t−1) dxt−1

︸ ︷︷ ︸

apriori

, (B1)

where ∼ indicates equivalence up to a normalization constant, dt a
vector with observations at time step t, and d0:t a vector of all obser-
vations up to and including time step t. Once the a priori is specified
for the initial time step t = 0, Eq. (B1) for a posteriori and a pri-
ori distributions for t > 0 can be constructed by induction using
Eq. (B1). This occurs in two steps. The prediction step in which a
posteriori distribution at time t − 1 is transformed into the a priori

Chaos 34, 103131 (2024); doi: 10.1063/5.0215236 34, 103131-16

Published under an exclusive license by AIP Publishing

 16 O
ctober 2024 21:16:58

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

distribution at time t, and the update step in which the DA correc-
tion is applied to transform the a priori distribution at time t into a
posteriori distribution at the same time.

In an ensemble Kalman filter, it is assumed that the a priori and
a posteriori distributions can be approximated by a Gaussian with

its mean µx,t = 1
M

∑M
m=1 x

(m)
t and covariance 6x = 1

M−1

∑M
m=1

(

x
(m)
t

− µx,t

)(

x
(m)
t − µt

)T
estimated from an M-member ensemble of

model runs
{

x
(m)
t : 1 ≤ m ≤ M

}

. Each ensemble member represents
an equally likely realization of these probability distributions. The
integral in the a priori distribution in Eq. (B1) is approximated

using a Monte Carlo method. For each ensemble x
(n)
t−1, an ensem-

ble member x
(m)
t is sampled according to p(xt|xt−1). In this work, the

model is assumed to be without a model error, and hence, p(xt|xt−1)

= δ
(

xt − Mt−1→txt−1

)

with δ being the delta function and Mt→t−1

being the model operator that propagates the ocean temperatures
and salinities from time t − 1 to t according to Eqs. (1)–(3). Mt−1→t

while keeping the model parameters constant; i.e., model parameters
are only changed during the update step.

The probability density distribution for the observations
p(dt|xt) is assumed to be a Gaussian with mean µd = Hµt,x and
covariance 6d. In our case, the observation operator H is such
that Hxt = [Tp∗(t), Te∗(t), Sp∗(t), Se∗(t)]

T and 6d is assumed to be
diagonal with its diagonal elements (variances) given by Eq. (14).

It can be shown that under these assumptions, a posteriori dis-

tribution is again a Gaussian with mean µx̂,t = 1
M

∑M
m=1 x̂

(m)
t and

covariance 6x̂,t = 1
M−1

(

x̂
(m)
t − µx̂,t

)(

x̂
(m)
t − µx̂,t

)T
and

x̂
(n)
t = x

(n)
t + K

(

dt − Hµt,x

)

+ AQ3
1
2 QTê(n), (B2)

with ê(n) being the nth unit vector, A a matrix having x
(n)
t − µt,x

as its nth column, and Q3QT the singular value decomposi-

tion of I − ATHT((m − 1)6d + HAATHT)−1
HA66 and K = AAT

(

HAATHT + (M − 1)6d

)−1
the Kalman gain.

The most-likely state, or mode, of the a priori and a posteriori
distributions are referred to as the forecast and analysis, respectively.
As the ocean temperatures and salinities are assumed to follow
Gaussian distributions, their forecasts and analysis coincide with
their ensemble mean. For the advection and diffusion parameters,
however, we corrected their logarithms instead of the values them-
selves. This so-called log-transform ensures that the parameters
themselves remain strictly positive. For a log-normal distribution,
the mode is not given by eµp as naïvely might be expected, but by
eµp−6p1 with µp the three-dimensional vector containing the ensem-
ble mean of the logarithms of the model parameters and 6p the 3 × 3
matrix with their ensemble covariance;67 i.e., µp and 6p are the last
three elements or a 3 × 3-block of the µx and 6x, respectively.
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