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SUMMARY

Predictive modeling of macromolecular recognition and protein-protein complementarity represents one of
the cornerstones of biophysical sciences. However, such models are often hindered by the combinatorial
complexity of interactions at the molecular interfaces. Exemplary of this problem is peptide presentation
by the highly polymorphic major histocompatibility complex class | (MHC-I) molecule, a principal component
of immune recognition. We developed human leukocyte antigen (HLA)-Inception, a deep biophysical convo-
lutional neural network, which integrates molecular electrostatics to capture non-bonded interactions for
predicting peptide binding motifs across 5,821 MHC-I alleles. These predictions of generated motifs corre-
late strongly with experimental peptide binding and presentation data. Beyond molecular interactions, the
study demonstrates the application of predicted motifs in analyzing MHC-I allele associations with HIV dis-
ease progression and patient response to immune checkpoint inhibitors. A record of this paper’s transparent

peer review process is included in the supplemental information.

INTRODUCTION

Major histocompatibility complex | (or MHC-I) protein plays an
integral role in permitting the immune surveillance of host cells,
viral clearance, and tumor rejection. The MHC-I protein, also
denoted as human leukocyte antigen (HLA), drives molecular
recognition by presenting endogenous peptide fragments on
the cell surface for interaction with T cell receptors (TCRs) from
the CD8* T cells.” Such processing and presentation pathways
have the remarkable ability to present peptides from virtually
any expressed cytosolic protein to the circulating T cells. There-
fore, MHC-I is an ideal system to study molecular recognition,
which accommodates thousands to millions of protein-peptide
interactions, and it offers an opportunity to bridge these details
to phenotypic outcomes and biomedical consequences.
lllustrated in Figure 1A, the MHC-I protein canonically binds
peptides of lengths between 8 and 14 amino acids.” The second
or third and C-terminal residues of the peptide ligand are
commonly referred to as “anchor” positions. The identity of
the anchor residues remains highly conserved in strong peptide

binders.®>* The amino acid distribution at each position of the
peptides binding to an MHC-| variant exhibits a consistent amino
acid signature, commonly referred to as the peptide binding
motif (Figure 1A).° Once presented on the cell surface, the pep-
tide-loaded MHC-I complex interacts with CD8" T cell via the
TCR. Stably bound peptide ligands that sufficiently diverge
from the naturally presented host peptides, such as those
derived from viral or mutated proteins, can trigger an immune
reaction.®

The cell-specific nature of MHC-I-mediated immune re-
sponses is exploited by promising anticancer immunother-
apies.”'® However, such therapies rely on the ability to identify
peptide targets from an antigen of interest. While recent ad-
vances in high-throughput tumor immunopeptidome character-
ization techniques have enabled experimental verification of
possible MHC-I targets,'""'? the associated costs are still pro-
hibitive for broad clinical application. A major obstacle in predict-
ing the binding of peptides to MHC-I stems from the diversity of
this protein in the human population. The protein, despite its
similar structure, is encoded by one of the most polymorphic
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Figure 1. Overview of HLA-Inception
(A) Schematic of MHC-I complex and MHC-I binding motif.

MHC-I binding motif topology

Ligand prediction

(B) Molecular models and associated binding pocket electrostatic potentials of MHC-I proteins were constructed in a 4-step process. First, MHC-I structural
templates are selected based on the Molprobity score, a measure of structure quality. Second, MHC-| variants without existing structures are modeled using the
best aligning template structure. Third, an ensemble of 40 binding pockets is generated via side-chain rotamer sampling using the Rosetta simulation software.”
Fourth, the electrostatic potential of the MHC-I binding pocket is calculated for each ensemble member using APBS.®

(C) A schematic representation of the inception-based CNN that was trained on MHC-I binding pocket electrostatic potentials in order to predict binding motifs.

(D) Three example uses for the predicted binding motifs.

genes in the human genome with over 24,000 known sequence
variations.'® The characterization of binding interactions across
such diversity proves to be a formidable challenge as even sin-
gle-point mutations in the binding pocket can lead to altered
MHC-I peptide binding motifs.'* In vitro binding assessments'®
and mass spectrometry-based profiling of cell lines'® or tu-
mors'® have provided crucial data for training MHC-I peptide
prediction algorithms. Still, binding preferences of the vast ma-
jority of MHC-I alleles remain unresolved, with the binding data
from only 205 variants available in the public databases.'”
Consequently, computational interventions provide a critical so-
lution for identifying potential MHC-I peptides from the antigens
of interest. %1820

The diversity of the MHC-I protein was initially tackled through
the definition of “MHC-I supertypes” or clusters of MHC-I alleles
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assumed to produce similar MHC-I binding motifs.?' Recently,
this diversity has been addressed through the development
of machine learning algorithms that perform pan-allele sequence
predictions.’*'®2° An example of a very widely used pan-
allele prediction algorithm is the netMHCpan suite, which is a
sequence-based algorithm that supports the predictions of
over 11,000 different human and non-human MHC-I alleles.?°
While such sequence-based prediction methods are useful,
their binding predictions do not explicitly account for observed
physical properties of the MHC-I binding pocket. Therefore,
single amino acid changes that may impact the physical
environment may be equally weighted with another sequence
substitution that preserves the overall state. Attempts to
resolve this discrepancy have involved numerically encoding
amino acids with molecular properties, such as hydrophobicity
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and the BLOSUMG2 substitution matrix scores.'®?° These
augmented descriptions of the residues improve the predictive
properties of the models; however, they weakly track with geo-
metric alternations in the binding pocket topology or side-chain
orientations arising from MHC-I polymorphism.??

Protein-peptide binding is primarily driven by long-range elec-
trostatic interactions.”®° The kinetics of this process is also
controlled by the shorter-range interactions, sequence, as well
as shape complementarity of the binding partners at the inter-
face.”® Quantitative molecular simulations of such complemen-
tarity depend on the accuracy of the molecular model, treatment
of protonation equilibria, high-resolution rotamer sampling, ge-
ometry optimization, and explicit modeling of the apo and holo
states.?” Despite this knowledge, repeating detailed molecular
computations across the allelic diversity of the peptide-MHC-I
complexes is extremely expensive, if not prohibitive. Here,
we simplify this complex recognition problem into terms of
sequence, geometric, and electrostatic variables to elucidate
the binding patterns of typical peptide-MHC interfaces from a
finite training set of known structures and bonding motifs. There-
after, the interaction signatures are extrapolated to infer binding
across the population of human MHC-I variants.

By analyzing this fundamental immunological process through
the lens of molecular electrostatics, we explore an algorithm for
MHC-I peptide binding motif prediction that learns their comple-
mentarity relationship with the peptide binders, monitor how
MHC-I polymorphisms alter the binding motifs, and generalize
computations to a diverse set of alleles. This is accomplished
by training an inception-based convolutional neural network
(CNN), “HLA-Inception,” for predicting MHC-I binding motifs
based on their correlation with the three-dimensional electro-
static potential distribution of the MHC-I binding pocket. The
predicted MHC-I binding motifs are then used to compute pep-
tide binding and stability, study the granularity and heterogeneity
of MHC-I motif networks, and to analyze phenotypic outcomes
to MHC-| associated disease.

RESULTS

We start by examining whether the electrostatic potential of the
MHC-I binding pockets bears signatures of their peptide binding
motifs or distributions. Using molecular models of 133 unique
MHC-I binding pockets, HLA-Inception is then trained to predict
the peptide binding motifs of 5,821 MHC variants covering most
of the human population, based on their electrostatic potentials
alone (Figure S1). We then applied it to predicting natural MHC-I
ligands and examined disease associations.

Electrostatic potential of MHC-I protein complements
peptide binding motif variations

Electrostatic features are central to protein-protein binding.
We explore these features within the highly polymorphic family of
peptide-MHC complexes to seek the collective signatures of
peptide binding sequences on the surface of the three-dimen-
sional MHC-I structures. A major roadblock to performing such
an analysis of peptide motif diversity is the data available on pep-
tide-MHC interactions, which are sparse relative to the total
allelic variance. There are only 133 MHC-I alleles with binding
data known for 50 peptides or greater and an even more limited

28,29
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number with known structures (Figure S2). So, by generating
molecular models of the MHC-I binding pockets, coupled with
knowledge on peptide-protein interactions derived from the
133 alleles with known binding motifs, we track the covariance
between pocket features and peptide configuration. This map-
ping between binding pockets and peptide configurations sets
up an algorithm for grouping the peptide diversity into a small
number of functionally relevant binding motifs.

Figure 1B presents an overview of the multiresolution
sequence — molecularensemble — electrostaticsmap pipeline,
used for generating a set of 5,821 MHC-I molecular models. Mo-
lecular models of 5,281 MHC-I binding pockets were con-
structed using a combination of biophysical simulations and
homology modeling. In short, homology models for each of
the MHC-I binding pockets were created using the best aligning
MHC-I binding pocket sequence with an existing crystal struc-
ture as a template. The selected template structures were
then mutated using the Rosetta modeling software. The majority
of MHC-I models required four or less template mutations for
modeling 5,821 MHC-I variants (Figure S3A). Following muta-
tion, each newly created MHC-I binding pocket underwent 40in-
dividual side-chain sampling procedures to create an ensemble
of 40 confirmations of the MHC-I binding pocket. The variance
between pocket features and peptide diversity is then tracked
using the subset of 133 three-dimensional MHC-I molecular
models out of this set (Figure S3). We define a metric called
the “electrostatic potential distance” (EPD) for distinguishing
between the MHC-I molecular models in the space of electro-
static features (Equation 1). An EPD between two MHC-I vari-
ants represents the Euclidean distance between two sets of
binding pocket potential volumes. The electrostatic potential
volumes were extracted near the N- and C-terminal binding
pockets, and the pairwise EPDs were computed between all
the 133 alleles. Similarly, to describe the diversity between pep-
tide motifs (with 50 or more known binders) that are already
known to bind these MHC-I pockets, the inter-motif Kullback-
Leibler divergence (KLD) or “binding motif KLD” was computed
(Equation 4).

Correspondence between the MHC-I EPD and binding motif
KLD across the reference set of models, illustrated in Figure 2A,
reveals a linear correlation between MHC-I and binding peptide
motif diversity (Spearman’s rho = 0.32; p < 2.2 x 10~ '6). As con-
trols, two sequence-dependent distance metrics, namely the
Hamming distance and BLOSUM®62 alignment, were also em-
ployed to perform inter-allele comparisons. While the Hamming
distances track weakly with the binding motif KLD, the more
biochemically aware BLOSUMG62 alignment improved the
correlation coefficient from 0.17 (Spearman’s rho; p < 2.2 X
107"%) to 0.24 (Spearman’s rho; p < 2.2 x 107 '%). Although the
estimated correlations are weak, they indicate that biophysical
information provides a relative boost in tracking with molecular
diversity. Taken together, the incorporation of physical volu-
metric data beyond sequence information better tracks MHC-I
protein changes with substantive alterations to the peptide bind-
ing motif.

Building on the covariance between MHC-I EPD and binding
motif KLD, we wanted to establish whether the electrostatic
description of MHC-I protein can be employed to classify their
peptide binding motifs. A K-means clustering performed on
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Figure 2. Electrostatic potential configurational space better captures MHC-I binding motif variation

(A) The correlation between different binding pocket variation measurement methods (indicated by header) and binding motif Kullback-Leibler divergence (KLD)
for 133 MHC-I alleles with known binding motifs (n = 17,556; correlation coefficient: Spearman’s rho). For visualization purposes, the pairwise data for each metric
was aggregated into a 2D density plot.

(B) Spherical regions of electrostatic potential corresponding to N- and C-terminal anchor binding pockets were extracted, and the K-means clustering method
was applied to find the optimal number of clusters where each cluster had at least two assigned alleles. Multidimensional scaling was performed on the
concatenated electrostatic data, and the position of each cluster was defined as the arithmetic average of cluster members. The reduced space was then
visualized using a Voronoi diagram. Each Voronoi cell is labeled with the respective cluster number, and the fill color indicates the number of alleles assigned to
each cluster (cluster size).

(C) The average binding motif KLD between alleles within the same cluster (circle) identified in (B) was compared with the pairwise binding motif KLDs of every
allele outside that cluster (triangle). Significance was determined using Wilcoxon rank-sum test.
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the electrostatic potential grids extracted for EPD calculation re-
vealed 22 unique clusters (Figures 2B and S4). Notably, the
MHC-I variants with comparable peptide binding motifs are
grouped together, with the average separation within their clus-
ters being less than those between the clusters (Figure 2C).
Therefore, the electrostatic potential features analyzed across
a set of MHC-I proteins can be indicative of the signature distri-
butions of amino acids that compose a peptide binding motif.

Inception model trained on electrostatic features
detects the heterogeneity of binding motifs

While the EPD values successfully tracked with variations in
MHC-I binding motifs, such analysis is inherently limited by the
paucity of experimental data. To address this limitation, we
developed a deep learning model, named HLA-Inception. This
CNN model is trained on three-dimensional representation of
the electrostatic potential within the MHC-I binding pocket (Fig-
ure 1C) to reproduce known peptide binding motifs. Following
training, the neural network was applied to the generated struc-
tures to estimate binding motifs for MHC-I structures with un-
known peptide interaction signatures.

Our approach works by segmenting an MHC-I binding pocket
electrostatic potential grid into a number of volumes. Here, we
have chosen three equal-sized volume segments of the peptide
binding pocket—the region corresponding to the N-terminal
binding pocket, the TCR contact region, and the C-terminal bind-
ing pocket. The N-terminal segment was used to predict amino
acid distribution for peptide positions 1-3, the TCR contact
segment monitors positions 4-6, and the C-terminal segment
probes positions 7-9. The segmented electrostatic volumes of
the MHC-I pocket at each of these peptide positions are passed
through the CNN, using an output layer of amino acid distribu-
tions at the respective peptide positions (P1-P9). Using the
training set of 133 MHC-I binding pocket models with experimen-
tally verified peptide binding motifs, each CNN was trained
to replicate the known amino acid distribution at a specific pep-
tide position. Due to the overall importance of positions 2 and 9
to peptide binding, subsequent hyperparameter tuning was
focused on these positions (Figure S5).

Following model training with 5,320 unique maps (ensemble of
40 conformations/allele x 133 alleles with known binders), the
HLA-Inception model was applied to the average electrostatic
potential maps from all generated MHC-| structures (Figures
1B, 1C, and S1). As an initial check of quality, we found that
the binding motifs predicted from the average electrostatic
maps of the 133 training alleles were in close agreement with
the experimentally determined peptide binding motifs (Fig-
ure S6A). Thereafter, using the binding motifs data from only
these 133 variants, our model assigned all the 5,821 MHC-I
alleles.

The macroscopic arrangement and structure of the MHC-I
binding motif space was investigated using a force-directed
graph, where each node represents a different MHC-I super-
type,”! and an edge represents the minimum KLD between the
binding motifs of the corresponding supertypes (Figures 3A
and S7).

Supplementing the traditional supertype classifications (945
alleles), we assigned each of the 5,821 MHC-I alleles to an
MHC-I supertype, based on the minimum KLD between the

¢ CellP’ress

HLA-Inception-predicted binding motif and that of a supertype
node in Figure 3A. Following graph generation, the heterogeneity
of submotifs within each supertype was explored through com-
munity structure analysis.*° MHC-I supertypes marked by high
submotif heterogeneity indicate a larger number of distinct bind-
ing submotifs, whereas low heterogeneity supertypes suggest
fewer and more homogeneous submotifs. Notably, the popula-
tion or size of an MHC-I supertype does not always imply its het-
erogeneity (Figures 3B and S8A). While populated supertypes
like BO7 and B44 represent heterogeneous communities of mo-
tifs, a similar-sized A02 node offers a much more homogeneous
distribution (Figure 3C). Similarly, the more populous CO06
augmented supertype is in fact less heterogeneous than B0O7
and B44, and a smaller-sized AO1 supertype is more heteroge-
neous than the larger A02.

MHC-| supertypes are important for generalized vaccine
development.>' Based on our classification, the supertypes
marked by high heterogeneity (e.g., B44) exhibit a broad and
more distinct range of peptide binding submotifs, while the ho-
mogeneous supertypes (e.g., A02) have a sharper distribution
across similar numbers of member MHC-I alleles (Figures
S8B-S8D). Importantly, within supertypes of high heterogene-
ity, there is a significantly larger loss of average predicted bind-
ing affinity when performing intra-supertype cross-allele binding
predictions that is not observed in more homogeneous super-
types (Figure S8C). This observation of supertype heterogeneity
will have important implications for supertype-level peptide vac-
cine design, as therapeutic peptides targeted to bind to super-
types with high heterogeneity might not equally cover all mem-
ber alleles. Taken together, the electrostatic augmentations to
classical supertype via HLA-Inception bring to light unforeseen
topological details of peptide-MHC complexes.

Integration of electrostatics with sequence information
offers precise pan-allele MHC-I peptide ligand
prediction

The extreme polymorphism of the MHC-I protein typically results
in the need to identify peptide targets for MHC-I alleles without
experimentally resolved peptides. This need has brought forth
pan-allele prediction algorithms, which leverage information
from alleles with known binders to extrapolate to the unknown
ones.'?"82932 Here, we perform pan-allele peptide prediction
by employing the peptide binding motifs derived from HLA-
Inception to define a position-weighted matrix (PWM) scoring
system.**

PWM score utilizes log odds ratios of observing an amino acid
at a particular position to determine how well a peptide fits a
binding motif for a given allele. Therefore, peptides characterized
with a high PWM score are implied to have a high probability of
stable binding. To assess PWM as a peptide binding metric,
peptides with quantitative binding estimates, namely peptide
binding affinity (IC50) and MHC-I stability (minutes), were ranked
based on the PWM score. We found that PWM scores were
associated with binding estimates (Figure 4A). PWM scores
had an absolute correlation coefficient of 0.62 (Spearman’s
rho; p < 2.2 x 107" with MHC-I stability data and a —0.62
(Spearman’s rho; p < 2.2 x 107 ') correlation with MHC-| affinity.
These results suggest that the most probable binders deter-
mined from our algorithm are also found to be strong binders,
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(A) A force-directed network of supertype binding motifs was constructed. Each node indicates a different MHC-I supertype with the binding motif indicated by
the inset logo plot. Each node was then connected to the three most similar MHC-I supertype binding motifs as determined by binding motif KLD with any edge
defining a binding motif KLD of >4 also being removed. Warm colors indicate dissimilar binding motifs, while cooler colors indicate more similar motifs (arbi-

trary units).

(B) The bar plot indicates the number of the 5,821 MHC-I alleles (y axis) assigned to each MHC-I supertype (x axis). All alleles assigned to a given supertype were
then placed into a network, and communities within the network were determined using the infomap algorithm (STAR Methods). The modularity of each supertype
graph, a measure of connection density within each community, is indicated by the color of the bar (arbitrary units).

(C) Two supertypes, A02 and B44, with similar graph size but a significant difference in modularity, are shown. Large clusters are colored as indicated by the bar

plot below.

even though no quantitative protein-peptide interaction data
were used to train the model. The 62% correlation indicates
that the inception network has learned to capture the strengths
of their molecular interaction with the MHC-I binding pocket,
leveraging only information about the MHC-I binding pocket
environment and overall binding motif of the peptides.

The precise identification of peptides that are likely to be natu-
rally presented on the cell surface has high clinical value for
the development of T cell-based immunotherapies. However,
this task necessitates the consideration of many potential pep-
tides where the number of presented peptides is greatly outnum-
bered by the number of possible peptides, often leading to high
false positive rates.®* So, we examined the precision of HLA-
Inception on the recovery of naturally presented peptide ligands.
The target peptides used for this analysis were extracted from a
dataset of MHC-I peptides determined by mass spectrometry
to be naturally presented®® and were combined with an excess
of decoy peptides that were not detected by mass spectrometry,
resulting in a final target-decoy ratio of 1:100. The performance of
HLA-Inception-based predictions was compared with several of
the current state-of-the-art MHC-I peptide prediction algorithms:
MHCflurry2.0,"® NetMHCpan-4.1,° and MixMHCpred2.2.%* Pep-
tide selection was based on two commonly used score thresh-
olds, 0.5% and 2%, where peptides with this score or lower

6 Cell Systems 15, 1-12, April 17, 2024

can be considered to bind stronger than 99.5% and 98% of all
possible peptides, respectively. We found that HLA-Inception
achieved a median precision of 0.46 and 0.234 for the 0.5%
and 2% threshold, respectively (Figure 4B). While the other algo-
rithms achieved better recall (Figures S9A and S10C), they had
significantly lower median precision values. This result is impor-
tant, as the training sets for other algorithms potentially contained
explicit representations of individual peptides overlapping with
this dataset, whereas HLA-Inception predictions are only based
on an overall peptide binding motif, utilizing no information about
individual peptide identities. Furthermore, a similar result was
achieved when testing each algorithm against completely novel
peptides eluted from ovarian tumors (Figure S11), supporting
that the observed results were not overly biased to existing data.

In addition to precision, fast computational speed was a
chief guiding design principle behind HLA-Inception. Due to
the relatively simple mathematical operations underlying
PWM scoring and the highly parallelized implementation,
HLA-Inception-based peptide prediction enable proteome-
scale binding prediction in a matter of seconds (Table 1).
Furthermore, when compared with other prediction algorithms
in a real world example, HLA-Inception is orders of magnitude
faster (Figure S12). Hence, the primary purpose of HLA-
Inception lies in efficiently screening the most confident
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Figure 4. Pan-allele peptide prediction with HLA-Inception
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(A) The scatterplots show the correlation between PWM score (y axis) and MHC-I stability (x axis; left; n =9,702) or MHC-I binding affinity (x axis; left; n = 128,498).

Correlation coefficients were determined using Spearman’s rho.

(B) The precision (y axis) of HLA-Inception (blue), MHCflurry2.0 (red), netMHCpan-4.1 (green), and MixMHCpred2.2 (purple) in the recovery of naturally presented
MHC-I peptides is shown by a boxplot (n = 50 single allele datasets). Precision was measured relative to 0.5% and 2% binding percentile cutoff thresholds, which

select for strongly binding and all binding peptides, respectively.

(C) The predicted binding motifs for MHC-I alleles associated with HIV control (squares; n = 14) or progression (triangle; n = 19) were hierarchically clustered.
Clusters were then determined by cutting the tree at a binding motif KLD of 1. The colored bars under the tree indicate each cluster, with color indicating the
average log odds ratio of being an HIV controller based on alleles assigned to that cluster (arbitrary units). The lollipop plot to the right indicates the number of
alleles assigned to each cluster, based on binding motif KLD distance (STAR Methods), with the color indicating the average log odds ratio.

(D) Genotype distances were calculated for patients receiving immune checkpoint inhibitors. Patients exhibiting genotype distances within the top quartile of all
patients were designated as high genotype distance individuals (red; n =79), while the remaining patients were assigned to the low genotype distance group (blue;
n = 235). Kaplan-Meier plots were then constructed for both groups. Statistical significance was determined using a Cox proportional-hazards model.

peptide list from an extreme excess of potential candidate
ones to enable further ranking of the short list of peptides
by sequence-based methods—a common scenario arising in
numerous MHC-I binding studies.

Ultimately, the true value of any pan-allele prediction lies in its
ability to be extrapolated to unseen MHC-I alleles, a setup in
machine learning referred to as “zero-shot prediction,” which
can be quantified using “leave-one-out” cross-validation anal-
ysis.?® In this analysis, data corresponding to a target allele
are removed from the training set, and then the remaining
data are used to train the algorithm. The accuracy of the algo-
rithm is determined by testing the withheld data. However,
such validation approaches fail to account for the existence of
highly homologous MHC-I alleles still contained within the
training set. The inclusion of homologous alleles has the poten-
tial to artificially boost algorithm performance. A more rigorous
test of pan-allele predictive properties can be performed by
ensuring that highly homologous alleles are removed prior to
training, and these allele groups are collectively tested to
assess the generality of the algorithm or “leave-one-cluster-
out” analysis. To this end, the binding pocket sequences for
the 133-allele set were clustered using BLOSUM®62 alignments,
where each allele was assigned to a cluster of alleles with similar

amino acid sequences (Figure S13A). In order to appropriately
benchmark the performance of HLA-Inception peptide predic-
tions with a sequence-based approach, a neural network
trained on these BLOSUM®62-encoded peptides and key bind-
ing pocket residues was built. Using the MHC-I binding pocket
sequence clusters, leave-one-cluster-out analysis was per-
formed using both neural networks (Figure S13B). We found
that electrostatics-based binding classification predictions pro-
duced a median Matthews correlation coefficient (MCC) of 0.72
(interquartile range [IQR]: 0.59-0.79), while the sequence-based
model produced a median MCC of 0.52 (IQR: 0.38-0.68), sug-
gesting a 38% improvement over a sequence-based prediction
method. This improvement indicates that the incorporation of
electrostatics improves universal peptide prediction. To verify
that the network has indeed learned the electrostatic signals
for predicting the complementary peptide motifs, all the
5,320 maps were recomputed at a higher salt condition, wherein
the map features are washed out (Figure S13B). Indeed, for the
majority of the peptide motifs, the MCC decreased, but it was
still outperforming sequence-only predictions, even when
using state-of-the-art sequence-based models (Figure S14A).
Furthermore, inception-based models trained on all maps avail-
able for each allele were shown to be the most effective at
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Table 1. Prediction timing

Proteome Proteins Total 9mer peptides Binding threshold (%) Predicted binders Prediction time (s)
Human 81,837 29,049,213 99.5 148,892 5.73
98 590,201 9.31
Mouse 55,286 22,844,078 99.5 121,228 4.64
98 481,594 7.59
Virus 3,383 1,385,612 99.5 7,678 1.95
98 30,714 2.15

HLA-Inception was used to identify binding peptides from the complete human and mouse reference proteomes, as indicated in the first column. All
predictions were done with respect to nonameric HLA-A02:01 peptides that were predicted to binding in the top 0.5% percentile.

learning the underlying physical forces when compared with
other machine learning models or the use of less maps per allele
(Figures S14B and S14C).

Molecular fingerprints enable the modeling of disease
associations

Patient MHC-I binding repertoire has been implicated in out-
comes for several viral and cancer-based diseases.***"~° To
establish that the predicted binding motifs capture some of
these high-level phenotypic relationships, we assessed whether
distances between MHC-I alleles and genotypes capture known
trends in the MHC-I disease associations. At the individual allele
level, we determined whether MHC-I binding motifs could be
used to infer HIV viral control.*® Past work has suggested that
observed MHC-I allele associations with HIV viral control are
based on the capacity of individual MHC-I alleles to present
structurally relevant regions of HIV proteins.®” Following this
rationale, alleles with similar outcomes are expected to have
comparable binding preferences. To test this relationship, alleles
with known associations to HIV disease progression were hierar-
chically clustered based on pairwise binding motif KLD dis-
tances (Figure 4C). We find that once the clusters are defined
as alleles that feasibly share a binding motif (i.e., bind similar
peptides), the ones with comparable disease outcome are
grouped together. This grouping indicates that binding motifs
predicted on their electrostatic properties preserve known allelic
associations with HIV outcome at the individual MHC-I allele
level. To extrapolate beyond alleles with known associations,
we selected all alleles that demonstrated a binding motif KLD
distance < 1 to an existing HIV cluster motif and then assigned
each of the remaining alleles to the nearest cluster. This extrap-
olation resulted in 66% of alleles being assigned (3,827). Clusters
were generally compact with the median intra-cluster KLD being
0.2692. While there were marginally more allele clusters associ-
ated with HIV progression (11 vs. 10), 59.7% of alleles were as-
signed to clusters with a bias to control HIV disease progression.
Despite this observation, the overall average odds ratio (OR),
weighted by cluster size and calculated across all assigned al-
leles, was found to be close to 1 (OR = 0.91). To quantitatively
test that groupings preserved known disease outcomes, alleles
assigned to clusters with an average OR of less than 1 were
labeled as HIV progressing alleles, while alleles assigned to clus-
ters with an average OR > 1 were labeled as HIV controlling al-
leles. A Fischer exact test performed between these cluster-
based labels and the ground truth labels revealed a significant
association (p = 1.453 x 107°). In essence, we demonstrated
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that predicted peptide binding signatures could be used to
group peptides with known outcome to HIV.

Evolutionary protein divergence of patient MHC-I genotypes
has been strongly associated with outcomes to immune check-
point inhibitors (ICls).>® However, evolutionary distance is a
metric defined solely by analysis of the MHC-I protein sequence.
To investigate whether the observed effect could also be due to
variance in MHC-I binding motifs, we solved the MHC-I geno-
type distance (arithmetic average of all pairwise binding motif
KLDs for a given genotype) for patients who were treated with
ICls, using the predicted motifs from HLA-Inception. As a base-
line comparison, patients within the same cohort were also
stratified based on supertype zygosity of the HLA-A and
HLA-B locus.?' However, such a stratification failed to produce
a statistically significant separation between cohorts (Fig-
ure S15). Conversely, using patient genotype distance, patients
were stratified, with patients in the top quartile being labeled as
having high genotype distance and the rest of the patients being
labeled as having low genotype distance (Figure 4D). We found
that patients with a higher level of MHC-I binding motif diversity
survived longer when treated with ICls (hazard ratio = 0.64; p =
0,036; 95% CI: 0.42-0.97). Together, these data suggest that pa-
tients with a more diverse peptide repertoire likely benefit from
checkpoint blockade.

DISCUSSION

In this study, a physics-based inception network is employed to
probe the signatures of molecular recognition of the MHC-I pro-
tein system, an area traditionally dominated by sequence-based
analyses. Capitalizing on these traditional approaches, we find
that the inception networks trained on the three-dimensional
electrostatic potentials of the MHC-I binding pocket combined
with limited binding peptide sequence information could be
leveraged to predict MHC-I peptide binding motifs across a
range of diverse MHC-I alleles. By using the binding motifs
from HLA-Inception, we were able to assign all MHC-I proteins
to an MHC-I supertype. We found that the heterogeneity of
MHC-I binding submotifs within a given supertype varied, car-
rying implications for the continued use of MHC-I supertypes
to design broad peptide-based vaccines. We show that the pre-
dicted binding motifs can be utilized to perform pan-allele pep-
tide binding prediction at a high level of precision and speed.
Furthermore, the comparison of predicted MHC-I binding motifs
was shown to recapitulate known disease associations, namely
HIV and ICI response.
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There are several profound advantages to approaching the pre-
diction of MHC-I binding motifs, and subsequently peptide
ligands, from an electrostatic lens. First, we employ one of the bio-
physical rules that dictate peptide binding. Sequence-centric
MHC-I prediction methods do not explicitly access the underlying
forces that drive peptide binding, offering only amino acid config-
urations that lead to a particular binding motif. This understand-
ably makes such approaches highly biased by variations in
binding pocket sequences, which is problematic given the poly-
morphic nature of the MHC-I protein. In contrast, by training our
model directly on the underlying forces, HLA-Inception is able
to learn a measurable physical quantity that is ubiquitous to pep-
tide binding and simultaneously tracks with the variations of the
pocket sequences and heterogeneity of the motifs. This physics
formulation enhances interpretability of binding predictions,
which is evident by the results of the leave-one-cluster-out anal-
ysis. Another advantage of the shift to electrostatic modeling is
the reduction of the experimental search space. Because electro-
static potential is a degenerative property, as many different
sequence configurations can produce similar local electrostatic
environments, the number of MHC-I alleles with unknown binding
motifs that require experimental validation is diminished. This
makes universal coverage of all human MHC-I binding motifs an
experimentally tractable goal, and therefore, it opens new doors
to broadened applications of T cell-based immunotherapies.
Finally, HLA-Inception embodies a methodological advance in
computational immunology. Our approach is able to perform
MHC-I peptide binding prediction without information on non-
binding peptides, a common challenge in machine learning
(ML)-based peptide binding classification. This precision of pre-
dicting motifs and communities, coupled with the ability to infer
binding affinities, makes HLA-Inception a natural complement
for high-throughput MHC-I ligand identification techniques such
as mass spectrometry.

There are some caveats to the current implementation stem-
ming from the compositional bias of the training set, the use of
nonameric peptide binding motifs, the representation of the
data in the model with a single biophysical descriptor, and the
limitations of using PWM for prediction. Like most machine
learning models, predictions are biased by the composition of
the training set. In cases where the training set provides a
good sampling of the total input space, predictions have a
high likelihood of accuracy. Conversely, in cases where isolated
populations, not captured by the training set, exist, then predic-
tions are unlikely to be accurate for these groups. The immense
number of MHC-| variants makes this a valid concern for
any machine learning approach to MHC-I ligand prediction
and is not specific to our model. However, as outlined above,
we expect that our approach will be less affected by this prob-
lem due to the learning of the underlying physical nature of pep-
tide binding. To combat this problem, future work can be
focused on the experimental resolution of MHC-I alleles with
predicted electrostatic environments that fall outside the
currently observed distribution. Next, predictions were only
done with respect to nonameric peptide binding motifs. This de-
cision was due to the majority of observed peptides being 9
amino acids in length. This translated into high-resolution bind-
ing motifs. However, there is a smaller but relevant population of
peptides at different lengths. We used an approach analogous

¢ CellP’ress

to NN-align®® to extend the nonameric motifs to peptides of
lengths 8-11. We observed high accuracy for peptides of
these lengths, which cover 95% of all observed MHC-I peptides
(Figures S9B and S9C). HLA-Inception does not implicitly ac-
count for other critical physical forces such as van der Waals in-
teractions. It was observed that a majority of MHC-I sequence
groups are described by electrostatic interactions; however, a
subset of alleles is optimally described using maps of van der
Waals potentials (Figure S13). It is possible that the overall
shape of the binding pocket may play a larger role than the
innate electrostatic forces for these groups of alleles. Future
work will be focused on optimally combining multiple physical
descriptors into one model. Finally, there are limits to the use
of PWMs for peptide prediction. Precision-recall curves on
held-out data show that sequence-based methods provide a
slightly higher performance, as measured as by precision-recall
curves (Figure S10). This is likely due to inherent biases in sec-
ond-order relationships in amino acid usage, which would not
be captured using PWM scoring.

HLA-Inception and future physics-based peptide prediction
methods provide tools for the efficient predictions of MHC-I pep-
tides. However, despite providing higher precision at several or-
ders of magnitude better efficiency (Figures 4, S10C, S11, and
S12) and showing improved generalization to unseen alleles
(Figures S13 and S14), sequence-based methods maintained
superior recall at a level that produced nominally better overall
performance (Figures S9 and S10). This is likely due to inherent
limitations in the use of PWM scoring for peptide selection.
Therefore, sequence-based methods remain the preferred
approach when recall is critical to the objective, as is the case
when ranking a short list of peptides based on binding affinity.
Nevertheless, the primary purpose of HLA-Inception lies in effi-
ciently screening the most confident peptide list from an extreme
excess of potential candidate ones—a common scenario arising
in numerous MHC-I binding studies. This complementary appli-
cation aligns with the core design philosophy of HLA-Inception,
which aims to curate a tractable list of binding peptides when
deployed at the whole-proteome scale. Ultimately, future imple-
mentations will likely need to leverage both biophysical and pep-
tide sequence information to achieve optimal performance.

In summary, our inception models enable the discovery of bio-
logical design principles, the underlying physics of which can
extend beyond the system of interest, and predictions of testable
phenotypic properties across a broad range of physical condi-
tions. Going forward, the method of learning the electrostatic envi-
ronment to perform motif prediction is readily applicable to
numerous applications known for high sequence variability,
including MHC-II, protein-protein binding, and TCR-MHC binding.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MHC-| peptide data This study https://zenodo.org/doi/10.5281/zenodo.10516430
Data used for main figures This study https://zenodo.org/doi/10.5281/zenodo.10516430
Software and algorithms

HLA-Inception this paper https://github.com/eawilson-CompBio/HLA-Inception
HLA-Inception this paper https://zenodo.org/doi/10.5281/zenodo.10516430
APBS Jurrus et al.® 3.0.0

Rosetta backrub Smith et al.”’ 2021.16

R R Development Core Team™? 4.3.0

Python Van Rossum and Drake** 3.9.7

Tensorflow Abadi et al.** 2.6.0

MHCflurry-2.0 O’Donnell et al.® 2.0

netMHCpan-4.1 Reynisson et al.*’ 4.4

MixMHCpred2.2 Gfeller et al.*” 2.2

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Abhishek Singharoy
(asinghar@asu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
® Presented Ovarian peptides are available upon request
® HLA-Inception (https://zenodo.org/doi/10.5281/zenodo.10516430) is freely available on github at https://github.com/eawilson-
CompBio/HLA-Inception.
® Any additional information required to reproduce this work is available from the lead contact upon request.

METHOD DETAILS

MHC-I binding pocket modeling

All the MHC-I sequences used in this study were obtained from the IGMT-HLA database'*(accessed 7/2021). MHC-I protein se-
quences were filtered for those described at the complete canonical lengths (HLA-A: 265 amino acids, HLA-B: 362 amino acids,
HLA-C: 366 amino acids). This resulted in the consideration of 5,821 sequences from which the peptide binding pocket residues
were extracted (residues 25-210).

Modeling of all 5,821 MHC-I alleles began with the selection of templates for homology modeling. 606 potential templates for
MHC-I binding pocket modeling were initially identified using the IEDB database'” and downloaded from the RCSB Protein Data
Bank.“® These 606 structures were then scored using the Molprobity software,*® an algorithm that ranks a structure based on
several stereochemical metrics with lower scores indicating higher quality structures. Of the 606 potential structures, the ones
with the lowest Molprobity scores for each unique MHC-I allele were selected, resulting in a total of 50 MHC-I templates. The
peptide was removed from each template model, and the protein structure was truncated to only include the peptide binding
pocket (reside 25-210 of the amino acid sequence). The templates were then minimized using the default Rosetta score
function.*”

Selected templates were used to model 5,821 MHC-I binding pockets via the following 3-step protocol. First, the peptide pocket
(residue 25-210) of each of the 5,821 alleles were aligned by amino acid sequence to all 50 template sequences, and the template
structure showing the best alignment (lowest number of necessary mutations) were selected for that allele. Second, computational
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peptide binding pocket models were generated by mutating each assigned template structure to match the target allele sequence
using the Rosetta backrub application with default parameters.*' Third, an ensemble of 40 structures were generated by selecting the
lowest energy models from 40 separate iterations of the Rosetta relax application.” Completion of these three steps resulted in a total
of 232,840 unique structures (5,281 alleles x 40 ensemble members/allele).

Electrostatic map generation

The electrostatic environment of the binding pockets were determined using the APBS software.® Each of the 40 ensemble members
for a given MHC-I binding pocket were converted into PQR files using the pdb2pqr30 function. The electrostatic potential was then
calculated using the default parameters for APBS. The grid dimensions were set to 129 Ax 161 Ax 129 A with the fine grid extending
to 24 A beyond the boundaries of the binding pocket and the coarse grid extending to 12 A beyond the fine grid. Using these param-
eters, the electrostatic potential was determined at 1 A resolution, discretizing the three-dimensional space into voxels each contain-
ing approximately 1A” of volumetric features. The potentials were calculated using a linearized Poisson-Boltzmann equation with a
protein dielectric of 2, a solvent dielectric of 78.54, and an ion concentration of 0.15M. The resulting electrostatic and van der waals
maps were then separately saved in the.dx file format. To study the role of charge screening in detecting complementary motifs, the
previous set-up was repeated exactly with the exception of the salt concentration being set to 1.5M. The correlation between full
electrostatic maps was defined as the element-wise Pearson correlation between two vectorized maps.

MHC-I binding pocket electrostatic map segmentation

To increase attention on important binding pocket features during inception network training, the electrostatic maps for each MHC-I
binding pocket was split into three segments: (1) an N-terminal binding pocket region, (2) a TCR contact region, and (3) C-terminal
binding pocket region. Each segment has the dimensions of 12 x 6 x 12 voxels with their center coinciding on an evenly spaced vector
that runs the length of the binding pocket (Figure S1A). Features from these segments were employed to predict the amino acid dis-
tribution of binding peptide residues that are most likely to reside within these regions. The N-terminal region covered the area that
would likely interact with positions 1-3 of binding peptides; the TCR contact region covered the region approximately below positions
4-6 of binding peptide; the C-terminal regions covered the region that would likely interact with positions 7-9 of binding peptides. The
segments were then transformed into 3 tensors with each tensor having the dimensions of 5,320 x 12 x 6 x 12. These electrostatic
map tensors were then paired a response tensor of the same length containing the amino acid distributions for a single binding pep-
tide residue assigned to that segment. This resulted in 9 training data sets, with a specific training set for each peptide position (Fig-
ure S1B). For example, when training the model to predict the amino acid distribution of position 2 of a binding peptide, the training
set would correspond to the tensor of all of the N-terminal segments (5,320 x 12 x 6 x 12) with a response tensor of the frequency of all
20 amino acids observed at position 2 (5,320 x 20).

MHC molecule distance metrics

Variation between MHC-I alleles were calculated by employing three metrics, namely Hamming distance, BLOSUM alignment, and
Electrostatic Potential Distance, where higher values indicate more divergent alleles. Hamming distance determines the distance be-
tween two equal length sequences as the number of mismatches between the two. For example, when comparing the peptides
“YMLDLQPET” and “YMLAAQPET”, the number of mismatches (colored in red) are two. Therefore, the hamming distance between
the peptides would be two. BLOSUMG62 alignment is the sum of the log odds ratios of a particular amino acid substitution given the
background frequency of that amino acid.“® These alignments were calculated with respect to the binding pocket residues within 6 A
of the MHC-I N- and C-terminal anchor residues using the stringDist function in the Biostrings R package.*® Electrostatic Potential
Distance or EPD represents the similarity between electrostatic environments near primary (N- and C- terminal) MHC-I anchor po-
sitions. To compute this quantity, a pair of spherical volumes of electrostatic potentials were extracted from the complete binding
pocket electrostatic potential environment, one from each terminus. The centers of these spherical volumes were determined using
the coordinates of complementary sites on the nonameric peptide ligands. Specifically, after aligning peptides from known MHC-I
bound X-ray structures, the centers of the spheres represented the average sidechain centers of mass at peptide positions 2 and 9. A
cutoff radius of 6 A was chosen for defining the volume, as it produces non-overlapping spheres and captures key electrostatic fea-
tures within one hydration layer. Integrating information from both these anchors, all the n nhumber of three-dimensional voxels
embedded within each of the two spherical volumes were concatenated into a single one-dimensional vector. The EPD between
any pairwise combinations of such electrostatic vectors (one for each allele) is defined as the Euclidean distance:

n
EPD,y = > \/(x — yi)?, (Equation 1)
i=1
where the i iso-volumetric voxel occupies the same points in space from two different electrostatic maps corresponding to distinct

MHC-I alleles x and y. For the computations in Figure 2, n = 2x4/376° =900 for voxel dimensions of 1 A3,

MHC peptide binding motif KLD
The similarity of two MHC-I peptide binding motifs, which we call the binding motif KLD, was quantified as the total sum the of
observed Kullback-Leibler divergence (KLD) between distributions of amino acids at each position (P1-P9). KLD is a statistical
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distance measurement that quantifies the divergence of two probability distributions. Kullback-Leibler divergence is calculated using
the following equation:

k

D (P||Q) = Z Iogo (Equation 2)

In the above equation, P and Q are discrete probability distributions with k number of bins. Due to the non-symmetry of KLD calcu-
lation, i.e. Dk; (P||Q) # Dk. (Q||P), the KLDs reported in this paper represent a symmetrized KLD computed by finding the average of
the KLD values calculated in both directions. The equation is as follows:

Dy (P||Q)+Dxe (Q[IP)
5 .

The Binding motif KLD was then calculated with the following equation

KLD =

(Equation 3)

9
Binding Motif KLD = ZKLD,v. (Equation 4)
i=1
where j indicates a position of a nonameric peptide and KLD; indicates the observed KLD of the i position between the two consid-
ered MHC-| binding motifs.

K-means clustering of electrostatic potential

K-means clustering of the N- and C- terminal electrostatic potentials at MHC-I anchor positions were performed using the kmeans
function from the stats R package.’® To find the optimal number of clusters, cluster centers were randomly instantiated and added
until a cluster containing only a single MHC-I allele was formed. The entire kmeans clustering process, i.e., starting with one cluster
and iteratively adding new clusters until termination, was repeated 1000 times with different random seeds. Following the 1,000 it-
erations, the optimal number of clusters was determined by finding the most probable termination point across all 1,000 iterations.
The overall distribution of termination points across each clustering iteration can be seen in Figure S4 with the median being
22 clusters.

The terminal potentials were grouped into 22 clusters and were graphically represented using a Voronoi diagram.®' The center of
each Voronoi cell was defined as the average xy-coordinate of each cluster following multidimensional scaling or MDS transforma-
tion.>? In short, the concatenated terminal potential vectors were first transformed into two-dimensional Cartesian space using MDS.
The center was then determined by averaging over the reduced MDS coordinates with respect to each cluster. This resulted in a
single average xy-coordinate for each cluster, signifying the center of the cluster in the xy-plane.

The compactness of clusters, in terms of the similarity of associated MHC-I binding motifs, was assessed by measuring the intra-
cluster and inter-cluster average peptide binding motif KLDs. Intra-cluster average binding motif KLD corresponds to the average of
binding motif KLDs of all pairwise combinations of alleles within a cluster. The inter-cluster average binding motif KLD represents the
average binding motif KLD of all pairwise of combinations of alleles within a cluster to all alleles not contained within the cluster. A
large difference between intra-cluster and inter-cluster average KLDs indicates a compact and non-redundant group.

Training set of MHC-I peptide binding motifs

The training set of MHC-I binding motifs were determined using MHC-I peptides with experimentally known binding affinities.'” To
ensure these binding motifs have comprehensive amino acid representation at each position, initially only alleles with at least 50
experimentally validated binders were selected. Thereafter, the peptide data was filtered to select for only binding peptides that
were nine amino acids in length and were assigned to an allele at four-digit resolution (Figure S2). Following the constraints of peptide
length, resolution, and binding affinity, we could train the neural networks on 133 out of 5,821 MHC-I alleles. For each of these 133
alleles, all assigned peptides were then aligned, and the amino frequency at each position was calculated. Finally, these position-
specific amino frequencies were used to define the peptide binding motif for a given MHC-I allele.

Model architecture and training

HLA-Inception is inspired by the inception v1 architecture developed by google.>® The convolutional aspect of HLA-Inception con-
tains of one inception block consisting of two inceptions modules followed by four densely connected layers, each separated by
dropout layers. The output layer returns a one-dimensional vector of length 20 with the loss being calculated using a KLD loss func-
tion and optimized using the ADAM algorithm for stochastic gradient dissent. The ’relu’ activation function was used for each layer
with the exception of the final output layer which utilized a ’softmax’ activation function. A graphical representation of the HLA-
Inception architecture can be seen in Figure S17. Overall, HLA-Inception consists of a collection of nine individual models, each
corresponding to a different position of the peptide binding motif. The default model used a learning rate of 1e-4 and was trained
for 500 epochs. A hyperparameter search was performed to identify the best number of epochs and learning rate. Due to the general
importance of position 2 and position 9, a grid search was performed on these positions covering epochs 50, 75, and 100 and learning
rates 1e-2, 1e-3, and 1e-4. 100 epochs and a learning rate of 1e-3 were identified as the most optimal and were used to train all 9
models when performing 10-fold cross-validation (Figure S5) and subsequent LOC analysis.
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Motif prediction

Using the optimal parameters, HLA-Inception was trained on available structure and binding data from 133 alleles and used to predict
binding motifs for across all 5,821 alleles. In order to provide enhanced context for predictions, maps corresponding to each of the
40-structure ensembles were averaged to produce allele-specific potential representations. The averaged maps were then
segmented, as previously described, and used as inputs to the trained model for predicting their associated binding motifs. Full bind-
ing motifs were then generated by combining the predictions from all nine HLA-Inception models (Figure S1).

MHC-I supertypes

Classical MHC-I supertypes were defined as alleles described as reference panel alleles in Sidney et al.~" However, the classical
supertypes failed to incorporate most HLA-C alleles. To avoid a large number of unmapped MHC-| binding motifs, six new HLA-C
allele-specific supertypes were generated, namely C01, C02, C03, C04, C06, C0O7. The new HLA-C supertypes were assigned by
inspecting logo plots for all HLA-C alleles with at least 100 known binders, and grouping alleles with visually similar plots. A table
of reference alleles for each HLA supertype can be seen in Figure S16 and representative logo plots for each supertype can be
seen in Figure S7.

|.21

MHC-I supertype graph

A graphical representation describing the topology of the MHC-I supertype network was initiated using an unconnected network,
where each node was defined as a different MHC-I supertype binding motif. These MHC-I supertype binding motifs were created
by averaging the predicted binding motifs for a set of reference alleles assigned to a given supertype (Figure S16; Figure S7). The
connections or edges between the nodes were then added by measuring the pairwise binding motif KLDs (Equation 4) between
all supertypes binding motifs; longer edges imply higher inter-motif divergence. In order to generate a more informative graph, where
similar motifs would spatially cluster together, the edges of the fully connected network were trimmed. This trimming procedure con-
sisted of connecting all nodes to the top three most similar nodes (not including itself) as determined by minimizing binding motif KLD.
Extreme edges (binding motif KLD > 4) were also removed. A KLD of 4 was selected as this was the smallest number that would
maintain a fully connected graph. It is important to note that some nodes will have more than three connections if that node is within
the top-three lowest binding motif KLDs of multiple supertypes. The trimmed network was then visualized using the Kamada-Kawai
force-directed algorithm.>* Following the generation of the MHC-I supertype graph, binding motif KLDs were remeasured for pair-
wise combinations between supertype binding motifs and HLA-inception-predicted individual allele binding motifs. Each individual
binding motif was then assigned to the supertype that produced the lowest binding motif KLD.

Supertype subgraph generation and analysis

Subgraphs consisting of all the MHC-I alleles assigned to a particular supertype were generated (Figures 3C, S8D, and S8E). In these
supertype-specific subgraphs, each node represented a different individual allele assigned to that supertype, and the edges between
alleles was defined as the binding motif KLD between alleles. Similar to the supertype graph, edges between nodes in the subgraph
were trimmed. In this case, edges were trimmed to remove any connection between alleles that are unlikely to bind the same peptides
(Binding motif KLD > 1). For more information about the selection of the KLD thresholds, see the next section. Peptide binding sub-
motifs and heterogeneity (modularity) within each supertype subgraph were detected and calculated using the infomap algorithm.*°
Modularity is a measure of connectiveness within a network. Networks with high modularity indicate high connectedness between
nodes within a module (cluster) while having poor connections between modules (clusters). This indicates the presence of more
distinct clusters (i.e. more heterogenous submotifs).

Cross-allele binding predictions

The relationship between binding motif KLD and quantitative changes in binding affinity was assessed by performing cross-allele
binding predictions (Figures S8B and S8C). Cross-allele binding predictions involve the process of taking peptides with known affinity
to one allele and predicting the affinity of those peptides to a different allele. In this study, cross-allele binding predictions were used
in two contexts: Assessing the impact of MHC-I supertype heterogeneity and determining a binding motif KLD threshold for shared
binding.

In the context of MHC-I supertype heterogeneity, two different MHC-I alleles classically assigned to a given supertype (e.g. AO2 or
B44) were selected, and the binding motif KLD between those two alleles were calculated using their predicted motifs from HLA-
inception. Next, 1,000 peptides with experimentally known binding affinities were randomly sampled from each of the two alleles
to create a peptide set of 2,000 total peptides. NetMHCpan-4.1 was then used to predict the affinity of all peptides experimentally
validated to bind to one allele on the other allele and vice versa. The average binding affinity was calculated with respect to all
NetMHCpan-4.1 predictions, representing the expected cross-allele binding affinity. To determine the relative change in expected
binding affinity, the calculated cross-allele affinity values were subtracted from the average observed affinity of peptide ligands as-
signed to that allele (Figure S8C).

A binding motif KLD threshold where alleles with that value or lower are expected to bind similar peptides is important for grouping
alleles and estimating the potential clinical associations. To find this binding motif KLD threshold, a linear model was fit to all allele
pairs with a binding motif KLD of less than 3 and compared to the average cross-allele binding predictions (Figure S8B). A binding
motif KLD of 1 was shown to indicate an average affinity of 5,000 nM, and was selected as the binding motif KLD threshold.

e4 Cell Systems 15, 1-12.e1-e7, April 17, 2024



Please cite this article in press as: Wilson et al., The electrostatic landscape of MHC-peptide binding revealed using inception networks, Cell Systems
(2024), https://doi.org/10.1016/j.cels.2024.03.001

Cell Systems ¢ CellP’ress

Sequence-based model

A deep sequence-based model, inspired by Nielsen et al.,” was constructed for comparison to HLA-Inception (Figure S13). The
input to this model was a BLOSUM-encoded vector of key positions within the MHC-I binding pocket, and the model was trained
on a balanced data set consisting of 315,512 experimentally resolved MHC-I peptides paired with randomly generated decoy
peptides. The model consisted of 3 densely connected layers separated by dropouts, offering a comparable architecture to HLA-
Inception. The output of the model was the probability of the given peptide being a binder.

Position-weighted matrix score

Position-weighted matrix (PWM) score is a measure of how strongly a peptide adheres to the probability distribution underlying a
given binding motif. The PWM score is calculated by the sum of the log-odd ratios of observing an amino acid at a particular position,
given the background frequency of that amino acid within the motif. The equation to calculate PWM is as follows,

9 -
PWM score(pep) = Zlogzp—”_, (Equation 5)

where pep is a peptide being scored, i is the residue number being considered, p;; is the probability of the i-th residue of pep at the i-th
position according to the binding motif, and g; is the background frequency of the i-th residue of pep. A higher PWM score indicates a
higher probability of a peptide binding to a target allele. Allele-specific score thresholds were determined by calculating the PWM
scores for all nonameric peptides in the human protein and generating a cdf of that distribution.

Pan allele and length peptide prediction

Predictions for HLA-Inception were extended to a larger list of 15,470 alleles through the use of sequence-based alignments. In short,
the binding pockets of alleles not covered by the set of 5,281 homology models were individually aligned to sequences of all modeled
binding pockets. Unknown alleles were then assigned the predicted motif of the best aligning allele. Binding predictions of peptides
with lengths other than 9 was accomplished by adding or removing amino acids, depending on the length of the peptide, until a pep-
tide of length 9 was constructed. For peptides of length 8, a place holder amino with a PWM score of 7th amino acid was inserted at
the n-1 position to create a peptide of length 9. Conversely, for peptides longer than 9 amino acids, only peptide positions 1 — 8 and
the C terminal of the peptide were scored. This decision was made due to the low contribution of non-anchor residues to the overall
PWM score as well as the general lack of secondary anchors residue near the C terminal of the peptide. Peptide length benchmarking
was done using a subset of data from the MONOALLELIC benchmark dataset described in O’Donnell et al.'®

Correlation with quantitative peptide binding scores

Peptides with quantitative values for binding affinity, IC50 or complex stability, were extracted from the IEDB database.'” Peptide
were selected according to the same criteria as peptide selection for the generation of experimental peptide binding motifs. Corre-
lations between quantitative binding values and PWM score were calculated using Spearman’s rank correlation coefficient.

Presentation prediction of natural ligands

For analysis centered on the recovery of naturally presented MHC-I ligands, 9mer MHC-I peptides with experimental evidence of
presentation for 50 different alleles were obtained from the HLA Ligand Atlas.> For each allele, 1,000 peptides experimentally deter-
mined to be naturally presented were randomly sampled and combined with 99,000 decoy peptides (not naturally presented) ex-
tracted from the human proteome. In cases where alleles had less then 1,000 experimentally described peptides, all peptides
were used and decoys peptides were sampled to maintain a ratio of 1:100 target-decoy ratio.

Leave one cluster out analysis

Leave one cluster out analysis is defined as the process of using a cluster of alleles, defined by similar binding pocket sequences, to
test the generalizability of different models on unseen data. MHC-I sequences were clustered with respect to BLOSUM-encoded key
positions from the MHC-I binding pocket (described in Nielsen et al.®®). The optimal number of clusters, 11, was determined using the
average silhouette width method implemented in the fviz_nbclust function in the factoextra R package.® Following clustering, models
would then be tested on each identified cluster by withholding all alleles assigned to a given cluster from the training set, and then
testing model performance on those withheld alleles. The Leave one cluster out analysis was performed on all clusters. Model ac-
curacy was reported as the individual matthew’s correlation coefficients®” for peptide prediction of each allele within the cluster.
Due to the requirement for a binary outcome to calculate MCC and the fact that the ratio of decoys and target peptides were largely
equal, the median binding percentile for each allele within each cluster was designated as the cutoff value for that allele, with all pep-
tides showing better binding percentiles being labeled as binders and all those with worse binding percentiles being labeled as non-
binders. To verify that the inception network was optimal for the given data representation, LOC analysis was performed on 3 alter-
native machine learning architectures: a Random Forest, A 3-dimensional convolutional neural network (CNN), and a multilayer
perception (MLP) (Figure S14C). All three models were trained and tested identically to the inception network, except for the model
architecture itself. The random forest was trained on a one-dimensional vector that consisted of flattened representation of the
3-dimensional electrostatic potentials. The random forest was trained on a one-dimensional vector that consisted of a flattened
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representation of the 3D electrostatic potentials. It returned a multi-class output consisting of the probabilities of each amino acid ata
given position. The 3D CNN was trained on the 3D electrostatic grids. It consisted of three convolutional layers culminating ina 1D
output vector of length 20, corresponding to the probabilities of each amino acid at each position. The MLP was trained on 1D vectors
similar to the random forest. It consisted of three dense layers with a 1D output vector of length 20, corresponding to the probabilities
of each amino acid at each position. Both alternative deep learning methods used MSE as the loss function. The leave one out cluster
analysis was also performed for HLA-Inception models trained on high salt concentration electrostatic maps and van der Waals maps
(Figure S183), Physics-based inception models compared to MHCflurry (Figure S14A), and Electrostatics-based inceptions models
trained on only one map per allele (Figure S14B). LOC analysis was performed using a subsets of the IEDB database'® and the
"Curated MHC | mass spec datasets” described in O’'Donnell et al."®

Performance benchmarking

Precision-recall curves for HLA-Inception, netMHCpan-4.1, and MHCflurry-2.0 were calculated for the 36 single allele benchmark
datasets described in Reynisson et al.?’. To account for potential overlaps with training sets for sequence-based models,
MHCflurry-2.0 was retrained to excluded peptides in the benchmarking set. Threshold specific precision and recall was determined
for each algorithm by calculating both metrics using cutoff threshold ranging from 0 to 99.5%. Performance efficiency for each al-
gorithm was determined by predicting 8-11mer peptides for a full MHC-I genotype (HLA-A26:01, HLA-B07:02, HLA-C12:03, HLA-
A24:02, HLA-B38:01, HLA-CO07:02) of human proteomes ranging from 1 to 82,427 proteins. If supported by the algorithm, results
were filtered to only included peptides that fell within a 2% binding threshold. Each prediction was computed on a single CPU
core for a maximum of 24 hours. In cases where computations failed to complete in 24 hours, the overall run time was predicted using
a generalized linear model fit to completed benchmarking runs for that algorithm.

Prediction of ovarian MHC-l immunopeptidomes

Peptides were initially filtered to remove any overlap with the IEDB database, the MHCFlurry training set, and the 36 single allele
benchmarking data set.'”'%?° Peptides for each patient were then combined with a 10-fold excessive of random human peptides,
of equal length distributions, not observed in the data set. Binding predictions were then performed using each algorithm. Precision
was measured using the binder and strong binder cutoff threshold which correspond to 2% and 0.5% respectively.

Proteome-scale peptide predictions

Full Human (UP000005640) and Mouse (UP000000589) proteomes were extracted from the uniprot database,® and all reference
protein sequences for viruses (Virus) with homo sapiens listed as a host was extracted from the ncbi virus database.* All predictions
were performed using an apple M1 pro chip with 10 cpu cores.

Hierarchical clustering of alleles associated with HIV outcome

MHC-I alleles showing statistically significant associations with HIV disease progression®® were hierarchically clustered based on
pairwise binding motif KLD calculations using the WPGMA method.?° Clusters of alleles were identified by cutting the tree at a
KLD threshold of 1. The overall log odds ratio of a cluster was defined as the average of individual log odds ratios of alleles contained
within a cluster. Predicted binding motifs were then assigned to an HIV outcome associated allele cluster by calculating the distance
between a given allele to all cluster motifs and assigning the allele based on minimal binding motif KLD distance.

Analysis of immune checkpoint data

A dataset describing survival following immune checkpoint blockade of 314 melanoma and non-small cell lung cancer patients was
obtained from Chowell et al.>® Each patient in the cohort was assigned a genotype distance value that corresponded to the average of
all pairwise binding motif KLDs for that patents’ MHC-I genotype. Patients with genotype distances in the top 75% were labeled as
having high genotype distance while all other patients were labeled as having low genotype distance. A Kaplan-Meier plot describing
the survival rates of both groups was generated using ggsurvfit.°" A hazard ratio between the two groups was determined by fitting a
cox proportional hazards regression model to the data.®® As a baseline method, patient Supertype zygosity’' was used as a strat-
ification method. Due to the lack of supertypes for HLA-C, the analysis was restricted to the HLA-A and HLA-B locus. For each pa-
tient, the number of HLA locus in which there was a supertype mismatch (i.e. AO1 vs A02) were counted. A value of 2 indicates that the
patient in question had no HLA alleles that shared a supertype while conversely a value of 0 would indicate that both A and B alleles
belonged to the same respective supertypes. To simplify the analysis, patients with A or B alleles that were not set within a defined
supertype were excluded from the analysis. This resulted in a slight reduction in overall cohort size from 314 patients to 280 patients.
Patients were then stratified into two groups: high and low. The high strata indicated patients with no shared HLA supertypes, a value
of 2, while the low strata were all other patients, a value of 0 or 1. Overall, there were 180 patients sorted in the high strata and 100
sorted into the low strata.

Isolation of HLA ligands

HLA class | peptides were isolated using standard immunoaffinity purification as described.®® In brief, snap-frozen ovarian tissue
samples (n=5) were homogenized in liquid nitrogen followed by protein extraction using a lysis buffer containing (0.25% sodium de-
oxycholate, 0.2 mM indole acetic acid, 1 mM EDTA, 1 mM PMSF, 1% Octyl-B-glucopyranoside, 1:200 protease inhibitor cockstail) for
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1 h onice. Following centrifugation, the supernatant was loaded onto a protein A sepharose column for pre-clearing. Subsequently,
the eluate was passed through a pan MHC class I-specific antibody (W6/32 clone) crosslinked affinity column. The columns were
sequentially washed with 150 mM NaCl in 20 mM Tris HCI pH 8.0, 400 mM NaCl in 20 mM Tris HCI pH 8.0,150 mM NaCl in
20 mM Tris HCI pH 8.0- and finally 20-mM Tris HCI pH 8.0). MHC-bound peptide complexes were eluted using 1% TFA and peptides
in the eluate were purified using C18 stage tips prior to LC-MS/MS analysis.

LC-MS/MS analysis

LC-MS/MS analysis was carried out on an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Scientific, San Jose, CA) connected
online to a Dionex RSLC3000 liquid chromatography system (Thermo Scientific, San Jose, CA). Survey MS scan was acquired in
Orbitrap mass analyzer with 50 ms injection time, 60,000 resolution, and 4xe5 AGC target. MS/MS analysis was performed sepa-
rately for charge states 2-4 (scan priority 1) and charge state 1 in the mass range of 700-1400 m/z (scan priority 2). Precursor ions
(z=2-4) were fragmented with 28% HCD normalized collision energy and acquired in an Orbitrap mass analyzer with 30,000 resolu-
tion, 150 ms injection time and 1 xe5 AGC target. Precursor ions (z=1) with a mass range of 700-1400 m/z were fragmented with 32%
HCD normalized collision energy and analyzed in the Orbitrap analyzer. Dynamic exclusion was enabled for 30 s. Additional filters
included monoisotopic precursor selection and an intensity threshold of 2.5 x 104,

Database searching

Mass spectrometry raw data files were analyzed using MSFragger in FragPipe v17 to identify peptides.®* Database searching was
performed against sample-specific personalized protein databases and search parameters included 7-25 amino acids peptide
length with no enzyme specificity. Dynamic modifications included oxidation (M), cysteinylation (C), and protein N-terminus in the
MSFragger search engine. Precursor ion tolerance of 20 ppm for both precursors and fragment ions was used in MSFragger. The
false discovery rate (FDR) estimation was performed using Percolator and set to a peptide spectrum match level of less than 3%.

QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical analyses were performed within the R platform for statistical computing. Unless otherwise specified all correlation co-
effients were estimated using Spearman’s rank correlation coefficient. All pairwise comparisions were performed using Wilcoxon
rank sum test. Hazard ratios were estimated using the Cox proportional hazard regression model. Statistical significance in HIV allele
grouping was determined using a Fischer exact test.

ADDITIONAL RESOURCES

We also provide a web browser-based implementation of the algorithm at http://hlainception.asu.edu:3000/.
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